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For hot spots compressed at constant velocity, we give a hydrodynamic stability criterion that
describes the expected energy behavior of non-radial hydrodynamic motion for different classes of
trajectories (in qR — T space). For a given compression velocity, this criterion depends on qR, T,
and dT=dðqRÞ (the trajectory slope) and applies point-wise so that the expected behavior can be
determined instantaneously along the trajectory. Among the classes of trajectories are those where
the hydromotion is guaranteed to decrease and those where the hydromotion is bounded by a satu-
rated value. We calculate this saturated value and find the compression velocities for which hydro-
motion may be a substantial fraction of hot-spot energy at burn time. The Lindl (Phys. Plasmas 2,
3933 (1995)] “attractor” trajectory is shown to experience non-radial hydrodynamic energy that
grows towards this saturated state. Comparing the saturation value with the available detailed 3D
simulation results, we find that the fluctuating velocities in these simulations reach substantial frac-
tions of the saturated value. Published by AIP Publishing. https://doi.org/10.1063/1.5026413

I. INTRODUCTION

Non-radial hydrodynamic motion in the hot spots of
inertial-fusion experiments may be seeded by interfacial
instabilities (e.g., Rayleigh-Taylor or Richtmyer-Meshkov
instabilities) or by implosion asymmetry generated by a vari-
ety of possible sources.2,3 More broadly, other mechanisms
capable of generating non-radial and/or turbulent flow may
be at play in compression experiments; experiments in gas-
puff Z-pinches suggest significant, and likely turbulent, non-
radial hydrodynamic motion at stagnation,4–6 which may be
generated and carried along during the compression itself.
Here, non-radial hydrodynamic motion refers to the motion
not associated with the compression itself; this motion may
be regarded as “wasted energy” to the extent it does not con-
tribute to heating in the stagnation process and may also
degrade performance,3,7–9 for example, through inducing
mix of colder or non-fuel capsule materials into the hot-spot.
On the other hand, it may be possible to design a new type of
fast-ignition scheme that uses large quantities of such hydro-
dynamic motion to spark fusion or a burst of X-rays.10,11 It is
also the case that large hydrodynamic motion affects the
interpretation of spectroscopic measurements, beyond
Doppler-broadening effects; density fluctuations may be
induced, which must be included self-consistently for a cor-
rect treatment.6

In either case, whether one is interested in reducing or
utilizing such hydrodynamic motion, it is difficult to predict
how much hydrodynamic motion will be present in a given
experiment, or even, grossly, whether one experiment would
be expected to have more or less of such motion than another
experiment. Currently, determining the expected amount of
non-radial hydrodynamic motion in an implosion requires
very computationally expensive and time consuming three-
dimensional (3D) simulations (e.g., Refs. 2, 3, and 12–14).

Although such simulations, as the most inclusive accounting
for the implosion dynamics, will always have their place, it
is desirable, due to their expense, to also develop less expen-
sive methods that can serve as a first level of examination.
This first level of examination can then be used to help to
determine when detailed 3D modeling is more likely needed
from a perspective of hot-spot hydrodynamics. It is also
desirable to develop better intuition about the behavior of
non-radial hydrodynamic motion in such experiments from a
design perspective.

As a step towards these ends, a model (ordinary differ-
ential equation) that predicts the (turbulent) non-radial
hydrodynamic motion (hydromotion) for plasma undergoing
3D, constant-velocity compression has recently been devel-
oped.15 Other modeling efforts provide more details on the
influence of initial conditions.16 As a separate, parallel
approach, the present work develops a stability criterion for
hot-spot hydromotion that gives intuition and predictions as
to which trajectories (in qR vs T space) are more or less
likely to have substantial hydromotion. Further, we give a
saturation level for the hydromotion on certain trajectories
and explain how, for many trajectories, this can be regarded
as a limit on how large the hydromotion could possibly get.
The stability and saturation results are found to compare
favorably with limited accessible results in a comparison to
detailed 3D simulations,2,14 carried out in Sec. VI. All of this
is done in the context of the treatment outlined in Sec. II;
because the treatment does not necessarily include all possi-
ble important effects, the present results may be most useful
from an intuitive and gross-estimation sense, rather than as
an exact demarcation of stability boundaries or saturation
levels.

Throughout this work, we will use TKE (turbulent
kinetic energy) as a shorthand to refer to non-radial hydrody-
namic motion (hydrodynamic motion in the frame moving
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with the compression). For the sake of stability criterion,
whether or not the flows are truly “turbulent” (have a well-
developed inertial range) is not particularly important (the
analysis does however assume isotropy and homogeneity).
Similarly, saturation can occur for quite modest Reynolds
numbers (simulations in Ref. 15 can saturate at large scale
Reynolds numbers on the order of 100). The word “bulk” in
the title is meant to emphasize that the effects examined here
are due to the volumetric compression; in particular, no
interfacial instability is necessary, although such instabilities
are one possible seed for non-radial hydrodynamic motion.
Although we consider the hot spot, we do not mean to imply
a temperature requirement for the effects considered here.

The compression velocity in the present work is
assumed to be instantaneously constant. By this, we mean
that effects from acceleration on the bulk hydromotion are
not included; no acceleration is needed for the growth of the
hydromotion in the compressions considered here. The
results can still be applied to a compression where the implo-
sion velocity changes over the course of the implosion by
recalculating for the new velocity as necessary (keeping in
mind that acceleration impacts are still neglected).

This work is organized as follows: Section II describes
the model underlying the present work. Next, Sec. III gives
the stability and saturation results for a general viscosity.
Section IV specializes the results to the (unmagnetized, par-
allel) Braginskii viscosity; picking a specific form for the
viscosity then allows the results to be displayed visually in T
vs qR space. The stability and saturation results are dis-
played in concert with a simple hot-spot model in Sec. V,
which provides further context for them. In Sec. VI, we com-
pare the stability and saturation results with the predictions
of detailed simulations of a National Ignition Campaign
(NIC) experiment2,14 and discuss caveats and restrictions for
the present treatment. Finally, Sec. VII summarizes the main
results and conclusions.

II. TREATMENT

To examine the TKE behavior in the hot spot, we con-
sider the isotropic, 3D, compression of a plasma modeled as
a fluid. The fluid equations are taken to be the Navier-Stokes
(NS) equations, with a viscosity that depends on time (equiv-
alently, compression ratio). The plasma flow in the hot-spot
is broken into two components, a mean compressive flow
towards the origin, v0, and the fluctuating flow, v0. The com-
pressing flow is taken as given (enforced), while we will
solve for the evolution of the fluctuating flow from some ini-
tial state. The compressing flow is

v0 ¼
_L

L
x; (1)

where L is defined

LðtÞ ¼ L0 $ 2Ubt: (2)

The overdot in Eq. (1) indicates the time derivative; note that
_L is negative so that the flow v0 is compressing (has negative

divergence). In Eq. (2), L0 is the initial side length of the

domain and Ub is a compression velocity. The effect of the
flow v0 can be described as follows: A cube of side length
L0, placed in the flow v0 at t¼ 0, and advected by the flow,
will remain a box and shrink in time, with the side length
given by L(t) in Eq. (2). The (constant) velocity of the box
sides is then Ub. The (linear) compression ratio, !L, is given
by !L ¼ L=L0.

We will further assume that the fluctuating flow, v0, is
low (zero) Mach so that we can ignore sound waves and any
density perturbations. In this case, v0 is incompressible
(divergence free). Since we are ignoring density fluctuations,
the continuity equation shows that the density, q, increases
as expected for a 3D isotropic compression

qðtÞ ¼ q0

!L
3
: (3)

Similarly, we will assume that the hot-spot temperature is
spatially uniform, allowing the temperature to only depend
on the compression ratio (time), T ¼ Tð!LÞ.

With these assumptions and working in a frame moving
with the mean compressive flow, the NS momentum equa-
tion can be written as

@V

@t
þ 1

!L
V &rV$ 2Ub

L
Vþ

!L
2

q0

rP ¼ l0

q0

!lð!LÞ!Lr2V: (4)

Here, V is the fluctuating velocity rewritten in the moving
coordinates, VðX; tÞ ¼ vðx; tÞ, where the transformation to
the moving frame is x ¼ !LX. The dynamic viscosity, l, is
written as l0!lð!LÞ, where !lð!L ¼ 1Þ ¼ 1, so that the initial
viscosity is l0. The viscosity is described further below. A
more complete derivation of the preceding is given in the
Appendix of the study by Davidovits and Fisch11 although
we use slightly different assumptions surrounding the tem-
perature behavior here (which enters through the viscosity);
very similar models for compressing gas/fluid have been
used elsewhere as well.17–23

In general, the viscosity l may depend on the properties
of the plasma, for example, the temperature or the charge
state, Z. As such, the viscosity can vary during the compres-
sion. Without losing generality, we can say that for a given
experiment or simulation, the viscosity is some (fit) function
of compression, lð!LÞ ¼ l0!lð!LÞ.

Later, we will present some results where we have spe-
cialized to the (parallel, unmagnetized) Braginskii viscosity.
The Braginskii viscosity depends on the plasma charge state
and temperature as l ' T5=2=Z4. As with the overall viscos-
ity, generally speaking, for any given compression, the
charge state of the hot spot could be written as some function
of compression Z ¼ Zð!LÞ; this could be achieved through a
model or regarded as a fit to experimental or simulation
results. The same can be said for the temperature. Then, the
viscosity can be regarded as a function of !L.

III. GENERAL STABILITY AND SATURATION

The basic result underlying the stability criterion is
derived in the study by Davidovits and Fisch,11 Sec. III.
Here, we discuss the application of this result to hot-spot
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TKE and recast the result in a form that is more useful for
this purpose.

The energy density of the fluctuating flow is E ¼ q0V2=2.
The total energy, ET, is then the integral of the energy density
over the domain or, equivalently, integrated over all Fourier
modes

ET ¼
ð1

kmin

dkEðk; tÞ; (5)

where the minimum wavenumber is set by L0, kmin ¼ 2p=L0.
An equation for the time evolution of this total energy can be
written making use of the momentum equation, Eq. (4). By
demanding that all Fourier modes of the TKE are damped
(linearly), Davidovits and Fisch11 arrive at a condition that is
sufficient to guarantee that the total hot-spot TKE will
decrease as the hot-spot is compressed. Written using the
dynamic viscosity, this TKE decrease condition is

UbqL

2l
< p2: (6)

Note that this condition is derived for a cubic domain, while
hot-spots are typically spherical; this will introduce some
small error, but the analysis, in using a limited model, is
intended only as a general guide anyway.

The lefthand side of Eq. (6) is essentially a Reynolds
number, with the velocity being the compression velocity
and the length scale half the domain length (the “radius,”
ignoring geometric factors). In general, this Reynolds num-
ber will change as the compression progresses; the areal den-
sity qL=2 will increase (as !L

$2
), while the viscosity may

increase or decrease. The lefthand side of Eq. (6) will be a
constant for the special case where !l ¼ !L

$2
, in which case

the viscosity compression dependence cancels the depen-
dence on the areal density. In this case, the inequality will be
either satisfied or not satisfied for the entire compression.

If the inequality, Eq. (6), is satisfied for the full duration
of the compression, !L 2 ½1; !Lfinal), then we can say that the
final TKE will be lower than its initial value, as the TKE
decreases throughout the compression. If the viscosity
behavior for a compression is known, from a model, simula-
tion, or experiments, this gives a simple (energy) “stability”
criterion. Note that the condition applies point-wise along
the compression; if it is satisfied at some values of !LðtÞ, but
not others, this determines when during the compression the
TKE is guaranteed to decrease. When the condition, Eq. (6),
is not satisfied, the TKE may increase, decrease, or remain
the same, depending on its present value. That is, when the
inequality is not satisfied, the TKE behavior is not uniquely
determined by the inputs of Eq. (6).

If l depends only on the hot-spot temperature (and/or
the areal density), then the TKE decrease condition, Eq. (6),
depends only on qL and T for a given Ub. In this case, the
TKE decrease condition can be plotted as a “stability
boundary” in qR$ T space. This will be done for the
Braginskii viscosity in Sec. IV.

In the event that !lð!LÞ ¼ !L
$2

and Eq. (6) is not satisfied,
it can be shown that the TKE will change under compression

towards a saturated value, which it will reach for a sufficient
amount of compression. The turbulent energy density in this
saturated state is11

Esat ¼ 1:9qU2
b: (7)

Note that the total hot-spot mass is conserved in the present
model, which means that the saturated total TKE is in fact a
constant for fixed Ub; the total TKE, ET, is ET / r3Esat

/ r3qU2
b / mhotspotU2

b , with mhotspot being the hot-spot mass.
As an example, when Ub ¼ 3* 107 cm/s, a hot-spot with a
mass of 800 ng has a saturated TKE of '140 J.

Consider a hot-spot undergoing compression for which
!lð!LÞ ¼ !L

$2
and the TKE decrease condition, Eq. (6) is not

satisfied. In this case, if the TKE density is larger than Esat,
the TKE will decrease with compression. On the other hand,
if the TKE density is below this value, it will increase
towards the saturated value as the hot-spot is compressed. A
source for TKE outside the present model is needed for the
TKE density to exceed Esat; in other words, if the turbulent
velocity is governed by Eq. (4), the TKE density for com-
pressions with !lð!LÞ ¼ !L

$2
will not exceed Esat.

For compressing hot-spots where the viscosity growth
with compression is stronger than !lð!LÞ ¼ !L

$2
(say grows as

!L
$n

with n> 2), we suggest (but have not proven) that the
TKE energy density will be bounded above by Eq. (7). This
follows from the arguments underlying the bound in the
study by Davidovits and Fisch;24 essentially, a stronger vis-
cosity growth should not lead to less dissipation than in an
identical compression with a weaker viscosity growth. It
may also be the case that even for weaker viscosity growth
(say n< 2 in the previous expression for !l), the TKE density
will not exceed Esat; this is the result obtained using a TKE
model.15

Since Esat acts as either a saturated or bounding TKE
density during hot-spot compressions, depending on the rate
of viscosity change with compression, it is instructive to
compare it with the hot-spot thermal energy density. This
tells us, in a sense, how “bad” or, in other words, how large
the TKE could possibly get, as a fraction of hot-spot energy,
assuming that we start with the TKE small and the TKE is
forced only by the volumetric compression itself (as it is
here). Using Eq. (7), it is easy to calculate the ratio of ther-
mal energy density, Eth, to TKE density. Assuming a 50/50
deuterium-tritium plasma and counting the electron thermal
energy, the thermal energy density is Eth ¼ 3nkbT, with n
being the (combined) ion number density. Then, using
q ¼ 2:5mpn, with mp being the proton mass, the ratio can be
written

Eth

Esat
¼ 0:67

3* 107

Ub

" #2

TkeV: (8)

Here, Ub is in cgs units and T is in kilo-electron volts. Given
a compression velocity, there is some temperature, T+, for
which Eth ¼ Esat. This temperature is plotted (as a horizontal
line in T vs qR space) in Fig. 1 for a few different compres-
sion velocities. For temperatures an order of magnitude
above this value (T ' 10T+), the thermal energy will

042703-3 S. Davidovits and N. J. Fisch Phys. Plasmas 25, 042703 (2018)



dominate even saturated TKE, thus guaranteeing that within
the current treatment, the TKE is a small fraction of hot-spot
energy. For a typical compression velocity, Ub ¼ 3* 107

cm/s, we find T+ , 1:5 keV. Then, for a capsule reaching an
ignition temperature of '10 keV, the thermal energy will
necessarily exceed the TKE (again, if the TKE starts below
Esat), but the TKE can, in theory, still be a substantial frac-
tion ('13%) of hot-spot energy. The energy ratio, Eq. (8), is
quite sensitive to compression velocity, and for lower veloc-
ity implosions, T+ quickly moves into 10 s or 100 s of eV.
Note that even if the TKE is small compared to thermal
energy, it could still have important effects.

In Sec. IV, we specialize the results in this section to the
Braginskii viscosity, showing how the stability results can be
applied visually in T vs qR space. Then, in Sec. V, we pre-
sent the stability and saturation results in the context of a
simple hot-spot model, such as the one in the study by Lindl1

or Atzeni and Meyer-ter-Vehn.25 This allows for more con-
crete discussion. As part of that presentation, we show that
the case !lð!LÞ ¼ !L

$2
is not just a curiosity; in the simple

model, it is the viscosity dependence for a hot-spot with
mechanical heating balancing electron thermal conduction.
The stability and saturation results could similarly be spe-
cialized for other viscosity models.

IV. BRAGINSKII VISCOSITY STABILITY AND
SATURATION

While the TKE decrease condition, Eq. (6), is useful, we
can get much more insight into hot-spot TKE after specify-
ing the hot-spot viscosity model. This is because specifying

the viscosity model allows us to determine how lð!LÞ relates
to the temperature behavior Tð!LÞ (and therefore to the trajec-
tory in qR vs T space). In the present work, we use the
unmagnetized (parallel) Braginskii viscosity

lBragð!LÞ ¼ l0;Brag

!T
5=2

!Z
4
: (9)

Here, as elsewhere, the overbar on T and Z indicates normali-
zation to initial values at L¼L0 ( !L ¼ 1), !T ¼ T=T0;
!Z ¼ Z=Z0. As previously noted, in general, T and Z will be
some functions of compression. For this work, we will
assume that Z ¼ constant so that !Z ¼ 1. That is, we assume
that there is no change in the ionization state of the hot spot
as it compresses. To the extent that there is no substantial
ongoing mixing of different Z materials (shell) into the hot
spot, this is a reasonable assumption, and it should make the
discussion easier to follow. The assumption is not fundamen-
tal to the present analysis and can be relaxed, given an
expression for Zð!LÞ (or, say Z(T), with T(L) then modeled,
simulated, or measured).

For reasons that will soon become apparent, it is useful to
discuss “hot-spot trajectories”; a trajectory tracks the hot-spot
temperature as a function of qR (equivalently, !L or time),
starting from some initial point, T0; ðqRÞ0. As such, trajecto-
ries are curves in T vs. qR space. The slope ('dT=dðqRÞ) of
the trajectory gives the heating (positive slope) or cooling
(negative slope) of the hot-spot with compression. In general,
this slope depends on the net balance of a variety of physical
processes, for example, mechanical (PdV) work, conduction
losses, and radiation losses. As an example, consider a hot-
spot during a time when mechanical heating dominates any
losses; in this case, !T ¼ !L

$2 ¼ qR (adiabatic heating) and the
trajectory would have a slope of 1 during this time.

Using the Braginskii viscosity, we can reformulate the
TKE decrease condition, Eq. (6), as a curve in T vs. qR
space, which then serves as a type of “stability boundary”.
To reformulate the TKE decrease condition, Eq. (6), as a sta-
bility boundary, we simply substitute in lBrag for l, which
results in a lefthand side that depends only on the (instanta-
neous) areal density and temperature. Then, we assume
equality in the condition, giving

Tboundary , 24:6
ln K

A1=2
i

 !2=5

ðqRÞboundary

Ub

3* 107

" #2=5

: (10)

The substitution L ¼ 2R has been made, ln K is the Coulomb
logarithm, and Ai is the ion atomic mass number. The implo-
sion velocity and qR are in cgs units, while the temperature
is in kilo-electron volts. In the present work, we will treat the
Coulomb logarithm as a constant. Given values for Ai, ln K,
and Ub, Eq. (10) is a curve TboundaryððqRÞboundaryÞ in T vs.
qR space. This curve, which is plotted in Fig. 2, represents
the marginal case of the TKE decrease condition and so is
a type of stability boundary, the use of which we now
describe.

A trajectory is above the stability boundary if it has
T > Tboundary for qR ¼ ðqRÞboundary. While a trajectory is

FIG. 1. Values of T+ for three different compression velocities, plotted in T
vs qR space, where they are horizontal lines (dotted, magenta). Also plotted
are the stability boundaries for these three velocities and stability shading, as
in Fig. 2. In the region below the stability boundary, the hot-spot TKE den-
sity in the present model is generally restricted to be less than or equal to
Esat, Eq. (7). By calculating the ratio of Esat to the hot-spot thermal energy,
we can determine where in T vs qR space the hot-spot thermal energy will
necessarily exceed any TKE. The temperature for which this ratio, Eq. (8),
is 1 is defined to be T+. For compression velocities ranging from
Ub ¼ 4* 106 cm/s to Ub ¼ 8* 107 cm/s, we find T+ to range from 270 eV
at the slowest velocity to 11 keV at the fastest. This means that the TKE can
either be necessarily small or possibly substantial at fusion temperatures of
'10 keV, depending on the compression velocity. This analysis assumes
that the initial TKE is below Esat; see Sec. III for more discussion.
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above the stability boundary, it satisfies the TKE decrease
condition, Eq. (6), and therefore has decreasing TKE. As
such, trajectories that are entirely above the stability bound-
ary will have a final TKE below the initial TKE. Trajectories
that cross the stability boundary from above or below will
have decreasing TKE for the time they are above the stability
boundary; they may or may not have decreasing TKE when
below the stability boundary. That is, trajectories below the
stability boundary are not necessarily “unstable” (do not nec-
essarily experience growing TKE).

As in the general case discussed in Sec. III, there are a
few things we can say about the TKE behavior of hot-spots
when their trajectories are below the stability boundary,
depending on !l. As previously discussed, compressions
where !lð!LÞ ¼ !L

$2
have TKE that changes towards a satu-

rated value, Esat, given in Eq. (7). Having specialized to the
Braginskii viscosity and still assuming !Z ¼ 1, the condition
!lð!LÞ ¼ !L

$2
is equivalent to !T ¼ !L

$4=5 ¼ qR
2=5

. Of note is
that this rate of temperature growth is the same as that on the

stability boundary, Eq. (10). Thus, trajectories on which the
TKE heads towards saturation have the same slope (in
logðTÞ vs logðqRÞ space) as the stability boundary. The con-
ditions for stronger or weaker viscosity growth, discussed in
Sec. III, now correspond to the slope of the trajectory; a
slope steeper than the stability boundary slope indicates that
the TKE cannot reach even the saturated value, while a slope
shallower than the stability boundary means that the TKE
may reach at least the saturated value, given enough
compression.

The different possible behaviors for the hot-spot TKE,
depending on the trajectory slope and location, are summa-
rized in Table I.

V. STABILITY AND SATURATION: HOT-SPOT MODEL
CONTEXT

To give more context to the stability and saturation
results presented in Secs. III and IV, we consider them here
paired with a simple hot-spot model. This essentially zero-
dimensional hot-spot model gives the temperature of the hot-
spot as a function of qR; TmodelðqRÞ. It does so by solving a
temperature evolution equation that includes both heating
and cooling terms. For heating terms, it includes mechanical
(PdV) work and D-T fusion (assuming a hot-spot composed
of 50/50 deuterium and tritium). For cooling terms, it
includes electron thermal conduction and Bremsstrahlung
radiation. We do not present the model here; it has been pre-
sented elsewhere by Lindl1 and Atzeni and Meyer-ter-
Vehn.25

FIG. 2. TOP: Visual representation of the stability boundary, Eq. (10), in T
vs qR space. This is the specialization of the general TKE decrease condi-
tion, Eq. (6), to the case with Braginskii viscosity. The boundary is
the labeled, solid, green line; it is shown for an implosion velocity of
Ub ¼ 3* 107 cm/s and assuming Ai ¼ 2:5 and ln K ¼ 2. The darker shaded
region, above the line, is the region where hot-spot TKE will decrease even
with forcing from the compression. The hot-spot TKE behavior in the lighter
shaded region, below the line, depends on, among other things, the hot-spot
trajectory slope. See Secs. III and IV as well as Table I. BOTTOM: Stability
boundary for two additional implosion velocities, Ub ¼ 8* 107 cm/s and
Ub ¼ 0:4* 107 cm/s, as well as that for Ub ¼ 3* 107 cm/s. The region
shading is still for the Ub ¼ 3* 107 cm/s implosion velocity boundary. As
the implosion velocity increases, the region of guaranteed TKE decrease
shrinks, requiring higher hot-spot temperatures at a given qR.

TABLE I. Breakdown of stability and saturation cases, based on trajectory

T, qR, and slope. The results given are for the case of Braginskii viscosity
with no ionization, but an identical set of cases exists in general, with the

conditions placed instead directly on the viscosity behavior. See the discus-
sions in Secs. III and IV. These cases allow a visual identification of hot-
spot TKE behavior once the hot-spot trajectory is plotted in T vs qR space.

For cases B1 and B2, the degree to which Esat is reached during the com-
pression will depend on not only the trajectory in T vs qR space but also the

values of Ub, E0 (the initial TKE), and (to some degree) the initial Fourier
spectrum of the TKE. Similarly, for case B3, here, the TKE will typically
have a maximum that is only a fraction of Esat.

11 Given identical starting

conditions, shallower slopes (weaker viscosity growth with compression)
correspond to quicker TKE growth per compression increment.

A. TðqRÞ > TboundaryðqRÞ
Trajectory at qR is above the stability boundary.
Total hot-spot TKE is instantaneously decreasing.11

B. TðqRÞ < TboundaryðqRÞ
Trajectory at qR is below the stability boundary.
TKE behavior depends on the trajectory

B1. B & dT
dðqRÞ ðqRÞ < dTboundary

dðqRÞboundary
ðqRÞ

Slope shallower than the stability boundary.

TKE hypothesized to asymptote to
Esat with sufficient compression.

B2. B & dT
dðqRÞ ðqRÞ ¼ dTboundary

dðqRÞboundary
ðqRÞ

Slope parallels the stability boundary.

TKE asymptotes to Esat with sufficient compression.11

B3. B & dT
dðqRÞ ðqRÞ > dTboundary

dðqRÞboundary
ðqRÞ

Slope steeper than the stability boundary.
TKE bounded above by Esat, assuming initial TKE below Esat.
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For a fixed compression velocity, the hot-spot model
can be used to divide T vs qR space into “gain” and “loss”
regions. These regions are plotted in Fig. 3 and described in
the figure caption. Also shown is an indication of the regions
of T vs qR space where each loss or heating mechanism is
dominant over the other loss or heating mechanism. Of note
is that the portion of the gain region where mechanical heat-
ing dominates is below the stability boundary for the typical
compression velocity plotted. In fact, the present hot-spot
model has an “attractor” solution, to which trajectories that
start from many initial conditions in T; qR space will be
“attracted”. This “attractor” solution is valid when the heat-
ing of the capsule is determined by the balance of mechani-
cal work and electron thermal conduction in the hot-spot
model. It is given by1

Tattractor ¼ 7:8 ðqRÞ Ub

3* 107

" #2=5

: (11)

This result assumes Ai ¼ 2:5 and ln K ¼ 2. For these values,
the coefficient of the stability boundary, Eq. (10), is ,27:0.
Then, it is easy to see that the Lindl attractor solution is
below the stability boundary for any compression velocity.
The attractor solution is plotted, along with the stability
boundary, for Ub ¼ 3* 107, in Fig. 4. Also shown are con-
tours of the gain regions for decreasing values of the com-
pression velocity; eventually, the fusion gain region becomes
disconnected from the mechanical gain region so that within

the simple hot-spot model, it becomes impossible for a tra-
jectory to reach the fusion region.

The temperature dependence of the Lindl attractor solu-
tion, T / ðqRÞ2=5, is such that for the Braginskii viscosity, it
satisfies the viscosity condition for TKE saturation
(!lð!LÞ ¼ !L

$2
). In other words, it satisfies condition B2 in

Table I so that the TKE for solutions following the attractor
will tend to grow towards Esat with continuing compression.

We can plot sample trajectories, obtained by solving for
TmodelðqRÞ with various initial conditions, T0; ðqRÞ0. The
expected TKE behavior of these trajectories can then be ana-
lyzed. This is done in Fig. 5 and its caption. However, because
of the attractor solution, this exercise does not have that many
possible outcomes; trajectories cannot remain in the “stable”
region and instead head to the attractor, on which the TKE
begins to grow towards Esat. However, trajectories of hot-
spots from experiments, or simulations with a more inclusive
hot-spot model, can have quite different paths in T vs qR
space, including traversing through the “loss” region as
labeled from the simple model considered in this section.

The gain region where fusion dominates (the lighter
shaded area within the “Fusion” region in Fig. 3) is less sen-
sitive to the hot-spot model. That is, the target temperature
and qR for ignition are less dependent on the particular hot-
spot dynamic model (as well as being less sensitive to the
compression velocity). It is apparent from Fig. 3 that this
fusion gain region is mostly in the unstable region for
Ub ¼ 3* 107. As the compression velocity decreases, it will
gradually enter the TKE decrease region (also see the bottom

FIG. 3. Gain (lighter, gray) and loss (darker, blue) regions in T; qR space
using a simple hot-spot model.1,25 These regions indicate where the hot spot
gains or loses thermal energy during compression, due to the combined
effects of electron thermal conduction, Bremsstrahlung radiation, mechani-
cal (PdV) work, and D-T fusion heating. Also shown are dashed lines indi-
cating the regions of T;qR space where each heating or cooling mechanism
dominates; the purple dashed line (straight) divides the regions where ther-
mal conduction or radiation is the dominant loss mechanism, while an
orange dashed line (curved, upper right) separates the fusion heating domi-
nated region from the mechanical heating dominated region. The stability
boundary is also shown. Of note is that the gain region is almost entirely
below the stability boundary; see Sec. V. All plot components are drawn
assuming a compression speed of Ub ¼ 3* 107 cm/s and a Coulomb loga-
rithm of ln K ¼ 2 and for 50/50 D-T fusion so that Ai ¼ 2:5.

FIG. 4. Gain and loss regions as described in the caption of Fig. 3. Also
shown is the Lindl “attractor” solution (brown, dashed), Eq. (11), to which
solutions in the simple hot-spot model are attracted. This solution is below
the stability boundary and parallels it so that solutions following it will have
TKE that tends towards Esat with continuing compression. Also shown (dot-
ted, horizontal, magenta) is the “breakeven” temperature, T+, see Eq. (8) and
the discussion thereafter, as well as Sec. V. The thin black lines indicate the
change in the gain/loss region boundary as the compression velocity is
decreased, moving from the outer-most contour (Ub ¼ 3* 107 cm/s) to the
inner-most contour (Ub ¼ 5* 106 cm/s). Below a certain velocity, the gain
region separates into two portions. The fusion-gain region can be observed
to be relatively insensitive to the compression velocity; its position relative
to the stability boundary then depends on how the boundary moves with
changing compression velocity (also see Fig. 2).
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plot in Fig. 2). At the same time, the absolute possible frac-
tion of total energy that can be TKE in the fusion region is
on the order of 10% at this compression velocity, with
T+ ¼ 1:5, as discussed in Sec. III and plotted in Fig. 4 (also
see Fig. 1).

VI. DISCUSSION

A. Additional stability and saturation comments

The example trajectories shown in Fig. 5, which use the
simple hot-spot model, use one compression velocity for the
entirety of the compression. The present stability and satura-
tion analysis, however, can be applied to trajectories with a
compression velocity that changes; the stability boundary
and Esat are simply recalculated for each compression veloc-
ity. Of course, the quantitative aspects of the present analysis
are not so detailed that small adjustments in Ub will make a
difference in the inferences made about the hot-spot TKE
behavior. More sensitive analysis could be made using a
TKE model.15 Nevertheless, the stability condition presenta-
tion here provides gross insights into the hot-spot TKE
behavior. These insights are enhanced when combined with
the calculation of the saturated TKE density.

There is a reason to believe that the hot-spot TKE will
have difficulty in reaching Esat for trajectories that satisfy
case B2 (Table I) but are calculated using a model that does
not include TKE (such as the simple hot-spot model used for
the trajectories in Fig. 5). If the TKE for such a trajectory

were to grow up to be a significant fraction of the thermal
energy, then the dissipation of the TKE itself would be
expected to impact the trajectory. This additional heating,
were it factored in, would increase the trajectory slope, effec-
tively pushing the trajectories into case B3. The TKE can in
principle be a substantial energy component as long as the
temperature is less than or on the order of T+.

B. Comparison with detailed simulations

The present hot-spot stability and saturation results can
be compared with the results of detailed three-dimensional
simulations. Such simulations have been carried out for cer-
tain inertial confinement fusion experiments at the National
Ignition Facility; these include an analysis of National
Ignition Campaign (NIC) experiment N120321,2,14 which
we compare to here. We focus the comparison primarily on
the times before and around peak fuel velocity since, for
these times, the fuel-ablator interface is stable to Rayleigh-
Taylor instability and the compression velocity is nearly con-
stant (and has been for a substantial amount of compression).
This compression velocity is approximated to be '3* 107

cm/s. Reference 2 conducted both viscous and inviscid simu-
lations of experiment N120321.

In inviscid simulations, substantial near-isotropic hydro-
dynamic motion is present in the hot-spot around the time of
peak velocity. The saturated energy relation, Eq. (7), can be
rewritten as an expression for the saturated mean fluctuating

velocity,
ffiffiffiffiffiffiffiffiffiffi
hV2i

q
, 1:95Ub. Near peak velocity (22.53 ns),

Ref. 2 reports burn-weighted velocity fluctuations '2:6
*107 cm/s in the inviscid case (Fig. 6 of Ref. 2, note that the
plot shows individual velocity components), representing
'45% of the maximum (saturated) velocity fluctuation pre-
dicted in the present work. The peak fluctuating velocity

reported is '6* 107 cm/s (Fig. 5 of Ref. 2), approximately
the mean saturated fluctuation value. It is likely that the

mean fluctuating velocity is greater than '2:6* 107 cm/s at
somewhat earlier times, around 22.4 ns. This is because the
viscous simulations, which show fluctuating velocities

around 1:7–2 *107 cm/s at peak velocity, show much higher

velocities, on the order of 3* 107 cm/s, or '50% the satura-
tion value, at 22.4 ns (Fig. 9 of Ref. 2), and the viscous simu-
lations generally show fluctuation velocities that are similar
to or slower than those in the inviscid simulations.

We can also compare the energy in these fluctuating
flows with the thermal energy, as in Eq. (8). At an implosion
velocity of Ub ¼ 3* 107 cm/s and a burn-averaged ion tem-
perature of 2 keV, Eq. (8) shows that the minimum ratio of
thermal to hydrodynamic energy is Eth=Esat ' 1:3. The mini-
mum ratio of internal to hydrodynamic energy in the simula-
tion occurs around 22.4 ns (as observed in Fig. 4 of Ref. 2).
It is found that Ein=Ehydro ' 2:6, which does not conflict
with the prediction of Eq. (8) and implies hydrodynamic
energy of about half the saturated value. Note that the aver-
age hot-spot temperature at this time may be different from
2 keV (but larger than 1 keV by definition); only the burn-
averaged temperature is given in Ref. 2, which corresponds
to an average over later times.

FIG. 5. Two example trajectories calculated for different initial conditions
using the simple hot-spot model,1,25 plotted on top of the gain and loss
regions as described in the caption of Fig. 3. One trajectory, labeled 1
(dashed, light green), starts in the guaranteed TKE decrease region, above
the stability boundary. However, trajectories in this simple hot-spot model
rapidly cool out of this region and head to the attractor solution. Thus, while
this hot-spot will briefly experience decreasing TKE (case A), it primarily
exists in case B2 in Table I. The second trajectory, labeled 2 (dashed, light
orange), heats adiabatically until it nears the attractor solution (case B3) and
then parallels the attractor (case B2) into the fusion gain region. Once in the
fusion gain region, both hot-spots heat rapidly and cross the stability bound-
ary (case A) at the margins of the gain region. All plot components use
Ub ¼ 3* 107; ln K ¼ 2, and 50/50 D-T (Ai ¼ 2:5). Trajectories from more
inclusive hot-spot models will have quite different behaviors, not so limited
by the attractor solution, see Sec. V.
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The inviscid case is very likely below the stability
boundary, Eq. (10). While in a simulation with an infinite
resolution, the inviscid case is necessarily below the stability
boundary [as clear when taking l! 0 in Eq. (6)], there will
generally be some numerical viscosity even when it is not
explicitly included, due to the finite simulation resolution.
Reference 2 reports, for viscous simulations, a Reynolds
number of Re , 10 near 22.2 ns, increasing to ,300 by bang
time (22.8 ns). A Reynolds number of 10 is right near the sta-
bility boundary [see Eq. (6)]; as the Reynolds number
increases, the hot-spot crosses out of the TKE decrease
region. In the inviscid case, the effective Reynolds number
should be higher than these reported values, meaning a hot-
spot below the stability boundary over the reported interval.
Note that these Reynolds numbers are calculated using a
somewhat different length scale and velocity from those
used in the TKE decrease condition, Eq. (6). Nevertheless,
they give an approximate comparison to the condition, which
is in the intended spirit.

In discussing the inviscid case above, we have also
effectively covered the viscous case. Over the interval of
time for which Reynolds numbers and fluctuating velocities
are reported in Ref. 2, the viscous hot-spot is near the bound-
ary of the TKE decrease region. Just before the bang time, it
has nominally moved into the “unstable” region; note that at
bang time, the compression velocity is no longer nearly con-
stant. Recall that the saturated energy (or velocity) does not
actually depend on the viscosity and is therefore the same for
the viscous and inviscid cases. However, the degree to which
fluctuating flow in the hot-spot can reach the saturated value
depends on the initial TKE, the amount of compression the
hot-spot undergoes while below the stability boundary, and
the viscosity growth rate during this compression. Given
these factors, from the perspective of the present work, it is
not surprising that the viscous hot-spot does not reach the
predicted saturated values.

The simulations in Ref. 2 include a variety of effects
that are not included in the present work, but that could influ-
ence the fluctuating velocities in the hot-spot and therefore
the validity of the comparison here. These include a jet of
ablator material that enters the hot-spot after peak velocity,
shocks that ring in the hot-spot, and the accretion of mass
into the region defined as the hot-spot (that is, the hot-spot
mass is not constant as was assumed for the analysis in the
present work, and new mass, with a different fluctuating
velocity condition, can be added). The degree to which these
impact the ability to apply the present stability and saturation
results is uncertain and would require more investigation.
Much of the present comparison was carried out before the
jet enters the hot-spot. To the extent the shocks (and also
later, the jet) serve to seed velocity fluctuations in the hot-
spot, which are then compressed, they will not necessarily
negate the saturation result here. The saturation result here is
most appropriate if: these sources act as a seed, this seeding
is below the level of saturation, and volumetric compression
remains the dominant energy injection process for velocity
fluctuations. The effects on saturation of continual accretion
of mass into the hot-spot depend on the velocity fluctuations
in the accreted mass. If this mass is coming from a region

with smaller velocity fluctuations, one would expect it to act
as a damper on the hot-spot fluctuations, effectively reducing
the ability of the hot-spot to reach saturation. Like the satura-
tion result, the stability result here is also based only on the
volumetric compression. As such, a hot-spot that satisfies the
TKE decrease condition given here could actually experi-
ence growing TKE from shock ringing or an ablator jet.

C. Additional comments on assumptions

Note that the analysis of TKE behavior that led to the pre-
sent stability and saturation results was carried out in the zero-
Mach turbulence limit. This means that it may not remain valid
if the hot-spot has a turbulent Mach number approaching or
exceeding 1, where compressibility effects become important.
The hot-spot turbulence in the simulations analyzed above, of
NIC experiment N120321, is subsonic with a Mach number
well below 1. For example, considering a fluctuating hot-spot
velocity of 2* 107 cm/s and calculating a sound speed,
assuming a 50/50 D-T plasma at 2 keV (the burn-averaged
temperature) and c ¼ 5=3, gives a turbulent Mach number
MT ' 0:4. The precise MT for this fluctuating velocity may be
a bit larger or smaller, depending on the actual adiabatic index
of the plasma, but is still significantly below 1, in a regime
where compressibility effects are expected to be modest.

Periodic boundary conditions were assumed; different
boundary conditions may alter the results to varying degrees.
The periodic boundary conditions are consistent with our
assumptions of isotropy and homogeneity. It is difficult to
anticipate the impacts of relaxing these assumptions on the
saturation and stability results presented here. Apparently,
the assumptions are not necessarily substantially violated;
the inviscid simulations in Ref. 2, discussed above, found
that the hot-spot hydrodynamic motion was largely isotropic
near the time of peak velocity. Visually [Fig. 5(a) of Ref. 2],
the fluctuating hydrodynamic field may be relatively homo-
geneous near the center, while it is clearly not homogeneous
near the edges. Relatively inviscid cases, such as this, may
permit a boundary layer that shields the central hot-spot
hydrodynamic motion from boundary effects, allowing it to
be closer to isotropic and homogeneous. Once the ablator jet
begins to penetrate the hot spot, its directed motion will
greatly decrease isotropy, at least until it dissipates.

To the extent that the hot-spot fluctuating hydromotion
is not homogeneous or isotropic, either in the boundary or
overall (when the hot spot is more viscous), one could expect
substantial impacts on, say, mixing calculations using the
predicted turbulent velocity and length scale from the satura-
tion results presented here. For example, one could build a
simple diffusive mixing model based on the present saturated

turbulent velocity,
ffiffiffiffiffiffiffiffiffiffi
hV2i

q
, 1:95Ub, and saturated turbulent

length scale, Lsat , 0:19* 2R,11,26 with R being the hot-spot
radius. While this may be reasonable for the center of an
(homogeneous, isotropic) inviscid hot-spot, the actual mix-
ing may be drastically affected by the global inhomogeneity
of the fluctuating hydromotion.

These limitations mean that there are a number of ways
in which the present results may be refined and improved
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upon. This is something to be done, as our understanding of
the behavior of compressing turbulence increases.

D. Experimental verification

In principle, the TKE saturation value, Eq. (7), and the
stability boundary, Eq. (10), can be examined experimen-
tally, at least in the region of qR$ T space where one can
have a fusing plasma with enough neutrons for measure-
ments. Murphy27 proposes a technique for inferring the
quantity of hot-spot hydrodynamic motion, using fuel with a
combination of deuterium (D), tritium (T), and helium-3
(3He). In a turbulent, fusing plasma, both the turbulent and
thermal energies contribute broadening to the observed neu-
tron spectra; the temperature inferred from this broadening is
the “apparent” temperature. In principle, the difference in
the apparent temperatures inferred from the DD and DT neu-
tron spectra can be used to infer the quantity of turbulence
(Murphy27 proposes additionally using the ratio of D3He
protons to DD neutrons to independently determine the tem-
perature). Gatu Johnson et al.28 have found evidence for iso-
tropic flow near maximum fuel compression in layered DT
implosions using this technique. Care is required in such an
analysis because there can be a variety of sources besides
turbulence for different DT versus DD inferred temperatures.

By experimentally inferring hot-spot hydrodynamic
motion in this fashion (as well as whether it is isotropic), in
experiments operating on either side of the stability bound-
ary, it may be possible to establish the contours of such a
boundary, at least for implosion velocities where the stability
boundary crosses through a workable region of qR$ T
space. One could also look for inferred hydrodynamic
motion substantially exceeding the proposed saturated value.

E. Implications for a novel fast-ignition scheme

Before summarizing, we discuss the novel fast-ignition
or X-ray burst scheme outlined in Refs. 10 and 11 in the con-
text of the present stability and saturation results. These
schemes propose to utilize a hot-spot that has its energy
dominated by TKE, rather than thermal energy. Under com-
pression, both the TKE and the thermal energy will grow.
The TKE is then dissipated (through viscosity) as qR
approaches that necessary for ignition; the dissipation of
large quantities of TKE induces a rise in temperature, caus-
ing the temperature to reach that needed for ignition. By stor-
ing energy from the compression in TKE, rather than
thermal energy, it is hoped that energy losses, such as those
to radiation, are reduced. The ratio of thermal energy to satu-
rated TKE, Eq. (8), indicates that for fusion, such a scheme
may need compression velocities exceeding '3* 107 cm/s.
This is because T+ , 1:5 keV for this compression velocity;
if the TKE reached saturation along the fast-ignition trajec-
tory, its energy density would begin to be below that of the
thermal energy once the hot-spot temperature exceeded
1.5 keV. Dissipating all the TKE at this point could at most
double the thermal energy. To dissipate the TKE before
fusion kicks in, the hot-spot must have a trajectory satisfying
condition B3 in Table I (a heating rate greater than the attrac-
tor solution). Such trajectories will usually have the difficulty

in reaching the saturation energy, so that the “true” tempera-
ture at which the hot-spot thermal and TKE energy would be
equal is below 1.5 keV for this compression velocity.
However, we should be cautious about drawing conclusions
about the proposed fast-ignition scheme from the present
work because the proposed scheme operates far from the
zero-Mach limit of the current treatment.

VII. SUMMARY

We present what we call a “stability” condition for hot-
spot turbulent energy; if satisfied, this condition guarantees
that the turbulent (non-radial hydrodynamic) energy in the
hot-spot will decrease, while the hot-spot undergoes com-
pression. When it is not satisfied, the TKE behavior depends
on the precise hot-spot trajectory and conditions but can in
many cases be bounded by a saturated hot-spot turbulent
energy (density) Esat. We calculate this saturated value. The
stability boundary is shown visually for the case where the
hot-spot has Braginskii viscosity, and we describe how to
determine, visually, cases where the hot-spot TKE can be
bounded by Esat. By comparing the saturated turbulent
energy with the hot-spot thermal energy, we determine, as a
function of temperature, the maximum fraction of hot-spot
energy that can be TKE for any given compression velocity.

We show that trajectories in a simple hot-spot model
will quickly enter the “unstable” TKE region and that most
of the “gain” region for hot-spot thermal energy in this
model is below the stability boundary. These trajectories
largely follow an “attractor” solution, which has TKE that
will grow towards Esat with continuing compression.

We hope that this theoretical perspective captures the
gross behavior of hot-spot turbulence.
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