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X-ray amplification by stimulated Brillouin scattering
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Plasma-based parametric amplification using stimulated Brillouin scattering offers a route to coherent x-ray
pulses orders of magnitude more intense than those of the brightest available sources. Brillouin amplification
permits amplification of shorter wavelengths with lower pump intensities than Raman amplification, which
Landau and collisional damping limit in the x-ray regime. Analytic predictions, numerical solutions of the three-
wave-coupling equations, and particle-in-cell simulations suggest that Brillouin amplification in solid-density
plasmas will allow compression of current x-ray free-electron laser pulses to subfemtosecond durations and
unprecedented intensities.
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I. INTRODUCTION

Ultrafast sources of high-intensity coherent x-rays have
dramatically advanced our understanding of physics at atomic
spatial and temporal scales [1–4], permitted high-resolution
study of protein, ceramic, and semiconductor structure [5–7],
and, due to the small size of an x-ray diffraction-limited spot,
may allow Schwinger-limit intensities [8–10] to be reached
with moderate pulse energies [11–14]. Further advances
require amplifying and compressing x-ray pulses beyond
the current capabilities of x-ray free-electron lasers (FELs)
[1–3,7], x-ray lasers [15–19], or high-order-harmonic-
generation-based sources [20–30]. The parametric amplifica-
tion of x-rays in high-density plasmas using stimulated Raman
scattering (SRS) has been suggested for compressing the
output of FELs at nanometer wavelengths, potentially reaching
attoscond durations [14,31–34]. However, Raman amplifica-
tion is constrained by Landau and collisional damping at low
and high densities and high and low temperatures, respectively.
Without the application of extraordinarily large magnetic fields
[35], the window between these damping mechanisms closes
at x-ray wavelengths, rendering SRS amplification impractical
for reasonable pump intensities.

We demonstrate that stimulated Brillouin scattering (SBS)
is a more promising approach for the amplification of x-ray
beams. Even though SBS is less practical than SRS at optical
wavelengths, in the x-ray regime the weaker damping of
the ion wave is critical. We show that in solid density
plasmas with current pump intensities SBS amplification may
provide subfemtosecond x-ray pulses orders-of-magnitude
more intense than FEL output.

Consider parametric plasma amplification based on three-
wave coupling between a seed beam (frequency ω1, wave
number k1), pump beam (ω2, k2), and Langmuir (SRS) or ion-
acoustic (SBS) plasma wave (ω3, k3). When the resonance con-
ditions for counterpropagating beams are approximately met
(ω2 = ω3 + ω1, k2 = k3 − k1), energy is efficiently transferred
from the pump to the seed beam, resulting in amplification and
compression of the seed pulse to up to relativistic intensities
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and plasma-wave-period durations [36]. Since the Langmuir
wave has a shorter period than the ion-acoustic wave, Raman
amplification tends to give higher growth rates, more intense
amplified pulses, and shorter pulse durations [37], and SRS has
been studied in greater depth [38–50]. However, because SBS
allows the pump and seed to be at almost the same wavelength,
it has been considered as an alternative to SRS in both the
weakly coupled regime (WC-SBS), where the plasma mode is
the ion acoustic wave [51,52], and the strongly coupled regime
(SC-SBS), where the plasma response is a driven ion quasi-
mode [53–62]. For Brillouin amplification it is often necessary
to consider both the strongly and weakly coupled contributions
[37,63], as well as the distinction between SRS and SBS [64].
Particle-in-cell (PIC) simulations have also suggested that SBS
performance improves in a slightly collisional plasma [65].
Here we consider the x-ray regime, where SBS may be more
practical than SRS because its robustness to damping allows
shorter wavelengths, lower pump intensities, and a broader
range of plasma densities and temperatures.

II. WAVE-COUPLING MODEL

An adequate model for x-ray plasma amplification must
include treatment of wave damping. Previous works [14,31–
33,66] have assumed damping of the plasma wave to be
dominant, neglecting electromagnetic wave damping. Al-
though this assumption produces only moderate errors for
SRS, the reduced damping of the ion-acoustic mode means
that electromagnetic wave damping substantially affects SBS
calculations. To find the linear growth rates and estimate
the limits of amplification, we use the three-wave-coupling
equations [36], extending the treatment of Malkin and Fisch
for quasitransient backward Raman amplification (QBRA)
[32,33] to include SBS and collisional damping of the seed.
Assuming that an envelope approximation is valid and the
phase-matching conditions are met, the fluid model reduces to
three-wave-coupling equations for the seed (a1), pump (a2),
and electron density fluctuation (n3) envelopes (Appendix A).
In normalized units (time t̃ = tω2, position x̃ = xω2/c), the
seed and pump equations are

[∂t̃ + ṽ1∂x̃ + ν̃1]a1 = −1

4

ω2

ω1
N [n∗

3a2] (1)

[∂t̃ + ṽ2∂x̃ + ν̃2]a2 = 1

4
N [n3a1], (2)
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where a1,2 = eA1,2/mec is the normalized vector potential,
ν1,2 = ν̃1,2ω2 is the damping rate, ṽ1,2 = k1,2c/ω1,2 = (1 −
ω2

pe/ω
2
1,2)1/2 is the normalized group velocity for light in terms

of the plasma frequency ωpe = (4πe2ne/me)1/2, and N =
ne/nc = ω2

pe/ω
2
2 is the plasma number density (ne) normalized

by the pump-frequency critical density nc = meω
2
2/4πe2

defined in terms of the electron charge (e) and mass (me).
The system is closed with an equation for the electron

density, which, for SRS, is

[
∂t̃ + ṽ3∂x̃ + ν̃R

3

]
n3 = −1

4

1√
N

c2k2
3

ω2
2

[a∗
1a2], (3)

where ṽ3 = k3c/ω3 and (ω3,k3) are found by solving the phase-
matching conditions with the dispersion relation ω3 = ωpe.
For SBS,[

i

2

ω2

ω3
∂2
t̃ + ∂t̃ + ν̃B

3

]
n3 = −1

4

Zme

mi

ω2

ω3

c2k2
3

ω2
2

[a∗
1a2], (4)

where Z gives the ion charge state, mi is the ion mass, and the
plasma response (ω3,k3) satisfies the dispersion relation [37]:

[
ω2

3 − c2
s k

2
3

][
ω2

3 − 2ω2ω3 − c2k2
3 + 2c2k2k3

] = k2
3c

2a2
0ω

2
pe

4mi/Zme

(5)

with cs = √
ZTe/mi for electron temperature Te � Ti [67]. In

Eq. (4), the group velocity term for SBS is small and has been
neglected. The first derivative in time is dominant for WC-
SBS, where ω3 = csk3, and the second derivative dominates
for SC-SBS.

Assuming negligible pump depletion, the asymptotic linear
growth rate of the seed may be calculated from the impulse
response of the seed-plasma wave system [68], as previously
applied for QBRA [32,33], or by calculating a self-similar
solution for the system as t̃ → ∞ (derived in Appendix B).
Including collisional damping of the seed, the growth rate
becomes

�̂R,Bwc
= 1

2

[
4�̃2

R,Bwc
+ (

ν̃
R,B
3 − ν̃1

)2] 1
2 − ν̃

R,B
3 + ν̃1

2
(6)

for SRS and WC-SBS, where ν̃1 = Nν̃eiω2/ω1 [69], and
ν̃R

3 = ν̃Lnd + ν̃ei/4 [33]. For SBS with Ti � Te, previous
work [70] suggests a damping coefficient ν̃B

3 = 0.01 × 2cs/c

for conditions considered here; this rate is small, and even
substantial variations do not affect the final results. For SC-
SBS and SBS in the intermediate regime, the effective growth
rate �̂B = κ is the largest real root of the cubic equation:

Cscκ
3 + (Cscν̃1 + Cwc)κ2 + (

Cwcν̃1 + ν̃B
3

)
κ + K = 0, (7)

where Csc = iω2/2ω3, Cwc = 1 (assumed 0 for SC-SBS),
and K = ν̃1ν̃

B
3 − NZmec

2k2
3/16ω1ω3mi . The normalized col-

lisional and Landau damping rates are [33]:

ν̃ei = 2
√

2

3
√

Nπ

re�Cω2

cq
3/2
T

, ν̃Lnd =
√

Nπ

(2qT )3/2
e
− 1

qT , (8)

where qT = 4Te/Nmec
2, �C = ln 12πλ3

Dne/Z is the
Coulomb logarithm, λD = (Te/4πnee

2)1/2 is the Debye
length, and re = e2/mec

2. The undamped Raman growth rate,
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FIG. 1. The maximum linear growth rate (�R,B ), normalized by
the pump frequency (ωL = ω2), for SRS (dashed lines) or SBS
(solid lines) against the pump wavelength (λ = 2πc/ωL) at varied
pump strength (a0). Density and temperature are chosen at each
wavelength to maximize the growth rate. The water window between
the K-absorption edges of oxygen (2.34 nm) and carbon (4.4 nm)
is important for biological imaging. Growth rates corresponding to
approximate pump strengths and wavelengths demonstrated at the
Linac Coherent Light Source (LCLS) [2,3] are marked.

with ω3 = ωpe, is [71]

�̃R = a0k3cN
1
4

4
√

ω1ω2
, (9)

where a0 is the pump field strength (a2) before interaction.
The Brillouin growth rate may be evaluated numerically in the
intermediate regime [37], with the weak and strong coupling
limits [71]:

�̃Bwc
= a0c

2
√

2

[
ZmeNk2

miω2cs

] 1
2

, �̃Bsc
=

√
3

2

[
a2

0c
2k2

2N

2ω2
2mi/Zme

] 1
3

.

(10)

The growth rate (�̂R,B) of the seed pulse in the linear
(constant pump amplitude) regime is a simple metric for com-
paring SRS and SBS. Apart from dictating the plasma length
required to amplify an initially small seed, the linear growth
rate determines whether the amplification process outcompetes
deleterious effects such as filamentation, dispersion, and
forward scattering. Using Eqs. (6) and (7), the maximum SRS
and SBS growth rates achievable over all densities and electron
temperatures at a particular pump wavelength are plotted in
Fig. 1. At optical frequencies SRS has a higher growth rate
than SBS, but collisional and Landau damping create a pump-
amplitude-dependent cutoff in the x-ray regime, where �̂R

rapidly drops; for example, below λ = 4 at a0 = 0.01, �̂B >

�̂R . Since a0 scales with wavelength, the intensities required
to achieve a sufficient SRS growth rate below λ = 1 nm are
currently impractical, e.g., at λ = 1 Å, a0 = 0.05 corresponds
to 3 × 1023 W/cm2. Note that all SBS results presented in
this work assume a fully ionized proton plasma (Z = 1,
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FIG. 2. The effective linear growth rate of SRS and SBS for
a0 = 0.01 and varied λ, Te, and N . (a) λ = 1000 nm, (b) λ = 100 nm,
(c) λ = 10 nm, and (d) λ = 3 nm. The gray vertical line indicates the
upper limit of valid densities for SRS (N = 0.25). The orange points
are from numerical solution of the wave-coupling equations.

mi = 1836me) with negligible ion temperature; amplifier
performance will decrease as Z/mi decreases.

The plasma conditions optimal for SRS and SBS differ, with
SBS generally more flexible and favoring higher temperatures.
Figure 2 shows the damped SRS and SBS growth rates [from
Eqs. (6) and (7)] at a0 = 0.01. Increased collisional damping
reduces the growth rate at high densities, and Landau damping
of the Langmuir wave sets the low-density cutoff for SRS. To
numerically solve the wave-coupling equations [Eqs. (1)–(4)],
we employ a step-shifting algorithm for the spatial derivatives
[72–74] and a fourth-order Runge-Kutta scheme for the time
derivatives; numerical solutions are marked with points.

For optical wavelengths SC-SBS is usually considered more
promising than WC-SBS, due to a higher growth rate and
shorter permitted pulse durations [53]. However, in extending
SBS to the x-ray regime, we find that heavier collisional
damping at the high densities and low temperatures associated
with SC-SBS means the highest growth rates may be in
the weakly coupled regime for reachable pump intensities,
(Fig. 3). Filamentation, the modulational instability, forward
Raman scattering, dispersion, and collisional damping of the
pump are more significant at higher plasma densities, so the
highest output seed intensities will be reached for lower plasma
densities than those corresponding to the highest growth rates.

Without seed damping, the wave-coupling equations predict
infinite amplification (until the underlying assumptions fail);
with ν̃3 �= 0 the solution approaches a limit at infinite time.
This asymptote constrains the maximum possible amplifica-
tion, since any seed pulse will converge towards it, i.e., a larger
seed pulse will decrease in amplitude. In this limit Eqs. (1)–(4)
reduce (Appendix C) to:

ν̃1a1 = K1n3a2 (11)

(ṽ2 − ṽ1)∂x̃a2 = K2n3a1 (12)
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FIG. 3. The growth rate of SBS against density (N ) and tempera-
ture (Te) for pump wavelength λ = 3 nm and a0 = 0.01. The threshold
� = 0.25 = (Zme/mi)(ωpea0c)2/(16ω2k2c

3
s ) [37] between WC-SBS

and SC-SBS is marked by a dashed line. The black region at bottom
excludes parameters where the Coulomb-logarithm collisional model
is substantially invalid (�C < 1).

−ṽ1∂x̃n3 + ν̃3n3 = K3a1a2, (13)

where K1 = −ω2N/4ω1, K2 = N/4, KR
3 = −c2k2

3/4ω2
2

√
N ,

and KB
3 = Zmec

2k2
3/4miω3ω2 for SBS. An analytic solution

of these equations is possible if ν̃3 � ν̃1, as is the case for
SBS. This yields

a1(x̃,t̃ → ∞) = K1a
2
0

ν̃1
√

2D1

eD2a
2
0 x̃

1 + (1/2D2)e2D2a
2
0 x̃

, (14)

where D1 = K1K2/ν̃1(ṽ2 − ṽ1) and D2 = −K1K3/ṽ1ν̃1, with
maximum value:

a1,max = K1a
2
0

2ν̃1

[
K3

K2

(
1 + ṽ2

ṽ1

)] 1
2

. (15)

The maximum amplification factor (a1,max/a0) at a0 = 0.01
and λ0 = 3 nm as calculated from these equations is shown in
Fig. 4. For SRS, where ν̃3 cannot be neglected, the solution
is found numerically. For these parameters the amplification
factors achievable with SBS are far higher than with SRS and
the amplified pulse in Fig. 4(b) has an intensity full width
half maximum of 0.5 fs, suggesting that at its limit SBS
may produce intense subfemtosecond x-ray pulses. Higher
amplification factors are associated with lower densities,
which give lower growth rates, so a practical device might
use a high-to-low density gradient to combine high initial
growth rates with large final amplitude limits. Relativistic
and dispersive effects will stop growth before the indicated
asymptotes. We can estimate the effect of the modulational
instability by calculating the energy transferred from pump
to seed in the pump-depletion regime during a normalized
modulational growth time 2/Na2

1 for the final seed intensity
[36]. Using a compressed duration 200 λ/c at N = 0.01 and
assuming that half the pump energy is transferred to the seed,
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FIG. 4. (a) Maximum seed-to-pump amplification factor (asymp-
totic limit) produced by SRS or SBS at λ = 3 nm and a0 = 0.01. The
orange dashed lines mark the analytically calculated values for SBS,
neglecting ν̃3. Thin lines are logarithmically spaced in density, with
N = 0.001,0.01,0.1 marked by bold lines. (b), (c) The wave envelope
limits from solution of the three-wave equations for selected SBS (b)
and SRS (c) pulses at N = 0.01, Te = 1 keV and N = 0.01, Te = 100,
respectively. In (b), (c) the orange dashed lines mark solutions to
Eqs. (11)–(13).

we find that a0 = 0.01 can produce a1 = 0.1 in a modulational
time, or a two order of magnitude increase in intensity, which
is similar to the limits suggested by the collisional asymptote.

III. PIC SIMULATIONS

The above analysis is limited by the assumptions that
the fluid model is valid (i.e., kinetic effects are neglected),
that damping is adequately described by a linear model, and
that density fluctuations may be considered small. These
assumptions can be checked by PIC simulations, which
include kinetic, dispersive, and relativistic effects. Using the
code EPOCH [75], we demonstrate in Fig. 5 that under these
conditions the three-wave model makes reasonable predictions
for solutions of the full system; the λ = 3 nm pump amplifies
the seed pulse to 20 times the pump intensity in 19 fs, pro-
ducing a 0.9-fs-duration output pulse. The density fluctuations
[Fig. 5(b)] and amplified spectra [Fig. 5(d)] are characteristic
of Brillouin amplification, and the seed envelope [Fig. 5(c)]
evolves in agreement with the three-wave model. The slightly
lower growth in the PIC calculation and the appearance of
envelope modulations result from forward Raman scattering,
which is overestimated due to the particle discreteness in PIC
simulations.

Consider a focused intensity of 1019 W/cm2 at λ = 3 nm,
which lies near the capabilities of current and proposed
advanced FEL sources [1–3]. In a plasma with density near
5 × 1023 cm−3 and temperature 500 eV, slightly higher than
compressed solid hydrogen [76] and lower than fully ionized
aluminum, the SBS growth rate (in hydrogen) will be around
100 ps−1. Metal targets will allow higher electron densities
than hydrogen, but the lower Z/mi ratio will reduce the am-
plification growth rate, and the higher collision frequency will
cause additional damping. The modulational and collisional
limits, as described previously, give for these conditions a
maximum output pulse intensity 100–1000 times greater than
the pump intensity, up to 1021–1022 W/cm2. With a seed
provided by laser-driven high-order harmonic generation, SBS

FIG. 5. PIC simulation (EPOCH [75]) of Brillouin amplification
with λ = 3 nm, a0 = 0.02, N = 0.04, Te = 2 keV, Ti = 10 eV, and
mi = 1836me. (a) Intensity (I ) of seed (red) and pump (blue) beams
at t̃ = 1.2 × 104 (19 fs) from PIC calculations. Inset: Pump intensity
only, showing 85% depletion. (b) Electron (Ne, green) and ion (Ni ,
black) density. Inset: a 10λ interval of (b), showing 0.5λ period of
plasma density fluctuations. (c) Evolution of seed envelope from
initial time (t̃ = 0) to t̃ = 4.4 × 103 for PIC (solid gray) and three-
wave (dashed orange) calculations. (d) Spectra of pump and seed
at t̃ = 8.2 × 103. 
k is the wave number downshift required for
the SBS phase matching condition and agrees with the observed
shift. Here ν−1

ei ≈ 1 fs, and collisions have a small effect on the
interaction. The PIC calculations use 80 cells/λ, 1000 particles per
cell, and a simulation window moving at the seed group velocity. No
amplification is observed in an equivalent simulation with immobile
ions.

could be used to amplify and compress the output of large-scale
x-ray FEL by several orders of magnitude in a millimeter
scale plasma. For comparison, at this wavelength and pump
intensity, SRS is too heavily damped to produce any significant
amplification for any plasma density or temperature.

Although FEL beams are only quasicoherent, previous
studies have suggested that parametric plasma amplifica-
tion is relatively resilient to moderate amplitude and phase
fluctuations [77–80]. Current x-ray FELs have bandwidths
on the order of 0.1–1 % of ω0 [81,82]. In Fig. 6, a PIC
simulation of amplification of x-ray Brillouin amplification
using a pump bandwidth 
ω = 0.4% × ω0 (FWHM) with
corresponding coherence time around 0.5 fs shows that the
inclusion of finite coherence does not impede the interaction,
provided that the coherence time is not short compared to the
final amplified pulse. The pump is constructed by randomly
choosing the phase and frequency of 1000 components from
a Gaussian frequency distribution, producing the modulated
intensity envelope shown as an inset in Fig. 6. The amplified
pulse shown in Fig. 6 has an intensity and duration similar to
that found using a coherent pump under the same conditions
(Fig. 5). It should be noted that the seed pulse maintains its
coherence, so SBS may be useful for cleaning FEL output to
produce high-intensity coherent pulses from a lower-intensity
quasicoherent source.
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FIG. 6. PIC simulation (EPOCH [75]) of Brillouin amplification
in an incoherent pump (bandwidth FWHM 0.4% of ω0) with λ =
3 nm, a0 = 0.02, N = 0.04, Te = 2 keV, Ti = 10 eV, and mi =
1836me at t̃ = 6.3 × 103. Apart from pump coherence, conditions
and simulation parameters are the same as those in Fig. 5. Inset:
Pump intensity envelope (before interaction) showing amplitude
modulations due to incoherence.

IV. CONCLUSION

To conclude, this paper predicts an amplification regime
where stimulated Brillouin scattering is significantly more
useful than Raman scattering, allowing coherent x-ray pulses
with unprecedented intensities. In this regime, plasma-based
x-ray amplification may be possible with available FEL beam
lines.
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APPENDIX A: DERIVATION OF THE THREE-WAVE
COUPLING EQUATIONS

The three-wave-coupling equations play a crucial role in
the analysis of Raman and Brillouin amplification. Since the
work presented here relies on a more general treatment of the
governing equations than is usually necessary, we provide a
derivation for reference below.

We start with the Maxwell-fluid equations, which describe
the coupling between light and plasma based on a fluid
model of the electron and ion motion [71]. This model
does not include kinetic and noncontinuum effects from
first principles, though Landau and collisional damping are
incorporated empirically through added terms, so the model is
only applicable where other kinetic effects are unimportant and
the expressions for the damping terms are valid. Considering a

seed beam (vector potential A1), a pump beam (vector potential
A2), and a plasma of number density ne,0, the governing
equations are[

∂2
t − c2∂2

x + ω2
pe + ν1∂t

]
A1 = −ω2

pe

ne,1

ne,0
A2 (A1)

[
∂2
t − c2∂2

x + ω2
pe + ν2∂t

]
A2 = −ω2

pe

ne,1

ne,0
A1, (A2)

where ν1,2 are damping coefficients for the light wave,
ωpe = √

4πe2ne,0/me is the plasma frequency, and ne,1 is the
amplitude of small electron number density fluctuations. To
close the system, we write an equation for the coupling of an
electron plasma wave (SRS),[

∂2
t − 3v2

e ∂
2
x + ω2

pe + νR
3 ∂t

]ne,1

ne,0
= e2

m2
ec

2
∂2
x (A1 · A2) (A3)

or an ion-driven electron density perturbation (SBS),[
∂2
t − c2

s ∂
2
x + νB

3 ∂t

]ne,1

ne,0
= Ze2

memic2
∂2
x (A1 · A2) (A4)

to the laser fields [71]. Here, one ion species is assumed, with
Z as the ion charge and mi as the ion mass. The plasma sound
speed is cs = √

ZTe/mi , assuming that Ti � Te and that the
fluctuations are quasineutral [67].

Assuming that the laser fields may be described as an
envelope over a high-frequency carrier wave, for linear
polarization, the vector potential is written:

A1,2(x,t) =mec
2

2e
a1,2(x,t)ei(k1,2x−ω1,2t)ŷ

+ mec
2

2e
a∗

1,2(x,t)e−i(k1,2x−ω1,2t)ŷ, (A5)

where k1 and k2 contain the directionality of the wave
propagation, i.e., k1 < 0 corresponds to propagation in the
negative x direction. The second term is the complex conjugate
(c.c.) of the first. For this paper, we consider only linear
polarization.

Similarly, the density fluctuations may be written:
ne,1(x,t)

ne,0
= i

2
n3(x,t)ei(k3x−ω3t) + c.c., (A6)

where we have notated n3 with the subscript 3 as a reminder
that it represents the third fluctuating quantity. We assume that
the phase matching conditions are met: k3 = k2 − k1 and ω3 =
ω2 − ω1. Substituting these definitions (for linear polarization)
into Eq. (A1), evaluating derivatives of the high-frequency
components, and dropping nonresonant terms, we have:[

∂2
t − 2iω1∂t − ω2

1 − c2∂2
x + 2ic2k1∂x + c2k2

1 + ω2
pe + ν1∂t

− iν1ω1
]
a1 = −iω2

pe

2
n3a2 (A7)

with a similar expression for a2. We assume that the light
propagation satisfies the dispersion relation [69]:

c2k2
1 = ω2

1

[
1 − ω2

pe

ω(ω − iνei)

]
≈ ω2

1

[
1 − ω2

pe

ω2
1

(
1 + iνei

ω1

)]

= ω2
1 − ω2

pe − iνeiω1
ω2

pe

ω2
1

. (A8)
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Substituting this dispersion relation into Eq. (A7), with ν1 =
νeiω

2
pe/ω

2
1 and noting that ∂t � ω1 and ∂x � k1, we have:

[ω1∂t + c2k1∂x + ω1ν1] = 1

4

ω2
pe

2
n∗

3a2. (A9)

To simplify this equation, we use the normalized variables t̃ =
tω2, x̃ = xω2/c, and ν̃1 = ν1/ω2, and write the normalized
group velocity as ṽ1 = ck1/ω1. We then have:

[∂t̃ + ṽ1∂x̃ + ν̃1]a1 = −1

4

ω2

ω1
N (n∗

3a2), (A10)

where N = ω2
pe/ω

2
2 = ne/nc. The pump equation similarly

simplifies to:

[∂t̃ + ṽ2∂x̃ + ν̃2]a2 = 1

4
N (n3a1). (A11)

Using the same approach, the density equations for SRS and
SBS can be written in wave-coupling form. For the Langmuir
wave (SRS):

[
∂t̃ + v3∂x̃ + ν̃R

3

]
n3 = −1

4

1√
N

c2k2
3

ω2
2

(a∗
1a2). (A12)

For SBS, we cannot in general make the assumption ∂t � ω3

and are therefore left with both first- and second-order time
derivatives on the left-hand side. However, the group velocity
ṽ3 is in this case negligible, so all spatial derivatives may be
dropped. This yields the following expression for the SBS
plasma response:[

i

2

ω2

ω3
∂2
t̃ + ∂t̃ + ν̃B

3

]
n3 = −1

4

Zme

mi

ω2

ω3

c2k2
3

ω2
2

(a∗
1a2), (A13)

which reduces to the strongly coupled and weakly coupled
limits, as described in Ref. [37], if the second-order or first-
order time derivatives are neglected, respectively.

The full set of equations describing wave coupling for Ra-
man and Brillouin scattering is given below, where Eqs. (A14)
and (A15) are used for all models, Eq. (A16) for SRS, and
Eqs. (A17)–(A19) for the different forms of SBS.

(Seed) [∂t̃ + v1∂x̃ + ν̃1]a1 = −1

4

ω2

ω1
N (n∗

3a2) (A14)

(Pump) [∂t̃ + v2∂x̃ + ν̃2]a2 = 1

4
N (n3a1) (A15)

(SRS)
[
∂t̃ + v3∂x̃ + ν̃R

3

]
n3 = −1

4

1√
N

c2k2
3

ω2
2

(a∗
1a2)

(A16)

(WC-SBS)
[
∂t̃ + ν̃B

3

]
n3 = −1

4

Zme

mi

ω2

ω3

c2k2
3

ω2
2

(a∗
1a2)

(A17)

(SC-SBS)

[
∂2
t̃ − 2i

ω3

ω2
ν̃B

3

]
n3 = i

2

Zme

mi

c2k2
3

ω2
2

(a∗
1a2)

(A18)

(SBS)

[
i

2

ω2

ω3
∂2
t̃ + ∂t̃ + ν̃B

3

]
n3 = −1

4

Zme

mi

ω2

ω3

c2k2
3

ω2
2

(a∗
1a2).

(A19)

These equations can numerically, or, in some limits, analyt-
ically, be solved to describe amplification by SRS or SBS
subject to the assumptions discussed above.

For this model to be useful, particularly in the x-ray regime,
the damping coefficients ν̃1,2,3, in the above equations need to
be evaluated. We include collisional damping of light waves,
Langmuir waves, and the ion response, as well as Landau
damping of Langmuir waves. The collisional damping of
electromagnetic waves is [69]

ν̃1,2 = ω2
pe

ω2
1,2

ν̃ei, (A20)

where

ν̃ei = 2
√

2

3
√

π

�Creω
3
1,2

q
3/2
T cω2ωe

. (A21)

Here, qT = 4Te/Nmec
2, �C = ln 12πλ3

Dne/Z is the
Coulomb logarithm, λD = (Te/4πnee

2)1/2 is the Debye length
and re = e2/mec

2.
The Langmuir wave is both Landau damped and collision-

ally damped, so, ν̃3 = ν̃Lnd + ν̃ei/4 [32], where

ν̃Lnd =
√

Nπ

(2qT )3/2
e
− 1

qT . (A22)

Collisional damping of the ion-acoustic wave has a smaller
effect, which has been approximated as ν̃3 = 0.01 × 2cs/c

[70]. Since this damping rate is small compared to the direct
collisional damping rate for light waves, its exact value does
not substantially affect observed behavior. We neglect Landau
damping of the ion-acoustic wave by staying in the regime
Te � Ti .

APPENDIX B: ASYMPTOTIC LINEAR GROWTH RATE

The growth rate of the seed in the linear regime, where
the pump is not significantly depleted, is important for
determining the conditions under which plasma amplification
is possible. An exact solution for the impulse response of the
seed-plasma wave system, which is applicable to SRS and SBS
amplification for negligible pump damping, has been derived
by Bobroff and Haus [68], albeit with the wave equations cast
in slightly different form than that usually applied for plasma
amplification. Using this method, Malkin and Fisch [32] found
the effective linear growth rate of the seed in the quasitransient
backward Raman amplification (QBRA) regime, adjusted for
damping of the plasma wave. This growth rate is the asymptotic
solution at infinite time, and represents the rate at which the
seed maximum will grow.

Here, we use the self-similarity of the asymptotic solution
to find the effective growth of the seed pulse, a method that is
simple and more readily extended to include direct damping of
the seed and strongly coupled SBS. Starting with the equations
applicable to SRS and WC-SBS, we assume that the solution
in the limit t → ∞ of the coupled equations:

[∂t̃ + ṽ1∂x̃ + ν̃1]a1 = K1n3 (B1)

[∂t̃ + ν̃3]n3 = K3a1 (B2)
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is of the form

a1(z,t) = α(ξ )eκt̃ , n3(z,t) = η(ξ )eκt̃ , (B3)

where

ξ = x̃

vt̃
. (B4)

Note that this method includes damping of the seed (ν̃1) and
plasma response (ν̃3), but does not include any depletion or
damping of the pump. The constant v represents the unknown
rate at which the seed is stretching in time. Substituting the
above forms of the solution,[

∂t̃ + ṽ1

vt̃
∂ξ + ν̃1

]
α(ξ )eκt̃ = K1η(ξ )eκt̃ (B5)

[∂t̃ + ν̃3]η(ξ )eκt̃ = K3α(ξ )eκt̃ , (B6)

which, eliminating the density, may be rewritten as a single
equation:

[∂t̃ + ν̃3]

[
∂t̃ + ṽ1

vt̃
∂ξ + ν̃1

]
αeκt̃ = K1K3αeκt̃ . (B7)

Evaluating the derivatives, we have an equation with which
we want to solve for κ , the long-time growth rate.

κ2α+ν̃3κα− ṽ1

vt̃2
∂ξα+ ṽ1

vt̃
κ∂ξαα + ṽ1ν̃3

vt̃
∂ξ + κν̃1α + ν̃3ν̃1α

= K1K3α. (B8)

In the infinite time limit, we may drop terms with inverse
powers of t̃ , which removes all of the ξ derivatives from the
equation and leaves only a quadratic equation in κ

κ2 + κ(ν̃1 + ν̃3) + ν̃3ν̃1 − �2
R = 0. (B9)

This may be solved in straightforward fashion to give the
modified growth rate:

κ = 1

2

√
4K1K3 + (ν̃3 − ν̃1)2 − ν̃3 + ν̃1

2
, (B10)

which for SRS is

�̂R = 1

2

√
4�̃2

R + (ν̃3 − ν̃1)2 − ν̃3 + ν̃1

2
, (B11)

where �̃R = �R/ω2 is the undamped Raman growth rate. The
above expression will also be valid for WC-SBS, substituting
�Bwc

for �R and using the appropriate damping factors.
Although this form is different from that presented by Malkin
and Fisch [32], if ν̃1 = 0, it is strictly equivalent.

To treat SBS more generally, including the strongly coupled
and intermediate cases, we return to the wave-coupling equa-
tions, which include the second derivative in time associated
with strongly coupled stimulated Brillouin scattering:

[∂t̃ + ṽ1∂x̃ + ν̃1]a1 = K1n3 (B12)[
Csc∂

2
t̃ + Cwc∂t̃ + ν̃3

]
n3 = K3a1, (B13)

where for SBS

Csc = i

2

ω2

ω3
(B14)

and Cwc = 1. For WC-SBS, we can assume Csc = 0 and
for SC-SBS, we assume Cwc = 0. Similarly to the previous
derivation, the derivatives with respect to ξ vanish as t̃ → ∞,
leaving the following cubic equation for κ:

Cscκ
3 + (Cscν̃1 + Cwc)κ2 + (Cwcν̃1 + ν̃3)κ + ν̃1ν̃3 − K1K3

= 0. (B15)

Since this is a cubic equation in κ , a solution exists, though
not one in as simple a form as that available for SRS. We give
the full analytic solution below, though note that, in practice,
numerical evaluation of the above equation is likely more
readily implemented:

κ = max

{
Re

[
− 1

3A

(
B + G + E

G

)]}
, (B16)

where

A = Csc

B = Cscν̃1 + Cwc

C = Cwcν̃1 + ν̃3

D = ν̃1ν̃3 − K1K3

E = B2 − 3AC

F = 2B3 − 9ABC + 27A2D

G = 3

√
F ± √

F 2 − 4E3

2
. (B17)

When Csc = 0, Eq. (B10) should be used directly. When ν̃1

and ν̃3 are zero, this equation recovers the plane wave growth
rate [37].

APPENDIX C: STEADY-STATE SOLUTION FOR
NONLINEAR AMPLIFICATION

With the inclusion of collisional damping of the seed laser
pulse (ν̃1), the solution to the three-wave equations in the
pump-depletion (nonlinear) regime asymptotically approaches
a steady state at infinite time, rather than growing infinitely
short and intense (until violation of the envelope approxi-
mation invalidates the SRS and SBS models). Although the
steady-state solution is of limited utility in finding actual
amplified pulse shapes because secondary effects, including
relativistic self-modulation, group velocity dispersion, and
forward Raman scattering, become increasingly important as
the growth decreases, calculation of this asymptote allows us
to set a limit on the maximum possible factor of amplification,
which can be achieved with a particular set of parameters. As
we show, this limit is useful for identifying regimes for which
plasma amplification is unlikely to be viable, but by itself, does
not guarantee that a particular choice of parameters is practical.
Since the time taken to reach the steady-state solution is as
important as its final value, for some applications it may be
desirable to use a varying plasma density, combining the high
growth rates of higher-density plasmas for early times with
the high steady-state amplification factors of lower plasma
densities for the final stages of interaction. With appropriate
choice of parameters, the following analysis is valid for both
SRS and all forms of SBS.
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FIG. 7. Undamped linear growth rate of SRS and SBS as a
function of (a) density (with Te = 200 eV) and (b) temperature
(at N = 0.05) at fixed pump strength (a0 = 0.01) and wavelength
(λ = 1 μm). The analytic linear growth rates (lines) are compared to
those extracted from the rate of growth of the maximum of the seed
in wave-coupling calculations.

Starting with the three-wave equations written in the form:

[∂t̃ + ṽ1∂x̃ + ν̃1]a1 = K1
(
n∗

3a2
)

(C1)

[∂t̃ + ṽ2∂x̃ + ν̃2]a2 = K2(n3a1) (C2)[
i

2

ω2

ω3
∂2
t̃ + ∂t̃ + ṽ3∂x̃ + ν̃3

]
n3 = K3

(
a∗

1a2
)
, (C3)

where the first term on the left-hand side of Eq. (C3) is
immediately negligible for SRS and

K1 = −1

4

ω2

ω1
N (C4)

K2 = 1

4
N (C5)

KR
3 = −1

4

1√
N

c2k2
3

ω2
2

(C6)

KB
3 = −1

4

Zme

mi

ω2

ω3

c2k2
3

ω2
2

, (C7)

we find the asymptotic solution by choosing the reference
frame moving with the seed and by setting the time derivatives
to zero. We will also neglect pump damping (ν̃2) because
its inclusion causes the system to be propagation-length
dependent (i.e., will not reach a steady state), and pump
depletion can be usefully included after this calculation
using a precompensated variable-intensity pump boundary
condition. These solutions therefore lose validity if the pump
is substantially depleted on the timescale of the interaction,
a limitation mitigated by the fact that a high degree of pump
depletion will prevent pump-seed interaction in a plasma of
any reasonable length, making such a regime unlikely to be
useful. The steady-state equations, assuming |ṽ1| � |ṽ3|, are

ν̃1a1 = K1n3a2 (C8)

(ṽ2 − ṽ1)∂x̃a2 = K2n3a1 (C9)

−ṽ1∂x̃n3 + ν̃3n3 = K3a1a2. (C10)

In the case of SBS, damping of the ion wave (ν̃3) is small and
can be safely neglected, substantially simplifying the system
of equations. Substituting for a1, the above equations may be
rewritten as:

∂x̃a
2
2 = 2D1n

2
3a

2
2 (C11)

∂x̃n
2
3 = 2D2n

2
3a

2
2, (C12)

where

D1 = K2K1

(ṽ2 − ṽ1)ν̃1
D2 = −K3K1

ṽ1ν̃1
. (C13)

1019 1020

0.002 0.005 0.01 0.02 0.05 0.1 0.2
0

0.001

0.002

0.003

ne (cm−3)

N

Γ
R
/
ω

L

Te = 50 eV

Te = 200 eV

Te = 1000 eV

λ = 1000 nm(a)

1023 1024

0.002 0.005 0.01 0.02 0.05 0.1 0.2

ne (cm−3)

N

Undamped

Langmuir wave damping only

Seed and Langmuir damping

λ = 10 nm(b)

FIG. 8. Analytic estimates of the linear growth rate of a Raman amplified seed in the presence of no damping (solid thin lines), Landau and
collisional damping of only the plasma wave (dashed lines), and both damping of the plasma wave and collisional damping of the seed (thick
solid lines), compared to the growth rate extracted three-wave simulations (points) with both seed and plasma wave damping. Simulations are
shown for Te = 50, 200, and 1000 eV, and at (a) λ = 1000 nm and (b) 10 nm. All results are for a0 = 0.01.
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2×10−4
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Γ
B

/
ω

L
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WC-SBS Damped
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SBS Undamped

SBS Damped

FIG. 9. Analytic estimates (lines) compared to values found from
solving the three-wave equations (points) for the Brillouin linear
growth rate in the WC-SBS, SC-SBS, and SBS models with and
without damping (which arises almost entirely due to collisional
damping of the seed) at λ = 1000 nm, a0 = 0.01, and Te = 50 eV.
The ion temperature is assumed negligible, mi = 1836me, and Z = 1.

Note that v1 < 0. This set of equations may be solved to give:

a2(x̃) = a20

[
1

1 + 1
2D2

e2D2a
2
20x̃

] 1
2

. (C14)

We are, however, primarily interested in a1, which may be
written in terms of a2 as:

a1 = K1

ν̃1
a2n3 = K1

ν̃3

[
1

2D1
∂x̃a

2
2

] 1
2

. (C15)

This simplifies to:

a1(x̃) = −K1a
2
20

ν̃1
√

2D1

eD2a
2
20x̃

1 + 1
2D2

e2D2a
2
20x̃

. (C16)

To get the maximum value of a1 in the steady state, we find
where the derivative with respect to x̃ is zero to get:

amax
1 = −K1a

2
2,0

2ν̃1

√
−K3

K2

(
1 − ṽ2

ṽ1

)
. (C17)

Note that since K1, K3 and ṽ1 are less than 0, the above
envelope is real and greater than 0. It is clear that if ν̃1 = 0,
the maximum intensity determined from this set of equations
is infinite, and they cannot be used to determine maximum
possible amplification. If ν̃3 is not small, for example for SRS,
the system of equations is less tractable, and we resort to

numerical evaluation of the steady-state equations. The results
of evaluating these equations are shown in Fig. 4.

APPENDIX D: NUMERICAL SOLUTIONS TO THE
COUPLING EQUATIONS

To numerically solve the wave-coupling equations, we
employ a step-shifting algorithm similar to that previously
applied to the problem of Raman amplification by Clark
[72–74]. To implement the propagators on the left-hand side
of Eqs. (1)–(4), all simulation values are shifted by one grid
space at intervals of 
x/ṽ(1,2,3). The time derivatives are
evaluated with a fourth-order Runge-Kutta scheme. Numerical
evaluation of the coupling equations is much faster than fully
kinetic or fluid-based simulations, and provides solutions
for conditions that are not analytically tractable. As code
validation, and to justify comments made in the paper, we
present a series of simple comparisons between simulations
and analytic results.

The linear growth rate of the undamped system represents
the early-time behavior of the interaction and is important
for quantifying the highest degree of amplification that may
be expected. It can be shown that the undamped asymptotic
seed growth rate in the linear regime is simply the instability
plane-wave growth rate, for which expressions are well known
for SRS, WC-SBS, and SC-SBS and which may be readily
calculated for intermediate SBS conditions [37]. In Fig. 7,
the analytic growth rate for the undamped SRS and SBS
instabilities are compared to the asymptotic linear-regime
growth rates found from numerical solution of the three
wave-coupling equations. Note that, for example, a WC-SBS
solution may be found in the strongly coupled regime, but this
solution will disagree with the solution to the full equation
and does not represent a useful solution to the full system.
Furthermore, as evaluated here, the equations assume that
the regime of interaction is set only by the initial boundary
field strength, and do not fully include the transition between
regimes that would be observed in practice [63].

The expressions for the damped growth rate in the linear
regime [Eqs. (6) and (7)] may also be compared to the reduced
growth rate found using numerical evaluation of the three-wave
model. In Fig. 8, the analytic solutions are shown for SRS
with no damping, damping of only the Langmuir wave, and
damping of both the Langmuir and seed electromagnetic
wave. These are compared to three-wave calculations, which
include both Langmuir wave and seed damping. As should
be expected, the numerical solutions agree with the analytic
model. Similarly, Fig. 9, compares analytic solutions and
numerical solutions for the damped growth rate of SBS, using
the weakly coupled, strongly coupled, and full models. The
agreement suggests the validity of the analytic expressions
and the numerical implementation.
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