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Abstract

The energy in turbulent flow can be amplified by compression, when the compression occurs on a timescale shorter
than the turbulent dissipation time. This mechanism may play a part in sustaining turbulence in various
astrophysical systems, including molecular clouds. The amount of turbulent amplification depends on the net effect
of the compressive forcing and turbulent dissipation. By giving an argument for a bound on this dissipation, we
give a lower bound for the scaling of the turbulent velocity with the compression ratio in compressed turbulence.
That is, turbulence undergoing compression will be enhanced at least as much as the bound given here, subject to a
set of caveats that will be outlined. Used as a validation check, this lower bound suggests that some models of
compressing astrophysical turbulence are too dissipative. The technique used highlights the relationship between
compressed turbulence and decaying turbulence.
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1. Introduction

Turbulence undergoing mean compression, also called
compressed turbulence, is of interest in a variety of disciplines.
A number of studies, ranging from investigations of its
essential behavior to detailed application studies, have been
conducted with an eye towards internal combustion engines
and aerodynamic flows. These include studies focusing on the
zero-mach-number limit (e.g., Morel & Mansour 1982; Wu
et al. 1985; Coleman & Mansour 1991; Cambon et al. 1992;
Guntsch & Friedrich 1996; Liu & Haworth 2010; Hamlington
& Ihme 2014), and those focusing on the finite-mach-number
limit (e.g., Blaisdell 1991; Speziale & Sarkar 1991; Durbin &
Zeman 1992; Cambon et al. 1993; Coleman & Mansour 1993;
Blaisdell et al. 1996; Grigoriev et al. 2016).

Other contexts where compressed turbulence is of interest
include plasma physics and inertial fusion(Kroupp et al.
2007a, 2007b, 2011; Thomas & Kares 2012; Maron et al. 2013;
Weber et al. 2014; Davidovits & Fisch 2016a, 2016b), and
astrophysics(Robertson & Goldreich 2012). In the astrophy-
sics context, the turbulence undergoing compression is
typically supersonic, and the present work focuses on
compressed turbulence in this context.

Turbulence is ubiquitous in interstellar gas(Elmegreen &
Scalo 2004), and the properties of supersonic turbulence have
been related to important astrophysical questions such as the
core mass and stellar initial mass functions(Padoan &
Nordlund 2002; Ballesteros-Paredes et al. 2006; Hennebelle
& Chabrier 2008), star formation efficiency(Elmegreen 2008),
and the origin of Larson’s laws(Kritsuk et al. 2013a). As such,
supersonic turbulence has been the subject of numerous
investigations in the context of astrophysics(e.g., Mac Low
et al. 1998; Mac Low 1999; Kritsuk et al. 2007; Federrath et al.
2008; Kritsuk et al. 2013b; Federrath 2013; Banerjee & Galtier
2014). This astrophysical turbulence is often undergoing
contraction or expansion under the influence of gravity or
pressure. Robertson & Goldreich (2012) pointed out that little
work has been done on compressed turbulence in astrophysics,
although intuition and some results from prior work on
compressed turbulence in other contexts should be expected

to carry over. Since contraction (or expansion) influences the
behavior of the turbulence, and the turbulence plays a role in
many problems related to interstellar gas dynamics, it is
desirable to better understand how exactly contraction
influences turbulent behavior.
At the most basic level, the first classifying parameter for

turbulence undergoing compression is the ratio, S d ct t= , of
the turbulent dissipation time, dt , to the compression time, ct .
When the compression is very slow, S 1 , and the
compression has little effect. If the compression is very fast,
S 1 , the turbulence is essentially “frozen” and its behavior
can be treated with rapid distortion theory (RDT; Savill 1987;
Hunt & Carruthers 1990; Durbin & Reif 2010). For three-
dimensional rapid isotropic compressions, one finds that the
root mean square (rms) turbulent velocity v v Lrms rms,0~ ¯ ,
where L̄ is the contraction factor along each axis, L L L0=¯
(see e.g., Wu et al. 1985 for a zero-mach RDT treatment, or
Cambon et al. 1993 for a finite-mach RDT treatment; a similar
result is given by Peebles 1980 in Section 90). In actuality, the
turbulence will not be completely “frozen”, and there will be
turbulent dissipation, the quantity of which depends (in part) on
the rapidity of the contraction. This dissipation reduces the rms
turbulent velocity scaling with compression below the L1 ¯
“adiabatic” result.
Here we present an argument for an upper bound on the

amount of this turbulent dissipation, thereby providing a lower
bound on the amount of adiabatic heating that turbulence in a
contracting gas can undergo. This argument rests on the
following assumption. Consider as a base case the rate of decay
for unforced Navier–Stokes (NS) turbulence with a constant
viscosity. We assume that when the viscosity is a shrinking
function of time, with the same initial value as the base case,
the rate of decay is not larger than that for the base case. If this
physically reasonable assumption holds, the bound follows
directly. Then the bound can be used as a check on models and
simulations of compressing turbulence, or as a model itself. We
carry out an initial comparison with some previous work,
which suggests that at least some approaches to simulating or
modeling compressed high-mach turbulence are too dissipative.
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They will give, for example, asymptotic scaling (in L 0¯ ) of
the turbulent velocity for a gravitational contraction that is
below the minimum predicted by the bound. Since similar
approaches are used in many astrophysical simulations, this
apparent disagreement with the bound may have implications
for other work as well.

The focus of the current work is to present the bound and an
initial comparison against some previous work, thereby
motivating future work to determine if the key assumption
made in arriving at the bound holds. We note that even if some
approaches to simulating and/or modeling compressed high-
mach turbulence are in fact too dissipative, a separate
determination needs to be made as to whether this affects the
results of interest. While physically reasonable, the assumption
is not rigorous. In the surprising event the assumption is
violated, so that the decay rate of NS turbulence is increased if
the viscosity shrinks in time, there will likely still be
implications for turbulence in astrophysical settings. Of course,
the assumption (and bound) may hold in some situations and
not in others, depending on the mechanism(s) by which the
assumption is violated, if it is.

In the process of arriving at the bound, the sometimes
forgotten relationship(Cambon et al. 1992) between turbulence
forced by contraction and decaying turbulence is highlighted.
Beyond its use in the argument for a lower bound, which is the
focus of the present work, this connection may be helpful for
understanding the influence of contraction on astrophysical
processes, since it gives a means of translating quantities (e.g.,
correlation functions) between compressing and decaying
cases. The relationship can also be useful for simplifying
simulations of compressing turbulence (e.g., as used by
Davidovits & Fisch 2016b).

Although the bound presented here has a number of caveats
associated with it, the approach used to arrive at it should be
adaptable to create new bounds with different applicability. The
bound is given in terms of L̄, the Hubble parameter, H L L= ˙
(with the overdot being the time derivative), and the decay time
constant t0 and power α (in the spirit of Mac Low et al. 1998;
Mac Low 1999) for the rms velocity in decaying supersonic
turbulence. The bound is
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As will be shown later, this form of the bound follows once a fit
for the decay of vrms in unforced NS turbulence (with a regular,
constant viscosity) is chosen. If these fits are refined, the bound
will be as well.

The paper is organized as follows. The model, essentially the
NS equations in coordinates comoving with the contraction (or
expansion), is described in Section 2. Section 3 shows the use
of a time-dependent variable rescaling to change the NS
equations forced by contraction into NS equations for decaying
turbulence, with extra time-dependent coefficients. An argu-
ment for the bound, Equation (1), is given in Section 4, using
the rescaled NS equations. Section 5 compares the bound to
some previous results on compressing supersonic turbulence
and discusses the caveats and implications of the bound and
rescaling.

2. Model

The model is the NS equations written in contracting (or
expanding) coordinates. These coordinates, x, are defined in
terms of the proper coordinates, r, as

x r L. 2= ¯ ( )
The proper velocity, u, written in terms of the peculiar

velocity v and the contracting coordinates, is

u x v xL t, . 3= +¯̇ ( ) ( )

Beginning with the NS equations for u and the density ρ in the
proper coordinates, and rewriting in terms of x and v, gives
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Here, p is the pressure, Φ is the gravitational potential, and D is
the usual dissipation term in the momentum equation, which is
given in Equation (6). It has been assumed that the dynamic
and bulk viscosities, μ and λ, respectively, are constants. A
derivation of these equations, with the exception of the
dissipation term, can be found in Peebles (1980), Section 9.
Essentially identical equations, based on contractions identical
to those dictated by u in Equation (3), but without the
gravitational potential, underlie studies of compressing turbu-
lence in other contexts (Blaisdell 1991; Cambon et al. 1993;
Coleman & Mansour 1993).
Besides giving spatial derivatives time-dependent coeffi-

cients (powers of L̄), the effect of the contraction is to add
forcing (or dissipation) to both the density and momentum
equations. In the density equation, Equation (4), the third term
is a forcing term when L̇ is negative. This in part causes the
mean density to increase as expected for the contraction.
In the momentum equation, Equation (5), the first term to the

left of the equals sign, is similarly a forcing term when L̇ is
negative. In fact, a similar term has been used as a way to add
real space forcing for turbulence simulations(Lundgren 2003;
Rosales & Meneveau 2005; Petersen & Livescu 2010). It is this
term that, taken alone, will lead to the “adiabatic” increase of
turbulent velocity v L1rms ~ ¯ .
The second term to the left of the equality in Equation (5) is

related to the acceleration of the contraction, L̄̈. It depends on
x, and can cause the turbulence to be inhomogeneous (see
Blaisdell 1991, Section 2.4, for a thorough discussion). In the
case where the contraction (the time dependence of L) is
determined by gravity, this acceleration term can be removed
from the momentum equation by the gravitational field of the
mean density (see Peebles 1980).
For the present work, we will treat this as the case, and we

will also choose to ignore the gravitational effects associated
with density fluctuations (as in Robertson & Goldreich 2012).
The pressure is taken to obey a polytropic law,

p K , 7r= g ( )
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with K and γ as constants. Together, these choices give the
model momentum equation
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3. Rescaling

Substituting rescaled values of the density, velocity, and
time,

L , 9r r= f¯ ˆ ( )
v vL , 10= d¯ ˆ ( )

dt L dt, 11= tˆ ¯ ( )

in the density and momentum equations, Equations (4) and (8),
gives
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The Hubble parameter H L L= ˙ , and the dissipation D̂ is the
same as in Equation (6), but with v,r̂ ˆ in place of v,r .

By choosing 3f = - and 1d = - , the forcing terms can be
eliminated from the density and momentum equations. Then,
choosing 2t = - removes the time-dependent coefficient from
the divergence term in the density equation, and also removes it
from the nonlinear term in the momentum equation. For these
choices of , ,f d t , the incompressible case of this transforma-
tion has been discussed by Cambon et al. (1992). A different
choice was made by Davidovits & Fisch (2016a, 2016b), for
the convenience of simulations. Various similarity transforma-
tions (e.g., Davis & Peebles 1977; Nishitani & Ishii 1985;
Nishitani 1991) are related.

We will also take the polytropic index 5 3g = . Then, the
rescaled NS equations become,
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Up to the L3¯ scaling on the dissipation term, these are the usual,
unforced, NS equations for a gas with polytropic index

5 3g = . Note that there is no separate energy equation
because the system was closed with the assumption of a
polytropic pressure, Equation (7). An energy equation can be
derived as usual from the momentum equation, Equation (15),
but it does give “new” information, in the sense that the system
is closed without it.

4. Bound

Turbulence governed by the rescaled equations,
Equations (14) and (15), will decay, as it is unforced in these
variables. The usual compressible NS equations are recovered
by setting L 1=¯ . For contraction L t 1¯ (ˆ) is a strictly
decreasing function of time (the equality holds at t 0=ˆ ). Since
the viscous dissipation in Equation (15) is multiplied by L3¯ , it
has a smaller coefficient at all times after t 0=ˆ in the

compressing case than in the L 1=¯ usual case. Then it is
reasonable to expect that the turbulent decay rate for the system
Equations (14) and (15) will be slower than (or equal to) the
decay for the usual compressible NS equations (L 1=¯ ). This is
the key assumption on which the bound rests.
If this assumption is true, then the rms turbulent velocity for

the system, Equations (14) and (15), will at least be as great as
that given by the usual power-law decay for the system when
L 1=¯ ,

v v t t1 . 16rms rms,0 0
2 + a-ˆ ˆ ( ˆ ) ( )

Here, α and t0 are to be determined for turbulent decay in the
non-compressing (L 1=¯ ) case. Then, arriving at the bound,
Equation (1) requires using Equations (10) and (11) to
transform Equation (16) into the unscaled (non-hat) variables.
One could instead write a comparable bound for the turbulent
kinetic energy (TKE), v 22rá ñ, under compression. We use the
turbulent velocity, following previous work (Robertson &
Goldreich 2012). If a decay law of a different form than that
given by Equation (16) is more appropriate, there will still be
an equivalent bound, derived once again by transforming the
decay law back into the unscaled variables.
Although we are not aware of work determining t0 and α for

the rms velocity decay of supersonic turbulence with 5 3g = ,
we can estimate these values from closely related work. The
bound will then be only a guide. Mac Low (1999) found that
for supersonic (initially mach 5) isothermal decaying turbu-
lence, t0 is the initial turnover time for the turbulence (at the
driving scale). Mac Low et al. (1998) found that the TKE in
supersonic (mach 5) turbulence with 7 5g = decays with
power 1.2a ~ . In the isothermal case ( 1g = ), they found

1a ~ , suggesting some slight dependence on γ, at least within
this modest range. Smith et al. (2000) found that for the decay
of hypersonic (mach 50) isothermal turbulence, the decay
power 1.5a ~ , after an initial transient period. While these
results suggest a single value of α will not suffice for all
situations, we may expect that for 5 3g = , α is roughly in the
range 1 1.5~ , depending on the initial mach number.
Note that these decay rates are for the TKE, not the rms

velocity. Using them for the decay of the rms velocity
discounts density–velocity correlations. Mac Low (1999) found
these correlations make for a 10%–15% difference between the
TKE calculated from the rms velocity, mv 2rms

2 , and the TKE
calculated directly, v 22rá ñˆ ˆ . Again, this result is for mach 5
turbulence, and may change with mach number.

5. Discussion

The bound, Equation (1), can be used as a validation tool.
For example, let us compare it with the compressing turbulence
model and matching simulations of Robertson & Goldreich
(2012). That model is

dv
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HLL
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This model for vrms includes two components: the forcing due
to the contraction (the first term to the left of the equals sign in
Equation (5)), and the dissipation of vrms calculated from the
equilibrium dissipation rate for forcing at a given scale, as
found by Mac Low (1999). The forcing scale is taken to
decrease in time, as determined by the contraction, L̄.
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Robertson & Goldreich (2012) found that 1.2h = creates a
good match between the model and their simulation results,
which were carried out for isothermal turbulence. The model is
nominally independent of γ, although to the extent the
turbulent dissipation rate depends on γ, one may expect that
η could change.

Assuming equality in the bound, Equation (1), and
differentiating with respect to L̄, one can write an expression
for vrms that is comparable to Equation (17):
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dL t
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For 2a = , 1h = , and taking the initial turnover time as
t L v0 0 rms,0= , the two expressions, Equation (17) and
Equation (18), are equal. The bound and the model of
Robertson & Goldreich (2012) are calculated for different
values of γ, complicating a direct comparison. To compare,
consider the 5 3g = case, for which the bound is calculated.
First, assume that the model, Equation (17), is still valid for

1g ¹ , with a possibly different value of η (as suggested by
Robertson & Goldreich 2012). Then, the comparison hinges on
the value of the decay power α of vrms for supersonic
turbulence when 5 3g = .

To see this, consider the asymptotic scaling of vrms with
L 0¯ , for the case of a gravitational-like contraction with
H H L0

3 2= - -¯ . The prediction of the model, Equation (17), is

v v H L v L2 . 19rms rms,0 0 0 rms,0
1 2h ( ) ¯ ( )

Using Equation (18) with t L v0 0 rms,0= , the same contraction
gives for L 0¯ that

v v H L v L2 . 20rms rms,0 0 0 rms,0
2 4 1 a a -( ) ¯ ( )

Now, note that unless 2a , the model Equation (17) will
cross below the bound as L 0¯ for any η. Apparently,
assuming the bound holds, either 2a for the decay of vrms

when 5 3g = , or the model, Equation (17) will be too
dissipative when applied to the 5 3g = case.

We are not aware of available decay rates for vrms in
turbulence with 5 3g = and initial mach numbers M 6~ .
However, available decay rates in the literature, for various
values of γ and initial mach number suggest 2a would be
an outlier. In the low-mach case, decay rates this large are
associated with bounded turbulence (Skrbek & Stalp 2000;
Thornber 2016). Mac Low et al. (1998) found for initially mach
5 turbulence a TKE decay rate 1a ~ for 1g = and 1.2a ~
for 7 5g = . For initially mach-20 turbulence with a
complicated equation of state, Pavlovski et al. (2002, 2006)
found for the TKE that 1.34a ~ . These decay rates are
calculated for the TKE. As noted in Section 4, using them for
vrms neglects density–velocity correlations. While the size of
these correlations will likely change when γ changes, they have
a relatively small impact when 1g = . The decay rate of vrms

has been found directly, using a number of different simulation
algorithms, by Kitsionas et al. (2009). They found for
isothermal, mach 4 turbulence, 1a ~ , which is very similar
to the decay rate inferred from the TKE. Given the available
results, it seems unlikely the bound, Equation (1), and the
model, Equation (17), will be consistent for the 5 3g = case,
with the model being too dissipative. As the methods used to

arrive at both the model and the bound appear reasonable,
reconciling this difference requires more detailed consideration.
Assuming equality in the bound, Equation (1), is equivalent to

asserting that the time-dependent pre-factor (L3¯ ) of the viscous
dissipation, D̂, in Equation (15) does not decrease the dissipation
rate of the turbulence, despite the fact that the coefficient decreases
in time. That is, the dissipation rate (and therefore energy
behavior) of the turbulence is independent of time dependence in
the viscous coefficient. For various subsonic compressing
turbulence studies, this has not been found to be the case
(Coleman & Mansour 1991; Cambon et al. 1992; Davidovits &
Fisch 2016a). Since dissipation in decaying supersonic (isother-
mal) turbulence is primarily in shocks (Smith et al. 2000), it is
conceivable that the situation changes between subsonic and
supersonic turbulence. Perhaps more importantly, in the pre-
viously studied subsonic cases, the viscous coefficient was
generally increasing in time, rather than decreasing, as in the
present situation.
If the shrinking-in-time dissipation coefficient did have no

impact on the dissipation rate, then Equation (1), with equality
assumed, would be a model for vrms, rather than a bound.
Furthermore, in this case, for a given initial condition, a single
simulation of Equations (14) and (15) would be sufficient for
all compression histories L t¯ ( ) (or Hubble parameters, H t( ),
alternatively). This is because Equations (14) and (15) would
no longer have any dependence on L̄.
If the shrinking dissipation coefficient counter-intuitively led

to more dissipation than in the case where the coefficient is
constant, the lower bound would be invalid. If this effect were
consistent, it would instead represent an upper bound (with 
in Equation (1) switching to ).
The bound depends to some degree on the choice of physical

model for the dissipation process. If the relevant dissipation
process is not captured by the NS viscous dissipation,
Equation (6), the bound may change. This is because the
time-dependent coefficient of the dissipation in the rescaled
momentum equation, Equation (15), results from transforma-
tion and rescaling of the dissipation. For a different dissipation
form, one could imagine that the coefficient after rescaling is
different from the L3¯ coefficient found here. This could alter the
bound, particularly if the coefficient were no longer shrinking
in time. Additionally, the form of the NS dissipation, D, does
not change under transformation to the moving frame and
rescaled variables, allowing the analogy between the compres-
sing case and the uncompressing case.
This will not necessarily be true for all imaginable

dissipation forms. For example, if the physically correct
dissipation for the fluid equations took the form of the artificial
viscosity commonly used for shock-capturing (see, e.g.,
VonNeumann & Richtmyer 1950; Stone & Norman 1992),
the bound would need to be reconsidered. Note that, for
numerical simulations in the moving frame (solving
Equations (4), (5), the form of the dissipation may need to be
considered explicitly, as done here, so that its transformation
can be accounted for.
We now turn to the dependence of the bound on the

adiabatic index. When 5 3g ¹ , the scaled momentum
equation, Equation (15), will pick up additional time depend-
ence, as a coefficient for the pressure gradient term. This
worsens the analogy between the scaled momentum equation
and regular NS, but need not necessarily dramatically alter the
bound. The impact on the bound depends on the effect of the
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pressure term (through the pressure-dilatation) on the energy
dissipation in supersonic turbulence. As an example, consider
the isothermal scenario ( 1g = ). In this case, the scaled
momentum equation becomes

v
v v D
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r
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ˆ
ˆ

ˆ · ˆ ¯
ˆ
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The decay rate of compressible turbulence is the result of the
net effect of the viscous dissipation, v Dµ ˆ · ˆ , and the pressure-
dilatation, which comes from the dot product of the pressure
gradient term with v̂. In the high-Reynolds-number limit, it can
be shown that the mean pressure-dilatation acts primarily on
the largest scales, with its impact on small scales averaging out
(Aluie 2011, 2013; Aluie et al. 2012). To the extent that the
pressure-dilatation enhances the decay rate, the bound should
be insensitive to the L2¯ scaling. This is because the bound
comes about by considering L 1=¯ to be a more dissipative
case than when L̄ shrinks in time, which would remain the case.
There is some evidence the pressure-dilatation does in fact
increase the dissipation in decaying turbulence, at least in the
subsonic case (Sarkar 1992; Samtaney et al. 2001). Even
without this, the bound will be approximately preserved so
long as the net effect on the decay of the pressure-dilatation
term with the L2¯ coefficient is small compared to that of the
viscous dissipation term with the L3¯ coefficient. For the
isothermal case the pressure term scales as the sound speed
squared, Cs

2, which becomes small in the high-mach limit.
However, for very large compressions (reaching very small L̄),
the weaker decrease on the pressure term may relatively
enhance its contribution even if it would normally be small.

Overall, even for 5 3g = , the bound can only be universal
to the extent that the decay of supersonic turbulence is
(Federrath 2013). To the extent the mix of compressible and
solenoidal modes in the initial condition affects the decay rate,
this must be accounted for in the value of α. The same is true
for the impact of changing γ and changing the initial mach
number.

As noted in Section 2, the present treatment considers
contractions where the time dependence of L̄ is determined by
the gravitational attraction of the mean density. Strictly
speaking, if L̄ is taken to have a different form, one must
consider the effect of an acceleration term xL̄̈ in the momentum
equation, Equation (5). This may or may not have a significant
impact on the bound. As also noted in Section 2, gravitational
effects from the density fluctuations have been neglected. In
many astrophysical problems of interest, there is additional
forcing beyond the contraction, which acts on the turbulence;
this is neglected here.

These various assumptions and restrictions, if limiting to the
generality of the bound, should be replicable for simulations.
Then the bound provides a relatively simple, high-level check
on the simulations, particularly on the degree of dissipation.
The initial application of the bound in this manner suggests a
commonly used model (and matching simulations) may be too
dissipative. Note that, even if a simulation or model is too
dissipative, it may still be useful, depending on the physics
under consideration.

The implications of the rescaled equations, Equations (14)
and (15), apart from the bound, deserve mention. These
equations are reached because forcing of the type generated by

contraction can be scaled out of the NS equations. The only
difference between the rescaled equations and compressible NS
equations is in the dissipation term. However, many turbulent
quantities, for example, inertial range properties, are not
influenced by the dissipation properties of the turbulence.
Therefore, we may expect that already known results for
decaying supersonic turbulence can be translated by undoing
the scaling, and applying the results to turbulence undergoing
compression. This task is made simpler by the fact that the
rescaling, Equations (9)–(11), is purely time-dependent, so that,
for example, spatial correlation functions are translatable.
In conclusion, we have suggested a lower bound on the

increase in turbulent velocity associated with the compression
of turbulence. This lower bound follows directly once one
assumes that a decreasing-in-time coefficient of viscosity in the
NS equations does not increase the rate of dissipation for
turbulence. This assumption, while physically reasonable,
should be verified or disproved, since the bound represents a
useful means of checking models or simulations of compres-
sing turbulence, and an initial application of the bound in this
capacity indicates some previous work may be too dissipative.
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