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Stimulated Brillouin backscattering of light is shown to be drastically enhanced in electron-positron
plasmas, in contrast to the suppression of stimulated Raman scattering. A generalized theory of three-wave
coupling between electromagnetic and plasma waves in two-species plasmas with arbitrary mass ratios,
confirmed with a comprehensive set of particle-in-cell simulations, reveals violations of commonly held
assumptions about the behavior of electron-positron plasmas. Specifically, in the electron-positron limit
three-wave parametric interaction between light and the plasma acoustic wave can occur, and the acoustic
wave phase velocity differs from its usually assumed value.
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Plasma interaction with electromagnetic fields is vital to
the study of electron-positron plasmas, which appear in
nature as a component of the early Universe [1] and in the
vicinity of pulsars [2,3], quasars [4], and black holes [5,6].
Laboratory-created electron-positron plasmas have long
been recognized as an exciting fundamental and techno-
logical opportunity for exploration of many astrophysical
and antimatter phenomena. Ongoing efforts to reproduce
such plasmas in the laboratory [7,8] have recently culmi-
nated in a demonstration of a neutral and relatively dense
(1016 cm−3) laser-produced electron-positron plasma [9],
yielding a path to laboratory observation of collective
effects in pair plasmas and prompting examination of
untested assumptions about the collective behavior of
electrons and positrons.
In the electron-positron limit, many standard plasma

approximations break down due to the equal masses of the
plasma components. Electron-positron plasmas are
expected to exhibit unusual properties including enhanced
solitary-wave phenomena, the absence of Faraday rotation,
and strong nonlinear Landau damping [10], as well as
differences in the behavior of turbulence [11]. In particular,
although electromagnetic field interaction with density
perturbations has been discussed [12], it is claimed that
three-wave coupling (i.e., stimulated Raman and Brillouin
scattering) entirely vanishes in an electron-positron plasma
[8,10,12–14] because the nonlinear current and charge
density have a cubic dependence on charge [10]. However,
since the transverse nonlinear current, which mediates
backscattering, has a quartic dependence on charge, it does
not cancel, and the above argument does not apply to the
acoustic mode. An alternative picture for the suppression of
stimulated Raman scattering is that the laser-driven ponder-
omotive force acts equally on electrons and positrons, so
the net charge difference required for the formation of a
Langmuir wave cannot develop, an argument which does

not apply to stimulated Brillouin scattering because the
acoustic mode does not require a net charge difference.
Here we analytically and numerically study three-wave

coupling in two-species plasmas where the components
have comparable masses and equal temperatures, yielding a
complete picture of stimulated Raman and Brillouin
scattering. Differing from previous studies, our theory
and numerical simulations predict significant stimulated
Brillouin scattering in electron-positron plasmas, in con-
trast to the suppression of Raman scattering. Our use of
fully kinetic particle-in-cell (PIC) simulations allows
us to address the deficiencies of the two-fluid model in
capturing the behavior of the electron-positron acous-
tic mode.
Plasma-based laser amplification by stimulated Raman

or Brillouin backscattering of counter-propagating laser
beams has been studied in detail [15–24] as a method for
producing ultrashort pulses of extraordinarily high inten-
sities by avoiding the compression gratings of chirped pulse
amplification [25]. In Raman and Brillouin amplification,
Langmuir and ion-acoustic waves, respectively, mediate the
transfer of energy from a long pump laser pulse to a short,
lower-frequency seed laser pulse. Ponderomotive forcing at
the difference frequency of the two counterpropagating
electromagnetic waves drives plasma fluctuations, which
scatter pump photons into frequency-downshifted seed
photons. When appropriately phase matched, the fluctua-
tions grow rapidly in time, producing massive amplifica-
tion. Analysis of the governing equations leads to
phase-matching conditions for the frequency (ω) and wave
vector (k) of the pump, seed, and plasma waves, i.e.,
conservation of energy (ωpump ¼ ωseed þ ωplasma) and
momentum (kpump ¼ kseed þ kplasma). With these relations,
a counterpropagating geometry becomes a powerful tool
for computationally or experimentally validating an ana-
lytically determined plasma dispersion relation ωðkÞ, since
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resonant amplification will be observed at the kseed which
satisfies the phase-matching conditions.
Unlike those of an electron-ion plasma, the longitudinal

modes of an electron-positron plasma are not separable by
species. Instead of a Langmuir wave governed by the
electron number density (ne) and an acoustic wave driven
primarily by the ion (i) dynamics, we have a plasma wave
corresponding to charge density fluctuations (∝ ½ne − ni�)
and an acoustic wave with no electrostatic component
corresponding to total density fluctuations (ne þ ni) [26].
Below, we derive a dispersion relation that connects the
heavy-ion and electron-positron limits for arbitrary mass
ratios in the range 0 ≤ β ¼ me=mi ≤ 1 (ms is mass of
species s). Approaching the electron-positron limit by
varying β, rather than varying the ion-positron ratio,
provides an intuitive picture of the transition from the
ion-acoustic wave (β → 0) to the electron-positron acoustic
wave (β ¼ 1). Note that we will use e and i (electron and
ion) to denote negatively and positively charged particles,
though the results are applicable both to electron-positron
plasmas (β ¼ 1) and previously studied comparable-mass
ion-ion plasmas, e.g., C−

60=C
þ
60ðβ ≈ 1Þ [27–29], Tlþ=I−

ðβ ≈ 0.62Þ [30], or Csþ=UF−6 ðβ ≈ 0.38Þ [31].
In a two-fluid treatment of the longitudinal modes, the

one-dimensional species (s ¼ i; e) continuity, species
momentum, and Poisson equations formulated in terms
of previously defined variables and species charge (qs),
velocity (vs), partial pressure (Ps), and electric field (E)

∂tns þ ∂xðnsvsÞ ¼ 0; ð1Þ
msnsð∂tvs þ vs∂xvsÞ ¼ −∂xPs þ qsnsE; ð2Þ

∂xE ¼ 4πeðni − neÞ ð3Þ

may be linearized and solved by assuming solutions of the
form eiðkx−ωtÞ. We deal with pressure by setting
∂xPs ¼ γsTs∂xns, with γs a correction factor for dropping
the derivative of temperature (Ts) term from the derivative
of the ideal gas law. Note that we only consider ions with
one missing electron so that the species charges (qe ¼ −qi)
have the magnitude of a single electron charge (e), and for
our initially neutral plasma ne;0 ¼ ni;0. For now, we will
leave γs unspecified, apart from observing that for a one-
dimensional adiabatic process γs ¼ 3, and for an isothermal
process γs ¼ 1. The resultant coupled equations may be
solved [32] for ω to yield

ω2
ðL;AÞ ¼

1

2
ω2
ekβ

� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω4
ekβ − 4k2C2

eβ½ð1þ αÞω2
e þ αk2C2

e�
q

; ð4Þ

where ω2
ekβ ¼ ð1þ βÞω2

e þ ð1þ βαÞk2C2
e, ω2

e ¼ 4πne;0e2=
me, C2

s ¼ γsTs=ms, α ¼ γiTi=γeTe, and k ¼ jkj. Langmuir
waves (L) are given by the upper sign and acoustic waves
(A) by the lower sign.

For immobile ions (β ¼ 0), only the Langmuir wave
solution exists, with ω2

L ¼ ω2
e þ C2

ek2 ¼ ω2
e þ 3Tek2=me

(γe ¼ 3). To find the ion-acoustic dispersion relation for a
heavy-ion plasma, we consider Eq. (4) in the limit β → 0,
k2 → 0, and α → 0, since the ion-acoustic wave calculation
is valid for Te ≫ Ti, yielding the standard ω2

A ¼ k2Te=mi.
Considering the electron-positron limit, we have β ¼ 1 and,
in agreement with previous results [26], we find
ω2
ðL;AÞ ¼ ω2

e þ k2C2
e � ω2

e.
Because of the equivalent thermalization times of elec-

trons and positrons, and our focus on β > 0.1, we will
consider in detail only α ¼ 1. The resultant dispersion
relation, valid for 0 ≤ β ≤ 1, is, after some manipulation

ω2
ðL;AÞ ¼

1

2
ð1þ βÞω2

ek �
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1 − βÞ2ω4
ek þ 4βω4

e

q

; ð5Þ

where ω2
ek ¼ ω2

e þ k2C2
e. By inspection, this equation still

satisfies the electron-positron and immobile-ion limits.
Equation (5) is plotted for 0 ≤ β ≤ 1 in Fig. 1 at Te;i ¼
70 eV and an electron number density ne ¼ 1019 cm−3.
The Langmuir mode (upper curves) is characterized by the
limits ω2

L → ð1þ βÞω2
e as k → 0 and ω2

L=k
2 → 3Te=me as

k → ∞, resulting from γe ¼ 3, which is valid for all β, and
γi ¼ 3 in the regime β ≈ 1 where positively charged
particles substantially affect the Langmuir wave. For the
acoustic mode, the dispersion relations for γs ¼ 3 and
γs ¼ 1 are both presented at β ¼ 0; 0.1; 1, with the region
between the two values of γs shaded, because the adiabatic
assumption (γs ¼ 3), which requires that the wave phase
velocity is much greater than the species thermal velocity, is
not valid for the acoustic mode. The similar phase and
thermal velocities also result in Landau damping, so the
acoustic wave is not easily observed in equal-mass plasmas
[26]. Though Eq. (5) suggests ω2

ðL;AÞ=k
2 → γeTe=me as

k → ∞ for both modes, the different possible values of γe

FIG. 1. DispersionrelationsfortheLangmuirandacousticmodesas
β¼me=mi isvariedbetween0and1forTe¼Ti.λ2D ¼ Te=4πe2ne ¼
C2
e=γ2eω2

e.

PRL 116, 015004 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

8 JANUARY 2016

015004-2



means that the group velocities may differ in the large k
limit, in contrast to the usual assumption [26,33].
Figure 2(a) presents the effects of coupling between

counterpropagating laser pulses in a 0.8 mm long, 70 eV
plasma with mi ¼ 10me (β ¼ 0.1) and ne ¼ 1019 cm−3

(0.0057nc) as found with fully kinetic one-dimensional PIC
simulations using the code EPOCH [34], showing the
intensity envelope of amplified seed pulses of variable
wavelength (λseed) after the interaction. Under these con-
ditions, the lifetime of an electron-positron plasma is on
the order of 10 μs, more than 108 plasma wave periods
[35–37]. The pump (initial intensity I0 ¼ 1014 W=cm2)
wavelength (λpump) is fixed at 800 nm as the seed
(I0 ¼ 1014 W=cm2, intensity FWHM: 50 fs) wavelength
is varied between 780 and 950 nm. The above parameters
are also used in subsequent simulations, unless otherwise
noted, with 80 cells=λpump and 60 particles=cell. In
Fig. 2(a), two distinct resonances appear, near 875 nm
(Raman) and 815 nm (Brillouin), giving the relationship
between ωplasma and kplasma at these plasma conditions; the

different shapes of the intensity envelopes arise partially
from the different damping behavior of the Langmuir and
acoustic waves. The simulation parameters were chosen to
be computationally tractable and allow comparison to
previous results for Raman amplification at β ¼ 0.
To demonstrate how β affects both the resonance wave-

length and the instability growth rate, the final maximum
intensity of the seed laser is plotted as a function of λseed in
Fig. 2(b). Both the Raman and Brillouin resonances appear
at longer seed wavelengths as β → 1, indicating higher
Langmuir and acoustic frequencies, and the Brillouin mode
shows substantial enhancement.
We may consider in more detail the Raman (upper)

solution to Eq. (5). The heavy-ion (β → 0) Langmuir wave
neglects the ion contribution and takes γe ¼ 3, which is
valid where the electron thermal velocity is much lower
than the Langmuir wave phase velocity. Since the thermal
velocity of the ions is lower than that of the electrons,
wherever γe ¼ 3 is true, we can also take γi ¼ 3. The
Langmuir-wave phase velocity at phase-matched k for the
regime of interest (kλD ≈ 2kpumpλD ≈ 0.18 at Te;i ¼ 70 eV,
ne ¼ 1019 cm−3, and λpump ¼ 800 nm) in an electron-
positron plasma is higher than the particle thermal veloc-
ities, so the compression may be treated as adiabatic,
justifying γe;i ¼ 3 for all β.
Figure 3 shows the resonant seed wavelengths predicted

analytically by Eq. (5) (solid lines) and determined from
PIC simulations (points) by varying λseed to find the value
which results in the largest amplification. The theoretical
predictions and simulation results agree for the Raman
mode, suggesting that Eq. (5) captures the key dynamics of
resonance for 0 ≤ β ≤ 1. The pump intensity does not
affect the Raman resonance wavelength in this regime, as
shown by the overlap of the 70 eV results at two different
pump strengths. Note that in Fig. 3 there are no simulation
points at β ¼ 1 for the Raman mode. This follows from the
observation in Fig. 2 that Raman mode amplification
vanishes as β → 1, as previously predicted [10].
Though we might hope that the acoustic mode, which in

the heavy-ion limit is described by γe ¼ 1 and γi ¼ 3 [38],
also approaches γe;i ¼ 3 in the electron-positron limit, the
similarity of the acoustic wave phase velocity and particle
thermal velocity means that wave propagation and thermal-
ization are coupled, invalidating the adiabatic assumption.
As Fig. 3 shows, the resonant λseed for the Brillouin mode
falls between the γe;i ¼ 3 and γe;i ¼ 1 solutions of the
acoustic dispersion relation. Because the thermal and phase
velocities are of the same order, thermalization of the
velocity distributions occurs on the time scale of the wave
period. Specifically, a non-negligible particle population
travels multiple wavelengths in a single period and equil-
ibrates the velocity distributions across the acoustic per-
turbations. Therefore, in the low-pump-intensity limit, the
resonance condition for the electron-positron acoustic wave
approaches the isothermal (γs ¼ 1) rather than adiabatic

FIG. 2. (a) Amplified seed pulses of different wavelength (λseed)
after passage through a 0.8 mm plasma with ne;i ¼ 1019 cm−3

and mi ¼ 10me. Initial counterpropagating pump and seed
intensities are 1014 W=cm2 and Te;i ¼ 70 eV. (b) Maximum
final intensity of an amplified seed at varied wavelength and ion
mass mi with the same other parameters as (a). The dashed line
indicates the initial seed intensity.
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(γs ¼ 3) solution. This effect should be stronger (i.e., the
resonance should be closer to γs ¼ 1) at higher temper-
atures and lower intensities, in agreement with 70 eV
Brillouin results of Fig. 3. The counterpropagating geom-
etry provides access to this difficult-to-study heavily
damped mode. A more precise analytic description of
the acoustic resonance requires a kinetic approach, which
lies beyond the scope of this paper.
To analytically predict the amplification growth rate in

arbitrary-ion-mass plasmas, we require an equation for how
a plasma perturbation mediates energy transfer between the
pump and seed (vector potential A) [32]

½∂2
t − c2∇2 þ ð1þ βÞω2

e�Aseed ¼ −
4πe2

me
½β ~ni þ ~ne�Apump;

ð6Þ
where ~ns ¼ ns − ns;0 represents the density fluctuations,
and a pair of equations describing how counterpropagating

electromagnetic waves drive electron [Eq. (7)] and ion
[Eq. (8)] plasma fluctuations [32]

ð∂2
t − C2

e∇2Þ ~ne þ ω2
eð ~ne − ~niÞ ¼ Fpe; ð7Þ

ð∂2
t − βαC2

e∇2Þ ~ni − βω2
eð ~ne − ~niÞ ¼ β2Fpe; ð8Þ

where Fpe ¼ ½ne;0e2=m2
ec2�∇2ðApump ·AseedÞ.

Equations (6), (7), and (8) may be linearized and combined
to produce a single dispersion relation for the full system
(see [32]). The substitution ω ¼ ωðL;AÞ þ δ into the
dispersion relation [39], where jδj ≪ ωðL;AÞ, gives an
analytic formula for the instability growth rate of the seed
field [Γ ¼ ImðδÞ] [32]. For β ¼ 1, ΓL ¼ 0 and
ΓA ¼ ðωekeApump=4mecÞ½kCeðωpump − kCeÞ=2�−1=2. The
calculated growth rate for arbitrary β is plotted in
Fig. 4(a), and the growth rate observed at corresponding
conditions in PIC simulations is given in Fig. 4(b). The
growth rate observed in PIC simulations does not reach
the maximum predicted analytically, partially due to the
neglect of kinetic effects. Figure 4(c) shows the change in
seed intensity after passage through a 4 mm plasma,
demonstrating that the general trend of amplification
persists at intensities for which the seed reaches the
saturation regime. In all three plots Brillouin scattering
is strongly enhanced in the electron-positron plasma case.
In summary, we have analyzed three-wave coupling in

plasmas where the heavy-ion approximation does not hold.
Because of their appearance in astrophysical phenomenak
and recent laboratory experiments, we emphasize electron-
positron plasmas, though our results apply more generally.
We show that the acoustic mode in an electron-positron
plasma has a lower value of γs than usually assumed in the
literature. Most significantly, we find substantial stimulated
Brillouin scattering in an electron-positron plasma, chal-
lenging the assumption that both Raman and Brillouin
scattering are suppressed and suggesting scenarios where
scattered radiation from electron-positron plasmas can be
understood and used for diagnostics.

FIG. 3. Seed wavelengths (λseed) at which maximum Raman
or Brillouin amplification is observed in PIC simulations
(points) at varied plasma temperature (Te;i ¼ 20, 70, 240 eV)
and ion mass (β ¼ me=mi), found by varying λseed at fixed
λpump ¼ 800 nm. The solid lines are calculated from Eq. (5).
For the Brillouin mode, the upper and lower lines at each
temperature correspond to γe;i ¼ 3 and γe;i ¼ 1, respectively.
The 0.8 mm long plasma has a density ne;i ¼ 1019 cm−3 and
Ipump;0 ¼ Iseed;0 ¼ 1014 W=cm2. The gray circles are calculated
at a temperature of 70 eV and a higher pump intensity
(1015 W=cm2) and overlap the lower intensity points for the
Raman mode. The bars give uncertainty due to the finite size of
changes in λseed between simulations.

(a) (b) (c)

FIG. 4. Perturbation growth rate (Γ) for Raman and Brillouin
scattering from the analytic dispersion relation (a) and found with
PIC simulations below the saturation regime (b) at Te ¼ Ti ¼
20 eV and ne ¼ 1019 cm−3. In (b), the initial seed intensity is
1011 W=cm2. (c) Simulated change in seed pulse intensity
(Iseed;0 ¼ 1014 W=cm2) after passage through 0.4 mm of plasma
(Te ¼ Ti ¼ 70 eV, ne ¼ 1019 cm−3).
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