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We identify a single-particle drift resulting from collisional interactions with a background species,

in the presence of a collisionality gradient and background net flow. We analyze this drift in

different limits, showing how it reduces to the well known impurity pinch for high-Zi impurities.

We find that in the low-temperature, singly ionized limit, the magnitude of the drift becomes

mass-dependent and energy-dependent. By solving for the resulting diffusion-advection motion,

we propose a mass-separation scheme that takes advantage of this drift, and analyze the separative

capability as a function of collisionally dissipated energy. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4994327]

I. INTRODUCTION

It is often desirable to be able to separate elements based

on mass. In the production or reprocessing of nuclear fuel,

for instance, uranium-235 must be separated from uranium-

238; however, their identical chemical structure makes

chemical separation impossible. In another related applica-

tion, the waste produced by nuclear reactors is extremely

chemically inhomogenous, again making chemical separa-

tion difficult. Fortunately, it is generally the case that the

heavy elements present the greatest danger, while the lighter

elements, such as Oxygen, Sodium, and Iron, are harmless

but represent the bulk of the mass. Thus, useful separation

on the basis of mass is possible.

The potential of rotating plasmas for discriminating ele-

ments based on atomic mass has long been recognized,1,2

and led to the development of plasma centrifuges for isotope

separation.3–6 However, only recently plasmas have been

suggested for separating elements with large mass differ-

ences,7–12 such as those needed for legacy waste disposal or

spent fuel reprocessing. These emerging applications,

focused more on throughput than fine-grained specificity,

motivated the development of new mass filter concepts,

including rotating plasma configurations,13–16 optical devi-

ces,17,18 crossed-field separators,19 and filters based on dif-

ferential magnetic drift20 and gyro-radius effects.21

It has long been known that a density gradient in a mag-

netized plasma can cause high-Zi impurity ions to be dispro-

portionately drawn up the density gradient. This impurity

pinch effect arises from the friction between the impurity ion

and the bulk flow that results from the majority species dia-

magnetic drift, as well as in inhomogeneities in the friction

force about the gyro-orbit.22–26 Since this effect was seen as

most relevant in fusion plasmas, models have generally

assumed the presence of two thermal species at the same

temperature, and focused on the Zi-dependent effect of the

equilibrium spatial distribution. Thus, mass-dependent and

energy-dependent effects have remained relatively

unexplored.

The paper is organized as follows. In Sec. II, we

consider the motion of a single ion undergoing Langevin

collisions with a background species, allowing for (a) a

collisionality gradient, and (b) a bulk flow of the back-

ground species relative to the ion gyrocenter, and derive

the resulting drift. In Sec. III, we consider the balance

between this drift and collisional diffusion in determining

the steady-state density gradient. Applying this analysis to

the case of ion-ion Coulomb collisions, we rederive the

impurity pinch. However, our approach also allows us to

consider cases more relevant to the low-temperature plas-

mas desirable for mass filtration. In particular, we show

that even at constant Zi¼ 1, the drift-diffusion balance can

lead to a mass-dependent and energy-dependent steady-

state gradient. In the subsequent sections, we show how

this drift-diffusion balance can be exploited to separate

ions of different mass, first in the context of a simple ana-

lytical model which ignores the ion heating mechanism

(Sec. IV), and then for a more realistic heating model

(Sec. V). Finally, we demonstrate how the energy expendi-

ture per particle and separation power are intrinsically

linked, and make estimates for the power consumption,

separation, and throughput of the device.

II. DERIVATION OF THE DRIFT

Consider an ion gyrating with speed v? in a ẑ-directed

magnetic field, in the presence of a frictional collisionality

gradient r�s k ŷ. Thus, the collisionality locally takes the

form
�s ¼ �0 þ �0y: (1)

The differential equation that describes the ion motion,

including both the Lorentz force and deterministic (fric-

tional) collisions, is

dv

dt
¼ Xv� ẑ � �s yð Þ v� vbgð Þ; (2)

¼ Xv� ẑ � ð�0 þ �0yÞðv� vbgÞ; (3)
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where X is the gyrofrequency and vbg is the velocity of the

background particles. Because this is a single-particle equa-

tion, we do not include a thermal force; the subtleties

involved with this choice are discussed in Appendix C.

Breaking into components, we have

dvx

dt
¼ Xvy � �0 þ �0y

� �
vx � vx;bgð Þ; (4)

dvy

dt
¼ �Xvx � �0 þ �0y

� �
vy � vy;bgð Þ: (5)

Throughout the analysis, we will take X, �0 � �0y. We will

then consider the above equation in orders of e � �0y=X.

To start, we shift to a 1D complex variable problem, letting

Z ¼ v0
x þ iv0

y ; (6)

z ¼ v1
x þ iv1

y ; (7)

where Z ¼ Oð1Þ and z ¼ OðeÞ. The particle positions can

then be found via

xþ iy ¼ x0 þ iy0 þ
ðt

0

ZðsÞdsþ
ðt

0

zðsÞds: (8)

Start by solving the zeroth-order equation

dZ

dt
¼ dv0

x

dt
þ i

dv0
y

dt
¼ � iXþ �0ð ÞZ þ �0zbg; (9)

where zbg is the complex representation of vbg. The general

solution to the equation

dx

dt
¼ �xxþ S; (10)

is

x ¼ x0e�xt þ e�xt

ðt

0

exsSðsÞds: (11)

Thus, we have

ZðtÞ ¼ e�ðiXþ�0Þt Cþ
ðt

0

�0zbgeðiXþ�0Þsds

� �
; (12)

¼ Z0e� iXþ�0ð Þt þ �0zbg

iXþ �0

; (13)

where we have combined the arbitrary constant C with the

t¼ 0 contribution from the integral into Z0.

The second term, corresponding to the background flow

drift, is given by

vd;flow ¼
�0 vx;bg þ ivy;bgð Þ

X2 þ �2
0

�0 � iXð Þ; (14)

¼ �0

X2 þ �2
0

�0 vx;bg þ ivy;bgð Þ � X �vy;bg þ ivx;bgð Þ
� �

:

(15)

In terms of vectors

vd;flow ¼
X�0

X2 þ �2
0

vbg � b̂ þ �0

X
vbg

� �
: (16)

Although we solved for this drift in the zeroth-order

equation, in general we will be interested in cases where

vbg � v?, i.e., jzbg=Z0j ¼ OðeÞ. Thus, we will ignore terms

of order �0zbg in our first-order equation, since these are

Oðe2Þ. Thus, our first-order equation becomes

dz

dt
¼ dv1

x

dt
þ i

dv1
y

dt
¼ � iXþ �0ð Þz� �0y0Z; (17)

which has the standard solution

z ¼ e�ðiXþ�0Þt z0 �
ðt

0

eðiXþ�0Þs�0y0ðsÞZðsÞds

� �
: (18)

First, we need to calculate y. Because we are interested

in cases where jzbg=Z0j ¼ OðeÞ, we will ignore the second

term (the drift term) in Eq. (13) when calculating the product

with the first-order term �0; i.e., we take

ZðtÞ � Z0e�ðiXþ�0Þt: (19)

We then have, noting Z0 � vx0 þ ivy0

y0 ¼ y0
0 þ Im

ðt

0

ZðsÞds

� 	
; (20)

� e��0t

X2 þ �2
0

 !
�0vx0 þ Xvy0ð Þsin Xt½

þ Xvx0 � �0vy0ð Þcos Xt� þ y0
0 �

Xvx0 � �0vy0

X2 þ �2
0

 !
: (21)

Now, we are really interested in the gyro-drift of a particle

orbiting the origin; the last term simply accounts for the

shifted rotation center if the particle starts at the origin.

Thus, we take y0
0 to cancel this term, leaving only the oscil-

lating terms.

Meanwhile

eðiXþ�0ÞsZðsÞ � vx0 þ ivy0: (22)

Averaging over an isotropic perpendicular velocity distribu-

tion, take hvx0vy0i ¼ 0, and hvx0vx0i ¼ hvy0vy0i ¼ v2
?0=2, so

that we have

he iXþ�0ð Þt�0y0Zi ¼ 1

2

v2
?0�

0

X2 þ �2
0

 !
e��0t �0 þ Xið Þsin Xt½

þ X� �0ið Þcos Xt�; (23)

¼ 1

2

v2
?0�

0

X2 þ �2
0

 !
X� �0i½ �e iX��0ð Þt: (24)

Then, taking z0 so as to cancel the t¼ 0 contribution from

the integral in Eq. (18), we can integrate Eq. (24) to find

z tð Þ ¼ 1

2

v2
?0�

0

X2 þ �2
0

 !
e�2�0t 2X�0

X2 þ �2
0

þ X2 � �2
0

X2 þ �2
0

i

 !
: (25)

Now simply from slowing, we have v? ¼ v?0e��0t, so
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vd;c ¼ z tð Þ ¼ 1

2

v2
?�
0

X2 þ �2
0

 !
2X�0

X2 þ �2
0

x̂ þ X2 � �2
0

X2 þ �2
0

ŷ

 !
: (26)

Combining the two drifts by adding back the second

term in Eq. (13), which becomes Eq. (16), we have

vd ¼
1

2

v2
?

X2 þ �2
0

 !
X2 � �2

0

X2 þ �2
0

r� þ 2X�0

X2 þ �2
0

r� � b̂

 !

þ X�0

X2 þ �2
0

vbg � b̂ þ �0

X
vbg

� �
; (27)

As �0=X! 0, we have

vd ¼
1

2
q2r�s þ

h�si
X

vbg � b̂ þO �0

X

� �
: (28)

Each of these terms has a clear physical interpretation.

The second term simply represents the F�B (generalized

Hall) drift due to momentum transfer from the back-

ground flow. It is primarily this second term that gives

rise to the “impurity pinch” experienced by high-Zi ions

in tokamaks, as a result of the diamagnetic poloidal flow

friction. The first term, meanwhile, represents the F�B
drift that arises from the difference in collisional friction

between the upper and lower halves of the orbit due to

the collisional inhomogeniety. These heuristics are dis-

cussed in more detail in Appendix A.

III. BALANCE WITH DIFFUSIVE TERMS AND STEADY
STATE

The drift we have discussed thus far results from the

deterministic drag term in the Langevin equation. Now we

briefly review the impact of the diffusive terms. Because the

diffusion is isotropic over a gyro-orbit, the diffusion in the

drift will manifest itself as diffusion in the guiding-center

position, which is given by the classical expression

D? ¼
1

2

v2
?�D

X2 þ �2
D

	 1

2
q2�D; (29)

where we have taken care to distinguish �D, the diffusive

collision term, from �s, the slowing collision term.

In diffusion-advection processes, the steady-state gradi-

ent depends on the ratio of advection to diffusion. Since

vd 	 �s, while D 	 �D, this leads us to define the important

parameter

v � �s=�D; (30)

the ratio between the slowing and diffusive collision

terms. Thus, as the slowing down terms become more

significant, v increases, and the steady-state ion gradient

becomes steeper.

It should be noted that the diffusion process we are

describing here is not directly comparable to the situations

considered by Braginskii. Whereas the Braginskii equations

examine transport coefficients resulting from fluxes averaged

over a Maxwellian distribution, here we examine the fluxes

for test particles at a certain fixed energy. This allows us to

consider more general distributions–in particular, sharply

peaked, high-energy distributions which could be desirable

for separations.

A. Mass and temperature dependence of v

Hot, heavy particles will tend to be more susceptible

to slowing than light particles. Thus, we expect different

gradients in steady-state as a function of mass and

energy. To see this tendency, our first task is to be

explicit in what we mean by �D. We care about diffusion

along a single dimension perpendicular to the particle

orbit. In the case of ion-cyclotron heating, we will have

�? � �k, so

�D;ic ¼
1

2

1

2
�? þ �k

� �
¼ 1

4
�? þ

1

2
�k: (31)

Here, the first factor of 1/2 comes from considering diffu-

sion along a single dimension perpendicular to the mag-

netic field. The factor of 1/2 before �? comes from the

fact that only diffusion along one of the two dimensions

perpendicular to the particle velocity will result in diffu-

sion perpendicular to the magnetic field, since one of the

perpendicular dimensions lies parallel to the magnetic

field.

Meanwhile, in the case of isotropically distributed ion

velocities, we will have

�D;iso ¼
1

3
�? þ �kð Þ: (32)

This would be the proper form, for instance, for thermal ions

or fusion-born a particles.

1. Collisions with fast ions and electrons

With our diffusion collision frequency in hand, it is now

possible to consider limiting cases of v in several cases.

First, we consider the low-velocity limit of the collision

coefficients, in which
�ij

xij
� 1, where xij � mi=mj is the mass

ratio with the buffer species, and �ij ¼ �?i=Tj is the ratio of

the perpendicular ion energy to the buffer temperature. In

this limit, �? ¼ 2�k, so �D;ic ¼ �D;iso. Then, using the formu-

lary frequencies

vis ¼
�ij

1þ 1

xij

� �1=2
! �ijx

1=2
ij if xij � 1

�ij if xij � 1:

(
(33)

In the important case of heavy thermal ions, where �ij ¼ Tij,

we have vis ¼ 1.

When considering ion-electron collisions, we will

almost always be in the low-velocity limit. Then

ves ¼ �ie: (34)

Thus, differentially heating ions will result in different drift

vs diffusion rates on electrons proportional to the energy.
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2. Collisions with slow ions

When
�ij

xij
� 1, we find slightly different results for iso-

tropic vs ion-cyclotron heated ions. First, consider isotropi-

cally directed ions. Then, we have

vif ;iso ¼
l�1

i þ l�1
j


 �
l1=2

i ��3=2

2

3
l�1=2

i ��3=2 þ 1

3
l1=2

i l�1
j ��5=2Tj

; (35)

¼ 1þ xij

2

3
þ 1

3

xij

�ij

; (36)

� 3

2
1þ xijð Þ: (37)

Meanwhile, for ion-cyclotron heating

vif ;ic ¼
1þ xij

1

2
þ 1

2

xij

�ij

� 2 1þ xijð Þ: (38)

Thus, fast, heavy ions will experience strong collisional drift

relative to diffusion.

B. Special case: Background ion gradient with
diamagnetic flow

In the special case of ion diamagnetic flow due to a den-

sity gradient in the x direction, we have

vbg ¼ �
Tr log nbg � b̂

ZbgeB
: (39)

Thus, since �s / nbg, we have

vd¼
1

2
q2h�si r lognbg�

2X

v2
?

Tr lognbg� b̂

ZbgeB

 !
� b̂

 !
; (40)

¼ 1

2
q2h�sir log nbg 1þ 2 ZieBð Þ

miv2
?

T

ZbgeB

 !
; (41)

¼ 1

2
q2h�sir log nbg 1þ Zi

Zbg

1

�ij

� �
: (42)

From this result, we can recover the well-known high-Zi

impurity pinch.23 The flux is given by

C ¼ vdni �
d

dx
niDð Þ: (43)

Now take �s ¼ ~� snbg; �D ¼ ~�Dnbg, so that the dependence

on density becomes more apparent. Then, plugging in for vd

and D in the limit � � X, we have

C ¼ 1

2
q2~� s 1þ Zi

Zbg

1

�ij

� �
ni

d

dx
nbg �

1

2
q2~�D

d

dx
nbgnið Þ; (44)

¼ 1

2
q2~�D v�1ð Þni

dnbg

dx
þ Zi

Zbg

v
�ij

ni
dnbg

dx
�nbg

dni

dx

� 	
: (45)

Now for the case of thermal, heavy ions, v ¼ �ij ¼ 1, so

C ¼ 1

2
q2~�D

Zi

Zbg
ni

dnbg

dx
� nbg

dni

dx

� 	
: (46)

If we set C¼ 0 for steady state, and take �ij ¼ 1 (i.e., con-

sider thermal particles), then we find

n
Zi=Zbg

bg

ni
¼ const; (47)

which is the impurity pinch result. The full impurity pinch,

including the reversal in steep temperature gradients, could be

derived similarly by including the temperature-dependent terms

in both the diamagnetic flow velocity and the collisionality.

This derivation relied on the assumption that ~� s 6¼ ~�D,

which is not true in general. As we show next, the non-

cancellation of these terms in general can result in interesting

energy-dependent and mass-dependent separative effects,

even between species with equal Z.

IV. MASS-BASED SEPARATION SCHEME

In this section, we explore how the energy- and mass-

dependence of the diffusion/advection ratio could be used to

separate particles of different masses.

A. Diffusion model

Consider a system extending over a distance 0 < x < Ls

perpendicular to a magnetic field, with a source at x ¼ L�
and sinks at x¼ 0 and x¼ Ls given by SðxÞ ¼ �cdðxÞ
þdðx� L�Þ � ð1� cÞdðx� LsÞ. Our steady-state diffusion

equation is then given by

0 ¼ vd xð Þf � d

dx
D xð Þfð Þ � U xð Þ; (48)

where

UðxÞ ¼
ðx

0

SðsÞds ¼ �cþ Hðx� L�Þ; (49)

is the integrated source flux (Fig. 1) and H(x) is the

Heaviside function. Evaluating the derivative using the prod-

uct rule and rearranging, we have

FIG. 1. Diffusion problem setup, showing source and sink terms S(x) and

integrated source flux U(x) for steady-state diffusion.
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df

dx
¼ vd xð Þ

D xð Þ
� 1

D xð Þ
dD xð Þ

dx

� �
f � U xð Þ

D xð Þ
: (50)

Until now, the functional dependencies of D and vd have

been treated in full generality. Now consider a system in

which T is constant, but the density varies as n ¼ n0ex=Lc .

Also assume that the particle is maintained at a constant

energy �ij. Then, plugging in for vd and D, we have

df

dx
¼ g� 1

Lc
f � Je�x=Lc �cþ H x� L�ð Þð Þ; (51)

where

g ¼ 1þ Zi

Zbg

1

�ij

� �
v (52)

and

J ¼ 2

q2~�Dn0

: (53)

Now, the solution to this equation is

f ðxÞ ¼ e
�
Ð x

0
PðsÞds

ðx

0

e
Ð y

0
PðsÞds

QðyÞdyþ d

� �
; (54)

where

P xð Þ¼�g�1

Lc
; Q xð Þ¼�Je�x=Lc �cþH x�L�ð Þð Þ: (55)

Then

7

ðx

0

P sð Þds ¼ 6 g� 1ð Þ x

Lc
: (56)

Thus

f xð Þ ¼ JLc

g
e g�1ð Þ x

Lc 1� e�g x
Lcð Þc½

� e�gL�
Lc � e�g x

Lc

� �
H x� L�ð Þ þ d

i
: (57)

Now we can apply our boundary conditions. Since

f ð0Þ ¼ 0, we see easily that d¼ 0. Then, solving for c by set-

ting f ðLsÞ ¼ 0, we find

c ¼ eg Ls�L�ð Þ
Lc � 1

egLs
Lc � 1

: (58)

The relative fluxes F7 of particles leaving from the left

(–) and right (þ) sides of the device are thus

F� ¼ c ¼ eg Ls�L�ð Þ
Lc � 1

egLs
Lc � 1

; (59)

Fþ ¼ 1� c ¼ 1� e�gL�
Lc

1� e�gLs
Lc

: (60)

Meanwhile, the maximum density of non-buffer par-

ticles in the device scales as

nmax ¼
2Lc

gq2~�Dn0

_N

LyLz

 !
max~f xð Þ; (61)

where _N is the total particle flow through the mass filter, Ly

and Lz are the two remaining device dimensions, and ~f ðxÞ
¼ f ðxÞg=JLc is the normalized density function. ~f ðxÞ gener-

ally has its maximum at x ¼ L�, where

~f L�ð Þ ¼ e g�1ð ÞL�=Lc � 1ð Þ eg Ls�L�ð Þ=Lc � 1ð Þ
egLs=Lc � 1

; (62)

� g� 1ð ÞL�
Lc

F�: (63)

Thus,

_N

nmax

� LyLz
q2�D0

2L�F�

g
g� 1

: (64)

For practical applications, there should be several gyro-radii

between the injection point and the periphery, so take

L�=q � 3. We also want to maintain ion gyro-drift motion

even in the region of highest density, so take �D0=X � 3.

These could be approximately satisfied, for instance, by lbg

¼ 1; li ¼ 100, B¼ 2000 G, Tbg¼ 1 eV, �ij ¼ 5, and L� ¼ 3

cm. Then, recalling q ¼ vthi=X

_N

nmax

� 1

10
LyLz

vthi

2F�

g
g� 1

: (65)

For a heavy ion mass of 100 amu and temperature of 5 eV,

we have vthi � 2� 105 cm/s. Assuming a collection area of

LyLz ¼ 300 cm2 and F� � 0:3, we then have _N=nmax � 107.

Thus, for a relatively small core heavy ion density of nh

¼ 1012 cm–3, the device would process 1019 ions/s, or around

a milligram per second.

B. Power dissipation

Now let us assume that one of the species (the heavy

minority) is heated by ion cyclotron resonant frequency

(ICRF) waves, in order to keep v (and thus g) much larger

for this species. The power dissipation is approximately

given by

Pdis ¼ �? �� ¼ �? 2�s �
1

2
�? � �k

� �
; (66)

where the factor of 1/2 in front of �? arises because

energy added parallel to the magnetic field (one of the

directions perpendicular to v?) does not help to maintain

the perpendicular energy. Using Eq. (31), this can be

written as

Pdis ¼ 2�?�Dðvh � 1Þ; (67)

where the h subscript reminds us that we are only heating the

heavy species. Thus, recalling the density-independent quan-

tity ~� s � �s=n, the power dissipated throughout the device is

given by
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Pdis;tot ¼
ðLs

0

PdisðxÞf ðxÞdx; (68)

¼ 2�?~�Dðvh � 1Þ
ðLs

0

nðxÞf ðxÞdx: (69)

Plugging in Eqs. (57), (53), and (60) and carrying out

the integral, we find

Pdis;tot ¼ 4�?
vh � 1

gh

Lc

q2
LsFþ � L�ð Þ: (70)

Note that, when Fþ ¼ L�=Ls, i.e., when the random walk is

unbiased, there is no power dissipation. Because this calcula-

tion shows the energy dissipated per unit time for a system

with a feed rate of one particle per unit time (since

Fþ þ F� ¼ 1), we can interpret this dissipated power as the

mean energy dissipated per particle traversing the system.

Since for a slow (but relatively energetic), singly ionized

heavy particle, gh � 1 ¼ vh ¼ �ij, we can write

Pdis;tot ¼ 4T
gh � 1ð Þ gh � 2ð Þ

gh

Lc

q2
LsFþ � L�ð Þ: (71)

Meanwhile, light particles are not heated, so they dissipate

no energy, and have gl ¼ 2.

Figure 2 shows the evolution of Fhþ and Pdis;tot with gh

for Ls¼ Lc and Lm ¼ 0:17Lc. At gh ¼ 6, approximately two

thirds of the heavy elements exit on the right side of the

device, while approximately two thirds of the light elements

(gl ¼ 2) exit on the left side, representing a twofold enrich-

ment of the heavy element in the output stream. The dissi-

pated power to achieve this separation is 6:3TL2
c=q

2, which

for a 1 eV plasma with Lc=q � 10 would be 600 eV per

heavy particle.

V. A MORE REALISTIC HEATING MODEL

In Sec. IV, we assumed that the energy of each species

was spatially uniform. In realistic ICRF heating scenarios,

the energy which the particle gains from the heating will be

dissipated through collisions; thus, the energy will generally

be lower in areas of high density. To get the energy as a

function of position, assume the particle is in force balance.

Then

Fþ ��s þ
1

4
�? þ

1

2
�k

� �
v? ¼ 0; (72)

where F is a forcing term representing the ICRF. This gives

�? ¼ � B

2A
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4

AC

B2

r ! !2

; (73)

where

A ¼
l1=2

j

li

1þ
lj

li

� ��1=2

T
�3=2
i ; (74)

B ¼ �10:7
Fl1=2

i

knbg xð Þ ; (75)

C ¼ �
l1=2

j

li

T
�1=2
i : (76)

So, plugging in

�? ¼ �0 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ��1

0 1þ
lj

li

� �1=2

Ti

s0
@

1
A

2

; (77)

where

�0 � 28

F2T3
i l

2
i 1þ li

lj


 �
k2nbg xð Þ2

: (78)

Thus, �? scales as n�2
bg until it reaches a minimum of �?

¼ Ti, where it saturates. This means that g also scales as n�2
bg

before saturating at g¼ 2.

A. Numerical results for realistic heating

We can use Eq. (77) to calculate the drift and diffusion

terms in Eqs. (50) and (68). By numerically solving these

equations consistently with the boundary conditions, we can

then find both the separation and the energy dissipation per

particle for a given device.

As an example, we consider a 100-amu particle in a sep-

aration device, extending over 0 < x < Ls � L�, with injec-

tion at x ¼ L�, where the density of 1-amu background

particles is given by

nbgðxÞ ¼ n0ð1þ ðx� L�Þ=LnÞ: (79)

We take B ¼ 104 G, Ti ¼ 0:7 eV, and varied the forcing

term F from 107 to 1010 cm/s2. Recalling from Eq. (71) that

better efficiency is generally achieved by making Ls=qi as

small as feasibly possible, we take Ln ¼ 12qi0; L� ¼ 2qi0,

and Ls ¼ 10qi0, where qi0 is the equilibrium gyroradius at

the injection point. Thus, the device size was larger for

greater forcing F, and smaller for lower F.

FIG. 2. Fraction of particles leaving the right side of the device and energy

dissipated per particle (in units of TL2
c=q

2), as a function of g. Here, we take

Ls¼Lc, L� ¼ 0:17Lc. Particles are assumed to be slow but energetic relative

to the much lighter buffer gas. At gh ¼ 6, around two thirds of the heavy

particles exit to the right, and two thirds of the light particles (gl ¼ 2) exit to

the left, while dissipating 6TL2
c=q

2, around 600 eV for a 1 eV buffer gas, per

particle.
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Results for the fraction of particles exiting at the right

side of the device as a function of power dissipated are

shown in Fig. 3. The tradeoff between energy expenditure

and separation is clear from the figure. As shown in Fig. 3,

60%/30% separation occurs in the neighborhood of 1 keV.

However, it is apparent that by pushing to higher power,

arbitrarily high separation is possible. For instance, at

85 keV dissipated, 98.9% of heated particles exit on the right

side of the device. Thus, depending on the separation factor

required, a given device could be tuned to be low-separation,

low-energy, as for waste filtration, or high-separation, high-

energy, as for isotope separation.

VI. DISCUSSION AND CONCLUSIONS

Starting from a single-particle model and adding

Langevin collisions with an inhomogenous, flowing back-

ground, we have derived expressions for the associated gyro-

center drifts and diffusion. We find that the velocity-space

Langevin drag term gives rise to the gyrocenter drift, and the

velocity-space Langevin diffusion term gives rise to the

gyrocenter diffusion. This general model is applicable to var-

ious scenarios, including collisions with a gradient of (dia-

magnetically drifting) charged particles, and collisions with

an inhomogenous population of neutrals.

In focusing on ion-ion collisions, we first recovered the

well-known impurity pinch,22–26 known to cause high-Z
impurities to congregate in the tokamak core. We then

focused on singly ionized populations, finding mass- and

energy-dependent drifts. Exploiting these energy dependen-

cies, we outlined a novel mass separation scheme, and ana-

lyzed the energy/separation tradeoff, finding that substantial

separation could be accomplished at around one keV per par-

ticle. Importantly, the same device could achieve greater sep-

aration at the cost of increasing the dissipated power, raising

the possibility that the general scheme could be used for

either waste reprocessing or isotope separation.

The separation energy of a few keV per particle is much

greater than less targeted bulk plasma separation meth-

ods,12,14,16 which claim a plasma energy cost of 1.5 GJ/kg to

separate aluminum, i.e., 400 eV/particle. However, they are

on the same order as other ICRF schemes.10,27–30 In contrast

to the proposed scheme, these existing schemes (a) rely on

very low densities to avoid collisional dissipation as the ions

reach energies on the keV scale, and (b) require the heated

species to be recovered by embedding in a solid physical

medium. The first constraint is detrimental because it requires

a high-vacuum system, and also limits the throughput. It also

results in wall degradation, since ions strike the wall at ener-

gies in excess of 1 keV. The second constraint further limits

the throughput, by requiring a stage of operation where waste

is physically scraped off the embedding medium. In contrast,

the proposed device both works at higher density, and allows

for either species to be heated and extracted by any method at

opposite ends of the device, while maintaining the particle

energy below 	50 eV.
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APPENDIX A: HEURISTIC DESCRIPTION OF THE
GRADIENT DRIFT

Consider an ion interacting with a background species

via collisions. Drifts arise from both (a) inhomogeneities in

collisions around the gyro-orbit, due to gradients in tempera-

ture or density of the background, and (b) net flow velocity

of the background with respect to the gyrocenter rest frame.

In this section, we heuristically derive these two drifts.

FIG. 3. Fraction of particles leaving the right side of the device as a function

of energy dissipated per particle for the device in Sec. V A. Thus B ¼ 104 G,

Ti ¼ 0:7 eV, Ln ¼ 12qi0; L� ¼ 2qi0, and Ls ¼ 10qi0, and the forcing term F
was varied from 107 to 1010 cm/s2.

FIG. 4. Heuristic description of the collision gradient drift. (a) Problem

setup. An ion on a gyro-orbit with velocity v? in a magnetic field B k ẑ
experiences slowing-down collisions at a rate �s ¼ �0 þ �0y. (b) The slowing

force is greater in regions of higher collisionality, resulting in a net force in

the �x̂ direction, and thus an F� B drift in the ŷ direction, parallel to the

collision gradient.
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First, consider an ion gyrating with speed v? around a

ẑ-directed magnetic field, in the presence of a collisionality

gradient r�s k ŷ [Fig. 4(a)]. We can write

�s yð Þ ¼ �0 þ �0y ¼ �0 þ �0
v?
X

sin h

� �
: (A1)

Neglecting for the moment diffusive terms in the collision

Langevin equation, the particle experiences a deterministic force

Fc ¼ �mi�s yð Þv ¼ �mi �0 þ �0
v?
X

sin h
� �

v? sin h
�v? cos h

� �
;

(A2)

where mi is the ion mass and X is the ion gyrofrequency.

Averaging this force over h, we find

hFcih ¼ �
mi

2

v2
?
X
�0x̂: (A3)

Our Fc � B drift is thus given by

vd;c ¼
hFih � ẑ

qB
¼ 1

2

v2
?

X2
�0ŷ ¼ 1

2
q2�0ŷ ¼ 1

2
q2r�s: (A4)

Thus, the slowing down collisions draw the ions into regions

of higher collisionality [Fig. 4(b)].

Now consider that the background might have a flow veloc-

ity. Then, our force at any point in the orbit is supplemented by

Fflow ¼ mi�sðyÞvbg; (A5)

¼ mi �0 þ �0
v?
X

sin h

� �
vbgx

vbgy

� �
; (A6)

where mi is the ion mass and X is the ion gyrofrequency.

Averaging this force over h, we find

hFflowih ¼ �
mi

2

v2
?
X
�0x̂ þ mi�0vbg: (A7)

Our Fflow � B drift is thus given by

vd;flow ¼
hFflowih � ẑ

qB
; (A8)

¼ mi�0

qB
vbg � ẑ; (A9)

¼ �0

X
vbg � ẑ; (A10)

¼ h�si
X

vbg � b̂: (A11)

Thus, our total F�B drift due to interactions with the back-

ground ions is

vd ¼
1

2
q2r�s þ

h�si
X

vbg � b̂: (A12)

APPENDIX B: RANDOM WALK DERIVATION OF
MASS-BASED SEPARATION

We can also derive our results for energy dissipation and prob-

ability of exiting at each side of the device, in the constant-� case,

by considering the random walk of a single ion across the device.

Consider a system of length 2L parameterized by

�L < x < L, perpendicular to a constant magnetic field B,

with a buffer density given by nb / ex=Lc . We will assume

that circularly polarized ion cyclotron heating maintains the

desired species at an energy �? � Tj, where j is the buffer

species, so that energy is added to the particles without itself

inducing any drift. These superthermal ions will be more sus-

ceptible to the biased drift, and thus will exit preferentially

on one side of the device, while light and thermal ions will

tend to exit equally often at either side of the device.

We will work to zeroth order in the quantity �=X. Thus,

we will have

vd

D?
¼

1

2
q2�0s

1

2
q2�D

¼ g
Lc
: (B1)

This will simplify the calculation dramatically by ensuring

that the probabilities are constant in the random walk across

the length of the device.

Ions enter the device along the magnetic field line at

x¼ 0; we need to determine the relative probabilities of exit

at x ¼ 6L. We will begin by recasting the problem as a dis-

crete random walk, for which these probabilities are easily

calculated, and then take the continuous limit. Thus, consider

a biased random walk, with space step Dx and time step Dt,
with probabilities p and q ¼ 1� p of stepping toward þx
and �x, respectively. Our drift velocity is then given by

vd ¼
hx tþ Dtð Þi � hx tð Þi

Dt
¼ 2p� 1ð ÞDx

Dt
: (B2)

We can eliminate Dt by noting that D? ¼ Dx2=2Dt. Thus, p
is given by

p ¼ g
4

Dxþ 1

2
: (B3)

Now we can take advantage of our standard random walk

results. In a system consisting of 2N steps, a biased random

walk beginning in the middle will exit on the þx side with

probability

Pþ ¼
1� q=pð ÞN

1� q=pð Þ2N
: (B4)

By invoking Eq. (B1), noting that N ¼ L=Dx, and taking the

limit as Dx! 0, we find

P þxð Þ ¼ 1

1þ exp �gL=Lc½ � : (B5)

Thus, separation increases with the slowing to scattering

ratio g, with the system size L, and with the collisionality

gradient L�1
c .

We can also calculate the energy dissipated per ion. The

average number of steps S taken in biased random walk is

given by

T ¼ N

p� q

p=qð ÞN � 1

p=qð ÞN þ 1
: (B6)
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Following our calculation above, this becomes

T ¼ 2

g
1� exp �gL=Lc½ �
1þ exp �gL=Lc½ �

LLc

Dx2
: (B7)

We need to relate this to the energy dissipated per step. The

power dissipated is given by

Pdis ¼ �? 2�s �
1

2
�? � �k

� �
¼ 2�?�D g� 1ð Þ: (B8)

Thus, the energy D�? dissipated per step is given by

[making use of Eq. (29)]

D�? ¼ PdisDt ¼ Pdis
Dx2

2D
¼ 2�?

q2
g� 1ð ÞDx2: (B9)

The total energy per particle E dissipated is given by the

product of D�? and T, and so we find

E ¼ 4�?
LLc

q2

g� 1

g
1� exp �gL=Lc½ �
1þ exp �gL=Lc½ �

� �
: (B10)

1. Model extension

We can extend this model to a system where the par-

ticles are not introduced precisely between the two sinks;

rather the system, of total size Ls, extends from �L� < x
< Ls � L�, with N steps to the left and M steps to the right.

The generalizations of the random-walk results [Eqs. (B4)

and (B6)] to this new scenario are

Pþ ¼
1� q=pð ÞN

1� q=pð ÞNþM
; (B11)

M � q=pð ÞN M þ Nð Þ þ N q=pð ÞNþM

p=qð Þ 1� q=pð ÞMþN

 � : (B12)

The generalization of Eqs. (B5) and (B10) to this new sce-

nario is taking N ¼ L�=Dx; M ¼ ðLs � L�Þ=Dx and letting

Dx! 0

Pþ ¼
1� exp �gL�=Lc½ �
1� exp �gLs=Lc½ � ; (B13)

T ¼ 2

g
Ls 1� e�gL�=Lcð Þ � L� 1� e�gLs=Lcð Þ

1� e�gLs=Lc

Lc

Dx2
; (B14)

and

E ¼ 4�?
Lc

q2

g� 1

g
� Ls

1� e�gL�=Lc

1� e�gLs=Lc
� L�

� �
: (B15)

These formulas are valid for all species present; each species

will differ in its value of g.

APPENDIX C: THERMAL FORCE

In our original dynamic equation [Eq. (2)], from which we

derived our drift, we do not include a thermal force. In order to

properly treat thermal effects, a full kinetic model would be

necessary. However, it is instructive to see what would happen

if we did include this term in a simple fluid model.

As we are studying the slow drift across the field lines,

where the fast cyclotron rotation around the lines has been

averaged out, we consider the classical adiabatic fluid

model for a population of charged particles with gyrofre-

quency X, collision frequency �, fluid velocity v, and pres-

sure p

Xv� b� �v�rp

mn
¼ 0; (C1)

where m is the particle mass and n is the density of particles

and b is a unit vector along the magnetic field. The entropic

momentum exchange term rp can be expanded as kBTrn
þ kBnrT, where T is the ion temperature.

Considering the kBTrn term alone allows describing the

particle (Braginskii) diffusion when Eq. (C1) is solved for v.

This is the usual simple fluid derivation of magnetized diffu-

sion. Thus,

X
�

� �
nv� b� nv ¼ kBT

m�

� �
rn; (C2)

becomes

nv ¼ � kBT=m�ð Þ

1þ X2

�2

rn� kBT=m�ð Þ

1þ �2

X2

b 
 rnð Þb

�X
�

kBT=m�ð Þ

1þ X2

�2

rn� b; (C3)

where we recognize the classical unmagnetized diffusion

coefficient kBT=m� and the 3 components of the flux nv, i.e.,

diffusive flux across and along the density gradient, and the

diamagnetic drift. The parallel diffusion term is absent in our

model, and so the only new contribution is a diamagnetic

drift, which is not a gyrocenter drift but rather a circulating

fluid flow.

Now considering the kBnrT term alone allows us to

describe the thermal force when Eq. (C1) is solved for v.

Thus,

X
�

� �
v� b� v ¼ kBT

m�

� �
rT

T
; (C4)

becomes

v ¼ � kBT=m�ð Þ

1þ X2

�2

rT

T
� kBT=m�ð Þ

1þ �2

X2

b 
 rT

T

� �
b

�X
�

kBT=m�ð Þ

1þ X2

�2

rT

T
� b: (C5)

As we are interested in the drift dynamics across the

magnetic lines in the strongly magnetized regime � � X,

we can restrict this general result to the simple

expression

vT � �
�2

X2
kBT=m�ð ÞrT

T
� �

X
kBT=m�ð ÞrT

T
� b: (C6)
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The second term is just the thermal diamagnetic fluid flow

resulting from a temperature gradient, while the first one is

the thermal force effect which must be compared to the colli-

sionality gradient drift effects vd identified and analyzed in

our paper.

The first point to note is that the thermal force effect

will, in general, lead to a drift down the temperature gradi-

ent. If we identify our fluid temperature with our minority

species energy, this temperature will be lower in regions of

higher collisionality when heating is constant across the

device. Thus, the thermal force drift will push the particle

into regions of higher collisionality, adding to the collisional

drift rather than disrupting it.

Now we can calculate the relative magnitude of the two

drifts. Introducing the mean Larmor radius q

vT ¼ �
�

X2
kBT=mð ÞrT

T
� ��q2rT

T
: (C7)

This must be compared to

vd �
�q2

2

r�
�
: (C8)

Thus, the criterion to neglect the thermal force is

r�
�
>
rT

T
: (C9)

This condition was satisfied for our first, simple model with

uniform minority energy, but not for our realistic heating

model (Sec. V), where energy scaled as background density

(and thus collisionality) to the negative second power [Eqs.

(77) and (78)]. However, it is of the same approximate mag-

nitude as the collisional drift, and as mentioned earlier,

points in the same direction. Thus, the thermal effects are

not likely to substantially change the conclusions of the

paper.

It should be noted that here we have employed the sim-

plest possible fluid closure, which does not allow a heat flux;

then, we demanded a specific temperature gradient, without

specifying how it was applied, or even how temperature

should be consistently defined and finally, demanded a

steady state. Thus, this drift is simply the consistent drift

with the conditions we have, perhaps unphysically,

demanded. In order to more accurately determine what ther-

mally related drifts will result when we heat a minority ion

population, one should properly consider heat fluxes and

heat exchange between species, as well as kinetic effects

such as thermo- and baro-diffusion which link inhomogenei-

ties in temperature to additional fluxes. Such a problem is

outside the scope of this paper, and so we limit our consider-

ations to the collisional drift.
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