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A rotating plasma column is shown to exhibit unusual heat capacity effects under compression. For

near equilibrium thermodynamics and smooth wall conditions, the heat capacity depends on the

plasma density, on the speed of the rotation, and on the mass ratio. For a certain range of parameters,

the storage of energy in the electric field produces a significant increase in the heat capacity.

Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4975651]

I. INTRODUCTION

The compression of rotating plasmas is of significant

scientific interest, particularly in astrophysical applications,

such as accretion disks.1 To some extent, laboratory experi-

ments2,3 or numerical simulations as well4,5 can exhibit the

physics of the naturally occurring plasma. Ablation flows

from a cylindrical wire array z-pinch, or laser generated

jets,6 can introduce angular flows through axial currents

crossed with radial magnetic fields. As the ablated flows are

then compressed radially, the plasma spins faster until cen-

trifugal forces balance the pressure of the incoming radial

flow. A supersonically spinning hollow ring plasma was

obtained, with ion temperature Ti� 60 eV, electron tempera-

ture of ZTe� 200 eV, and plasma density 1019 cm�3.3 A

focus of previous studies of rotating and compressing plasma

has been the transient dynamics of the rotating convergent

flow, such as the formation of standing shocks.

In contrast, our interest here is in the equation of state of

rotating plasma under compression, with particular interest in

the compressibility and the heat capacity. We expect to find

that the compressibility and heat capacity of the plasma depend

on parameters such as the spinning velocity and the charge

density. This will generalize the problem of compressibility of

the spinning neutral gas, which exhibits a number of unusual

features including a rotation-dependent heat capacity.7

The rotation-dependent heat capacity effect arises in

neutral gas because, under an axial compression, a spinning

gas becomes hotter and thus more uniformly distributed radi-

ally. Since the moment of inertia decreases, it must spin

faster to conserve the angular momentum. That means that

part of the energy of compression goes, not into heating the

gas, but to making it spin faster. In other words, the bulk

rotation comprises an extra degree of freedom for energy

storage, thereby adding to the heat capacity, and curiously,

making a spinning gas easier to compress axially than a non-

spinning gas at the same temperature.

We can anticipate a similar effect for the spinning

plasma; however, the heat capacity in plasma is more com-

plicated. In plasma, there is also an electrostatic energy,

which is coupled to the spinning velocity and similarly

changes under compression. The question that we pose and

answer here is how this electrostatic energy contributes to

the plasma heat capacity.

The paper is organized as follows: In Sec. II, we write

the basic equations of spinning plasma. In Sec. III, we derive

the heat capacity and compression functions. In Sec. IV, we

point out some features of the numerical techniques used in

solving the basic equations. In Sec. V, we discuss our results

and point out areas for future research.

II. BASIC EQUATIONS

Consider a cylindrical column of plasma with radius r0

and length L rotating along ẑ axis. The plasma cylinder is

assumed to be long compared to its radius L � r0, so that

edge effects can be neglected, and the problem can be treated

in 2D cylindrical geometry. In thermodynamical equilibrium,

all sheared flows dissipate; hence, the solid body rotation is

established with an angular velocity x and temperature T. For

simplicity, consider only a two-species plasma: electrons with

charge �q and mass me and ions with charge q and mass mi.

In principle, such an approach could be generalized to multi-

ionized plasma or several species of ions with different

masses and charges; however, two species are enough to cap-

ture the basic effects that will be important for heat capacity.

Assume that the plasma is confined by ideal walls with free

slip boundary conditions and perfectly insulating with respect

to transport of heat or charge. Under rotation, we expect a

radial electric field as the ions separate from electrons. In gen-

eral, there could be an axial magnetic field, either imposed or

as a result of azimuthally rotating charge.

The force balance equations in the radial direction,

where pressure is balanced against the centrifugal force and

the electro-magnetic force, then gives the following system

of equations:

�mex
2rne ¼ �T

@ne

@r
� neqE� neqB

xr

c
; (1)

�mix
2rni ¼ �T

@ni

@r
þ niqEþ niqB

xr

c
; (2)

where ne and ni denote the electron and ion densities, respec-

tively, E is the radial electric field, B is the axial magnetic

field, and c is the speed of light.

To complete Eqs. (1) and (2), we write down the

Maxwell’s equations in cylindrical coordinates, assuming

that the electric field has r̂ and magnetic field has ẑ compo-

nents only
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@ rEð Þ
@r
¼ 4pqr ni � neð Þ; (3)

@B

@r
¼ 4p

xr

c
q ni � neð Þ: (4)

In the following, we will specialize the case where there

is no externally imposed axial magnetic field. We will also

specialize the case of non-relativistic rotation xr0� c, so

that the internally generated axial magnetic field can be

neglected since it goes like xr0/c in Eq. (4). Thus, we now

consider the limit of non-magnetized plasma, where the

magnetic field terms in Eqs. (1) and (2) vanish.

Hence, for the non-magnetized plasma, we now intro-

duce dimensionless parameters, and rewrite Eqs. (1)–(3) in

the compact form

�2uex~ne ¼ �
@~ne

@x
� 2~neQ ~E; (5)

�2uix~ni ¼ �
@~ni

@x
þ 2~niQ ~E; (6)

@ x ~Eð Þ
@x

¼ x ~ni � ~neð Þ: (7)

Here, the dimensionless parameters are the following:

N ¼ pr2
0 �nL; ~ni;e ¼

ni;e

�n
; r ¼ xr0;

E ¼ 4pq�nr0
~E; ui;e ¼

mi;ex2r2
0

2T
;

Q ¼
mex2

per2
0

2T
¼ 2q2N

LT
; (8)

where N is the total number of electrons or ions.

This system in determined by 3 dimensionless parameters:

ui; ue, and Q. The first two spinning parameters ui and ue

have the same meaning as for the neutral gas case, i.e., the

ratio of the rotation velocity at the periphery to the tempera-

ture, or in other words how strong the rotation is compared to

the thermal energy. The new parameter, Q, shows the strength

of electrostatic interaction. However, this term cannot be inter-

preted simply as a ratio of the total electrostatic energy to the

temperature; rather it can be interpreted as the ratio of electro-

static energy to the temperature, if particle spatial distribution

did not feel any electrostatic force. This interpretation will

become clearer when we show the solution to these equations.

Equations (5)–(7) describe the equilibrium distribution

of electrons and ions. While no fully analytical solution is

possible, some analytical progress can be made by introduc-

ing the electric potential @U/@x¼�E. Both Eqs. (5) and (6)

can then be integrated once to obtain

ne;i ¼ �ne;i expðue;ix
262QUÞ (9)

which is exactly the Boltzmann distribution in a given poten-

tial.8 The constants of integration, �ne;i are determined from

the total particle conservation, namely

ð1
0

2ni;eðxÞxdx ¼ 1: (10)

We can now solve for the potential using Poisson’s equation,

with charge density determined by Eq. (9)

ðxU0Þ0 ¼ �xð�nie
ðuix

2�2QUÞ � �neeðuex2þ2QUÞÞ; (11)

where the prime denotes a derivative with respect to x. The

boundary conditions for Eq. (11) are

U0ðx ¼ 0Þ ¼ U0ðx ¼ 1Þ ¼ 0 (12)

due to the total charge neutrality and Eq. (10) for normaliza-

tion of �ne;i. The density normalization in Eq. (10) also deter-

mines the arbitrary constant for the potential U.

Equation (11) can be solved numerically in given param-

eters, ui; ui, and Q. An example of such a solution is shown

in Fig. 1. As the electrostatic interaction increases, the particle

spatial distributions become closer and closer to each other.

This occurs because, a larger separation will cause larger

charge densities, hence larger fields. One can expect that for

very large parameter Q we should have quasi neutrality and

Debye screening.9 Indeed, in Fig. 1 we can see a similar

behavior for Q¼ 200: electron and ion distributions are nearly

identical except for the boundary layer where electrons screen

a little excessive space charge.

III. HEAT CAPACITY AND COMPRESSION FUNCTIONS

Generalizing the method employed in the case of neutral

gas,7 we now calculate how heat capacity changes in the pres-

ence of space charge. We will consider the modified heat

capacity at a constant volume ~cv. For non-spinning gas with

no electrostatic interaction, one has the standard heat capacity

coefficient cv¼ 1.5 for mono atomic or cv¼ 2.5 for diatomic

gas. For spinning ideal gas, the heat capacity changes;7 how-

ever, for spinning charged particles of different masses, there

FIG. 1. Example of equilibrium density distribution for ions and electrons.

Spinning parameters are fixed: ui ¼ 5; ue ¼ 0:5. Dashed black lines: ion

and electron densities for Q¼ 0; red: ions for Q¼ 2; blue: electrons for

Q¼ 2; green: ions for Q¼ 200; solid black: electrons for Q¼ 200.
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is the additional effect of charge separation. The charge sepa-

ration produces an electric field, and the stored energy in that

field should affect the heat capacity.

Consider how the adiabatic compression is modified in

the presence of spatial charge. Let us define a compression
function cf as the coefficient in the ODE

dV

V
þ cf

dT

T
¼ 0: (13)

For an axial compression, we will call cf¼B and for radial

compression cf¼C. In the case of ideal non-spinning gas

B¼C¼ cf¼ cv.

In order to find ~cv, B, and C, we make use of the conser-

vation of total angular momentum. We assume that heating

or compression occurs on the time scale shorter than angular

momentum dissipation, so that, for zero external magnetic

field, the total angular momentum reads as

M ¼ L

ðr0

0

2prdrxr2 neme þ nimið Þ

¼ 2NT

x

ð1
0

2dxx3 ui~ni þ ue ~neð Þ: (14)

In order to calculate the total energy, we need to take into

account also the electrostatic energy

WE ¼
L

8p

ðr0

0

2prdrE2 ¼ NTQ

ð1
0

2dxx ~E
2
: (15)

The total internal energy of the gas has three terms: thermal,

rotational, and electrostatic.

U ¼ cvi þ cveð ÞNT þMx
2
þWE: (16)

We now make use of the angular momentum conservation to

find the relation between x, T, L, and r0

@M

@L
dLþ @M

@r0

dr0 þ
@M

@T
dT þ @M

@x
dx ¼ 0: (17)

For electrons and ions, the thermal contributions to the heat

capacity can be taken to be equal, namely, cve¼ cvi¼ cv,

which is equivalent to saying that the electrons and ions have

no internal energy, only kinetic energy.

A. Heat capacity

The heat capacity at a constant volume per single parti-

cle is given by

~cv ¼
1

2N

dU

dT
¼ cv þ

M

4N

dx
dT
þ 1

2N

dWE

dT
: (18)

For the full derivative of electrostatic energy, we have

dWE

dT
¼ @WE

@T
þ @WE

@x
dx
dT

(19)

and for dx/dT we use Eq. (17), so the modified heat capacity

reads as

~cv ¼ cv þ
1

2N

@WE

@T
� @M

@T

M

2
þ @WE

@x

� �
@M

@x

� ��1
 !

: (20)

Partial derivatives here are taken numerically, as a difference

of functions calculated on two close equilibria over the small

change of the argument. Notice that the result of calculation

does not depend on the form how we represent the function.

For example, when we calculate the partial derivative of

angular momentum M with respect to T we can use any of

the forms in Eq. (14) (in the first case we have the contribu-

tion from integral only, in the second case from ui;e and

2NT/x also) but the final value of the derivative is the same.

We are interested in correction to the standard coeffi-

cient cv, and this correction, as we can see, has two parts.

One is due to the change of rotational energy, and the other

is due to the change in the electrostatic energy.

Figure 2 shows how the heat capacity modification ~cv

�cv depends on the spinning parameter for different values

of the electrostatic interaction parameter Q. For Q¼ 0, we

simply have a mixture of two types of neutral gases (black

solid line): first the heat capacity grows from 0 to approxi-

mately 1/2 as the heavy rotating ions start to contribute to it;

then it slowly grows to a saturation point approximately

equal to 1, as the light electrons start spinning faster and

faster. If we increase the electrostatic interaction, the heat

capacity reaches the saturation point faster. This might be

explained as follows: heavy ions attract electrons and pull

them close, making the electron density distribution function

nearly identical to the ion distribution function (as it is

shown in Fig. 1 in case of Q¼ 200). As a result, the electrons

would contribute more to the heat capacity.

FIG. 2. Heat capacity correction and electrostatic contribution. Solid: ~cv

�cv vs. ion spinning parameter ui at a fixed ion-electron mass ratio mi/me

¼ 10. Dashed: electrostatic contribution (depicted on 5 times greater scale

for better visibility). Black: Q¼ 0; red: Q¼ 4.5; green: Q¼ 40.5, blue:

Q¼ 364.5.
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However, the effect is not entirely due to spatial electron

density re-distribution. We also plotted the total electrostatic

term in modified heat capacity, which is

� 1

2N

@WE

@T
� @M

@T

@WE

@x
@M

@x

� ��1
 !

: (21)

Note that its contribution is quite considerable. That means

that, while the electrostatic contribution increases with

increasing Q, the rotational contribution simultaneously

decreases, so that the sum reaches saturation. Therefore, we

cannot simply split the total contribution to the two parts and

treat them somehow separately, but instead we need to con-

sider the coupled contributions. In other words, we must also

account for the fact that the electrons pull the ions back,

thereby not letting them contribute as much to the heat

capacity.

An interesting question is the heat capacity dependence

on the mass ratio. Before, we had a fixed mass ratio mi/

me¼ 10, which was picked in order to demonstrate a clear

saturation behavior as ui !1. Intuitively, we understand

that if the ion contribution saturates at ui � 10, the electron

contribution should saturate at ue � 10mi=me. Therefore for

a mass ratio of 10, we can capture this effect. But we are

free to try different values, for example, mi/me¼ 100. Fig. 3

demonstrates the same asymptotic behavior in ui as Fig. 2,

but for mi/me¼ 100, and electrostatic contribution depicted

in the figure on 2 times greater scale. As we see, the elec-

tron contribution takes longer to catch up, and the electro-

static component is considerably bigger. However, the

saturation behavior as Q ! 1 and u!1 is approxi-

mately the same, so the total heat capacity correction does

not exceed 1.

B. Axial compression

To derive the compression function for longitudinal adi-

abatic compression, we need to include all partial derivatives

with respect to L and make use of the energy conservation

pdVþ dU¼ 0

�pdV ¼ �2NT
dL

L
¼ 2cvNdT þM

2
dx

þ @WE

@L
dLþ @WE

@T
dT þ @WE

@x
dx: (22)

Plug in dx from Eq. (17) into Eq. (22) and combine all terms

before dL and dT. Skipping simple algebra, obtain

B ¼ T

L

� � 2cvN þ
@WE

@T
� @M

@T

M

2
þ @WE

@x

� �
@M

@x

� ��1

2NT

L
þ @WE

@L
� @M

@L

M

2
þ @WE

@x

� �
@M

@x

� ��1
: (23)

Note that the behavior of the modified heat capacity

looks similar to the axial compression function. In the case

of neutral gas, there is no electrostatic energy, so the angular

momentum does not depend on L. Thus, these two functions

are identical, so that one can interchangeably use the terms

compression function and heat capacity.10 However, here we

should distinguish these two. Note also that, as the mass ratio

increases, we need considerably larger spinning parameters

to reach saturation. Indeed, since we plot our variables as a

function of ion spinning parameter, for large mass ratio, the

electrons feel the spinning less, thus requiring the larger

spinning parameter to reach saturation (Fig. 4).

C. Radial compression

For a radial compression, we take the same approach

that we used for an axial compression. The main difference

is in the pdV work that is given by pdV ¼ 2NTð~ne þ ~niÞ dr0

r0
,

FIG. 3. Heat capacity correction and electrostatic contribution. Solid: ~cv

�cv vs. ion spinning parameter ui at fixed ion-electron mass ratio mi/

me¼ 100. Dashed: electrostatic contribution (depicted on 2 times greater

scale for better visibility). Black: Q¼ 0; red: Q¼ 4.5; green: Q¼ 40.5, blue:

Q¼ 364.5.
FIG. 4. Axial compression function for cv¼ 1.5. Solid: mi/me¼ 10; dashed:

mi/me¼ 100. Black: Q¼ 0; red: Q¼ 4.5; green: Q¼ 40.5, blue: Q¼ 364.5.
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where densities are calculated at r¼ r0. Following the same

derivation that we used for longitudinal compression dr0

r0

þ dT
T C, obtain

C ¼
2cvN þ

@WE

@T
� @M

@T

M

2
þ @WE

@x

� �
@M

@x

� ��1

2NT

r0

~ne þ ~nið Þ þ @WE

@r0

� @M

@r0

M

2
þ @WE

@x

� �
@M

@x

� ��1
:

(24)

The densities in the first term in the denominator are

taken at x¼ 1. In Fig. 5, we can see C as a function of

the ion spinning parameter for mass ratios mi/me¼ 10 and

mi/me¼ 100. The behavior is apparently quite complicated

and is sensitive to both the parameter Q and the mass ratio.

Moreover, it is no longer monotonic in ui, but has a local

minimum. For a considerably large range of parameters, the

minimum of C is reached at ui � 10, which corresponds to

the maximum temperature increase during radial compres-

sion. Thus, in order to heat the plasma the most, we need to

stay near this value, and vice versa to avoid it if we do not

want extra heating.

IV. NUMERICAL EQUILIBRIUM

The numerical equilibrium solution for the compression

function is worth some comment. The expression for radial

compression function contains a pressure term in the denom-

inator that came here from the pdV work term in the energy

conservation equation. When the spinning parameter gets

large, the pressure increases dramatically, as most of the par-

ticles hug the wall and very few particles are left in the cen-

ter. As a result, it causes a problem of numerical resolution.

We define our numerical solution on a grid, where the den-

sity is found as the total number of particles in a cell (the

region between the two closest grid points). Apparently, for

large u, we have an extremely high density in the last several

cells and nearly zero everywhere else. When we calculate

the pressure, we need to take the density on the periphery,

but we have only the mean density in the last cell, which is

close, but not close enough, due to high numerical error

caused by particles hugging the wall. As a consequence, the

result for C can blow up if a certain accuracy is not reached.

There are three obvious ways of solving this problem:

(i) use non-uniform grid, making more cells in the boundary

zone and fewer in the center; (ii) include higher order deriva-

tives in calculation of density on the wall; and (iii) increase

the overall number of grid points for a better resolution. We

tried all of these methods, and they all improved the accu-

racy; however, none of them and even their combination

were stable for high enough Q, unless we increased the num-

ber of grid points so much that increased the computational

time by several orders of magnitude.

The less obvious, but far superior way to solve this issue

is to calculate the pressure as a derivative of the Helmholtz

free energy F, using the thermodynamic relation @F/

@V¼�p. In the rotating frame, the Helmholtz free energy

for particular species may be written as

Fi;e ¼ �NTln
epr2

0L

N

mT

2p�h2

ð1
0

2xdx exp ue;ix
262QU

� �0
B@

1
CA
(25)

and the total free energy is F¼FiþFeþWE. Taking the par-

tial derivative of F with respect to r0 (again, numerically) we

obtain the desired pressure term. This method turned out

being extremely stable and accurate; since the free energy

has an integral form, it dramatically suppresses all numerical

errors. We benchmarked this method with the exact solution

for the non-charged case and with all three of the obvious

methods (pushed to extreme accuracy).

V. CONCLUSIONS AND DISCUSSION

The analysis presented here shows how the heat capacity

and compressibility of rotating gases is altered when the gases

are ionized. The key finding is that the radial electric field can

indeed act to store energy, but the amount of energy that can

be stored electrostatically, which is a function of the spinning

rate and the mass ratio, is limited. For low spinning rate, and

large mass ratio, the heat capacity is governed by the heavier

species. For very high spinning rates, the heat capacity is gov-

erned by both species, but then the electrostatic energy is

small. It is for intermediate spinning rates that the electrostatic

energy plays an important, but not dominant, role in the heat

capacity. At most, the increase in the heat capacity compared

to the neutral spinning gas is on the order of the increase in

the heat capacity of the spinning gas compared to the non

spinning gas. This logic can be well illustrated in Fig. 6 that

demonstrates how normalized electrostatic WE/T energy

depends on ui and Q. For both parameters, large enough WE

flattens out, therefore its derivatives, which determine the

heat capacity contribution, are small. The sharpest gradients

of WE are at moderate values of ui and Q, where exactly the

heat capacity difference is most noticeable.
FIG. 5. Radial compression function for cv¼ 1.5. Solid: mi/me¼ 10; dashed:

mi/me¼ 100. Black: Q¼ 0; red: Q¼ 4.5; green: Q¼ 40.5, blue: Q¼ 364.5.
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While limited, this further increase in the heat capacity is

still significant. It is hard to predict what applications can

come from the further increase in heat capacity due to the ion-

ization, however, in case of the increase in the heat capacity

due to the spinning alone in neutral gas, an interesting appli-

cation that emerged in the area of internal combustion engines

run at a low temperature to avoid NOx emissions.10 This

made use of the fact that using the spinning gas as a working

body for internal combustion engines increases the theoretical

engine efficiency for the Otto cycle, an effect that is more pro-

nounced at lower temperatures so that it may be worth the

extra complexity in producing the spinning. It remains to be

seen whether the increase in heat capacity of spinning plasma

might be exploited in Z-machine compression, perhaps some-

what along suggestions for exploiting the energy contained in

a turbulent motion11 or coherent wave motion.12

The plasma heat capacity effect calculated here includes

the energy in rotation as well as the self-consistent electro-

static energy. There are other types of turbulent or hydrody-

namic motion that could also play a role of extra energy

storage, or heat capacity, such as the turbulent kinetic energy

that apparently appears under certain conditions in Z-pinch

compression.13,14 Compression of turbulence or vortices can

amplify their energy that leads to increased heat capacity as

well. However, compression should be done faster than the

viscous dissipation time, besides, strictly speaking, the sys-

tem is not in equilibrium, and the heat capacity is no longer

defined as a thermodynamical state function. These extra

stored energy can suddenly dissipate to thermal energy11,15

that open new possibilities to energy transformation and

even fusion approach.

Several generalizations of this new physical effect can

be anticipated. An obvious generalization is to the case of

partially ionized gas or to a mixture of several multi-ionized

species of different masses. A second obvious generalization

is to include an axial magnetic field; the simplest generaliza-

tion is where the rotation and thermal speeds are small so

that only a constant magnetic field needs to be considered,

with the plasma generated magnetic fields being negligible.

The further straightforward generalization is to include both

the plasma diamagnetism as well as the self-generated fields

through the spinning of charge.

In all of the above, we assume that, under compression,

the plasma remains near thermodynamic equilibrium, so that

an equation of state is obtainable just like for the adiabatic

compression of ideal gases. However, even under very slow

compression, there are interesting dynamical effects to con-

sider. First, particularly in the presence of a magnetic field,

there can be instabilities with growth rates possibly on the

time scale of the compression (see, e.g., Refs. 16–18).

Second, even in the absence of the magnetic field, and even

under slow compression, but fast enough compared to the

heat diffusion time, we can anticipate a generalized piezo-
thermal effect. The piezothermal effect for neutral gas results

in a temperature gradient transverse to the direction of com-

pression, but parallel to the gradient of either an external or

internal potential.19 In case of spinning plasma, there are

both centrifugal and electrostatic forces in the radial direc-

tion, so the conditions for the piezothermal effect are met for

compression in the axial direction. However, since these

forces are strongly coupled, it remains to be calculated,

quite, how the piezothermal effect in spinning plasma will

quantitatively express itself.
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