
Influence of nonlinear detuning at plasma wavebreaking threshold
on backward Raman compression of non-relativistic laser pulses

A. A. Balakin,1 G. M. Fraiman,1 Q. Jia,2 and N. J. Fisch2

1Institute of Applied Physics RAS, Nizhny Novgorod 603950, Russia
2Princeton University, Princeton, New Jersey 08544, USA

(Received 12 March 2018; accepted 18 May 2018; published online 5 June 2018)

Taking into account the nonlinear dispersion of the plasma wave, the fluid equations for the three-
wave (Raman) interaction in plasmas are derived. It is found that, in some parameter regimes, the
nonlinear detuning resulting from the plasma wave dispersion during Raman compression limits
the plasma wave amplitude to noticeably below the generally recognized wavebreaking threshold.
Particle-in-cell simulations confirm the theoretical estimates. For weakly nonlinear dispersion, the
detuning effect can be counteracted by pump chirping or, equivalently, by upshifting slightly the
pump frequency, so that the frequency-upshifted pump interacts with the seed at the point where
the plasma wave enters the nonlinear stage. Published by AIP Publishing.
https://doi.org/10.1063/1.5028567

I. INTRODUCTION

In developing the next generation of ultra-high power
(exawatt and even beyond) laser systems, the current state-
of-art technique of chirped pulse amplification (CPA) is
challenged by the low tolerable intensity threshold of its
optimal gratings. Stimulated Raman backward scattering
(SRBS) in plasmas has been suggested as a promising ampli-
fication method to overcome this constraint to achieve inten-
sities 104–105 times larger than the CPA.1 The SRBS
methodology is based on a resonant three-wave interaction,
where a moderately intense, long pump beam (with carrier
frequency x0) transfers its energy to a counter propagating
short seed pulse (at frequency xb) through a Langmuir oscil-
lation, which is excited at the plasma frequency (xp¼x0

– xb) by the resonant beating of the two beams. During the
nonlinear stage of the SRBS, where the pump beam is highly
depleted, the seed front grows together with self-contraction,
resulting in a self-similar amplified seed pulse with a peak
intensity much higher than that of the pump. This process is
known as Raman compression, which has been extensively
studied theoretically2,3 and demonstrated experimentally.4–9

The ideal energy conversion efficiency of the decay is
xb/x0 if each pump photon is converted into a counter-
propagating photon. However, several processes can limit
the efficiency.

First, there are deleterious processes that affect the lasers,
such as the decay of the pump before it reaches the seed,10 the
formation of precursors that interfere with the mediation of the
plasma wave,11 or the forward scattering of the seed pulse.12

The seed pulse also becomes very intense, making it subject to
filamentation instabilities.13–16 These deleterious processes are
often avoided by frequency chirping the pump, together with
imposing density gradients in the plasma to compensate for the
detuning,17 or chirping the seed lasers to compensate for group
velocity dispersion,18 or other ways of making use of the band-
width of the pump or chirping.19–24 This compensation,
namely, that chirping the pump could compensate detuning

due to density gradients, thereby facilitating the Raman ampli-
fication, was demonstrated experimentally.9,25,26

Second, there are processes that affect the mediating
Langmuir wave, such as collisional damping or wavebreak-
ing. The collisional damping occurs in high-density, low-
temperature regimes and is prone to affect the Langmuir
wave more than the laser pump or seed because of the lower
frequency of the former. The wavebreaking limits the effi-
ciency,27–29 making the Raman amplification in lower
density plasmas less efficient that otherwise might have been
more efficient.30 The deleterious effects of both the wave-
breaking and the collisional damping of the Langmuir wave
can be mitigated, in part, by arranging for a high intensity
seed pulse, leading to a quasi-transient regime, where the
intense seed pulse depletes the pump before the Langmuir
wave is extinguished.31,32 The front of the seed pulse is then
amplified and compressed, with the secondary spikes of the
characteristic p-pulse solution being absent.

Our interest here is in processes that affect the mediating
Langmuir wave. In order for wavebreaking to occur, the
Langmuir wave is necessarily intense, which means that its
frequency is subject to detuning nonlinear in its amplitude.
However, the nonlinear detuning could also interfere with
the mediation of the Raman compression effect, which
requires resonance. In fact, as we show here, there are
regimes in which the detuning effect caused by the nonlinear
dispersion of the plasma wave interferes with the Raman
compression at plasma wave amplitude lower than the wave-
breaking threshold. We also show that the deleterious effects
of the detuning can be dealt with similarly by moderate
pump chirping or upshifting the pump frequency in the non-
linear regime.

Note that, in the regime contemplated where detuning
effects occur before wavebreaking happens, the fluid equa-
tions should provide an adequate description since kinetic
effects can then be ignored. Other electron heating effects,
such as Landau damping, will be also negligible for quasi-
monochromatic pulses, with duration larger than the plasma
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period, as contemplated here. The electron dynamics are
then regular and periodic, so that the electron heating is neg-
ligible. With electron heating being negligible, the plasma
need not to be modeled kinetically.

Wavebreaking, besides interfering with the resonant
interaction, also introduces kinetic effects. The breakup of
the Langmuir wave occurs when the electron longitudinal
quiver velocity vosc exceeds the phase velocity vph ’ c

2 xp=
x0 of the plasma wave. In the limit in which the pump is
depleted, namely, the high-efficiency regime of Raman com-
pression, the amplitude of the Langmuir oscillations is deter-
mined by the pump intensity, so that wavebreaking threshold
can be written as a function of the pump amplitude1 as

a0 " abr #
xp

2x0

! "3=2

; (1)

where a0¼ eA0/mc is the normalized vector-potential for the
pump pulse. The conversion efficiency is maximum when
the pump amplitude is a little below the wavebreaking
threshold [Eq. (1)] since the efficiency drops drastically with
increasing pump amplitude in the wavebreaking regime, as
predicted analytically1 and demonstrated numerically.27,28

However, some care should be taken when considering
the nonlinear plasma response for large enough pump ampli-
tudes. The nonlinear response introduces a nonlinear phase
shift for the plasma wave, which effectively detunes the
three-wave resonance conditions. It is shown here that it may
stop Raman amplification even before the plasma wave-
breaking. In the following basic formulas for this new
plasma, nonlinear detuning effects are derived and solved
numerically together with particle-in-cell (PIC) simulation
verification. To counteract this nonlinear detuning by plasma
wave dispersion, it is partially effective to chirp the pump
laser or upshift the pump frequency in the nonlinear stage.

This paper is organized as follows: In Sec. II, we derive
the nonlinear fluid equations. In Sec. III, we identify regimes
wherein the detuning dominates. In Sec. IV, we present
numerical simulations, including PIC simulations that model
kinetic effects, to verify the analytical predictions. In Sec. V,
we summarize our conclusions.

II. FLUID EQUATIONS

The wave equations of the wave packets propagating
along the z-axis with the normalized total vector potential
aR ¼ e

mc ðAx þ iAyÞ for pump and seed pulses have the form

@2aR

@t2
' D?aR '

@2aR

@z2
¼ 'j? ¼ 'bnaR; (2)

where b ¼ x2
p=x

2
0 ¼ 4pNe2=mx2

0, n is the plasma density
normalized by the initial electron density N, D?¼ @xxþ @yy

is the transverse Laplacian, and j?¼ bnaR is the transverse
current caused by electron motion for given vector potential.
The spatial coordinates and time are normalized by the
wavevector and the laser frequency respectively: t¼x0told

and z¼ zoldx0/c.

Using the quasi-one-dimensional hydrodynamic approx-
imation for a laser pulse much wider than the plasma period,
c/xp, the plasma response can be described by

@n

@t
þ @nv
@z
¼ 0; (3a)

@v
@t
¼ @

@z
/' Tn' v2

2
' jaRj2

2

! "
; (3b)

@2/
@z2
¼ bðn' 1Þ: (3c)

Here, v is the electron velocity normalized to the speed of
light c, T ¼ 3v2

Te=c2 is the normalized electron temperature,
and /¼ eU/mc2 is the normalized scalar potential.

For counter-propagating laser pulses, the overall vector
potential can be written in the form aR ¼ aeiðtþzÞ þ beiðt'zÞ,
where a and b are the envelope amplitudes of the pump
wave (which propagates in the negative z direction) and the
seed wave (which propagates in the positive z direction),
respectively. The envelope approximation holds for laser
intensities smooth enough compared to the wavelength scale,
namely,

j@taj; j@zaj( jaj( 1; j@tbj; j@zbj( jbj( 1:

In this configuration, the plasma response is a beat-wave,
with spatial modulation proportional to e2iz. Thus, the elec-
tron density and velocity could be written as the composition
of the averaged terms rapidly varying in space

n ¼ 1þ ðf e2iz þ f2e4iz þ c:c:Þ;
v ¼ dvþ ðqe2iz þ q2e4iz þ c:c:Þ:

(4)

Here, the amplitude of the beat-wave is assumed to be small,
i.e., jf j; jqj; jf2j; jq2j / jaj( 1. Essentially, wavebreaking is
caused by the nonlinear term @zðv2=2Þ ¼ v@zv, which is a
kind of quadratic nonlinearity as f 2, q2( 1. Since the qua-
dratic nonlinearities make no contribution to the resonant
response in the first order analysis of perturbation theory,
here we particularly keep the second order beat-waves (terms
proportional to e4iz) to make the second order perturbation
analysis.

Note that the effect on the density of quasi-static terms
(such as intensity jaj2 or averaged current fq*þ qf*) will
be exponentially small [proportional to c=xp

exp ð'xp=cÞ ( 1] in the parameter region of interest for
three-wave decay. The smallness of these effects arises
from the smoothness of all pulse envelopes on the scale of
the plasma period and the smallness of their amplitudes in
comparison to relativistic ones. However, to satisfy Eq.
(3a), the nonzero quasi-static velocity dv introduced in Eq.
(4) can be put as

dv ¼ 'ðfq) þ qf )Þ: (5)

Let us analyze equations for the rapidly oscillating
plasma response. First of all, inserting the plasma density
response, Eq. (4), into the Poisson equation, Eq. (3c), the
scalar potential expression is obtained as
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/ * ' b
4

f e2iz ' b
16

f2e4iz þ c:c: (6)

Using the same procedure, inserting (4) into Eq. (3a) and Eq.
(3b), the equations for the second order terms f2 and q2 are
obtained as the form of a linear oscillator

i
@f2

@t
¼ 4q2 þ 4fq; i

@q2

@t
¼ b

4
þ 4T

! "
f2 þ 2q2;

with eigenfrequency
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bþ 16T
p

under the “external force”

4fq; 2q2 / e2ixf t at frequency 2xf. Here, xf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bþ 4T
p

is

the frequency of the plasma wave. Since the solutions for f2
and q2 have to be of the same frequency, i.e., f2; q2 / e2ixf t,
the non-resonant frequency; We can replace @=@t! 2ixf

for the quasi-monochromatic plasma response. Thus, the
algebraic equations for f2 and q2 are

'2xf f2 ¼ 4q2 þ 4fq;

'2xf q2 ¼
bþ 16T

4
f2 þ 2q2;

with the following solutions:

f2 ¼
8q2

3b
'

8fqxf

3b
; (7a)

q2 ¼
bþ 16T

3b
fq'

4xf

3b
q2: (7b)

Combining Eqs. (3)–(7), we then can derive the equations
for first order plasma response f, q

i _q ¼
x2

f

2
f þ ab) ' 2f )q2 ' 4b' 32T

3b
jqj2f '

8xf

3b
jqj2q; (8a)

i _f ¼ 2qþ 16

3b
jqj2q' 4b' 32T

3b
jf j2q' 2f 2q)

'
8xf

3b
ð2jqj2f þ f )q2Þ: (8b)

Here, we emphasize that the nonlinear terms are respon-
sible for nonlinear detuning of plasma wave approaching
wavebreaking. These nonlinear terms are retained despite
their seemingly smallness (proportional to jaj3 due to jf j; jqj;
jbj / jaj( 1) compared to the Raman term (ab) / jaj2)
since these terms are inversely proportional to another small
parameter b( 1. It turns out [see Eq. (25)] that for rather
rare plasma b5=4 + jaj, the magnitude of these nonlinear
detuning terms can be the same order as the Raman term
ab*.

Equation (8) is in the form of equations for a complex-
valued nonlinear oscillator with eigenfrequencies 6xf. There
are two kinds of solutions: one with positive eigenfrequency
f ; q / eþixf t and the other with negative eigenfrequency
f ; q / e'ixf t. This can be seen immediately if we rewrite Eq.
(8) for quantities q 6 xf f/2. Note that the “external force”
has only positive frequency (ab) / eþixf t), which corre-
sponds to the redshift of 3-wave coupling. As result, one of
the equations

i@t qþ
xf

2
f

! "
¼ xf qþ

xf

2
f

! "
þ ab) ' 4jqj2f

' 10

3
q2f ) ' xf f

2q) ' 2xf

3
jf j2q

' 16T

3b
q2f ) ' xf jf j2q
$ %

becomes algebraic and leads to the relationship between f
and q

qþ
xf

2
f * ' ab)

2xf
: (9)

Substituting this relationship into the equation for q – xf f/2

i@t q'
xf

2
f

! "
¼ 'xf q'

xf

2
f

! "
þ ab) ' 2

3
q2f )

þ 4

3
jqj2f þ xf f

2q) þ 2xf

3
jf j2q' 16xf

3b
jqj2q

þ 16T

3b
4jqj2f þ q2f ) ' xf jf j2q
$ %

and using the smallness jab)j(
ffiffiffi
b
p
jf j and smoothness of

external force ab*

_q * '
xf

2
_f ' iab)

2
;

we obtain the equation for plasma wave f

@f

@t
¼ ixf f þ

i

xf
ab) þ i

12Txf

b
jf j2f : (10)

A similar equation was employed in Refs. 33–35.
The equations for laser pulses a and b are obtained

straightforwardly by keeping the first nonzero derivative on
the envelope equations [Eq. (2)]

@a

@t
' @a

@z
¼ ib

2
ðaþ bf Þ ' i

2
D?a; (11)

@b

@t
þ @b

@z
¼ ib

2
ðbþ af )Þ ' i

2
D?b: (12)

By introducing the dimensionless time s ¼ ct # ta0

ffiffiffiffiffiffiffiffiffiffi
xf=2

p

(c ¼ a0

ffiffiffiffiffiffiffiffiffiffi
xf=2

p
is the linear Raman growth rate) and amplitudes

for the pump a ¼ a0!ae'ibt=2, seed b ¼ a0
!be'ibt=2'ixf ðt'zÞ, and

for plasma wave f ¼ i
ffiffiffi
2
p

a0
!f eixf t=x3=2

f , Eqs. (10)–(12) can be

rewritten in the traditional form of 3-wave Raman coupling
equations

@!a

@s
' @

!a

@z
¼ '!b !f ; (13a)

@ !b

@s
þ @

!b

@z
¼ !a !f

)
; (13b)

@!f

@s
¼ !a !b

) þ iBj!f j2 !f : (13c)

Here, B ¼ 24
ffiffiffi
2
p

Ta0=bx5=2
f . Thus, we obtain the new cubic

nonlinearity term iBj!f j2 !f —the nonlinear detuning results
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from the nonlinear dispersion. Then, we will analyze its
effects on Raman amplification.

III. IDENTIFICATION OF REGIMES

From Eq. (13c), we can see that including the cubic non-
linear term basically introduces a nonlinear frequency shift
(Bj!f j2) to the plasma wave, which detunes the three-wave
coupling process. In the following, we roughly estimate this
detuning effect on the final maximum amplitude of the out-
put seed and the compression efficiency.

In the nonlinear stage of Raman amplification, the
plasma wave amplitude f is almost constant. It is thus reason-
able to expect it to be continuously constant as the plasma
wave amplitude approaches the wavebreaking regime. This
constant plasma wave amplitude assumption f* fmax now
facilitates the estimation of output seed pulse properties.

In particular, the maximal seed amplitude bmax can be esti-
mated from Eq. (12), which for constant f¼ fmax takes the form

_b / b
2

a0fmax ) bmax / ba0fmaxL ¼ b3=4fmaxD: (14)

Here, D¼ cL, L is the interaction length in the nonlinear
stage. Since the leading edge of the seed is not influenced by
plasma wave saturation, the final seed pulse duration should
be the same as that in p-pulse solution,2 i.e.,

s / 1

Lc2
/ 1

La2
0

ffiffiffi
b
p : (15)

Thus, the compression efficiency g, namely, the ratio of out-
put seed energy to the input pump energy, is estimated as

g ¼ 1

La2
0

ð
jbj2dt * b2

maxs
La2

0

/ b3=2f 2
max

a2
0

: (16)

Now note that, for the well-known ideal p-pulse solu-
tion,1 the amplitude of the plasma wave at the highly devel-
oped, nonlinear stage (bmax > a0) can be put as

xpcfmax ’ a2
0 ) f p

max *
a0

b3=4
: (17)

Inserting Eq. (17) into Eqs. (14) and (16), the maximum out-
put seed amplitude and compression efficiency in the p-pulse
regime are estimated as

bp
max / b1=4a2

0L ¼ a0D; gp ¼ const; (18)

which agrees with the exact analytical solution.
We now apply these formulas to the classical wave-

breaking regime,2 where the electron quiver velocity in the
plasma wave exceeds the plasma wave phase velocity.
Taking into account the relation equation (9), this condition
can be rewritten as

vosc ¼ jqj ¼
ffiffiffi
b
p

2
f

''''

'''' " vph ¼
xp

2k0c
¼

ffiffiffi
b
p

2
) f wb

max ¼ 1: (19)

Thus, it is demonstrated that the wavebreaking occurs only
when density perturbations exceed the background plasma

density. It is obvious that the approximation equation (4)
becomes inapplicable for such large perturbations and the
fluid model [(10)–(13)] also becomes invalid. Again, insert-
ing Eq. (19) into Eqs. (14) and (16), the maximum amplitude
and efficiency in the classical wavebreaking regime are esti-
mated as

bwb
max / ba0L ¼ b3=4D; gwb / b3=2

a2
0

; (20)

i.e., the efficiency decreases rapidly with increasing pump
amplitude a0.

Finally, we study the detuning effect of the nonlinear
terms. As indicated in Eq. (10), the nonlinear detuning leads
to the nonlinear frequency shift (Bj!f j2), which can stop the
three-wave coupling if this frequency shift exceeds the
Raman growth rate

12T

b
xf jf j2 " c ) f nl

max *

ffiffiffiffiffiffiffiffiffiffiffiffiffi
cb

12Txf

s

,
ffiffiffiffiffi
a0
p

b1=8
( 1: (21)

Note that the quantity 12T/b is of order of unity for typical
plasma parameters of an electron temperature of about 15 eV
and a plasma density of about 1/100 of critical one. This
indicates that the maximum value of density perturbations
f nl
max is still smaller than the background plasma density when

a0 < b1=4!1. Thus, the traditional (kinetic) wavebreaking
will never occur under Raman compression with not too
large pump amplitudes a0< b1=4 due to the smallness of the
Raman growth rate compared to the plasma wave frequency
(c(xp). Inserting Eq. (21) into Eqs. (14) and (16) gives

bnl
max /

b11=8

ffiffiffiffiffiffiffiffi
12T
p a3=2

0 L ¼ b9=8

ffiffiffiffiffiffiffiffi
12T
p a1=2

0 D;

gnl / b9=4

12a0T
, b5=4

a0
:

(22)

Using the dimensionless normalizations in Eq. (13), the max-
imum amplified seed amplitude and the efficiency become

!b
nl
max / !f

nl
maxD /

Dffiffiffi
B
p ; gnl / 1

B
: (23)

We should note that for the typical plasma utilized in the
Raman amplification experiment with b¼ 0.002…0.01 and
pump durations less than tens of picoseconds, the electron
temperature will be about the ionization threshold
15…30 eV, i.e., the parameter 12T/b is among 0.1…1.

According to relation equations (18), (20), and (22), we
plot the dependence of the output seed maximum amplitude
on the pump amplitude as shown in Fig. 1. The centering
vertical dotted line located at the intersection of the blue
[Eq. (18)] and green lines [Eq. (20)] defines the traditional
wavebreaking criteria [Eq. (1)]

a0 " b3=4: (24)

However, as shown by the red line [Eq. (22)], in the region
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b9=4

12T
+ a0 +

12T

b3=4
; (25)

the nonlinear detuning effect is dominant, limiting the maxi-
mum output seed amplitude below the traditional results. In
other words, the nonlinear detuning effect appears at a much
smaller pump amplitude threshold than does the wavebreak-
ing one.

From the above simple analysis, several preliminary
conclusions can be made. First, Eq. (21) indicates that the
fluid dynamic equations are applicable nearly everywhere
except in the region where the growth rate is larger than the
plasma frequency, which leads to a density fluctuation f nl

max

that exceeds the background density. Second, in considering
the nonlinear detuning effect of plasma waves, the highest
amplification efficiency is reachable only for lower pump
amplitude (a0 , b5=4) rather than the wavebreaking thresh-
old (a0 , b1=4). Moreover, with higher pump amplitude, the
efficiency decreases linearly in the pump amplitude ðgnl

/ a'1
0 Þ rather than quadratic in the pump amplitude

ðgwb / a'2
0 Þ.

IV. NUMERICAL SIMULATIONS

We use the kinetic simulations and numerical fluid
model simulations to compare with the above analytical pre-
dictions. First, we employ the 1D3V particle-in-cell (PIC)
code EPOCH36 to verify our scaling law [Eq. (22)]. In these
simulations, 64 cells per wavelength (k0¼ 0.8 lm is the
pump wavelength) are used with 25 particles per cell. The
plasma length is fixed at 4 mm, with an electron number den-
sity of 4.4 - 1018 cm'3 (b¼ 1/400). The pump intensity is
varied over the range from 1014 to 5- 1015 W/cm2, with a
constant temporal shape. The seed intensity is fixed at 1014

or 1015 W/cm2, with a temporal Gaussian shape and a
FWHM duration of 30 fs. All the parameters are specifically
selected to be in the range of Eq. (25) where the detuning

effect is dominant. The results of the relation of the maxi-
mum output seed amplitude with the pump amplitude are
shown in Fig. 2, which indicates good agreement with the
analytical prediction [Eq. (22)], bnl

max / a3=2
0 L, and validates

the nonlinear dispersion plasma wave equation [Eq. (10)].
We numerically solve the modified 3-wave equations

[Eq. (13)]. Typical output seed structures are shown in Fig.
3(a). They are quite similar to the p-pulse seed solutions but
with lower maximum amplitude and much smaller “tail.”
The larger the detuning effect (larger coefficient B), the
lower the maximum amplitude and the smaller the “tail”
since the detuned plasma wave limits the energy transfer
between the seed and pump in the tail region. The depen-
dence of the maximal plasma wave amplitude and the energy
transfer efficiency on the initial seed amplitude and the coef-
ficient B resulting from the numerical simulations are shown
in Fig. 4. We see good agreement between the excited
plasma wave amplitude and efficiency on one hand and the
estimates [Eq. (23)] in the small seed amplitude region
(b0< a0) on the other hand. However, in the higher seed
amplitude cases (b0> a0), both the plasma wave amplitude
and the amplification efficiency decrease much more slowly
with increasing detuning than rates predicted by Eq. (23).
This reminds us of the short energetic seed pulse used in the
quasitransient regime.31

Note that the suppression effect of the nonlinear detun-
ing of the plasma wave can be partially compensated by
chirping the pump pulse, i.e., using a ¼ a0 exp ð'iqc2t2Þ.
Here, q is the chirp coefficient, which was imagined to be in
the range q* 0.1…0.2 for the purpose of preventing amplifi-
cation by noise.2 The simulations demonstrate that, for not
so large a plasma wave detuning (B+ 100), a proper pump
chirp can delay the phase detuning and lead to higher maxi-
mum output seed amplitude. For example, the comparison
among Figs. 3(a)–3(e) shows strong output seeds, the inten-
sity of which can even approach that of the ideal p-pulse
case shown in Fig. 3(a) and can be obtained for the B¼ 30
and B¼ 100 cases with the pump chirping coefficients
q¼ 0.3 and q¼ 0.4, respectively. On the other hand, the
pump chirping provides limited improvement in the case of
stronger plasma detuning B" 300, while the pump chirping

FIG. 1. Typical dependence on maximal output seed amplitude bmax depend-
ing on pump amplitude a0. There are 3 segments for formulas Eq. (18) (left,
blue), Eq. (22) (middle, red), and Eq. (20) (right, green) respectively. Dots
show thresholds between them. Dashed lines show bmax according to wave-
breaking. The yellow color denotes the region with the nonlinear detuning
dominating Eq. (25). This particular figure is plotted for x/xp¼ 20 (b¼ 1/
400) and Te¼ 35 eV (T¼ 0.0002).

FIG. 2. The result of PIC simulations for maximal seed amplitudes depend-
ing on pump amplitude a0. Simulations were done for different initial seed
intensities Ib¼ 1014 W/cm2 and Ib¼ 1015 W/cm2. The straight line is analyti-
cal prediction [Eq. (22)].
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provides little improvement for the stronger plasma detuning
B¼ 300 case.

Further detailed parameter scans of the dependence of
the output seed amplitude on the plasma wave detuning and
pump chirping, as shown in Fig. 3(f), demonstrate that, for
stronger nonlinear plasma wave dispersion, the phase detun-
ing is so fast that the further increase in the chirp coefficient
q could not compensate it. It can also be observed from Fig.
3(f) that the nonlinear detuning suppresses the output seed
intensity when the nonlinear plasma wave dispersion coeffi-
cient B " 20 and the pump chirping is effective for the
plasma wave detuning coefficient in the range 20!B!100.

In addition, the noise scattering is still prevented by the
plasma wave detuning ðBj!f j2Þ even with the proper pump
chirp.

Another simple way of correcting this nonlinear detun-
ing effect is to use a frequency-upshifted pump in the regime
when the plasma wave amplitude is large enough and detun-
ing takes place. According to Eq. (21), this nonlinear fre-
quency shift is limited to c, and thus, by theoretically
upshifting the pump frequency dx with the order of c in the
nonlinear regime where the plasma wave amplitude almost
maintains the maximum, the three-wave coupling remains
resonant. Here, as an example, using the 1D PIC simulations,

FIG. 3. Typical seed profiles for Eq. (13) for different values of plasma wave detuning coefficient B without (a) and with (b) the chirp of the pump pulse. The
initial seed duration is cs0¼ 1/8, and its amplitude is b0/a0¼ 0.1. Dots show the p-pulse solution (B¼ 0) for the same seed. (f) The dependence of maximum
output seed amplitudes on the values of plasma wave detuning coefficient B and pump chirping coefficient q.

FIG. 4. The maximal plasma wave
amplitude and the efficiency depending
on initial seed amplitude b0 and param-
eter B for different initial seed dura-
tions: cs0¼ 1/8 and cs0¼ 1/64. Thick
lines denote analytical estimation [Eq.
(23)]. The filled red area denotes the
region where g> 50%.
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we compare the intensities of the output seeds amplified by
two-pulse-like pumps where the second frequency-shifted-
pump pulse sets in at the beginning of the nonlinear regime.
The asymmetry of the output seed intensities in cases with
frequency-downshifted-pumps and cases with frequency-
upshifted-pumps for all the three groups (with pump ampli-
tude a0¼ 0.01, 0.015, and 0.02) as shown in Fig. 5 demon-
strates the afore-discussed frequency-upshift of the plasma
wave caused by the plasma wave dispersion. Meanwhile, we
note that the optimum frequency upshift for the secondary
pump pulse varies between Dx¼ c…3c for different pump
amplitudes.

V. SUMMARY

From first principles, we derived the modified Raman 3-
wave interaction equations, taking into account the influence
of nonlinear dispersion of the plasma wave. It is found that,
in certain regimes, rather than wavebreaking, the dominant
effect of the nonlinear dispersion is nonlinear detuning,
which appears as a simple cubic nonlinearity [see Eq. (10)].
In the process of Raman compression, this nonlinear detun-
ing can limit the plasma wave to amplitudes noticeably
below the wavebreaking threshold. The estimates of the
maximum output seed amplitude and Raman compression
efficiency, taking into account plasma wave detuning, are
obtained for low seed amplitude b0( a0. The kinetic PIC
simulation results confirm these simple estimations. We also
numerically demonstrate that proper pump chirping or,
equivalently, pump-frequency-upshift in the nonlinear stage
helps to counteract this nonlinear detuning effect.
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