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The energy of plasma waves can be moved up and down the spectrum using chirped modulations of plasma
parameters, which can be driven by external fields. Depending on whether the wave spectrum is discrete (bounded
plasma) or continuous (boundless plasma), this phenomenon is called ladder climbing (LC) or autoresonant
acceleration of plasmons. It was first proposed by Barth et al. [Phys. Rev. Lett. 115, 075001 (2015)] based on a
linear fluid model. In this paper, LC of electron plasma waves is investigated using fully nonlinear Vlasov-Poisson
simulations of collisionless bounded plasma. It is shown that, in agreement with the basic theory, plasmons survive
substantial transformations of the spectrum and are destroyed only when their wave numbers become large enough
to trigger Landau damping. Since nonlinear effects decrease the damping rate, LC is even more efficient when
practiced on structures like quasiperiodic Bernstein-Greene-Kruskal (BGK) waves rather than on Langmuir
waves per se.
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I. INTRODUCTION

Ladder climbing (LC) is understood as an approach to
a robust excitation of quantum systems by the means of
chirped quasiperiodic modulation of system parameters. Such
modulation, or drive, induces successive Landau-Zener (LZ)
transitions [1,2] between neighboring energy levels when the
corresponding transition frequency is in resonance with the
drive. As the modulation is chirped, transitions are induced
in different pairs of levels at different times. Then it becomes
possible to robustly propel quanta across a wide range of the
energy spectrum, provided that the chirp rate is slow enough
and the drive is sufficiently strong.

By now, LC has been demonstrated in various quantum sys-
tems ranging from atoms and molecules [3–6], to anharmonic
oscillators [7–9], Josephson resonator [10], and bouncing
neutrons [11]. In the limit of continuous spectrum, the drive
couples many levels simultaneously, and the quantum LC has
become the well-known classical autoresonance [12–19]. Most
recently, it was also proposed that the effect is extendable to
classical systems [20]. Specifically, it was shown in Ref. [20]
that Langmuir waves in bounded plasma may undergo LC
much like a quantum system, if the background plasma density
is subjected to a low-frequency chirped modulation (e.g., a
chirped acoustic wave). However, the theory in Ref. [20] relies
on a linear fluid model, so it neglects kinetic effects, such
as Landau damping, and nonlinear effects, such as particle
trapping. Whether LC by electron plasma waves can survive
these effects and can be practiced on realistic waves remains
to be shown ab initio.

The purpose of this paper is to present first ab initio col-
lisionless simulations confirming that LC of electron plasma
waves is a robust effect that can survive kinetic and nonlinear
effects. The simulations are done using a one-dimensional
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Vlasov-Poisson code. We find that, at sufficiently low mode
numbers m, LC proceeds much like anticipated from the
simplified fluid theory [20]. At larger m, Landau damping
and nonlinear effects eventually disrupt the process. That said,
we also find that nonlinear effects facilitate LC in the sense
that they reduce Landau damping and thus help plasmons
reach m larger than those expected from the linear theory.
In other words, LC is even more efficient when practiced
on quasiperiodic Bernstein-Greene-Kruskal (BGK) modes
[21,22] rather than on linear waves per se.

The LC phenomenon practiced upon plasma waves is
certainly of academic interest, because the Langmuir wave is
probably the most fundamental and widely occurring mode in
plasma physics. However, manipulating its properties through
ladder climbing could be of interest in practical applications as
well. Certain applications exploit the small group velocity of
the Langmuir wave, such as plasma holography [23], plasma
photonic crystals [24], and other cooperative plasma phenom-
ena [25]. The plasma wave is also useful in mediating the com-
pression of laser energy in plasmas, thereby to reach ultra-high
intensities [26]. In that regard, the ability of the plasma wave
to linger in plasma owing to its small group velocity makes it
a useful seed for this interaction [27]. In each of these cases,
while the plasma wave is lingering, but before performing a
task, such as retrieving information or mediating laser com-
pression, it can be imagined that it might be usefully manipu-
lated to better perform that task. The LC described here would
be one tool to perform those manipulations or optimizations.

The paper is organized as follows. In Sec. II we briefly
overview the fluid theory reported in Ref. [20]. In Sec. III we
introduce our numerical model. In Sec. IV we produce our
main results. In Sec. V we present our main conclusions.

II. FLUID THEORY OF LADDER CLIMBING

Consider a one-dimensional collisionless nonmagnetized
plasma with immobile ions that form a static homogeneous
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background. As known commonly from fluid theory [28], such
plasma supports electrostatic electron waves, called Langmuir
waves, whose frequency ω for a given wave number k is given
by ω = ωpe[1 + 3(kλD)2]1/2. Here ωpe = (4πn0e

2/me)1/2 is
the electron plasma frequency, λD = vth,e/ωpe is the Debye
length, n0 is the unperturbed electron density, e is the elemen-
tary charge, me is the electron mass, vth,e = (Te/me)1/2 is the
electron thermal velocity, and Te is the electron temperature.

Assuming hard-wall boundary conditions, the allowed
wave numbers are km = mk1, where m is the mode number,
k1 = π/L is the wave number of the fundamental mode,
and L is the plasma length. The discrete dispersion relation
of a standing Langmuir wave can be written as ωm ≈
ωpe(1 + β̃m2)1/2, where β̃ = 3π2λ2

D/L2. Note that β̃ can be
understood as a measure of the spectrum anharmonicity, i.e., of
how strongly the frequency difference of neighboring modes
�m,m+1 = ωm+1 − ωm depends on m. For β̃m2 � 1, one has

�m,m+1

ωpe

=
√

1 + β̃(m + 1)2 −
√

1 + β̃m2 ≈ β̃

(
m + 1

2

)
.

(1)

As any collection of discrete modes, such system is math-
ematically equivalent to a quantum particle governed by
a Hamiltonian with the same spectrum [29]. Thus, linear
Langmuir waves in bounded fluid plasma can be described by
LC theory borrowed from quantum mechanics, in which the
system is propelled from an initial mode (e.g., the lowest-order
mode, or “ground state”) up to a desired final mode [7,20]. LC
can be realized by applying an external drive or a density
modulation [20], with a chirped frequency ωd = ω0 + αt ,
where ω0 is the starting frequency, α is a constant chirping
rate, and t is time.

Following the quantum LC theory, we identify two di-
mensionless parameters of interest: the driving parameter
P1 = A/(4

√
α̃) and the anharmonicity parameter P2 = β̃/

√
α̃,

where A is the modulation amplitude (namely, the relative
perturbation of the background electron density) and α̃ =
α/ω2

pe is the dimensionless chirping rate. The probability of
the plasmon transfer between neighboring modes is given
by 1 − exp(−πP 2

1 /2) [1,2]. In order to have efficient LC,
P1 must be large enough. For example, P1 > 1.5 results in
energy transfer above 97% to the next mode. In addition, from
Eq. (1), one has �m,m+1 − �m−1,m ≈ ωpeβ̃. This means that
the time interval between successive resonances (“transition
time”) is �ttrans = ωpeβ̃/α = ω−1

pe β̃/α̃. Using the “natural”

dimensionless time τ = √
αt = √

α̃ωpet , the transition time
is given by �τtrans = β̃/

√
α̃ = P2. For LC, P2 � 1 + P1 must

be satisfied so that the LZ transitions are well separated and
only two levels are coupled at a given time. In the other limit,
where P2 � 1, many levels are simultaneously coupled and
the system exhibits AR acceleration, which is the continuum
limit of LC. Also note that α̃ � 1 (adiabaticity condition) is
needed for this theory to hold. Otherwise, the mode coupling
induced by the drive is nonresonant, so the transfer of quanta
becomes phase-dependent (nonadiabatic).

This theory of LC and AR by Langmuir waves was proposed
in Ref. [20], and it was also confirmed there numerically using
linear fluid simulations. Although the linear Landau damping
was recognized as a kinetic limit on the accessibility of levels

with high m, the kinetic stability of lower levels and the phase
space evolution during the damping were not studied. In order
to explore how LC is modified when kinetic and nonlinear
effects are involved, more rigorous simulations are needed.
We report such simulations below. The transition to the AR is
not considered because of numerical limitations.

III. KINETIC MODEL

Electrons are described by their phase-space distribution
f , which is a function of the position x, velocity v, and time
t . We adopt the reflecting-wall conditions in x space; i.e.,
f (x,v,t) = f (x, − v,t) at the plasma boundaries x = 0 and
x = L. The dynamics of f is governed by the Vlasov equation

∂f

∂t
+ v

∂f

∂x
− eE

me

∂f

∂v
= 0, (2)

where the electric field is given by E = Es + Edrive + Eprep,
where Es is the self-induced field, Edrive is the field that drives
LC, and the “preparation” field Eprep is used to set up the initial
Langmuir wave. The self-induced field is Es = −∂xφ, where
the potential φ is governed by the Poisson equation

∂2φ

∂x2
= −4πe(ni − ne). (3)

Here ni is the ion density, which is constant (in both x and
t), and ne(x,t) = ∫ ∞

−∞ f (x,v,t) dv is the electron density,
respectively. We assume that the plasma is overall neutral
[
∫ L

0 ne(x,t) dx/L = ni] and the surface charges at the walls
are zero, so the boundary conditions for the electric field are
E(x = 0) = E(x = L) = 0. Also note that the same Vlasov-
Poisson system can describe a non-neutral plasma with reflect-
ing boundary conditions, such as pure ion plasma in a Penning-
Malmberg trap as studied in Ref. [19]. Thus, we predict that
the same effects that are shown in our simulations can be
found in non-neutral plasmas. A given experimental realization
might have different physical parameters (for example, smaller
plasma frequency), but the underlying physics is the same
because our theory is dimensionless.

In this paper, we investigate the LC dynamics that begins
at the “ground level”; namely, the initial wave is prepared
using Eprep that is resonant with the lowest mode (m = 1).
We adopt Eprep(x,t ′) = Ep0Âp(t ′) cos(ω1t

′) sin(k1x), where
Ep0 is the amplitude of the preparation driver, t ′ = t − t0,
and t0 is the starting time of the simulation. Following
Refs. [30,31], we choose a ramp-up and ramp-down enve-
lope as follows: 2Âp(t ′) = tanh[8(t ′/tr − 0.5)] − tanh[8((t ′ −
tc)/tr − 0.5)]. The time scale of the ramp-up and ramp-down
stages, tr , is chosen large enough to prevent beating of the
plasma wave with the preparation field and thus retain a smooth
distribution; specifically, we choose tr = 40ω−1

pe . The time tc
during which the amplitude is kept constant is chosen to be
tc = 200ω−1

pe . It is noted that the initial wave action in the first
mode depends on the preparation field amplitude, Ep0, and
duration, tc.

After the initial mode is excited, we turn off Eprep and apply
a different, chirped external field

Edrive(x,t) = Ed0 sin(k1x) cos

(
ω1,2t + α

t2

2

)
. (4)
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The frequency of this field, ωd = ω1,2 + αt , is initially in
resonance with the frequency of the transition between the
first and second modes, ω1,2 = ω2 − ω1. Note that ω1,2 � ωpe

for β̃m � 1 [see Eq. (1)] and t = 0 is chosen to be the time
when ωd = ω1,2. At later times, ωd becomes resonant with the
transition frequencies �m,m+1 corresponding to higher m, so
plasmons can be gradually propelled from the lowest mode to
higher modes, thus realizing LC.

In order to have efficient LC, the values of α̃ and β̃ are cho-
sen based on the following conditions. First, the system length
must satisfy L/λD = π/(k1λD) = (3/β̃)1/2 � 3π in order to
ensure that kinetic effects are weak (kmλD � 1/3) [30] at least
for the first few resonant modes (m ∼ 1). Thus, β̃ � 1/(3π2).
Second, P2 = β̃/

√
α̃ � 1 + P1 is adopted to ensure the LC

regime (see Sec. II). For the simulations reported here, we
chose α̃ = 4.5628 × 10−8 and β̃ = 0.002. These parameters
correspond to L/λD ≈ 121 and �ttrans = 4.38 × 104ω−1

pe , i.e.,
τtrans = P2 = 9.36. In addition, we employ Ep0 = 1 × 10−4

and Ed0 = 0.1, which yields P1 ≈ 2.4 in our simulation, for
which the transition probability predicted from fluid theory is
almost 100%.

The numerical method chosen to solve Eq. (2) is Strang’s
time splitting with a finite volume method using the monotonic
upwind for scalar conservation laws (MUSCL) scheme [32].
A modified Arora-Roe limiter [33] is used in order to
preserve positivity of the phase-space distribution f and
reduce the numerical dissipation as much as possible within
the MUSCL framework. Since simulations were done for large
time scales (about 105 plasma periods), Message Passing
Interface is used for parallel computing. Previously, this
method was applied for simulating plasma discharges in Hall
thrusters [34], trapped particle instability [35], and plasma wall
interactions [36]. The computational time for one simulation
is about 1–2 days using 64 processors. The resolution of
the Vlasov simulation is set as follows: �x = L/Nx ≈
λD/5 and �v = (vmax − vmin)/Nv , where Nx = 512, vmax =
−vmin = 8vth,e, Nv = 1000, and vth,e is the electron thermal
velocity. The time step is �t ≈ 0.028ω−1

pe , the total steps
Nt = 2.7 × 107, resulting in a total time about 7.7 × 105ω−1

pe .

IV. RESULTS

A. Field spectrum

Figure 1 presents an overview of the electron plasma wave
evolution. Figures 1(a)–1(c) show the wave frequency ω,
phase velocity vφ = ω/k, and linear Landau damping rate
γ , respectively, as functions of the mode number m and the
corresponding wave number k (i.e., km). The real part of the
frequency is calculated using the fluid dispersion of Langmuir
wave (Sec. II), and the Landau damping is calculated using
[28]

γL ≈
√

π

8

ωpe

(kλD)3
exp

[
− 1

2(kλD)2
− 3

2

]
. (5)

At m � 7, Landau damping is negligible at our parameters, so
the wave total action I is conserved [29]. Since the Langmuir
wave temporal spectrum is localized in the vicinity of ωpe, one
can adopt the standard linear relation between the action and
the wave energy E , namely, I ≈ E/ωpe [37]. At small enough
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FIG. 1. Evolution of plasma wave parameters during LC accord-
ing to the linear theory: (a) wave frequency calculated using the fluid
model, ωm/ωpe =

√
1 + β̃m2; (b) phase velocity, vφ = ω/k within

the same model; and (c) linear Landau damping rate, γL, from Eq. (5).

kλD , one also has E ≈ 2W , where W = ∫ L

0 E2/(8π ) dx is the
total field energy [37]. Then W is approximately conserved
too. At larger m, this approximation fails, and, eventually, the
action conservation is also broken, namely, due to Landau
damping. This evolution is illustrated in Fig. 2. Specifically,
we plot Wm = ∫ L

0 E2
m/(8π )dx, where Em is the amplitude of

the spatial mode with the corresponding m calculated using
Fourier decomposition, Em = (2/L)

∫ L

0 E sin(kmx) dx. Also
note that the transitions between individual modes from the
numerical simulation occur at multiples of time periods which
are predicted from fluid theory up to m = 5,�τtrans = 9.36
(�ttrans = 4.38 × 104ω−1

pe in the true dimensional time) for our
simulation. At m � 5, the transition time becomes larger than
what the fluid theory predicts, because kinetic corrections to
the wave dispersion relation becomes substantial. Below we
discuss some aspects of kinetic effects in more detail.
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FIG. 2. The evolution of the field-energy spectrum. Also shown
is the sum of the field energy for m � 2.The contribution of mode
with m = 1 is excluded in order to eliminate the interference with
Edrive, which has the wave number equal to that of the first mode.
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FIG. 3. Snapshots of a plasma wave undergoing LC: (a) electric
field and (b) electron distribution at τ = 21.1, 33.9, 43.1, 55.9, 70.6,
and 85.2, when transitions occur to modes with m = 4,5,6,7,8, and 9
(see Fig. 1). The same log-scale color map is used in all six subfigures
in (b). The blue dashed lines in (b) show the linear phase velocities
of the relevant modes.

B. Particle distribution

The characteristic temporal evolution of a plasma wave
during LC is shown in Fig. 3. The snapshots illustrating
oscillations at modes with m = 4, 5, 6, 7, 8, and 9 correspond to
τ = 21.1, 33.9, 43.1, 55.9, 70.6, and 85.2 in Fig. 2, respectively.
As plasmons get transferred to higher and higher m, the phase
velocity of the wave decreases and approaches the bulk in the
distribution function [Fig. 1(b)]. Modes with m > 4 carry a
noticeable amount of trapped electrons, but the real part of the
frequency is largely unaffected by the trapped population. This
is seen in Fig. 3(b) that shows the corresponding distribution
functions and vφ/vth,e calculated from the linear theory.

Figure 4 shows the spatially averaged electron velocity
distributions (VDFs). Flattened VDFs are formed around the
phase velocity predicted by the analytic theory. However,
flattening of the spatially averaged VDF of the next mode
can be also seen. For instance, the analytic theory predicts
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FIG. 4. Spatially averaged electron velocity distribution func-
tions (VDFs). The time steps correspond to the ones shown in Fig. 3.
Plateaus of the VDFs are found around the phase velocities predicted
by the analytic theory. The insert, Fig. 4(b), is a zoomed-in view of
dash-dotted box in Fig. 4(a) showing the evolution of the modes with
m = 6 and m = 7.

that, at τ = 43.1, plasma oscillations are excited at m = 6,
which corresponds to vφ/vth,e = 6.68. However, Fig. 4 shows
VDF flattening also around vφ/vth,e = 5.80 (red line), which
corresponds to m = 7. This can be explained by the fact that
LC is not an abrupt but rather continuous process. It can indeed
be seen from Fig. 3(b-3) that particles around vφ/vth,e = 5.80
are modulated but not fully trapped as the potential amplitude
of m = 7 is still increasing. As seen in Fig. 2, the wave energy
of the next mode increases exponentially before the transition
occurs. This results in adiabatic trapping of particles around
the phase velocity of the following mode.

In detail, the transition from m = 6 to m = 7 can be seen
in Fig. 5. Particle trapping occurs at vφ/vth,e = 6.68, which
corresponds to the m = 6 mode. For a sinusoidal wave, the size
of the trapped particle region is �vtr = 2

√
eE0/(kme), where

E0 is the wave amplitude [30]. Due to the approximate energy
conservation (see above), E0 ≈ const. Thus, �vtr decreases
with m, and this effect is seen in simulations indeed [Fig. 3(b)].
The effect is strengthened by the fact that, at large m, Landau
damping comes into play; then E0 is not conserved but actually
decreases too, as will be discussed below in detail.

We also performed simulations with other amplitudes of the
seeded wave, which results in different E0. Larger-amplitude
plasma waves exhibit trends similar to those seen in Figs. 2–5.
The main difference is that, at larger amplitudes, the size of the
trapping islands increases, because �vtr ∝ √

E0. Eventually,
�vtr exceeds the difference between the phase velocities of
neighboring modes, which is given by (assuming β̃m2 � 1)

vm+1 − vm ≈
(

1

m + 1
− 1

m

)
ωpe

k1
= − ωpe/k1

m(m + 1)
. (6)

This causes nonlinear interactions between the modes. While
a slight kinetic dissipation is observed, LC can still occur even
when �vtr/2 < vm+1 − vm. The corresponding simulations
are not presented in this paper.
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FIG. 5. An illustration of a transition between two modes,
specifically m = 6 to m = 7: (a) wave energy, zoomed in from
Fig. 2. The zoomed-in electron distribution shown in (b), (c), and (d)
correspond to the moments of time marked in (a) with pink dashed
lines. The blue dashed lines in (b)–(d) show the phase velocities of
the modes with m = 6 and m = 7 correspondingly.

C. Effect of Landau damping

The modes are coupled only during transition and can
be considered as isolated modes at other times because the
drive is nonresonant. As shown in Fig. 4, the slope of the
distribution increases as the phase velocity decreases at higher
mode numbers, thus the effective damping rate is expected
to increase. Figure 6 compares predictions of Eq. (5) for the
rate of linear Landau damping with numerical simulations.
The Landau damping rate is too small to matter for modes
with m � 6. For m = 7, one can expect a 40% energy loss to
Landau damping during the transition time �τtrans. For m = 8,
the linear theory predicts that the wave energy decreases during
transition by orders of magnitude. Such strong dissipation
is not observed in reality due to nonlinear effects, because
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FIG. 6. Comparison between our numerical simulation and the
analytic theory for Landau damping. The dash-dotted, dashed, dotted
lines are theoretical prediction of Landau damping for m = 6, m = 7,
and m = 8, respectively.

we operate in the regime of relatively large bounce fre-
quency ωB = √

ekE0/me. The corresponding bounce period
tB = 2π/ωB is about 120ω−1

pe , which is much smaller than the
transition time. Moreover, γLtB � 1 for all modes of interest
(γLtB ≈ 5 × 10−6, 7.9 × 10−4, 0.018, and 0.14, for m = 6, 7,
8, and 9, respectively). This implies that the modes are in the
strongly nonlinear regime and are not Langmuir waves per
se; rather, they can be considered as quasiperiodic BGK-like
modes. Since nonlinear effects suppress Landau damping, they
facilitate LC in the sense that they help plasmons reach higher
m. But, of course, at very large m, the damping of nonstationary
waves still outweighs the nonlinearity, because it is determined
by the distribution slope [38] that grows. Therefore, there is
still a limit on the maximum m (in our case m ≈ 9) beyond
which LC is impossible.

D. Kinetic dissipation of counter-propagating waves

It is to be noted that, even in the absence of linear Landau
damping, some nonlinear dissipation is always present in the
system due to reflecting walls. This is due to the fact that a
wave with a positive wave number is also accompanied by a
wave with a negative wave number. In that case, there is no
reference frame where the electric field would be stationary, so
true BGK waves are impossible; i.e., no propagating structure
is truly stationary. As pointed out earlier in Ref. [39], there
always remains some amount of interaction between nonlinear
waves propagating in the opposite directions, resulting in
dissipation.

This effect is illustrated in Fig. 7 that shows the evolution
of two single modes, namely, with m = 4 and m = 9. The
former has vφ/vth ∼ 10, so it carries no trapped particles

FIG. 7. Simulations of a single mode plasma wave with
reflecting-wall boundary conditions. Panels (a), (b) correspond to the
mode with m = 4, and (c), (d) correspond to the mode with m = 9.
Particle trapping occurs around vφ = ±4.64vth,e.
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and is essentially linear; hence the amplitude of the field
stays constant and the wave exhibits no damping. In contrast,
the latter has vφ/vth ∼ 5, so the trapped-particle content is
noticeable. That makes the wave nonlinear, thus resulting in
damping.

V. CONCLUSIONS

In summary, we report the first ab initio simulations of
LC by electron plasma waves that was originally proposed in
Ref. [20] within a linear fluid theory. The simulations are done
using a one-dimensional collisionless Vlasov-Poisson code.
We find that, although the original theory was simplified, it
does, in fact, capture the essential features of the phenomenon
in realistic settings that involve both kinetic and nonlinear
effects. Specifically, we find that, at sufficiently low mode
numbers numbers m, LC is kinetically stable and is much
like predicted in Ref. [20]. At larger m, Landau damping
and nonlinear effects eventually disrupt the process. That
said, we also find that nonlinear effects facilitate LC in the
sense that they somewhat suppress Landau damping due to
particle trapping and flattening of the distribution function
and thus help plasmons reach m larger than those expected

from the linear theory. In other words, LC happens to be more
efficient when practiced on BGK modes rather than on linear
Langmuir waves per se. Such modes are potentially producible
in non-neutral-plasma experiments using Penning traps [40]
and are similar to driven phase space holes that can be excited
autoresonantly using externally imposed standing waves [19].
(For boundless plasmas, a similar excitation technique using
traveling waves was also reported in Refs. [17,18].) It is to be
noted that, although the LC dynamics of BGK-like modes is
qualitatively discussed in this paper and some nonlinear LZ
transitions were also studied in the past [41–44], a full kinetic
theory of LZ-type transitions between such modes remains to
be developed.
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