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A relativistic quantum field theory with nontrivial background fields is developed and applied to study waves
in plasmas. The effective action of the electromagnetic 4-potential is calculated ab initio from the standard
action of scalar QED using path integrals. The resultant effective action is gauge invariant and contains nonlocal
interactions, from which gauge bosons acquire masses without breaking the local gauge symmetry. To demonstrate
how the general theory can be applied, we give two examples: a cold unmagnetized plasma and a cold uniformly
magnetized plasma. Using these two examples, we show that all linear waves well known in classical plasma
physics can be recovered from relativistic quantum results when taking the classical limit. In the opposite limit,
classical wave dispersion relations are modified substantially. In unmagnetized plasmas, longitudinal waves
propagate with nonzero group velocities even when plasmas are cold. In magnetized plasmas, anharmonically
spaced Bernstein waves persist even when plasmas are cold. These waves account for cyclotron absorption features
observed in spectra of x-ray pulsars. Moreover, cutoff frequencies of the two nondegenerate electromagnetic
waves are red-shifted by different amounts. These corrections need to be taken into account in order to correctly
interpret diagnostic results in laser plasma experiments.
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I. INTRODUCTION

Classical plasma theories, which describe plasmas as
collections of charged classical particles moving in self-
consistent electromagnetic (EM) fields, become deficient when
relativistic and quantum effects are important. The conditions
at which relativistic quantum effects are important may be
determined by comparing three energy scales: the energy
scales of the plasmas, the energy scales of the EM fields,
and the rest energy of charged particles. The energy scales
of plasmas are the thermal energy kBT , the Fermi energy
εF, and the plasmon energy �ωp. The energy scales of wave
fields are the photon energy �ω and the ponderomotive energy
Up. The energy scales of static electric and magnetic fields
are εE = √

eEc� and εB =
√
eBc2�, respectively. Relativistic

effects are important when the energy scales of either the
plasmas or the EM fields are comparable to the rest energy
of charged particles. Quantum effects are important when the
thermal energy is low compared to other energy scales.

An example where relativistic quantum effects are im-
portant is the magnetosphere of an x-ray pulsar [1]. The
typical magnetic fields of x-ray pulsars are on the order B ∼
1012 G. The corresponding magnetic energy εB ∼ 100 KeV is
comparable to the rest energy of electrons mec2 ≈ 511 KeV,
indicating that relativistic effects are important. Moreover, the
effective temperature of x-ray pulsars kBT ∼ 10 KeV is colder
than εB, indicating that quantum effects are also important.
That relativistic quantum effects are important, an inference
made by comparing energy scales, is strongly supported by
anharmonic cyclotron absorption features observed in spectra
of x-ray pulsars [2–7]. Since classical plasma theories cannot
explain these spectral features, the presence of high-order
harmonics is attributed to inelastic scatterings of photons
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with electrons that occupy quantized Landau levels [8], and
the anharmonicity is attributed to viewing geometry as well
as relativistic effects [9,10]. Despite numerous efforts, many
features of cyclotron absorption lines remain to be explained
[11–13]. The locations and shapes of these lines contain
important information such as the magnetic field and plasma
profiles of magnetospheres of x-ray pulsars. This information
cannot be extracted, unless wave dispersion relations, which
enter the radiation transport equations [1] that serve as the
forward model in the retrieval problem [14], are obtained for
strongly magnetized plasmas. In this paper, we will obtain
explicit expressions of wave dispersion relations in strongly
magnetized plasmas.

Another example where relativistic quantum effects are
important is a plasma produced by ultraintense lasers inter-
acting with a solid target. During the interaction, a quasistatic
magnetic field on gigagauss scale can be produced [15,16]. The
corresponding magnetic energy εB ∼ 1 KeV is comparable to
the electron temperature of the plasma, indicating that quantum
effects are important. Relativistic effects also turn out to be
important when optical lasers are used to diagnose the plasma.
This is because the frequencies of optical photons are close
to wave cutoffs, if the plasma has density n0 ∼ 1021 cm−3,
corresponding to �ωp ∼ 1 eV. Due to singularities near the
cutoffs, small modifications of the cutoff frequencies can have
large effects. Such effects have been revealed in a number of
experiments [17,18]. In these experiments, it is found that
the magnetic field, determined from classical formulas, is
larger when the same plasma is diagnosed by lasers with
higher frequencies. This peculiar dependence of the inferred
magnetic field strength on the frequencies of diagnostic lasers
indicates that systematic errors exist in classical formulas.
These systematic errors can be removed only by carefully
calculating how waves propagate in strongly magnetized
plasmas. In this paper, we will describe how Faraday rotation
is modified by relativistic quantum effects.
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To describe wave propagation in strongly magnetized
plasmas, as well as in other plasmas where relativistic quantum
effects are important, we develop a general theory that can be
applied to various situations. The general theory takes input
of any self-consistent background scalar and electromagnetic
fields, and outputs the wave effective action, which contains
all information of wave propagation. The wave effective action
has a clear physical meaning. When waves propagate through
plasmas, they interact with charged particles, whose dynamics
are affected by the presence of the background fields as well
as the wave fields. After all the interactions related to charged
particles are summed up, what remains is the effective action of
waves. This clear physical picture of the wave effective action
can be translated into rigorous mathematical procedures. To
derive the effective action, we start from the standard action
of scalar QED, self-consistently factor out the background
fields from the fluctuating fields, and then integrate out the
charged-particle fields in the path integral perturbatively. We
shall see that on one-loop level, the effective action is related
to the linear response of the system to small amplitude waves.

Having developed the general theory, we demonstrate how
it can be applied using two examples. The first example is a
uniform, unmagnetized, boson plasma. Such a system has been
studied by a number of authors using other methods [19,20].
Results of our general theory agree with these authors in this
special case. The second example is a uniform, magnetized,
boson plasma. Such a system has been studied by Witte and
coauthors [21–23], who can only describe wave propagation
parallel to the background magnetic field. Our results agree
in this special case. Moreover, our transparent formalism
enables us to describe nonparallel wave propagation, which
was obscure in previous studies. Although many theories
and models have been developed in the literature to describe
waves in relativistic quantum plasmas, such as plasma response
theories [24,25], finite-temperature theories [26–29], quantum
hydrodynamic models [30,31], and models that are based on
the historical Heisenberg-Euler effective Lagrangian [32–36],
this is the only theory capable of demonstrating its correctness
by showing that all linear wave modes well known in classical
plasma theories can be recovered when taking the classical
limit1 in relativistic quantum results.

Beyond the immediate goal of establishing a formalism
capable of describing wave propagation through an arbitrary
background of relativistic quantum plasma, the goal of this
paper is to demonstrate that quantum field theory, in whose lan-
guage the standard model of particle physics is written, and in
whose language many phenomena in condensed matter physics
are explained, is also a useful language for plasma physics.
Since particle physics describes a few particles with high
energy, condensed matter physics describes many particles
with low energy, and plasma physics describes intermediate
number of particles with intermediate energy, it should not be
surprising that a language that is effective for both extremes is
also effective in the intermediate regime. In this paper, we study
scalar QED, which describes spin-0 bosons, instead of spinor
QED, which describes spin- 1

2 fermions, so that our main ideas

1The classical regime is mc2 � pc � ε, where m is the rest mass,
p is the momentum, and ε is the quantized energy of a particle.

can be illustrated without complications due to spins. Although
plasmas are typically made of spinor particles instead of scalar
particles, scalar QED can be a good model for many condensed
matter systems such as superconductors and superfluids [37].
Moreover, our scalar QED plasma theory does recover waves
in classical plasma theories, which typically take no account
of spins at all. Extension of our formalism to spinor QED
plasmas, whose thermal equilibrium states have been studied
extensively using thermal Green’s function method [38–41],
is straightforward and will be reported separately.

The rest of this paper is organized as follows. In Sec. II,
we develop a general theory of wave propagation through an
arbitrary background of scalar QED plasma. In Sec. III, we
use a cold unmagnetized plasma as an example to demonstrate
how to apply the general theory, and obtain linear wave modes
in a cold plasma. In Sec. IV, we use a cold and uniformly
magnetized plasma as another example to demonstrate how to
apply the general theory. An explicit expression of the wave
effective action is obtained, followed by analysis of linear wave
modes. Conclusions and discussion are made in Sec. V. Some
important mathematical details are given in the Appendixes.

II. GENERAL THEORY

A. Quantum field theory with background fields

Our starting point is the standard action of scalar QED,
in which a complex scalar field is coupled to the gauge
field through minimum coupling. In natural unit ε0 = � =
c = 1 and Minkowski metric gμν = diag(1,−1,−1,−1), the
standard scalar QED action is

S =
∫
d4x

[
(Dμφ)∗(Dμφ) −m2φ∗φ

− λ
2

(φ∗φ)2 − 1

4
FμνF

μν

]
. (1)

The complex scalar field φ, whose complex conjugate is
denoted as φ∗, describes charged spin-0 bosons with mass
m and charge2 e. The real-valued 1-form A = Aμdxμ is the
gauge field that defines the gauge-covariant derivative Dμ =
∂μ − ieAμ. The covariant derivative has curvature 2-form
Fμν = ∂μAν − ∂νAμ, known as the field strength tensor. It
is well known that the Lagrangian density of action (1) is
invariant under local U(1)-gauge transformation

φ → φeieχ , Aμ → Aμ + ∂μχ, (2)

where χ is any function. The gauge-invariant symmetry
current is

Jμ = e

i
[φ∗(Dμφ) − φ(Dμφ)∗]. (3)

Contributions by other charged species are additive to the
current as well as to the Lagrangian. For conciseness, we will
not write summations over charged species explicitly. The φ4

2In natural unit, the electron charge e = −|e| is a dimensionless
small number related to the fine-structure constant α = e2/4π ≈ 1

137 .
We denote es the charge of particle states of species s, so the charge
of antiparticle states is −es .
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interaction is necessary for the theory to be renormalizable,
and the self-coupling constant λ is in general nonzero. In
the strong coupling regime, the φ4 nonlinearity can lead to
intriguing structure like the Abrokosov vortex [42]. In the weak
coupling regime, the φ4 coupling can be treated perturbatively
and contribute to the propagator of the gauge field on two-loop
level. In this paper, we focus our attention on the weak coupling
regime and study propagation of the gauge field on one-loop
level. Since the φ4 coupling does not contribute on this level,
we will set the renormalized value of λ to zero from now on.

To describe plasmas, which are constituted of charged
particles and their self-consistent EM fields, let us first
understand the roles of background fields in quantum field
theory. In usual quantum field theory, fields fluctuate near their
vacuum expectation values. In finite-temperature field theory,
fields fluctuate in a thermal bath, which is characterized by two
parameters: temperature and chemical potential. More gener-
ally, fields fluctuate on some background. The background,
which is described by some wave function, can be dynamical
and out of thermal equilibrium. The presence of such a
nontrivial background adds new ingredients to field theories.
Mathematically, the fields φ and A can be decomposed into
classical backgrounds and quantum fluctuations

φ = φ0 + ϕ, Aμ = Āμ + Aμ. (4)

Vacuum is the trivial case when the background fields φ0 and
Ā are zero. When the background fields are nontrivial, the
self-consistency of the classical backgrounds is given by the
Euler-Lagrange equations

(D̄μD̄
μ +m2)φ0 = 0,

∂μF̄
μν = J̄ ν0 . (5)

In the above equations, D̄μ = ∂μ − ieĀμ is the background
gauge-covariant derivative, F̄μν = ∂μĀν − ∂νĀμ is the back-
ground field strength tensor, and J̄ ν0 =∑s J̄

ν
s0 is the total

background current, summed over all charged species. It
is clear that the above equations are invariant under the
background U(1)-gauge transformation on φ0 and Ā. The
classical equations of motion (5) describe bound states as well
as unbound states. When the potential energy is larger than
the kinetic energy, as is the case in condensed matter systems,
particles are bound by the potential created by other particles.
In this case, the wave functions φ0 and Ā are localized and
correlation between particles can be strong. On the other hand,
when the kinetic energy is larger than the potential energy, as
is the case in plasmas, particles are unbound. In this case, the
motion of one particle is weakly correlated with the motion of
other particles, except during collisions.

While the background EM field F̄μν is conceptually
simple, the background charged particle field φ0 needs some
clarifications. When the plasma background is constituted of
N bosons, the classical background field φ0(x) is formally
related to the properly symmetrized N -body wave function
�0(x1,x2, . . . ,xN ) by

φ0(x) =
∫ √

V�0(x,x2, . . . ,xN ). (6)

Here,V = d4x2 ∧ · · · ∧ d4xN is the volume form of the 4(N −
1) dimensional subspace space of the N -boson configuration

space. The half-form
√
V is commonly seen in geometric

quantization [43]. It is easy to check that the N -body wave
function has mass dimension [�0(x1, . . . ,xN )] = M2N−1 and
the field φ0(x) has mass dimension [φ0(x)] = M as expected.
When a pair φ0(x)φ∗

0 (x) appears in an expression, two half-
forms combine into the volume form, and the integration can
then be carried out. For example, the current J̄ μ0 of anN -body
wave function �0 can be written explicitly as

J̄
μ

0 (x) = e

i

∫
V [�∗

0(x,x2 . . .)D̄
μ(x)�0(x,x2 . . .) − c.c.]. (7)

For conciseness, whenever the pair φ0(x)φ∗
0 (x) appears in an

expression, integration over all other coordinates of x2, . . . of
the many-body wave function �0(x,x2, . . . ) will be implied.

Having clarified the roles of background fields, let us
study their effects in quantum field theory. Separate classical
backgrounds from quantum fluctuations using decomposition
(4), integrate by part using∫

dx h∗D̄μf = −
∫
dx(D̄μh)∗f, (8)

and cancel terms using the background self-consistency
conditions (5), we can write action (1) as

S =
∫
d4x

[
(D̄μϕ)∗(D̄μϕ) −m2ϕ∗ϕ

− 1

4
(F̄μνF̄

μν + FμνFμν)

− (j̄ μ + η̄μ)Aμ + e2φφ∗AμAμ
]
. (9)

Here, Fμν = ∂μAν − ∂νAμ is the field strength tensor for the
fluctuating field A,

j̄ μ := e

i
(ϕ∗D̄μϕ − c.c.), (10)

η̄μ := e

i
(φ∗

0D̄
μϕ + ϕ∗D̄μφ0 − c.c.), (11)

are currents due to vacuum excitation and background plasma
excitation, respectively.

The background-reduced action (9) is associated with a
Lagrangian density L that depends on the fluctuating fields ϕ
and A. When waves propagate through background plasmas,
the background field F̄μν , which is usually generated by
some slowly varying and large-scale external charge current
distributions, can be regarded as fixed. The background
charged-particle field φ0, which is self-consistent with F̄μν ,
can also be regarded as fixed. In this way, all interactions
between waves and charged particles are taken into account
by the fluctuating fields. Up to the constant term 1

4 F̄μνF̄
μν , the

Lagrangian density of the fluctuating fields A and ϕ is

L = Lϕ + LA + LI
= (D̄μϕ)∗(D̄μϕ) −m2ϕ∗ϕ

− 1
4FμνF

μν + e2φ∗
0φ0AμAμ

− (j̄ μ + η̄μ)Aμ + e2(φ0ϕ
∗ + φ∗

0ϕ + ϕ∗ϕ)AμAμ. (12)

Here, Lϕ , LA, and LI correspond to terms on the second, the
third, and the fourth lines, respectively. Lϕ is the Lagrangian
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density of the free ϕ field. It should be clarified thatϕ is not free
in the sense that its dynamics is influenced by the background
field Ā, as is manifested by the background gauge-covariant
derivative D̄ acting onϕ. But,ϕ is nevertheless free in the sense
that it neither interacts with A nor couples to itself. Similarly,
LA is the Lagrangian density of the free A field. Notice that
the background field φ0 endows the gauge field A with a mass
term that can have spatial and temporal dependencies. Finally,
the interaction Lagrangian LI contains interactions between ϕ
and A. Some interactions only involve the fluctuating fields ϕ
and A with constant couplings. These interactions happen in
plasmas as well as in the vacuum. Other interactions involve
the background fields φ0 and Ā in the coupling. These inter-
actions do not happen unless nontrivial background fields are
present.

The Lagrangian density (12) has a number of gauge
symmetries. It is obvious that the Lagrangian is invariant under
background local U(1)-gauge transformation

φ0 → φ0e
ieχ , ϕ → ϕeieχ , Āμ → Āμ + ∂μχ. (13)

It is less obvious but also true that once the background fields
φ0 and Ā are fixed, the Lagrangian is invariant under the
following transformation:

Aμ → Aμ + ∂μχ, ϕ → ϕeieχ + φ0(eieχ − 1). (14)

This can be understood intuitively as follows. The local
U(1)-gauge transformation (2) is a shift in A and a phase
rotation in φ. When Ā is fixed, the shift is completely absorbed
into A. When φ0 is fixed, ϕ has to transform by Eq. (14)
in order to preserve the norm of φ. The symmetry current
is

J μ = j̄ μ + η̄μ − 2e2φφ∗Aμ. (15)

This gauge-invariant current J contains contributions from
excitations of the background fields as well as excitations of
the vacuum.

B. Effective action of gauge bosons

So far, no approximation has been made, and the La-
grangian density (12) is exact. The Lagrangian density
describes the freeϕ field, the freeAfield, and their interactions.
When the gauge field A propagates, it interacts with charged
particles and becomes dressed by these interactions. After
summing up all these dressings, the effective action, which
describes the propagation of the dressed A field, can be
obtained. The summation of dressings can be rigorously
implemented using the path integral,3 which can be evaluated
perturbatively using the small dimensionless coupling constant
e as an expansion parameter.

Formally, the exponentiated effective action ei�[A] of the
A field is the partially evaluated quantum partition function4

when the ϕ field is integrated out. To integrate out the ϕ

3The path integral is one way of quantizing the field theory. It
superimposes all possible field configurations weighted by the phase
factor eiS/�.

4The quantum partition function serves a similar role as the
statistical partition function. In the statistical case, the average is

field, we will need to expand the action exponential eiS ,
the quantum equivalence of the Boltzmann factor, and it is
convenient to group terms in the interaction SI = ∫ d4x LI
according to their powers in e, ϕ, andA. Schematically, we can
write

SI = SeϕA + Seϕ2A + Se2ϕA2 + Se2ϕ2A2 . (16)

Denote the action of the free ϕ field and the free A field by
Sϕ and SA, respectively. Expand the action exponential to e2

order and use properties of Gaussian integrals to eliminate
terms that contain odd powers of ϕ in the path integral, we
obtain the exponentiated effective action

ei�[A] := 1

Zϕ

∫
[Dϕ][Dϕ∗]ei(Sϕ+SA+SI )

= eiSA
1

Zϕ

∫
[Dϕ][Dϕ∗]eiSϕ

×
[

1 + i(Seϕ2A + Se2ϕ2A2 )

+ i
2

2

(
S2
eϕA + S2

eϕ2A
)+ o(e2)

]
, (17)

where
∫

[Dϕ][Dϕ∗] denotes the path integral over fields ϕ
and ϕ∗, and Zϕ := ∫ [Dϕ][Dϕ∗]eiSϕ is the partition function
of the free ϕ field. The term Seϕ2A is linear in A. It serves as the
source term that is responsible for the emission, absorption,
and scattering of gauge bosons. Since our focus is wave
propagation, we will not be concerned with this term in this
paper. The remaining terms in the expansion (17) are quadratic
in A and they are responsible for the propagation of the gauge
field.

To express the effective action in a more illuminating
form, we can write terms in the above expansion in terms
of quantities that are familiar in quantum field theory. The first
quantity is the propagator, or the Green’s function, of the free
ϕ field

G(x,x ′) = 〈ϕ(x)ϕ∗(x ′)〉ϕ
:= 1

Zϕ

∫
[Dϕ][Dϕ∗]eiSϕϕ(x)ϕ∗(x ′). (18)

The Green’s function is a two-point quantum correlation
function. It is the probability amplitude of creating a charged
particle at one location and then annihilating this particle at
another location. The Green’s function of the free ϕ field
appears from Se2ϕ2A2 after evaluating the path integral (17).
The second quantity is the gauge-invariant polarization tensor
�μν(x,x ′). Using properties of Gaussian integrals to integrate
out the A field,5 we can evaluate the exact polarization

weighted by the Boltzmann factor e−H/kBT , while in the quantum
case, the average is weighted by the phase factor eiS/�.

5Integrating the A field requires gauge fixing. However, since the
A field does not contribute to the polarization tensor to e2 order, we
do not need to be concerned with gauge fixing to this order.
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tensor as

�μν(x,x ′) = 〈J μ(x)J ν(x ′)〉
:= 1

Z

∫
[Dϕ][Dϕ∗][DA]eiSJ μ(x)J ν(x ′)

= 1

Zϕ

∫
[Dϕ][Dϕ∗]eiSϕ (η̄μη̄ν + j̄ μj̄ ν) + o(e2)

= �
μν

2,bk(x,x ′) +�μν2,vac(x,x ′) + o(e2), (19)

where Z = ∫ [Dϕ][Dϕ∗][DA]eiS is the total partition func-
tion of Lagrangian density (12). On the third line, cross terms
between η̄ and j̄ , which contain odd power of either ϕ or
ϕ∗, vanish upon evaluating the Gaussian path integral. The
polarization tensor is the quantum current-current correlation
function. It is the probability amplitude that a current is excited
at one location and then deexcited at another location. The
two terms �μν2,bk(x,x ′) and �μν2,vac(x,x ′) are polarization of
the background plasma and the polarization of the vacuum,
respectively. They appear from S2

eϕA and S2
eϕ2A after evaluating

the path integral (17). The subscript “2” indicates that they
are approximated expressions to e2 order in the perturbation
series.

In terms of these quantities, the effective action of gauge
boson propagation to order e2 can be written in the concise
form

�2[A] = 1

2

∫
d4x

[
Aμ(x)(∂2gμν − ∂μ∂ν)Aν(x)

+
∫
d4x ′Aμ(x)�μν2 (x,x ′)Aν(x ′)

]
, (20)

where �μν2 (x,x ′) is the response tensor to order e2. The
response tensor contains contributions from the background
plasma as well as the vacuum

�
μν

2 (x,x ′) = �μν2,bk(x,x ′) +�μν2,vac(x,x ′). (21)

The response due to the background plasma is constituted
of the gauge boson mass term and the plasma polarization
term

�
μν

2,bk(x,x ′) = μ ν + μ ν

=2e2φ0φ
∗
0δ(x − x ′)gμν+ i�μν2,bk(x,x ′). (22)

The first term, corresponding to the first Feynman diagram, is
the photon mass term in Lagrangian (12). The second term,
corresponding to the second Feynman diagram, comes from
the η̄μη̄ν term in the path integral (19). The background plasma
responds by particle-hole pair excitation. During this process,
a gauge boson is forward scattered, namely, the gauge boson
is first absorbed after exciting a plasma particle and then get
reemitted by the particle after its deexcitation. The response
due to the vacuum is constituted of the gauge boson mass
renormalization and the vacuum polarization

�
μν

2,vac(x,x ′) =

= 2e2〈ϕϕ∗〉ϕδ(x − x ′)gμν + i�μν2,vac(x,x ′).

(23)

The first term, corresponding to the first Feynman diagram,
is the photon mass renormalization term. It comes from the
Se2ϕ2A2 term in the path integral (17). The second term,
corresponding to the second Feynman diagram, is the vacuum
polarization term. It comes from the j̄ μj̄ ν term in the path
integral (19). The vacuum responds by virtual pair excitation.
During this process, a gauge boson first decays into a pair of
virtual particle and antiparticle, and then get reproduced when
the virtual pair annihilates. The first line of the effective action
(20) is the same as 1

4FμνFμν after integration by part. This is
the action of the A field in the vacuum. The second line is a
nonlocal term that depends on two coordinates x and x ′. This
term describes the dressing of theA field due to its interactions
with the background plasma and the vacuum.

Explicit expressions of the polarization tensors�μν2,bk(x,x ′)
and�μν2,vac(x,x ′) can be found by evaluating the path integrals
in Eq. (19). For conciseness, we will abbreviate one-point
functions by ϕ(x) = ϕ, ϕ(x ′) = ϕ′, and so on. Similarly,
we will abbreviate two-point functions by G(x,x ′) = G,
G(x,x ′) = G′, and so on. It is useful to note the following
properties of the path integrals. First, since Lϕ is quadratic in
ϕϕ∗, using properties of Gaussian integrals, we know 〈ϕϕ′〉ϕ =
〈ϕ∗ϕ′∗〉ϕ = 0. Second, due to the imaginary exponential eiS ,
we have G∗ = −G′. Evaluating the path integrals in Eq. (19)
using these properties, we find the background polarization
tensor

�
μν

2,bk = e2[φ∗
0D̄

μ − (D̄μφ0)∗][φ′
0D̄

′∗ν − (D̄′νφ′
0)]G− c.c.,

(24)

and the vacuum polarization tensor

�
μν

2,vac = e2[G′D̄μ − (D̄∗μG′)](D̄′∗νG) + c.c. (25)

Expressions (20)–(25) combined give an explicit formula of
the effective action of gauge field propagation to order e2 in
the most general setting. Since the e2-order effective action
contains all Feynman diagrams of gauge boson propagator up
to the one-loop level, the e2-order effective action is the same
as the one-loop effective action.

Having obtained the formula of the one-loop effective
action, it is worth pointing out a number of symmetries and
conservation properties that the effective action has. First,
the one-loop effective action is manifestly Lorentz invariant.
Second, it is easy to check that the one-loop effective action
is invariant under the background U(1)-gauge transformation
(13), under which the Green’s functionG(x,x ′) is transformed
by

G(x,x ′) → eieχ (x)G(x,x ′)e−ieχ (x ′). (26)

This property guarantees that the effective action is inde-
pendent of the choice of the background gauge. So, one is
free to choose a background gauge that is convenient for
calculations. Finally, the one-loop effective action is invariant
under local gauge transformation of the fluctuating gauge field
Aμ → Aμ + ∂μχ . Using the Schwinger-Dyson equation of
the Green’s function

[D̄μ(x)D̄μ(x) +m2]G(x,x ′) = −iδ(x − x ′), (27)
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together with properties of the δ function

f (x)∂μδ(x) = −δ(x)∂μf (x),

f (x,x ′)∂μδ(x − x ′) = 1
2δ(x − x ′)(∂ ′

μ − ∂μ)f (x,x ′), (28)

and the background consistency equations (5), one can show
by straightforward calculations that

∂μ�
μν

2,bk(x,x ′) = ∂ ′
ν�

μν

2,bk(x,x ′) = 0, (29)

∂μ�
μν

2,vac(x,x ′) = ∂ ′
ν�

μν

2,vac(x,x ′) = 0. (30)

After integration by part, it is clear that the effective action is
invariant under the local gauge transformation of the A field.
Identities (29) and (30) indicate that the plasma current and
the vacuum current are conserved separately, so the plasma
contribution to wave propagation is separable from the vacuum
contribution.

In the above discussion, we obtain the effective action in the
configuration space. Sometimes, it is more convenient to work
in the momentum space, which is related to the configuration
space by Fourier transforms

Aμ(x) =
∫

d4k

(2π )4
e−ikxÂμ(k), (31)

�
μν

2 (x,x ′) =
∫

d4k

(2π )4

d4k′

(2π )4
e−ikx�̂μν2 (k,k′)eik

′x ′
. (32)

The configuration-space reality condition A∗(x) = A(x)
and the exchange symmetry �μν2 (x,x ′) = �νμ2 (x,x ′) corre-
spond to the momentum-space conditions

Âμ(k) = Â∗
μ(−k), (33)

�̂
μν

2 (k,k′) = �̂νμ2 (−k′,−k). (34)

In Fourier space, the e2-order effective action

�2[A] = 1

2

∫
d4k

(2π )4

[
Âμ(−k)(kμkν − k2gμν)Âν(k)

+
∫
d4k′

(2π )4
Âμ(−k)�μν2 (k,k′)Âν(k′)

]
, (35)

where k2 = kμkμ is the Minkowski inner product.
Simplifications can be made when the plasma is transla-

tional invariant. In this case, �(x,x ′) only depends on the
difference between coordinates r = x − x ′ and is independent
of R = (x + x ′)/2. Changing variables from x and x ′ to r
and R in Eq. (32), we have �̂(k,k′) = (2π )4δ(4)(k − k′)�̂(k),
where �̂μν(k) = ∫ d4r eikr�μν(r) = �̂νμ(−k). The gauge in-
variance (29) and current conservation (30) reduce to the
Ward-Takahashi identities

kμ�
μν

2,bk(k) = kμ�μν2,vac(k) = 0. (36)

With the extra delta function, the momentum-space e2-order
effective action (35) can be simplified as

�2[A] = 1

2

∫
d4k

(2π )4
Âμ(−k)�μν(k)Âν(k), (37)

where the dispersion tensor

�μν(k) = kμkν − k2gμν +�μν2 (k) = �νμ(−k). (38)

For given background fields φ0 and Ā, the dispersion tensor
�μν(k) is a function of the wave 4-momentum kμ.

C. Observables of effective action

When there is no external source, the classical equation
of motion of Â(k) is �μν(k)Âν(k) = 0. The nontrivial solu-
tions are plane waves whose wave 4-momentum k satisfies
det�μν(k) = 0. The property kμ�μν(k) = 0 guarantees that
one eigenvalue of �μν is trivial. In fact, using the Ward-
Takahashi identity and performing elementary row and column
operations, it is easy to show that the temporal components
of the dispersion tensor (38) can be eliminated by matrix
similarity. Hence, the wave dispersion relations are given by

det�ij (k) = 0, (39)

where �ij is the spatial block of the dispersion tensor. In
general, the 3 × 3 matrix�ij has three nontrivial eigenvalues,
giving relativistic covariant dispersion relations of three waves.

When there is some external test current Ĵ μ
ext(k), the

equation of Â(k) is �μν(k)Âν(k) = Ĵ μ
ext(k). After gauge

fixing, the solution to this inhomogeneous equation is of the
form

Â = �−1Ĵext. (40)

Taking inverse Fourier transform, the linear response of
A(x) to the external test current Jext(x) can be found. For
example, when placing a test charge in the plasma J μ

ext(x) =
eδ(3)(x)(1,0,0,0), one can derive screening in the relativistic
quantum plasma.

Finally, it is worth pointing out that the configuration-
space response tensor � = �r + i�i is in general complex,
corresponding to the momentum-space response tensor �̂ =
�̂H + i�̂A that contains an anti-Hermitian part. In classical
field theory, when one solves the dispersion relation (39) with
�i �= 0, the wave 4-momentum kμ is necessarily complex. So,
the amplitude of a plane wave either changes in time in an
initial value problem, or changes in space in a boundary value
problem. In the quantized field theory, the wave 4-momentum
kμ is always real, and it is the number of gauge bosons that
changes when �i �= 0. By the famous optical theorem, the
imaginary part �i is proportional to the total cross section of
the gauge boson. In fact, the optical theorem can be derived
from the action exponential as follows. In the configuration
space, we can separate the exponentiated action into an
oscillatory part and an exponential part:

ei� = eiA(∇+�)A = eiA(∇+�r )Ae−A�iA. (41)

When �i = 0, the exponential is purely oscillatory. This
corresponds to the simple propagation of the gauge field.
When�i > 0, namely, when the matrix is positive definite, the
exponential decays. This corresponds to wave damping in the
classical theory, and the decay or absorption of gauge bosons in
the quantized theory. When �i < 0, namely, when the matrix
is negative definite, the exponential grows. This corresponds
to instabilities in the classical theory, and the production or
emission of gauge bosons in the quantized theory. Finally,
when the matrix�i is indefinite, some eigenmodes grow while
others decay. In this case, the dominant mode of a state of the
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A field can convert from one mode to another mode as the
state evolves.

III. WAVE PROPAGATION IN UNMAGNETIZED PLASMAS

In this section, we demonstrate how to apply the general
theory developed in Sec. II using the example of an unmag-
netized plasma. There are basically four steps in applying
the general theory: determining self-consistent background
fields, evaluating the vacuum response, evaluating the plasma
response, and analyzing the wave effective action. In what
follows, we will elaborate on each of these four steps.

A. Background functions

When there is no background EM field, it is convenient to
choose the vacuum gauge

Ā = 0. (42)

In this case, the equation of motion of φ0 reduces to the Klein-
Gordon equation in its simplest form. It is well known that the
single-boson solutions to the Klein-Gordon equation are plane
waves with the dispersion relation p2 = pμpμ = m2. Since
particles are not confined, the background wave functions are
not square integrable. To deal with an infinitely large plasma
with finite density, it is helpful to first think of a periodic
spatial box with size L and a temporal box of length T that
contains N particles, and then take the limit that L,T → ∞
while keeping the density n0 = N/L3 fixed. Inside the box,
the properly normalized single-boson wave function

ψεp(x) = eiεpx√
2mL3

, (43)

where pμ = (p0,p) is the 4-momentum with p0 =
√

p2 +m2.
The wave function represents a particle state when ε = +1
and an antiparticle state when ε = −1. The wave function is
normalized such that the current density J̄ μ0 = εepμ/mL3 is
what one would expect of a single particle. In the periodic box,
pn = 2πn/L is quantized. We can label single-particle states
by their wave numbers n. It is clear that the inner products
〈ψ+

n |ψ+
n′ 〉 = 〈ψ−

n |ψ−
n′ 〉 = δn,n′T/2m and 〈ψ+

n |ψ−
n′ 〉 = 0.

To see how to deal with an infinitely large plasma, let us
calculate current density ofN bosons contained in a box. Since
particles in plasmas are unbound, they interact weakly with
each other. To lowest order, the plasma may be approximated as
a collection of noninteracting particles. Suppose theN bosons
occupyM orthogonal statesψ1, . . . ,ψM , withNk bosons in the
state k, then the properly symmetrized and normalized wave
function

�0 =
√

(2m/T )N−1

(N − 1)!N1! . . . NM !

∑
σ∈SN

N∏
k=1

ψdσ (k) (xk). (44)

Here, SN is the permutation group of N elements. The
index function dk is defined such that dk = 1 for k =
1, . . . ,N1; dk = 2 for k = N1 + 1, . . . ,N1 +N2; and dk = M
for k = N −NM + 1, . . . ,N . After carrying out the integrals
and summations, the current density (7) becomes J̄ μ0 =
e
∑M
k=1Nkεkp

μ

k /mL
3. More elaborately, the current density

can be written as

J̄
μ

0 (x) =
∑
ε,k

f εk

2m

e

i
(e−iεkpkx∂μeiεkpkx − c.c.), (45)

where f εk = Nk/L3 is the occupation density of the state
with quantum numbers (ε,k), and the summation runs over
all single-boson states. When L→ ∞, the spectrum of φ0

becomes continuous. In this case, let a single-boson state be
labeled by its wave vector p. If we keep the occupation density
f ε(p) fixed when we take the limit L,T → ∞, the current
density can be written as

J̄
μ

0 (x) =
∑
ε=±1

∫
d3p

(2π )3

e

i

[
�ε∗p (x)∂μ�εp(x) − c.c.

]
, (46)

where the properly normalized effective single-boson wave
function

�εp(x) =
√
f ε(p)

2m
eiεpx. (47)

We see that the current (46) can be obtained from the
many-body current (7) by replacing φ0(x) with the properly
normalized effective single-boson wave function (47), fol-
lowed by summations over discrete labels and integrations
over continuous labels in the Hilbert space of single-boson
states.

Aside from the wave functions, we will also need the
Green’s function of the free ϕ field. It is well known that
when Ā = 0, the Green’s function

G(x,x ′) =
∫

d4k

(2π )4

ie−ik(x−x
′)

k2 −m2
. (48)

For path integrals to converge, one needs to replace m2 →
m2 − i0 in the exponentiated action. This gives a prescription
of the integration contour around poles in the complex plane
when evaluating the integral in Eq. (48). The resultant Green’s
function is the Feynman Green’s function.

B. Vacuum response

The vacuum response when Ā = 0 is also well known. In
Fourier space, the vacuum response tensor

�̂
μν

2,vac(k) = χv(k2)(kμkν − k2gμν). (49)

The Ward-Takahashi identity is manifestly satisfied. Using
dimensional regularization in d < 4 dimensions for divergent
one-loop integrals, imposing the renormalization condition
that photons remain massless in the vacuum, and subtracting
the counterterms, we obtain the renormalized vacuum permit-
tivity

χv(k
2) = e2�(2 − d/2)

(4π )d/2

∫ 1

0
du

(1 − 2u)2

(m2)2−d/2

×{[1 − u(1 − u)k2/m2]d/2−2 − 1}

= 2e2

3(4π )2

{
4

3
− 4m2

k2
+
(

4m2

k2
− 1

)3/2

× arctan

[(
4m2

k2
− 1

)−1/2]}
. (50)
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On the first line, �(z) is the gamma function, which diverges
when z equals to nonpositive integers. To obtain the second
equality, the limit d → 4 is taken, followed by integration over
the Feynman parameter u. It is not hard to see that �̂2,vac(k2) is
real when k2 = kμkμ � 4m2, and �̂2,vac(k2) becomes complex
with a positive imaginary part when k2 > 4m2. The positive
imaginary part is proportional to the cross section of a gauge
boson, which can decay into a pair of charged particle and
antiparticle when k2 > 4m2.

C. Plasma response

The plasma response �μν2,bk(x,x ′) can be evaluated by
substituting the effective single-boson wave function (47) and
the Green’s function (48) into Eq. (24), followed by integration
and summation over the single-boson Hilbert space. The
contribution of each charged species to the mass term of the
A field is

2e2φ0φ
∗
0 =

∑
ε=±1

∫
d3p

(2π )3

e2f ε(p)

m
, (51)

and the plasma polarization tensor (24) becomes

�
μν

2,bk =
∑
ε=±1

∫
d3p

(2π )3
e2[�ε∗p ∂

μ − (∂μ�εp)∗]

× [�ε′p ∂
′ν − (∂ ′ν�ε

′
p

)]
G− c.c. (52)

Similar results are shown by Melrose [24] using the pre-
scription of cutting one charged-particle propagator in the
vacuum polarization diagrams and replacing it by statistical
average over the plasma. Our formulation has thus provided a
justification for such a prescription.

For the purpose of illustrating our method, let us consider
the simple example of a cold-particle plasma. Denote the 4-
momentum of cold particles by qμ, then the occupation density
of the state with quantum numbers (ε,p) is

f ε(p) = n0(2π )3δ(3)(p − q)δε,1 , (53)

where n0 is the number density of the plasma. The occupation
density f ε(p) is nothing other than the momentum-space
distribution function commonly seen in plasma physics.
In general, the distribution function can be any integrable
function of interest. Here, in this simple example, due to
the δ functions, integrals and summations can be evaluated
very easily. The current density due to each charged species
becomes

J̄
μ

0 (x) = en0q
μ/m. (54)

This is what one would expect of a cold uniform fluid.
To satisfy the background self-consistency ∂μF̄ μν = 0, the
plasma needs to be constituted of more than one charged
species, such that the total current

∑
s J̄

μ

s0 = 0 when summed
over all charged species. Using the momentum-space dis-
tribution function (53), the mass term of the A field (51)
becomes

2e2φ0(x)φ∗
0 (x) = e2n0

m
= ω2

p. (55)

It is easy to recognize that ωp is the plasma frequency. The
plasma polarization tensor (52) becomes

�
μν

2,bk(x,x ′) = ω2
p

2

∫
d4k

(2π )4
ie−ik(x−x

′)

×
[
(2q + k)μ(2q + k)ν

(k+ q)2 −m2
+ (2q − k)μ(2q − k)ν

(k− q)2 −m2

]
.

(56)

The two terms above correspond to the s-channel and the t-
channel Feynman diagrams of the forward scattering of a gauge
boson. We see quantum recoil, the change of the 4-momentum
of charged particles during forward scattering of gauge bosons,
is automatically taken into account. Combining (55) with (56)
and taking Fourier transform, the contribution of each charged
species to the momentum-space plasma response tensor is

�̂
μν

2,bk =ω2
p

[
gμν−k

2(4qμqν+ kμkν) − 4kq(qμkν+ kμqν)
(k2)2 − 4(kq)2

]
.

(57)

Here, k2 = kμkμ and kq = kμqμ are Minkowski inner prod-
ucts. It is straightforward to check that the Ward-Takahashi
identity is satisfied.

D. Wave dispersion relations

Having found the response tensors due to the vacuum (50)
and the cold plasma (57), we can proceed to find dispersion
relations. The simplest case is when different charged species
in the plasma have no relative motion. In this case, there
is an inertial frame in which all background particles are
at rest. In this plasma rest frame, the particle 4-momentum
qμ = (m,0,0,0). Let us choose a coordinate system such that
wave 4-momentum kμ = (ω,k,0,0). In this coordinate system,
the nonzero components of the plasma response tensor are6

�̂00
2,bk = χpk2,

�̂11
2,bk = χpω2,

�̂01
2,bk = �̂10

2,bk = χpωk,

�̂22
2,bk = �̂33

2,bk = −ω2
p, (58)

where

ω2
p =

∑
s

ω2
ps,

χp =
∑
s

ω2
ps

(
k2 − ω2 + 4m2

s

)
(ω2 − k2)2 − 4m2

sω
2

(59)

are the plasma frequency and the plasma susceptibility,
respectively.

Using elementary column and row operations, the dis-
persion matrix �μν can be diagonalized and the eigenvalue
problem can be solved. There are two transverse modes and one

6We use the italic k for 4-momentum of and the roman k = |k| for
the magnitude of the wave vector. While k2 = kμkμ and kq = kμqμ
denote the Minkowski inner products, k2 and ωk are scalar products.
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FIG. 1. Wave dispersion relations in a cold, unmagnetized,
quasineutral, spinless, electron-ion plasma. The wave vector and the
wave frequency are normalized to the plasma frequency. For various
effects to be visible on the scale of this figure, parameters used
for making this plot are 2e2/3(4π )2ε0�c = 20, ωpe�/mec2 = 0.2,
and mi/me = 3. The solid black curves are the one-loop dispersion
relations. The solid red curves are the dispersion relations that
ignore the vacuum polarization. The dashed black curves are wave
dispersion relations in a classical plasma. The upper curves are the
electromagnetic waves, the middle curves are the Langmuir waves,
the bottom curves are the ion acoustic waves, and the dashed gray
line across the diagonal represents the light cone. Notice that near
the light cone, wave dispersion relations in the relativistic quantum
plasma asymptote to those in the classical plasma. While away from
the light cone, they can differ substantially.

longitudinal mode. The two transverse modes are degenerate
and electromagnetic with the dispersion relation

(1 + χv)(ω2 − k2) − ω2
p = 0. (60)

From this dispersion relation, it is easy to see that the photon
modes are gapped when background plasmas exist. Namely,
the wave frequencyω �= 0 when the wave vector k = 0 ifωp �=
0. The longitudinal mode is electrostatic with the dispersion
relation

1 + χv + χp = 0. (61)

Since χp(k = 0) = −ω2
p/ω

2, there always exists one gapped
plasmon mode, known classically as the Langmuir wave.
When there are two or more charged species, there also exists
a gapless phonon mode, known classically as the ion acoustic
wave.

An example of wave dispersion relations in a cold,
quasineutral, spinless, electron-ion plasma is plotted in Fig. 1.
In the figure, the upper curves are the degenerate EM waves,
the middle curves are the Langmuir waves, and the lower
curves are the ion acoustic waves. There also exist high-energy
solutions with ω > 2m. These high-energy modes readily
decay and are not plotted here. In Fig. 1, the solid black curves
are the one-loop dispersion relations solved from (60) and (61).
The red curves are wave dispersion relations when the vacuum

polarization χv is ignored. The dashed black curves are wave
dispersion relations in a classical plasma. In this example,
we set the plasma density high with ωpe/me = 0.2, such that
relativistic quantum effects are visible on the scale of this
figure. We set the ions mass low with mi/me = 3, such that
ion effects are comparable to electron effects. The coupling
constant is taken to be unphysically strong 2e2/3(4π )2 = 20,
such that vacuum effects are comparable to plasma effects on
the scale of this figure. As can be seen from the figure, wave
dispersion relations in the relativistic quantum plasma are very
similar to those in the classical plasma near the light cone.
However, there are clear distinctions away from the light cone.
In particular, unlike classical plasma theories, the relativistic
quantum theory predicts that longitudinal waves propagate
with nonzero group velocities even when the plasma is cold.
This can be understood intuitively. Since the longitudinal wave
quanta spend part of their time being carried by some excited
charged bosons, they propagate together with these charged
bosons, which have nonzero velocities.

The photon modes and the plasmon mode have the same
cutoff frequency ωc, which is given by the solution to the
equation ω2

c [1 + χv(ωc,k = 0)] = ω2
p. The cutoff frequency

ωc, or the mass gap, is less than the plasma frequency ωp
due to the vacuum polarization. It can be shown that the
ratio ωc/ωp decreases with increasing ωp/2m. This can be
understood intuitively. Vacuum polarization produces virtual
pairs of charged particles. These virtual pairs screen the
electric field of charged particles, so the effective electric
charge of particles are reduced. For higher plasma densities,
the virtual pair density is also higher, resulting in stronger
shielding of the electric charge and consequently smaller
cutoff frequencies. To get a sense of how small the vacuum
polarization effect is, let us approximate ωc when ωp/2m = 1.
Write g = 2e2/3(4π )2. Since the physical value for electron
charge is g = α/6π � 1, where α ≈ 1

137 is the fine-structure
constant, the equation for ωc can be solved asymptotically.
To lowest order, ωc/ωp ∼ 1 − g/6. We see the effect of the
vacuum polarization is minuscule.

Now let us check that classical dispersion relations are
recovered when taking the classical limit in relativistic
quantum results. Since energy of particles is not quantized in
unmagnetized plasmas, the nonrelativistic low-energy limit is
the classical limit. In the low-energy limit k2/m2 → 0, namely,
near the light cone, contribution of a relativistic quantum
plasma asymptote to that of a classical plasma

χp ∼ −
∑
s

ω2
ps

ω2

(
1 + k2

4m2
s

)(
1 + k4

4m2
sω

2

)
→ −ω

2
p

ω2
, (62)

and the contribution of the vacuum vanishes

χv ∼
∑
s

gs

5

k2

4m2
s − k2

→ 0. (63)

This can be understood intuitively since gauge bosons in this
limit do not have sufficient energy to create pairs of massive
charged particle and antiparticle. In the low-energy limit, the
next-to-leading-order asymptotic dispersion relations of the
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photon, the plasmon, and the phonon modes are

ω2 ∼ ω2
p

(
1 − λ2

Dω
2
p

)+ k2,

ω2 ∼ ω2
p

[
1−λ2

D

(
ω2
p − k2

)]−( ω2
pe

4m2
e

+ ω2
pi

4m2
i

)(
k2 − k4

ω2
p

)
,

ω2 ∼
(
ω2
pe

4m2
i

+ ω2
pi

4m2
e

)
k4

ω2
p

= k4

4memi
. (64)

Here, λ2
D =∑s gs/20m2

s is the vacuum shielding length due
to virtual pair production. Similar results are obtained in
Refs. [19,20], in which the phonon mode was not considered.

In the opposite limit k2/m2 → ∞, namely, away from the
light cone, the plasma contribution diminishes

χp ∼ −ω
2
p

k2
→ 0. (65)

This can be understood from the perspective of spatial scales
by fixingω and letting k go to infinity. In this perspective, since
the wavelength of a high-energy gauge boson is much smaller
than the typical interparticle spacing in the plasma, the gauge
boson rarely encounters a plasma particle and propagates as
if it is in the vacuum. The asymptotic behavior (65) can also
be understood from the perspective of time scales by fixing k
and letting ω go to infinity. In this perspective, since the wave
frequency is much larger than the plasma frequency, the plasma
does not have time to respond. Unlike the plasma response,
which diminishes in the high-energy limit k2/m2 → ∞, the
real part of the vacuum susceptibility blows up:

Re(χv) ∼ −
∑
s

gs

2
ln

∣∣∣∣ k2

4m2
s

∣∣∣∣→ ∞. (66)

This can be understood intuitively. Since the gauge boson
has sufficient energy to create massive charged particles in
this limit, the vacuum fluctuation is large. Outside the light
cone, the imaginary part of χv is always zero. Inside the
light cone, when k2 > 4m2, the imaginary part of the vacuum
susceptibility

Im(χv) ∼
∑
s

π

2

(
1 − 4m2

s

k2

)
→
∑
s

π

2
. (67)

This positive imaginary part is proportional to the total decay
cross section of a massive gauge boson. The imaginary part is
larger when there are more charged species, in which case there
are more types of particles that the massive gauge boson can
decay into. After its typical lifetime, a massive gauge boson
decays and thereafter stops propagating.

IV. WAVE PROPAGATION IN UNIFORMLY
MAGNETIZED PLASMAS

In this section, we use a uniformly magnetized plasma
as another example to demonstrate how to apply the general
theory developed in Sec. II.

A. Background functions

Let us choose a coordinate system such that the uniform
magnetic field with strength B0 points in the +z direction.

Since the choice of gauge does not affect final results, we are
free to use the symmetric gauge

Āμ = (0,− 1
2B0y,

1
2B0x,0

)
. (68)

This gauge is convenient since it respects the rotation symme-
try of the system.

Having chosen the background gauge Ā, the field φ0 can
be solved from its equation of motion (5). The solutions are
relativistic Landau levels, which have been obtained by a
number of authors [21]. Since particles are confined by the
magnetic field in the xy plane, for a single-boson wave function
to be normalizable, it is only necessary to impose a periodic
box in the z direction. Let L be the length of this periodic box.
Then, in polar coordinate, properly normalized single-boson
wave functions are

ψεn,l,p‖ (x) =
√

n!

2mnl!πr2
0L

(
r

r0

)l−n
�(l−n)
n

(
r2/r2

0

)
× exp {iε[En,p‖ t − p‖z∓ (l − n)θ ]}. (69)

Here, n = 0,1,2 . . . is the principal quantum number, l =
0,1,2 . . . is the angular momentum quantum number, p‖ is
the parallel momentum, and ε = +1 and −1 for particle and
antiparticle states, respectively. The relativistic Landau level
with principal quantum number n and parallel momentum p‖
has energy

En,p‖ =
√
m2
n + p2

‖

∼ m+ p2
‖

2m
+ |�|

(
n+ 1

2

)
, p‖,|�| � m. (70)

Here,� = eB0/m is the gyrofrequency and the effective mass
of the nth excited state is

mn =
√
m2 + |eB0|(2n+ 1). (71)

In radial wave functions, �(α)
n (x) = L(α)

n (x)e−x/2 is the gen-
eralized Laguerre function, where L(α)

n (x) is the generalized
Laguerre polynomial. The radial wave functions are localized
within a length scale set by the B field

r0 =
√

2/|eB0|. (72)

In the azimuthal wave functions, the upper and lower signs of
∓ in front of θ correspond to the cases eB0 > 0 and eB0 < 0,
respectively. These signs account for the fact that positively
and negatively charged particles gyrate in opposite directions.
To see the wave functions are properly normalized, one can
calculate, for example, the total current in the z direction.

To deal with plasmas that are infinitely large, we follow
procedures in Sec. III. Namely, we first consider finite number
of particles in a spatial box of size L and temporal box of
length T . Using the many-body wave function and taking the
limit L,T → ∞ while keeping the plasma density fixed is
equivalent to using the effective single-boson wave function

�εn,l,p‖ (x) =
√
n!f εn,l(p‖)

2mnl!

(
r

r0

)l−n
�(l−n)
n

(
r2/r2

0

)
× exp {iε[En,p‖ t − p‖z∓ (l − n)θ ]}, (73)
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followed by integration over the continuous label p‖/2π and
summations over the discrete labels n, l, and ε over the
single-boson Hilbert space. In the above expression, f εn,l(p‖)
is the occupation density of the state with quantum numbers
(ε,n,l,p‖). Except for the fact that perpendicular states are
quantized, the occupation density is nothing other than the
momentum-space distribution function commonly seen in
plasma physics. In general, the distribution function can be
any integrable function of interest.

Aside from the wave functions, we will also need the
Green’s function of charged bosons in a uniform magnetic
field. The Green’s function can either be found by calculating
the propagator of the quantized ϕ field, or more directly
by solving the Schwinger-Dyson equation (27). There are
many representations of the Green’s function, for example, the
spectral representation [25] and the proper time representation
[44]. A useful expression of the Green’s function for our
purpose is obtained in Appendix A. The Green’s function can
be put into the form

G(x,x ′) = i

πr2
0

eieB0(xy ′−yx ′)/2
∞∑
n=0

∫
dq0dq‖
(2π )2

ei[q0(t−t ′)−q‖(z−z′)]

q2
0 − q2

‖ −m2
n

×�(0)
n

[
(x − x ′)2 + (y − y ′)2

r2
0

]
. (74)

This form of the Green’s function respects a number of
symmetries of the system. It is manifestly invariant under the
rotation around the z axis. It is also invariant under parity
x → −x. Finally, it is invariant under the joint symmetry
action of charge conjugation e → −e and time reversal
t → −t,B0 → −B0. These demanded symmetry properties
will enable easy extraction of physics later on. Notice that
the Green’s function has poles when q0 = ±En,q‖ . These
are nothing other than the dispersion relations of charged
particles occupying relativistic Landau levels. When theϕ field
propagates, it can propagate through any of these channels.

B. Vacuum response

We will not consider the vacuum response in this section
for three reasons. First, as can be seen from Sec. III, effects
of the vacuum response are minuscule compared to effects
of the plasma response for low-energy waves.7 Second,
due to (29) and (30), contributions by plasmas and the
vacuum are separable. Ignoring the vacuum response does
not break any symmetry of the system. Finally, for a practical
reason, obtaining a useful expression of the vacuum response
is highly nontrivial. Although many representations of the
response tensor have been obtained [23], they can be evaluated
analytically only in some special limits [45,46], and have to
be evaluated numerically in general [47].

7It is safe to ignore the vacuum response when the wave rest energy
mγ c

2 = √kμkμc� and the cyclotron energy �� are smaller than the
electron rest energy mec2.

C. Plasma response

After choosing the occupation density appropriately, such
that the equation for the background EM field ∂μF̄ μν = 0 is
satisfied, we can evaluate the plasma response tensor (24) by
plugging in the effective single-boson wave functions (73)
and the Green’s function (74), followed by integration over
the continuous label p‖/2π and summations over the discrete
labels n, l, and ε.

For the purpose of illustrating our method, let us consider
the simple example of a cold-particle plasma, in which all
charged bosons are condensed in the lowest Landau levels. In
the rest frame of the cold plasma, the occupation density

f εn,l(p‖) = 2πn0δ(p‖)δn,0δε,1 , (75)

where n0 is the number density of the plasma. In this simple
example, the three δ functions make it very easy to carry out
the integrations over p‖/2π and summations over n, l, and ε.
Using covariant derivatives listed in Appendix B, it is easy to
calculate the many-body current. The current density due to
each charged species is

J̄
μ

0 = en0(1,0,0,0). (76)

This is what one would expect of a uniform cold fluid. The
self-consistency condition

∑
s J̄

μ

s0 = 0 is satisfied if the plasma
is quasineutral. The contribution of each charged species to the
mass term of the A field is

2e2φ0φ
∗
0 = mω2

p

m0
, (77)

where ω2
p = e2n0/m is again the plasma frequency. The

calculation of the plasma polarization tensor is more technical.
We show details of the calculation of �00

2,bk in Appendix C.
Other components of the polarization tensor can be calculated
using similar methods. Combining the polarization term with
the mass term, the contribution of each charged species to the
Fourier space plasma response tensor is

�̂λσ2,bk(k) = mω2
p

m0

⎡
⎣gλσ − 1

2

∑
ς=±1

(κ + ς�)λ(κ + ς�)σK (0)
ς

⎤
⎦,

�̂ab2,bk(k) = mω2
p

2m0

∑
ς=±1

{
εacεbdκcκd

(
2K (1)

ς −K (0)
ς

)
−κ2

ς

[
δabK (1)

ς ± iςεab(K (1)
ς −K (0)

ς

)]}
, (78)

�̂λa2,bk(k) = �̂aλ2,bk(−k) = mω2
p

2m0

∑
ς=±1

(κ + ς�)λ

×[−κaK (1)
ς ± iςεabκb(K (1)

ς −K (0)
ς

)]
.

In the above expressions, the Greek indices λ,σ = 0,3 cor-
respond to the unconfined directions, and the Latin indices
a,b = 1,2 correspond to the confined directions. On right-hand
sides, gλσ is the metric tensor of the Minkowsi space, δab is
the δ function, and εab is the two-dimensional Levi-Civita
symbol. The upper and lower signs of ± in the imaginary parts
correspond the the cases eB0 > 0 and eB0 < 0, respectively.
For conciseness, we denote K (n)

ς := K(κ2
ς − n,κ2), where

κ2
ς := κ2

0 − κ2
3 + ς�0κ0, κ2 := κ2

1 + κ2
2 , and theK function is
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related to the confluent hypergeometric function 1F1(a; b; z)
by

K(x,z) := 1

x
1F1(1; 1 − x; −z). (79)

The wave 4-momentum is normalized by the magnetic field
length κμ = r0kμ/2 and the 4-momentum of the plasma
particle is normalized by �μ = r0(m0,0,0,0). The summation
over ς = ±1 corresponds to the summation of the s-channel
and the t-channel Feynman diagrams of the forward scattering
of a gauge boson.

The plasma response tensor (78) satisfies a number of
required symmetries. It satisfies the exchange symmetry
�̂
μν

2,bk(k) = �̂νμ2,bk(−k), as required by (34). It is invariant under
the rotation around the z axis, which is a basic symmetry
of the system. Moreover, it transforms properly under time-
reversal symmetry T μν = diag(−1,1,1,1) by �̂μν(ω,k)|B0 =
T μα T

ν
β �̂

αβ(−ω,k)|−B0 . Finally, using property (C16) of the
confluent hypergeometric function, it is straightforward to
check that the Ward-Takahashi identity (36), which is required
by charge conservation and gauge invariance, is satisfied. In
addition to these symmetry properties, the plasma response
tensor (78) has a number of asymptotic properties. First,
since the confluent hypergeometric function 1F1(a; b; z) has
poles whenever b equals to nonpositive integers, the response
tensor has poles whenever ω = ±ω±

n,k‖ , where the frequency
of relativistic quantum cyclotron resonances

ω±
n,k‖ = En,k‖ ±m0

∼
{
ω−
n,k‖ + 2(m+ |�|/2), “ + ”

k2
‖/2m+ n|�|, “ − ”.

(80)

The above asymptotic behavior is in the limit k‖,|�| � m.
These resonances have clear physical meanings. The ω−

n,k‖
resonance corresponds to the energy it takes to excite a plasma
particle from the ground state to the nth Landau level with
parallel momentum k‖. The ω+

n,k‖ resonance corresponds to the
aforementioned excitation energy plus the energy it takes to
create a pair of new particles in ground states. The second
important asymptotic property of the response tensor (78) is
when the magnetic fieldB0 → 0. In this limit, the ground-state
mass m0 asymptotes to the bare mass m. Moreover, use
the asymptotic property that 1F1(1; b; z) → b/(b − z) when
z,b → ∞ while keeping b/z fixed [48], we can find the
asymptotic behavior of the K function

r2
0

4
K (n)
ε → 1

k2 + 2εmk0
, B0 → 0. (81)

Here, k2 = kμkμ is the Minkowski inner product. Using the
above expression, it is straightforward to check that in the limit
B0 → 0, the response tensor (78) of cold magnetized plasmas
asymptotes to the response tensor (57) of cold unmagnetized
plasmas.

D. Wave dispersion relations

Let us choose a coordinate system such that the wave 4-
momentum kμ = (ω,k⊥,0,k‖). Since k2 = 0 in this coordinate
system, the plasma response tensor (78) can be simplified. To

facilitate discussions next, let us write the wave dispersion
relation (39) explicitly

det

⎛
⎜⎝
ω2−k2

‖ +�̂11 �̂12 k⊥k‖+�̂13

�̂21 ω2−k2+�̂22 �̂23

k⊥k‖+�̂31 �̂32 ω2−k2
⊥+�̂33

⎞
⎟⎠=0.

(82)

The situation becomes particularly simple when the wave
vector is exactly parallel (k⊥ = 0) or perpendicular (k‖ = 0)
to the magnetic field. In these cases, �i3 = �3i = 0 for both
i = 1 and 2, so simple analytical expressions of the dispersion
relations can be obtained.

1. Perpendicular propagation

When waves propagate perpendicular to the magnetic field,
namely, when k‖ = 0, the contributions by each charged
species to the nonvanishing spatial components of the plasma
response tensor are

�̂11 = −mω
2
p

2m0

∑
ς=±1

κ2
ςK

(1)
ς ,

�̂22 = �̂11 − mω2
p

2m0

∑
ς=±1

κ2
⊥
(
K (0)
ς − 2K (1)

ς

)
,

�̂12 = −�̂21 = −mω
2
p

2m0

∑
ς=±1

(±iς )
(
κ2
ς − κ2

⊥
)
K (1)
ς ,

�̂33 = −mω
2
p

m0
. (83)

The dispersion relations can be easily extracted by substi-
tuting these into Eq. (82). When the wave E field is parallel to
the background B field, the wave is transverse. The dispersion
relation of this linearly polarized ordinary electromagnetic
wave (O wave) is

ω2 = mω2
p

m0
+ k2

⊥. (84)

This is very similar to the dispersion relation of the O
wave in classical plasmas, except that the bare mass m
is now replaced by the ground-state mass m0. When the
wave E field is perpendicular to the background B field,
the longitudinal and transverse components of the wave are
mixed by the off-diagonal components of the response tensor.
Relativistic quantum cyclotron resonances (80) hybridize with
the extraordinary electromagnetic wave (X wave) by the
dispersion relation

(ω2 + �̂11)(ω2 − k2
⊥ + �̂22) − �̂12�̂21 = 0. (85)

While the X wave is more or less captured by classical
plasma theories, cyclotron resonances, also known as the
Bernstein waves, are absent in classical plasma theories when
plasmas are cold [49]. In classical plasma theories, charged
particles sample wave fields along their gyro-orbits. Bernstein
resonances arise when their gyrofrequencies match the wave
frequency. If plasma temperature is zero, cyclotron motion of
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FIG. 2. Perpendicular wave dispersion relations in a magnetized,
cold, spinless electron gas with immobile ions as neutralizing back-
ground. The wave vector and the wave frequency are normalized to
the electron gyrofrequency. Parameters used for making this plot are
ωpe/|�e| = 0.7 and |�e|�/mec2 = 0.1. The solid curves are waves in
a relativistic quantum plasma and the dotted curves are corresponding
waves in a classical plasma. The black curves are the ordinary
electromagnetic waves. The blue curves are the extraordinary
electromagnetic waves hybridized with cyclotron resonances. The
dashed gray line across the diagonal represents the light cone. Notice
that near the light cone, wave dispersion relations in the relativistic
quantum plasma asymptote to those in the classical plasma. While the
classical dispersion relations only capture the upper-hybrid resonance
ωUH, the relativistic quantum dispersion relations capture all cyclotron
resonances. Notice that gaps between Bernstein waves remain open
even when the relativistic quantum plasma is cold. Also notice that
cyclotron resonances are not harmonically spaced. The fifth resonance
occurs near 4� instead of 5� in this example.

classical particles stops and Bernstein resonances vanish con-
sequently. However, this is not the case when quantum effects
are taken into account. Using the uncertainty principle and the
fact that the kinetic momentums Pμ = −iD̄μ do not commute
[D̄μ,D̄ν] = −ieF̄μν , it is easy to see that the gyromotion of
quantum charged particles never stops. So, Bernstein waves
persist in a quantum plasma even when it is cold.

An example of wave dispersion relations for perpendicular
propagation is plotted in Fig. 2. For the sake of clarity, we
set the mass of ions to infinity, such that the immobile ions
merely serve as a neutralizing background. By doing so, ion
resonances and the gapless compressional Alfvén wave are
removed, and what remain are the O wave, the X wave, and
the relativistic quantum electron Bernstein waves. We only
plot the low-energy branches with ω,k‖ � me, for which
effects of the vacuum polarization can be safely ignored.
Parameters used for making this plot are ωpe/|�e| = 0.7
and |�e|/me = 0.1. In Fig. 2, the solid curves are dispersion
relations in a relativistic quantum plasma and the dotted curves
are dispersion relations in a classical plasma. The black curves
are the O waves. The solid and the dashed black curves
almost overlap since the relativistic quantum and the classical
dispersion relations of the O wave differ only in their mass

gaps by the ratio m/m0 � 1. The blue curves are the X waves
hybridized with cyclotron resonances. While the classical
dispersion relation only captures the upper-hybrid resonance at
ωUH =

√
�2 + ω2

p, the quantum dispersion relation captures
all cyclotron resonances, which are present even when the
plasma is cold. Notice that cyclotron resonances are not
harmonically spaced due to relativistic effects. As can be seen
from Fig. 2, the fifth resonance occurs near 4� instead of 5�
for parameters used in this example.

The dispersion relations of relativistic quantum Bernstein
waves may be approximated as follows. Denote ωn := ω−

n,0,
where ω−

n,k‖ is defined in Eq. (80). Using property (C10) of the
K function, the asymptotic behaviors of the plasma response
tensor when ω ∼ ωn are

�̂11 ∼ −mω
2
p

m0

(
1 + σn

κ2
+

κ2+ − n
)
,

�̂22 ∼ −mω
2
p

m0

[
1 + σn

κ2
+ − κ2

⊥(2 − κ2
⊥/n)

κ2+ − n
]
, (86)

�̂12 = −�̂21 ∼ −i mω
2
p

m0
σn
κ2

⊥ − κ2
+

κ2+ − n ,

where σn+1 = (κ2
⊥)n exp(−κ2

⊥)/n!. A good approximation of
wave dispersion relations may be obtained by substituting the
above expressions into (85), keeping all the even powers of ω
intact, and replacing odd powersω2l+1 → ω2lωn, such that the
asymptotic behavior ω ∼ k⊥ near the light cone is respected.
To lowest order, the approximated dispersion relation near the
resonance ωn is

ω2 ∼ 1

2

[(
ω2
n + ξ 2

n + k2
⊥ + mω2

p

m0

)

±
√(
ω2
n + ξ 2

n − k2
⊥ − mω2

p

m0

)2

+ 4ω2
nξ

2
n

]
, (87)

where ξ 2
n = n|�|m2ω2

pσn/2ωnm
2
0 is a function of k⊥. The gaps

between branches of relativistic quantum Bernstein waves are
controlled by the factorωnξn. Notice that the gaps remain open
even when plasmas are cold.

Cyclotron resonances in strongly magnetized plasmas
are anharmonically spaced. In uniform magnetic fields, the
anharmonicity is due to relativistic effect, which red-shifts
the cyclotron resonance ωn from its classical value n|�|. The
red-shift is significant when either the B field is strong or the
cyclotron order n is large. More specifically, the red-shift is
comparable to the gyrofrequency, namely, n|�| − ωn � |�|
when

n �
√

2m

|�| =
√

2m2c2

eB0�
≈ 9.4 ×

√
1012 G

B0
. (88)

Using expression of ω−
n in Eq. (80), it is easy to see that

in the weak field limit |�| � m, cyclotron resonances are
harmonically spaced ωn ∼ nω1. While in the strong field limit
|�| � m, cyclotron resonances are anharmonically spaced
with ωn ∼ √

nω1.
When magnetized plasmas are illuminated by external light

sources, cyclotron resonances appear as absorption features.
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These anharmonic cyclotron absorption features have been
observed in the spectra of a number of x-ray pulsars [2–7],
whose polar caps serve as external light sources that illuminate
their magnetospheres, which are made of magnetized plasmas.
The frequencies of line centers are determined by ω−

n,k‖ ,
which is given by Eq. (80). By fitting locations of absorption
lines to Eq. (80), the line-averaged magnetic field can be
determined. As has been noted in the previous paragraph, the
spacing between absorption lines becomes anharmonic when
Eq. (88) is satisfied. For x-ray pulsars, B0 ∼ 1012 G, and the
red-shift starts to be significant from the ninth resonance.
The width and optical depth of the absorption lines are
determined by gaps between branches of Bernstein waves,
as well as the inhomogeneities of the plasma. Qualitatively, as
can be seen from Fig. 2, lower Bernstein branches have larger
gaps, resulting in wider absorption lines with larger optical
depth. Quantitatively, when plasma density and magnetic
field profile are known, the absorption line shapes can be
found by solving the radiative transfer equations [1], in which
photons’ advection is governed by the dispersion relation (82).
Conversely, when the absorption line shapes are measured, the
plasma and magnetic field profile may be retrieved by solving
the inverse problem. Thus, a new era in astrophysics has been
opened, in which it is possible to measure the profile of the
magnetosphere of an x-ray pulsar while it is accreting materials
from its companion star.

2. Parallel propagation

When waves propagate parallel to the magnetic field,
namely, when k⊥ = 0, the nonvanishing spatial components
of the plasma response tensor can be written as

�̂11 = �̂22 = ω2(S − 1),

�̂12 = −�̂21 = −iω2D, (89)

�̂33 = ω2(P − 1).

In the above expressions, S = (R + L)/2, D = (R − L)/2,
and P are notations of permittivities typically used in classical
plasma physics. Using these notations, the dispersion relations
of the right-handed circularly polarized electromagnetic R
wave, the left-handed circularly polarized electromagnetic L
wave, and the longitudinal electrostatic P wave are

R = n2
‖, L = n2

‖, P = 0, (90)

where n‖ = k‖/ω is the refractive index. Writing summations
over charged species explicitly, the permittivities

R = 1 −
∑
s

msω
2
ps

ms0ω2

ω2 − k2
‖ ∓ 2ms0ω

ω2 − k2
‖ ∓ 2(ms0ω +ms�s)

,

L = 1 −
∑
s

msω
2
ps

ms0ω2

ω2 − k2
‖ ± 2ms0ω

ω2 − k2
‖ ± 2(ms0ω −ms�s)

, (91)

P = 1 −
∑
s

msω
2
ps

ms0

ω2 − k2
‖ − 4m2

s0

(ω2 − k2
‖)2 − 4m2

s0ω
2
.

In the expressions of R and L, the upper and lower signs of
∓ and ± correspond to esB0 > 0 and esB0 < 0, respectively.
Since particle energy is not quantized in the direction parallel
to the magnetic field, the low-energy limit is the classical limit.

FIG. 3. Parallel wave dispersion relations in a cold, magnetized,
quasineutral, spinless electron-ion plasma. The wave vector and the
wave frequency are normalized to the electron gyrofrequency. For
various effects to be visible on the scale of this figure, parameters
used for making this plot are ωpe/|�e| = 0.7, |�e|�/mec2 = 0.1,
and mi/me = 3. The solid curves are waves in a relativistic quantum
plasma, and the dotted curves are corresponding waves in a classical
plasma. The black and blue curves are the right- and left-handed
circularly polarized electromagnetic waves, respectively. The red
curves are nearly horizontal and they are the longitudinal electrostatic
waves, which include a gapped Langmuir wave (upper) and a gapless
acoustic wave (lower). The dashed gray line across the diagonal
represents the light cone. Notice that near the light cone, wave
dispersion relations in the relativistic quantum plasma asymptote to
those in the classical plasma. While away from the light cone, they
can differ substantially.

In the classical limit ω,k‖,|�e| � me, it is clear that the above
expressions asymptote to their classical values. Consequently,
wave dispersion relations in relativistic quantum plasmas
asymptote to those in classical plasmas.

An example of wave dispersion relations for parallel
propagation in a quasineutral electron-ion plasma is plotted
in Fig. 3. Only low-energy branches with ω,k‖ � me are
plotted, for which effects of the vacuum polarization can
be safely ignored. In the figure, the solid curves are wave
dispersion relations in a relativistic quantum plasma and the
dotted curves are corresponding wave dispersion relations in
a classical plasma. The black and blue curves are the right-
and left-handed circularly polarized EM waves, respectively.
The red curves are the longitudinal electrostatic waves, which
include a gapped Langmuir wave and a gapless acoustic wave.
For relativistic effects to be visible, the magnetic field is made
strong such that |�e|/me = 0.1. For ion effects to be visible,
the mass of ions is chosen to be close to the electron mass
with mi/me = 3. The ratio of the plasma frequency to the
gyrofrequency is chosen to be ωpe/|�e| = 0.7. It is easy to see
that the relativistic quantum dispersion relations asymptote to
the classical ones near the light cone.

To get a sense of how large relativistic quantum correc-
tions are, we can calculate the cutoff frequencies, the wave
frequencies when the wave vector k = 0. In a single-species
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plasma, the approximated cutoff frequencies in the limit
ωp ∼ |�| � m are

ωR0 − ωR
ωR0

∼ |�|
2m

(
1 − �√

�2 + 4ω2
p

)
,

ωL0 − ωL
ωL0

∼ |�|
2m

(
1 + �√

�2 + 4ω2
p

)
, (92)

ωP0 − ωP
ωP0

∼ |�|
4m
.

Here, ωR0 is the cutoff frequency of the R wave in a classical
plasma and ωR is the cutoff frequency of the R wave in a
relativistic quantum plasma. Similar notations are used for the
L wave and the P wave. As expected, relativistic quantum
corrections are large when |�| ∼ m, namely, when the energy
scale of the background magnetic field is comparable to the
rest energy of charged particles.

Although relativistic quantum corrections to cutoff fre-
quencies are small when |�| � m, they can be important
when magnified by singularities of refractive indices near
the cutoffs. For example, Faraday rotation, the rotation of the
wave polarization axis caused by the phase velocity difference
between the R wave and the L waves of the same frequency,
can be substantially modified near the cutoffs. Denote θ (z)
the polarization angle of a linearly polarized wave as it
propagates along the z axis. Then, Faraday rotation per vacuum
wavelength λ = 2πc/ω is given by the well-known formula
λθ̇ = π (nR − nL), where nR and nL are refractive indices
of the R wave and the L wave, respectively. A comparison
between Faraday rotations in a relativistic quantum plasma
and a classical plasma is plotted in Fig. 4(a), for parameters
ωpe/|�e| = 0.7 and |�e|/me = 0.1. In this figure, the left
axis is Faraday rotation per vacuum wavelength. The solid
black curve is the Faraday rotation λθ̇ in a relativistic quantum
plasma and the dashed black curve is the Faraday rotation λθ̇0

in a classical plasma. The right axis of the figure is the relative
difference θ̇0/θ̇ − 1. As can be seen from the figure, while
the relative difference asymptotes to a small number |�e|/me
when ω � |�e|, it can be of order 1 near the classical cutoff
frequency of the R wave. Denote δ the relative difference at
ω = ωR0. The region in the ne − B0 space where δ is of order
1 is plotted in Fig. 4(b). In the figure, the horizontal axis is
the density of the electron gas and the vertical axis is the
strength of the external magnetic field. The region above the
solid black contour is where δ > 100%, the region above the
dashed black contour is where δ > 10%, and the region above
the dotted black contour is where δ > 1%. To facilitate reading
of the figure, contours ofωR0 are also plotted. The blue contour
is where ωR0 = 10 eV, the red contour is where ωR0 = 1 eV,
and the gray contour is where ωR0 = 0.1 eV. The contours of
δ and ωR0 combined can be used to determine how important
relativistic quantum corrections are in a given situation. For
example, the dotted black contour and the red contour intersect
around ne ∼ 1019 cm−3 and B0 ∼ 108 G. This means if a
laser with photon energy �ω ∼ 1 eV is used to diagnose
such a plasma, then ignoring relativistic quantum effects will
introduce ∼1% systematic error.

FIG. 4. (a) Faraday rotation per vacuum wavelength in a cold,
magnetized, spinless electron gas. The wave frequency is normalized
to the electron gyrofrequency. The solid and dashed black curves are
Faraday rotations in a relativistic quantum plasma and a classical
plasma, respectively. The red curve is their relative difference.
Parameters used for making this plot are ωpe/|�e| = 0.7 and
|�e|�/mec2 = 0.1. Notice that near the classical cutoff ωR0, Faraday
rotations in the relativistic quantum plasma and the classical plasma
differ significantly. (b) Region in the ne − B0 space where relativistic
quantum corrections are important. The regions above the solid,
dashed, and dotted black contours are regions where δ > 100%, 10%,
and 1%, respectively. The classical cutoff frequencyωR0 = 10, 1, and
0.1 eV along the blue, red, and gray contours, respectively. These two
sets of contours combined can be used to determine how important
relativistic quantum corrections are in a given situation. See text for
further details.

In laser plasma experiments, when lasers with frequencies
close to classical cutoffs are used for diagnostics, relativistic
quantum corrections of wave dispersion relations need to be
taken into account in order to avoid systematic errors. As can
be seen from Fig. 4(a), if one tries to match data points on
the relativistic quantum curve by shifting the classical curve,
then |�e| will have to be smaller than its true value, resulting
in systematic errors. As the frequency of the diagnostic laser
increases, the inferred magnetic field strength approaches its
true value from below. This is why the inferred magnetic field
appears to increase with the frequency of the diagnostic laser
when classical formulas are used. In experiments conducted by
Tatarakis, Wagner, and their coauthors [17,18], the magnetic
field strength is determined from Cotton-Mouton effect, which
depends on frequencies of cutoffs just as the Faraday rotation
does. It is beyond the scope of this paper to go into details,
but the peculiar dependence of the inferred magnetic field
strength on the frequencies of diagnostic lasers can already
be understood qualitatively as a consequence of relativistic
quantum corrections of cutoff frequencies.

V. CONCLUSION AND DISCUSSION

In this paper, we show that quantum field theory is an
effective language for plasma physics. This language naturally
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incorporates relativistic and quantum effects without the
necessity of manually adding patches to plasma models. To
demonstrate the effectiveness of this language, we study
wave propagation in scalar QED plasmas by calculating the
one-loop effective action of wave propagation. The one-loop
effective action contains all information of linear waves, and
particularly, the dispersion relations. To order e2, the effective
action [Eqs. (20)–(25)] captures effects of the polarization
of the background plasma as well as the polarization of the
vacuum.

Using the one-loop effective action and explicit expressions
of cold-plasma response tensors [Eqs. (57) and (78)], we
show that all linear waves well known in classical plasma
theories can be recovered from relativistic quantum results
when taking the classical limit. In unmagnetized plasmas
(Fig. 1), the eigenmodes are the doubly degenerate EM
waves, the Langmuir wave, and the ion acoustic wave. When
propagating perpendicular to the external B field (Fig. 2), the
eigenmodes are the electromagneticO wave and X wave, and
the electrostatic compressional Alfvén wave and the Bernstein
waves. When propagating parallel to the external B field
(Fig. 3), the eigenmodes are the electromagneticR wave andL
wave, and the electrostatic Langmuir wave and acoustic wave.
Since the Lagrangian of classical charged particles can be
deduced from the relativistic quantum Lagrangian by making
semiclassical approximations [50], the agreement between
relativistic quantum results and classical results in the classical
regime is not coincidental.

When relativistic quantum effects are important, we show
that corrections to classical wave dispersion relations have
profound observable consequences. In cold unmagnetized
plasmas, relativistic quantum effects are important when either
the plasma frequency �ωp or the wave vector �ck is compara-
ble to electron rest energymec2. In these regimes, longitudinal
waves propagate with nonzero group velocities even when the
plasma is cold (Fig. 1). When propagating perpendicular the
external B field, quantum effects sustain cyclotron resonances
even when the plasma is cold, and relativistic effects space
these resonances anharmonically even when the magnetic field
is uniform (Fig. 2). By providing explicit expressions of wave
dispersion relations in strongly magnetized plasmas, we open
up a new era in astrophysics where profiles of magnetospheres
of x-ray pulsars can be retrieved from anharmonic cyclotron
absorption features observed in their spectra. When propagat-
ing parallel to externalB fields, cutoff frequencies are modified
differently by relativistic quantum effects. These modifications
can be important even when relativistic quantum corrections
are small, if lasers whose frequencies are close to the cutoffs are
used for diagnostics. In this paper, we describe how Faraday
rotation is modified [Fig. 4(a)] and map out the parameter
space where such modifications are important [Fig. 4(b)]. We
show that for a large range of parameters relevant to laser
plasma experiments, relativistic quantum corrections need to
be taken into account in order to avoid systematic errors when
interpreting diagnostic results.

Our descriptions of relativistic quantum plasmas are en-
abled by developing a quantum field theory with nontrivial
background fields. The idea of separating classical back-
grounds from quantum fluctuations is an extension to Furry’s
picture of strong field QED [51]. In addition to external EM

fields, which are treated nonperturbatively in strong field QED,
we also take into account of the existence of nonperturbative
background charged-particle fields. The formidable task of
finding S-matrix elements by calculating quantum correlation
functions whose end states contain infinitely many particles
is reduced by incorporating effects of background charged-
particle fields directly into the Lagrangian. Such an incorpora-
tion, which has been attempted phenomenologically by Shvets
[52], is made rigorous and systematic in this paper. We partition
the fields into classical backgrounds and quantum fluctuations
similar to what has been done by Raicher et al. [53]. We
make further progress by simplifying the Lagrangian using the
self-consistency of backgrounds, and developing the classical
field theory to quantum level by including one-loop effects.
In this way, we thoroughly clarify the role of background
fields and use boson plasmas as examples to demonstrate how
nontrivial background fields can be treated in quantum field
theory from first principles.

Using our formalism, further progress can be made by
calculating higher-order terms in the perturbation series. In
the next order, effects such as particle collision and wave
scattering will contribute. Without these effects, the linear
response theory we have developed in this paper is a random
phase approximation of relativistic quantum plasmas, in which
particles respond collectively to the mean field instead of
interacting directly with each other. To go beyond the random
phase approximation, two steps are necessary. The first step is
to solve the interacting many-body wave functions �0 and Ā.
The second step is to calculate the effective action to higher
order in the perturbation series. For example, to describe wave
propagation in thermal plasmas, one should first solve the
thermal background states, which contain not only a thermal
distribution of charged particles, but also a thermal distribution
of wave quanta [54], and then calculate the propagator of
the gauge boson to higher loops such that effects of collision
between charged particles and scattering of waves are taken
into account.

In the end, we want to point out the implication of this
work for quantum field theory. An important consequence of
including nontrivial background fields is a new mechanism for
mass generation in gauge theories. In the Higgs mechanism
[55,56], gauge bosons acquire masses through a gauge-
symmetry-breaking mass term. For such a term to arise, the
bare mass of the scalar field is required to be imaginary in
order for the gauge symmetry to be spontaneously broken. In
contrast, when nontrivial background fields are present, gauge
bosons acquire masses through a gauge-invariant response
tensor [Eqs. (22) and (29)]. The response tensor endows gauge
bosons with their masses, requiring neither the bare mass of
the scalar field be imaginary nor the local gauge symmetry be
broken.
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APPENDIX A: GREEN’S FUNCTION
IN SYMMETRIC GAUGE

A spectral representation of the Green’s function of charged
scalar fields in a uniform magnetic field has been obtained in
Ref. [25]. In the Landau gauge

Āμ = (0,−B0y,0,0), (A1)

the Green’s function can be written as

GL(x,x ′) =
√

2

r0

∞∑
n=0

∫
dq0dq⊥dq‖

(2π )3

× ie
i[q0(t−t ′)−q⊥(x−x ′)−q‖(z−z′)]

q2
0 − q2

‖ −m2
n

×ψn
[
r0√

2
(q⊥ + eB0y)

]
ψn

[
r0√

2
(q⊥ + eB0y

′)
]
.

(A2)

Here, GL denotes the Green’s function in the Landau gauge
and ψn(x) is the Hermite function. Using the completeness of
the Hermite functions [48]

∞∑
n=0

ψn(x)ψn(y) = δ(x − y), (A3)

it is straightforward to check the Green’s function (A2) solves
the Schwinger-Dyson equation (27) in the Landau gauge.
This form of the Green’s function is expanded by wave
functions that are eigenfunctions of the E × B drift. These
eigenfunctions are featured by free propagation in the z
direction, the direction of the B field; free propagation in
the x direction, the direction of E × B drift; and harmonic
oscillation in the y direction, the direction of theE field. These
features make the Green’s function (A2) a convenient form for
studying dc quantum Hall conductivity. But, the loss of rotation
symmetry in the perpendicular plane makes it inconvenient for
studying ac wave phenomena.

To restore the rotation symmetry, we need to make a
gauge transformation into the symmetric gauge (68). The
symmetric gauge is related to the Landau gauge (A1) by gauge
transformation (13) with

χ = − 1
2B0xy. (A4)

Under this gauge transformation, the Green’s function is
transformed by (26) as

GS(x,x ′) = e−ieB0(xy−x ′y ′)/2GL(x,x ′), (A5)

where GS denotes the Green’s function in the symmetric
gauge. In the symmetric gauge, the eigenfunctions (69) are
circular in the perpendicular plane, so the Green’s function
GS , which can be expanded by these eigenfunctions, is also
invariant under rotation around the z axis.

To putGS in a manifestly rotational invariant form, we need
the following relation between the Hermite functions and the
Laguerre functions:∫

dq e−2iquψn(q + v)ψn(q − v) = �(0)
n [2(u2 + v2)]. (A6)

To prove this identity, recall the Hermite function

ψn(x) := (2nn!
√
π )−1/2e−x

2/2Hn(x), (A7)

whereHn(x) is the Hermite polynomial. The Hermite polyno-
mial satisfies

Hn(x + y) =
n∑
k=0

(
n

k

)
Hk(x)(2y)n−k, (A8)

∫
dx Hn(x)Hm(x)e−x

2 = 2nn!
√
πδn,m . (A9)

Also, recall that the Laguerre function

�(0)
n (x) := L(0)

n (x)e−x/2, (A10)

where L(0)
n (x) is the Laguerre polynomial. The closed series

of the Laguerre polynomial is

L(0)
n (x) =

n∑
k=0

(
n

k

)
(−x)k

k!
. (A11)

Write w = u+ iv and w̄ = u− iv. With the change of
variable p = q + iu, the left-hand side (LHS) of the identity
(A6) becomes

LHS = 1

2nn!
√
π

∫
dq e−q

2−v2−2iquHn(q + v)Hn(q − v)

= e−ww̄

2nn!
√
π

∫
dp e−p

2
Hn(p − iw)Hn(p − iw̄)

= e−ww̄

2nn!

n∑
k,l=0

(
n

k

)(
n

l

)
(−2iw)n−k(−2iw̄)n−l2kk!δk,l

= e−ww̄
n∑
k=0

(
n

k

)
(−2ww̄)k

k!

= RHS.

We have thus proved the identity (A6), which relates the
integral of the Hermite functions to the Laguerre functions.

Using identity (A6), we can carry out the k⊥ integral in
the Green’s function (A2) and put the result in a rotational
invariant form. With the following change of variables

q = r0√
2

[
q⊥ + eB0

2
(y + y ′)

]
,

u = x − x ′
√

2r0
,

v = r0√
2

eB0

2
(y − y ′),

it is easy to see that the Green’s function (A5) can be put into
its final form (74).

Finally, using the completeness of the Laguerre functions
[48]

∞∑
n=0

�(0)
n (x2 + y2) = πδ(x)δ(y), (A12)

it is straightforward to check that the Green’s function (74)
satisfies the Schwinger-Dyson equation (27) in the symmetric
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gauge. We have thus found a convenient form of the Green’s
function for later calculations.

APPENDIX B: COVARIANT DERIVATIVES
IN SYMMETRIC GAUGE

To evaluate the plasma response tensor (24) in the sym-
metric gauge (68), we will need the following background
gauge-covariant derivatives:

D̄0 = ∂t ,
D̄1 = −∂x + ieB0

2
y = − cos θ

∂

∂r
+ sin θ

r

∂

∂θ
± iεr

r2
0

sin θ,

D̄2 = −∂y − ieB0

2
x = − sin θ

∂

∂r
− cos θ

r

∂

∂θ
∓ iεr

r2
0

cos θ,

D̄3 = −∂z. (B1)

Here, we have used the identity eB0/2 = ±ε/r2
0 , where the

upper and lower signs of ± correspond to eB0 > 0 and eB0 <

0, respectively. Since we denote e the charge of the particle
state, the charge of the antiparticle state is −e. This is why
ε appears in the above expressions. Recall ε = +1 for the
particle state and ε = −1 for the antiparticle state.

To calculate the covariant derivatives of the wave functions,
let us abbreviate the wave function as � = Mei ηl−n�(l−n)

n ,
whereM is the constant amplitude, η = r/r0 is the normalized
radius,  = ε[Et − pz∓ (l − n)θ ] is the phase, and the
argument of�(l−n)

n is omitted. In terms of these abbreviations,
the covariant derivatives of the wave function are

D̄0� = iεEMei ηl−n�(l−n)
n ,

D̄1� = M

r0
ei 
[
2ηl−n+1�

(l−n+1)
n−1 cos θ

+ e±iεθ ηl−n−1(η2 − l − n)�(l−n)
n

]
,

D̄2� = M

r0
ei 
[
2ηl−n+1�

(l−n+1)
n−1 sin θ

+ e±iε(θ−π/2)ηl−n−1(η2 − l − n)�(l−n)
n

]
,

D̄3� = iεpMei ηl−n�(l−n)
n . (B2)

Here, we have used the property of the Laguerre function
�′(α)
n (x) = −�(α+1)

n−1 (x) −�(α)
n (x)/2. Note�(α)

n = 0 when n <
0. In the above expressions, we see D̄2� can be obtained from
D̄1� by replacing θ → θ − π/2, which is expected from the
rotation symmetry.

To find the covariant derivatives of the Green’s func-
tion, let us abbreviate G = ϒGneiX�(0)

n , where ϒ =
1/(πr2

0 )
∑
n

∫
d2q/(2π )2 is the summation and integration

prefactor, Gn(q0,q‖) = i/(q2
0 − q2

‖ −m2
n) is the momentum-

space propagator in the tz subspace, X = ±iε(xy ′ −
x ′y)/r2

0 + iq0(t − t ′) − iq‖(z− z′) is the phase, and the ar-
gument of �(0)

n is omitted. Write η1 = (x − x ′)/r0 and η2 =
(y − y ′)/r0, we find the covariant derivatives of the Green’s
function

D̄0G = ϒGniq0e
iX�(0)

n ,

D̄1G = ϒGn
eiX

r0

[
2η1�

(1)
n−1 + (η1 ± iεη2)�(0)

n

]
,

D̄2G = ϒGn
eiX

r0

[
2η2�

(1)
n−1 + (η2 ∓ iεη1)�(0)

n

]
,

D̄3G = ϒGniq‖eiX�(0)
n . (B3)

The covariant derivatives D̄′μ with respect to x ′ can be found
by direct calculations. Alternatively, recall G′ = −G∗. We
can also find D̄′μ derivatives using D̄′μG = −(D̄′∗μG′)∗. The
above are all the background gauge-covariant derivatives that
are necessary for evaluating the plasma response tensor.

APPENDIX C: CALCULATION OF �00
2,bk

In this Appendix, we calculate�00
2,bk of a cold and uniformly

magnetized plasma. For conciseness, we use abbreviations
in Appendix B. We further abbreviate �l = �+

0,l,0, τ = t −
t ′, ζ = z− z′, k = (k1,k2), and η = (η1,η2). Substituting the
occupation density (75) into the effective single-boson wave
function (73) and use it in place of the background field φ0 in
the expression of the background polarization (24), we have

�00
2,bk = e2

∞∑
l=0

ϒ(q0 +m0)2�∗
l �

′
lGneiX�(0)

n − c.c.

= e2n0

2m0
ϒ(q0 +m0)2Gnei[(q0−m0)τ−q‖ζ ]−η2/2�(0)

n − c.c.

= imω2
p

2m0
ϒei(q0τ−q‖ζ )−η2/2�(0)

n π
00
n , (C1)

where

π00
n (q0,q‖) = (q0 + 2m0)2

(q0 +m0)2 − q2
‖ −m2

n

+ (q0 − 2m0)2

(q0 −m0)2 − q2
‖ −m2

n

. (C2)

Note�00
2,bk only depends on the difference between coordinates

rμ = (x − x ′)μ. This is expected since the system is transla-
tional invariant. The above results are qualitatively similar to
those in Ref. [39], studying spinor plasmas.

In the Fourier space, since the system is translational in-
variant, we know �̂(k,k′) = (2π )4δ(4)(k − k′)�̂(k). Denoting
kη = k1η1 + k2η2, we have

�̂00
2,bk(k) =

∫
d4r eikr�00

2,bk(r)

= imω2
p

2πm0

∞∑
n=0

∫
dη e−ir0 kη−η2

L(0)
n (η2)π00

n (k0,k‖).

To calculate the integral, we need the following identities of
the Laguerre and Hermite polynomials [48]:

L(α+β+1)
n (x + y) =

n∑
l=0

L
(α)
l (x)L(β)

n−l(y), (C3)

L(−1/2)
n (x2) = (−1)n

22nn!
H2n(x), (C4)

as well as the Fourier integral∫
dx e−ikx−x

2
H2n(x) = √

π (−1)nk2ne−k
2/4. (C5)
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With these properties, we have

In :=
∫
dη e−ikη−η2

L(0)
n (η2)

=
∫
dη e−ikη−η2

n∑
l=0

L
(−1/2)
l

(
η2

1

)
L

(−1/2)
n−l

(
η2

2

)

= (−1)n

22n

n∑
l=0

1

l!(n− l)!
∫
dη1e

−ik1η1−η2
1H2l(η1)

×
∫
dη2e

−ik2η2−η2
2H2(n−l)(η2)

= π

22n
e−k2/4

n∑
l=0

k2l
1 k

2(n−l)
2

l!(n− l)!

= π

n!
e−k2/4

(
k2

4

)n
. (C6)

Writing κ2 = r2
0 k2/4, then �̂00

2,bk(k) becomes

�̂00
2,bk(k) = imω2

p

2m0
e−κ2

∞∑
n=0

(κ2)n

n!
π00
n (k0,k‖). (C7)

Taking the limit B0 → 0, it is easy to see that the above
expression recovers the polarization tensor �̂00

2,bk in the
unmagnetized case. Notice that the pole of π00

n is weighted by
wn(κ) = e−κ2

(κ2)n/n!, which is proportional to the strength
of interaction between the plane wave with 4-momentum k

and particles in the nth Landau level. The weighting factor
maximizes at κ2 = n. For large n, the maximum value scales
as wn ∼ 1/

√
2πn. We see waves couple more strongly to

electrons in lower Landau levels.
The summation in Eq. (C7) can be carried out using

the confluent hypergeometric functions 1F1(a; b; z). Using
the definition and properties of the confluent hypergeometric
functions [48], we have

e−z
∞∑
n=0

zn

n!

1

x + n = e−z

x
1F1(x; x + 1; z)

= 1

x
1F1(1; x + 1; −z). (C8)

The K function (79) is defined in such a way that

e−z
∞∑
n=0

zn

n!

1

x − n = K(x,z). (C9)

From this expression, it is easy to see that when x ∼ n, where
n is some integer, the K function

K(x,z) ∼ zn

n!

e−z

x − n. (C10)

Using the K function, the 00 component of the plasma
polarization tensor can be written as

�̂00
2,bk(k) = imω2

p

2m0

r2
0

4
[(k0 + 2m0)2K(κ2

+,κ
2)

+ (k0 − 2m0)2K(κ2
−,κ

2)], (C11)

where κ2
± = r2

0 (k2
0 − k2

‖ ± 2k0m0)/4. This is the final expres-

sion of �̂00
2,bk(k).

Other components of the plasma response tensor �̂μν2,bk(k)
can be calculated using similar methods. When calculating
other components, one will encounter Fourier integrals similar
to (C6). The following property of the Laguerre polynomial is
useful [48]:

L(α+1)
n (x) =

n∑
k=0

L
(α)
k (x). (C12)

Using this property, together with (C6), all Fourier integrals
that appear in the calculation of other components of �̂μν2,bk can
be calculated. For example,∫

dη e−ikη−η2
η1L

(1)
n−1(η2)

= i ∂
∂k1

n−1∑
k=0

Ik = − iπ
2
e−κ2

k1
(κ2)n−1

(n− 1)!
. (C13)

To carry out summations similar to (C8), the following
recurrence relation of the confluent hypergeometric function
is useful [48]:

b 1F1(a; b; z) = b 1F1(a − 1; b; z) + z 1F1(a; b + 1; z).

(C14)

Using this recurrence relation, summations that appear in the
calculation of other components of �̂μν2,bk can be simplified.
For example,

e−z
∞∑
n=0

zn

n!

n

x + n = z

x + 1
1F1(1; x + 2; −z)

= 1 − 1F1(1; x + 1; −z). (C15)

In terms of the K function, the recurrence relation (C14)
becomes

xK(x,y) − yK(x − 1,y) = 1. (C16)

Using this identity, it is straightforward to show that the
response tensor (78) satisfies the Ward-Takahashi identity.
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