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The passage of a magnetosonic (MS) soliton in a cold plasma leads to the displacement of charged
particles in the direction of a compressive pulse and in the opposite direction of a rarefaction pulse.
In the overdense plasma limit, the displacement induced by a weakly nonlinear MS soliton is
derived analytically. This result is then used to derive an asymptotic expansion for the
displacement resulting from the bouncing motion of a MS soliton reflected back and forth in a
vacuum-bounded cold plasma slab. Particles’ displacement after the pulse energy has been lost to
the vacuum region is shown to scale as the ratio of light speed to Alfv!en velocity. Results for the
displacement after a few MS soliton reflections are corroborated by particle-in-cell simulations.
Published by AIP Publishing. https://doi.org/10.1063/1.5025388

I. INTRODUCTION

A singular subset of nonlinear waves are waves for
which dispersion balances the wave-steepening effects that
arise from nonlinearity. In weakly dispersive media, the
propagation of these nonlinear waves can be described by
the Korteweg-de-Vries (KdV) equation.1 The KdV equation
can have two kinds of stationary solutions: periodic cnoidal
waves1,2 and solitary localised waves, or solitons.3 Solitons
are remarkable objects in that they preserve their shape and
speed after collision, behaving in some ways like particles.4

KdV equations have been derived both for ion-acoustic
waves5 and for magnetosonic (MS) waves6 in homogeneous
unmagnetized and magnetized plasmas, respectively. For
plasmas featuring multiple ion species, both the ion-acoustic
wave and the MS wave split into a fast and a slow mode,7

and each of these four modes can in turn be described by a
separate KdV equation.8–10 Solitary waves matching the
properties of the soliton solution to the KdV equation for
ion-acoustic waves have been produced in laboratory experi-
ments,11 while solitary waves matching the property of the
soliton solution to the KdV equation for slow MS waves
have been observed in space plasmas.12

The realization that MS solitons can describe the initial
state of the formation of subcritical perpendicular shocks13–18

motivated the study of the structure of nonlinear MS
waves.19–23 Following these early studies, a particular focus
has been on the particle dynamics in large amplitude nonlin-
ear MS waves, both solitary24–29 and periodic,30–33 to
uncover acceleration mechanisms which could explain the
observation of energetic particles in astrophysics.34

Besides acceleration, another effect of the passage of a
MS soliton is to displace particles. Indeed, as noted by
Adlam and Allen,20 “the plasma returns to its initial state
after the passage of the wave, except that each particle has
been displaced in the direction of propagation.” The fact
that the passage of a soliton displaces particles might be of

little interest in astrophysical settings, which may be why
this effect has received limited attention. On the other hand,
the ability to control plasma displacement and, in turn,
plasma position is desirable in various laboratory plasma
experiments, such as magnetic confinement fusion experi-
ments35 and non-neutral plasmas.36 One possible control
mechanism may lie in the plasma displacement induced by a
magnetosonic wave. For example, it has been suggested that
the plasma displacement caused by compressional Alfv!en
waves, which may be produced by dedicated magnetic coils,
could be used to stabilize plasmas in mirror machines.37

Yet, soliton propagation and more generally wave prop-
agation in laboratory plasmas differ from the situation con-
sidered in space plasmas in that laboratory plasmas are of
finite spatial extension and bounded.

The presence of physical boundaries in laboratory plas-
mas leads to sheaths where the plasma is inhomogeneous.38

Since the KdV equation is only valid for homogeneous plas-
mas,5,6 wave propagation in these regions cannot be
described by a KdV equation, and the stationary soliton solu-
tions are not valid. Yet, for slowly varying media, i.e., weak
gradients, the reductive perturbation technique39 can be used
to derive a modified KdV (mKdV) equation both for ion-
acoustic40 and for MS41 waves. Perturbative theory predicts
that solitons will no longer be stationary and that an oscilla-
tory tail will form behind the soliton.42–46 For stronger gra-
dients, a soliton may be reflected.47,48 Strong reflection of an
ion-acoustic soliton by the sheath formed in front of biased
grid electrodes has for example been reported.49–51 By
applying suitable boundary conditions, a soliton can then be
forced to bounce back and forth in a laboratory plasma, as it
was demonstrated for an ion-acoustic soliton.52

In this paper, we investigate how a MS soliton bounces
within a magnetized plasma slab bounded by vacuum with
the goal of assessing the displacement of particles induced
by the soliton’s repetitive passages. By considering a 1d
plasma slab immersed in a perpendicular background
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magnetic field, particles are confined without the need for
physical boundaries. This allows us to consider the plasma
slab homogeneous in first approximation. At the plasma-
vacuum boundaries, plasma density drops to zero over a few
Debye lengths, and this sharp transition reflects the incident
MS soliton.47

This paper is organized as follows: In Sec. II, we derive,
to our knowledge for the first time, the displacement induced
by the passage of a small amplitude MS soliton in the over-
dense regime. In Sec. III, we use this result to derive the dis-
placement produced by an infinite number of bounces. In
Sec. IV, we validate our analytical findings through particle-
in-cell (PIC) simulations. In Sec. V, the main findings are
summarized.

II. PARTICLE DISPLACEMENT INDUCED
BY A MAGNETOSONIC SOLITON

We first consider the plasma displacement induced by a
nonlinear magnetosonic (MS) solitary wave propagating
along the x direction. Calculations are carried out in the
wave frame, with the wave travelling at a velocity !V0 in
the negative x direction.

A. Longitudinal electric field

Introducing B0 and n0 the unperturbed magnetic field
and density [Bzð!1Þ ¼ B0; nð!1Þ ¼ n0], and following
Ref. 26, the normalized longitudinal electric field E
¼ Ex=ðB0cÞ is related to the normalized magnetic field B
¼ Bz=B0 by the bi-quadratic equation

E4 þ a1ðBÞE2 þ a0ðBÞ ¼ 0; (1)

where

a1ðBÞ ¼ 2 1! B2 þ 2b2 þ 2M2
A 1þ 2

g2

B

! "#

þ 2M4
A

g2ð1þ g2Þ
ðbBÞ2

#

; (2a)

a0ðBÞ ¼ ðB2 ! 1Þ2 ! 4M2
AðB! 1Þ2: (2b)

Here, b ¼ V0/c is the normalized wave speed, MA ¼ V0/VA is
the Alfv!en Mach number with VA ¼ B0=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffil0n0mp
p

the
Alfv!en speed, and g2 ¼ me=mp is the electron to ion mass
ratio. Equation (1) has solution for E for B & Bm, with Bm

¼ 2MA! 1. Reproducing Eq. (12) from Ref. 26, the magnetic
field B verifies

@B

@s
¼! gBEMA

bð1!B2þE2þ2M2
AÞðb

2B3þB2g2M2
A!E2g2M2

AÞ
' 2M4

Ag2ð1þg2Þþ2M2
Ab2BðBþ2g2ÞþB2b2ð1!B2þ2b2þE2Þ

% &
;

(3)

with s ¼ xxpe=c the position normalized by the electron skin
depth ksd ¼ c=xpe. In the limit of a weakly non-linear wave
(B! 1( 1, i.e., MA ! 1( 1) in the over-dense regime
(xpe=xce ) 1, i.e., gMA=b) 1), the magnetic field can be
approximated26 by

"BðsÞ ¼ 1þ 2dMA sech2 s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dMAð1þ g2Þ=2

ph i
; (4)

where dMA ¼ MA ! 1. One recovers the relation between
magnetic field amplitude Bm and Mach number, Bm ¼ 1
þ 2dMA, or dB ¼ 2dMA, derived from Eq. (1). The magnetic
field profile "B defined in Eq. (4) is typical of small amplitude
MS compressive solitons.16,17,24,26,53 However, we note that,
depending on whether the Alfv!en speed definition accounts
for electron inertia or not,

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2

p
is sometimes omitted in

the argument of the hyperbolic secant in Eq. (4). Consistent
with soliton theory, the width of the pulse scales as the
inverse of the square root of its amplitude, and the pulse can
be described by a single parameter (dMA is used here).
Plugging B ¼ "B into Eqs. (2a) and (2b), and taking b( g,
the lowest order expansion in dMA of a1 and a0 is written as

"a1 ¼ 4g2=b2; (5a)

"a0 ¼ !32 sech4ðs?Þ tanh2ðs?ÞdM3
A; (5b)

with

s? ¼ s dMAð1þ g2Þ=2
% &1=2

: (6)

Solving E4 þ "a1E2 þ "a0 ¼ 0 gives

"EðsÞ ¼ E0
sinhðs?Þ

cosh3ðs?Þ
; (7)

with

E0 ¼ ð2dMAÞ3=2b=g: (8)

Noting that max½tanhðuÞ sech2ðuÞ+ ¼ 2= 3
ffiffiffi
3
p' (

, the maxi-
mum normalized electric field is 2= 3

ffiffiffi
3
p' (
ð2dMAÞ3=2bg!1,

which is consistent with the first order term of the asymptotic
development given in Eq. (14) in Ref. 26, with Eq. (6) in
Ref. 54 for a single ion species plasma in the low Mach num-
ber limit (i.e., b , VA=c), and with Eq. (67) in Ref. 24 in the
limit of cold plasma and small dMA.

Figure 1 depicts the approximate analytical solution "E
from Eq. (7) along with the numerical solution E of Eq. (1),
as obtained by plugging the numerically integrated solution
B of Eq. (3) into Eqs. (2a) and (2b). The good agreement
found in Fig. 1 together with the fact that the small deviation
observed between E and "E drops from 8% for g=b , 2:3 to
0.3% for g=b , 23 confirms that Eq. (7) is an approximate
solution of Eq. (1) for small-amplitude solitons in the over-
dense regime.
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Finally, integration of Eq. (7) yields the approximate
electric potential

"/ðsÞ ¼ 2dMAb

g
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2

p sech2ðs?Þ: (9)

B. Ion displacement

The velocity of a MS soliton is MAVA, while its width is
ksd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=dMA

p
. The interaction time of a particle with this

pulse is therefore

sr ¼
ffiffiffi
2
p

ksdffiffiffiffiffiffiffiffiffi
dMA

p
MAVA

¼
ffiffiffi
2
p

MA

ffiffiffiffiffiffiffiffiffi
g2

dMA

s
1

xci
; (10)

with xci ¼ eB0=mp the ion cyclotron frequency. Since typi-
cally g2 ( dMA; sr ( x!1

ci and an ion is hence to first order
unmagnetized, while it interacts with the pulse. The equation
of motion for such an ion, initially at rest in the laboratory
frame, passing through the pulse defined by Eq. (7) is written
as

€s ! eB1c

mpksd
E0

sinh s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dMAð1þ g2Þ=2

ph i

cosh3 s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dMAð1þ g2Þ=2

ph i ¼ 0; (11)

with e the elementary charge. Introducing

a ¼ 2dM2
Ab

g

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2

p eB1c

mpksd
(12)

and v ¼ s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dMAð1þ g2Þ=2

p
leads, after integration, to

_v2 ¼ !a sech2ðvÞ þ _v0
2; (13)

where use has been made of the initial conditions _vð0Þ ¼ _v0

¼ V0=k
? with k? ¼ ksd½dMAð1þ g2Þ=2+!1=2, and vð0Þ ¼ v0

¼ !1. Noting here that

d ¼ a=ð2 _v0
2Þ ¼ 2dMAffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ g2
p

MA

¼ 2dMAffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2

p ! 2dM2
Affiffiffiffiffiffiffiffiffiffiffiffiffi

1þ g2
p þOðdM3

AÞ; (14)

Equation (13) can be approximated by

_v þ a
2 _v0

sech2ðvÞ ! _v0 ¼ 0: (15)

Using the variable transform f ¼ _v0 t! ðv! v0Þ, Eq. (15) is
written as

! _f þ a
2 _v0

sech2ðv0 þ _v0 t! fÞ ¼ 0; (16)

which, with the initial condition fð0Þ ¼ 0, can be integrated
to give

!fþ
ffiffiffiffiffiffiffiffiffiffiffi

d
1! d

r
arctan

ffiffiffiffiffiffiffiffiffiffiffi
d

1! d

r
tanhðv0 þ _v0 t! fÞ

" #

¼
ffiffiffiffiffiffiffiffiffiffiffi

d
1! d

r
arctan

ffiffiffiffiffiffiffiffiffiffiffi
d

1! d

r
tanhðv0Þ

" #

: (17)

The ion displacement along x in the laboratory frame result-
ing from the passage of the compressive wave is !Dfc, with

Dfc ¼ lim
t!1

f ¼ 2

ffiffiffiffiffiffiffiffiffiffiffi
d

1! d

r
arctan

ffiffiffiffiffiffiffiffiffiffiffi
d

1! d

r" #

: (18)

Taylor expanding for d ¼ 2dMAð1þ g2Þ!1=2M!1
A ( 1, and

using that

ffiffiffiffiffiffiffiffiffiffiffi
d

1! d

r
arctan

ffiffiffiffiffiffiffiffiffiffiffi
d

1! d

r" #

¼ dþ 2

3
d2 þOðd3Þ: (19)

Equation (18) gives

Dfc ¼ 4ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2

p dMA þ
4

3

4! 3
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2

p

1þ g2
dM2

A þOðdM3
AÞ:

(20)

Figure 2 compares the ion displacement after the passage
of a single pulse as predicted in two ways. First, the trajec-
tory of a test ion interacting with the pulse electric field Ex,
obtained by solving Eqs. (1) and (3), is numerically inte-
grated. The second result is from Eq. (17). The asymptotic
solution is shown to remain within roughly 10% of the

exact solution up to dMA , 0:05, granted that b & 10!2.
This condition on b stems from the over-dense regime
assumption, which can be written as gMA=b) 1. By sym-
metry, the ion displacement in the laboratory frame result-
ing from the passage of a right propagating compressive
pulse is Dfc.

FIG. 1. Magnetic and electric field profiles as a function of the normalized
position s ¼ x=ksd for dMA ¼ 10!2; g ¼ 1=

ffiffiffiffiffiffiffiffiffiffi
1836
p

, and b ¼ 10!2. E is the
numerical solution to Eq. (1), whereas "E is the approximate solution
obtained from Eq. (7).
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In dimensional units, the ion displacement resulting
from the passage of a right propagating compressive pulse is

Dxc ¼ c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bm ! 1
p

xpe

4

1þ g2
þ 2

3

4! 3
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2

p

ð1þ g2Þ3=2

"

'ðBm ! 1ÞþO ðBm ! 1Þ2
) *#

; (21)

and we write

Dx0 ¼
c

xpe

4

1þ g2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bm ! 1

p
(22)

the first order expansion of Dxc.
Although rarefaction pulses of the form

"BrðsÞ ¼ 1! 2dMA sech2 s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dMAð1þ g2Þ=2

ph i
(23)

are not solution to the KdV equation for perpendicular magne-
tosonic wave [see Appendix A and Eq. (A12)] and therefore do
not strictly maintain form while propagating, it is interesting to
consider how the ion displacement differs from Eqs. (20) and
(21) in the case of a rarefaction pulse. For a rarefaction pulse,
the ion motion is in the direction opposed to the pulse propaga-
tion. The ion longitudinal displacement then verifies

_f þ a
2 _v0

sech2ðv0 þ _v0 t! fÞ ¼ 0; (24)

which has been obtained by reversing the longitudinal elec-
tric field in Eq. (16). Equation (24) can be integrated to give

!fþ
ffiffiffiffiffiffiffiffiffiffiffi

d
1þ d

r
arctan

ffiffiffiffiffiffiffiffiffiffiffi
d

1þ d

r
tanhðv0 þ _v0 t! fÞ

" #

¼
ffiffiffiffiffiffiffiffiffiffiffi

d
1þ d

r
arctan

ffiffiffiffiffiffiffiffiffiffiffi
d

1þ d

r
tanhðv0Þ

" #

; (25)

which leads to

Dfr ¼ lim
t!1

f ¼ 2

ffiffiffiffiffiffiffiffiffiffiffi
d

1þ d

r
arctan

ffiffiffiffiffiffiffiffiffiffiffi
d

1þ d

r" #

: (26)

Similarly, expanding for d( 1, Eq. (26) gives

Dfr ¼ 4ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2

p dMA !
4

3

8þ 3
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2

p

1þ g2
dM2

A þOðdM3
AÞ;

(27)

or, in dimensional units

Dxr ¼ c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bm ! 1
p

xpe

4

1þ g2
! 2

3

8þ 3
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2

p

ð1þ g2Þ3=2

"

'ðBm ! 1Þ þO ðBm ! 1Þ2
) *#

: (28)

The effect of the passage of a compressive and a rarefaction
soliton is the same to the first order in dMA. However, the dis-
placement is enhanced in a compressive pulse (Dxc - Dx0)
since an ion is pushed along the pulse which increases its
interaction time with the pulse. The opposite effect is found
for a rarefaction pulse, and Dxr & Dx0.

Note that for the over-dense plasma regime considered
here quasi-neutrality holds to the second order in b=g (see,
e.g., Refs. 17 and 20). The ion and electron velocity along x
is hence the same. As a result, the displacement derived in
Eqs. (20) and (27) not only holds for ions but also for elec-
trons, and those are therefore the plasma displacement for a
compression and a rarefaction pulse, respectively.

It is also interesting to note in passing here that quasi-
neutrality combined with the soliton definition given by Eq.
(23) is sufficient to recover the equation for the ion motion,
Eq. (11). Indeed, in the wave frame moving with velocity
!V0x̂; Ey ¼ V0B0, and thus, the x component of the electron
velocity is vx ¼ Ey=Bz ¼ V0= "B. Quasi-neutrality implies that
vx is also the x component of the ion velocity. The y compo-
nent of the Lorentz force on an ion, eðEy ! vx

"BB0Þ, is hence
zero. It yields that the y component of the ion velocity is
zero, which in turn means that the x component of the
Laplace force on an ion is zero. As a result, the ion motion
along x in the wave frame only depends on Ex. In addition,
writing v0x the derivative of vx with respect to x, the ion
momentum equation along x gives

mpvxv0x ¼ !
mpV0

2

"B
3

d "B

dx
¼ eEx: (29)

Plugging in the definition of "B from Eq. (4), the normalized
longitudinal electric field E ¼ Ex=ðB0cÞ writes

E ¼ 2

ffiffiffi
2
p

b
g

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2

p sinhðs?Þ
cosh3ðs?Þ

dM3=2
A þOðdM5=2

A Þ; (30)

which is consistent with the amplitude of "E obtained in Eq.
(8) in the g2 ( dMA limit.

FIG. 2. Displacement Dfc for various values of b as obtained from Eqs. (1)
and (3), and from solving the asymptotic problem described by Eq. (17).
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III. DISPLACEMENT AFTER n REFLECTIONS
IN A PLASMA SLAB

With Eqs. (20) and (21) and Eqs. (27) and (28) in hand,
we can now tackle the problem of a MS soliton propagating
in a bounded plasma slab (along x̂). This configuration is
depicted in Fig. 3. Let us write the Mach number of the ini-
tial soliton MA;0 and dMA;0 ¼ MA;0 ! 1( 1.

A. Pulse reflection

The matching condition for the magnetic field at the
plasma-vacuum interface is such that

r ¼ Br

Bi
¼

~j1=2 ! 1

~j1=2 þ 1
; (31)

where, following Ref. 55, Bi ¼ Bi ẑ and Br ¼ !Br ẑ are the
magnetic field components of, respectively, the incident and
reflected pulse. For an extraordinary wave, ~j1=2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e? ! e'2=e?

p
, with e? and e', respectively, the perpen-

dicular and cross-field component of the dielectric tensor. In
the limit of low frequency waves x ! xci, one gets ~j1=2

, xpi=xci, which can be rewritten as ~j1=2 ¼ MA=b. Since
b=MA ( 1, Eq. (31) is written as r ¼ 1! 2xci=xpi

þOððb=MAÞ2Þ. With the chosen field convention, r> 0
means that compressive pulse is thus transformed into a rare-
faction pulse upon reflection at the plasma-vacuum interface,
as illustrated in Fig. 3. For an initial right propagating com-
pressive pulse, each left propagating pulse is a rarefaction
pulse, whereas each right propagating pulse is a compressive
pulse. A consequence of this result is that the displacement

Df resulting from each successive passage of the reflected
pulse adds constructively. In addition, since 2xci=xpi ( 1,
the pulse is almost entirely reflected, and only a small frac-
tion of the incident pulse is transmitted through the interface
at each interaction of the pulse with the plasma-vacuum
interface.

B. Displacement from soliton bouncing

In this section, it is assumed that the reflection of a sol-
iton at the plasma vacuum-interface leads to another soli-
ton, or, in other words, that the reflection does not change
the form of the MS soliton, but only modifies its amplitude.
Although rarefaction soliton solutions do not exist for
transverse magnetosonic waves in cold plasma,17 it is
further assumed that a rarefaction pulse such as defined in
Eq. (23) propagates with negligible change in form, i.e., as
a soliton. The Mach number of the nth reflected pulse
is related to the Mach number of the ðn! 1Þth reflected
pulse by

MA;n ! 1 ¼ 1! 2
xci

xpi

! "
ðMA;n!1 ! 1Þ: (32)

Here, use has been made of the relation Bm ¼ 2MA ! 1
between the soliton amplitude Bm and the Mach number MA.
The Mach number of the nth reflected pulse is hence related
to the Mach number of the initial pulse by

dMA;n ¼ 1! 2
xci

xpi

! "
dMA;n!1

¼ 1! 2
xci

xpi

! "n

dMA;0: (33)

Using Eqs. (21) and (28), the total displacement after an infi-
nite number of reflections is

Dx1 ¼ 4
ffiffiffi
2
p

1þ g2

c

xpe

X1

i¼0

Nc
2i þ Nr

1þ2ið Þ (34)

with

Nc
2i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
dMA;2i

p
1þ 4! 3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2

p

3
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2

p dMA;2i þO dMA;2i
2

' (
" #

;

(35a)

Nr
1þ2i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dMA;1þ2i

p
1! 8þ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2

p

3
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2

p dMA;1þ2i

"

þO dMA;1þ2i
2

' (
#

; (35b)

which, using Eq. (33), and noting that

X1

i¼0

1! 2
xci

xpi

! "i

¼ 1

2

xpi

xci
; (36a)

X1

i¼0

1! 2
xci

xpi

! "3i

¼ 1

6

xpi

xci
þ 1

3
þO xci

xpi

! "
; (36b)

FIG. 3. Schematic representation of the transformation of a compressive
pulse into a rarefaction pulse, and reciprocally, upon reflection at the
plasma-vacuum interface in a 1d slab model. The initial conditions are those
of a compressive MS soliton. The profiles depict the time evolution of the
magnetic field disturbance dB. The displacement Df due to each of the suc-
cessive pulse passages adds constructively. The amplitude of the transmitted
pulse is exaggerated for clarity.
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X1

i¼0

1! 2
xci

xpi

! "iþ1=2

¼ 1

2

xpi

xci
! 1

2
þO xci

xpi

! "
; (36c)

and

X1

i¼0

1! 2
xci

xpi

! "3ð1þ2iÞ
2

¼ 1

6

xpi

xci
! 1

6
þO xci

xpi

! "
(36d)

can be written as

Dx1 ¼ 4
ffiffiffi
2
p

1þ g2

xpi

xci

c
ffiffiffiffiffiffiffiffiffiffiffiffi
dMA;0

p

xpe

' 1! 2þ 3
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2

p

9
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2

p dMA;0 þO dMA;0
2

' (
" #

; (37)

or, as a function of the maximum amplitude Bm ¼ 1þ 2dMA

Dx1 ¼ 4

1þ g2

xpi

xci

c

xpe

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bm ! 1

p

' 1! 2þ 3
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2

p

18
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2

p ðBm ! 1Þ þO Bm ! 1½ +2
) *" #

:

(38)

In the above expansion, the ordering dMA ) xci=xpi ) dM2
A

has been assumed. This condition can be rewritten asffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bm ! 1
p

)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2xci=xpi

p
, and since xci=xpi ( g( 1 in the

over-dense regime, Dx1 is larger than the electron skin depth.
We then write

Dx0
1 ¼ 4

1þ g2

c

xpe

xpi

xci

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bm ! 1

p
;

¼ xpi

xci
Dx0; (39)

the first order expansion of Dx1 (Table I). The displacement
Dx0

1 can also be written independently of the plasma den-
sity by introducing the hybrid gyro-frequency xh ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
xcixce
p

Dx0
1 ¼ 4

1þ g2

c

xh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bm ! 1

p
: (40)

In the over-dense regime considered here, xh is also the
lower-hybrid frequency xlh ¼ ½ðxcixceÞ!1 þ xpi

!2+!1=2.

C. Single ion electrostatic dynamics

To validate this asymptotic development, the trajectory
of a single unmagnetized ion interacting only with the

longitudinal electric field Ex of the soliton pulse is simulated.
At t¼ 0, a longitudinal electric field

Exjt¼0 ¼ E0 sech2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bm ! 1
p

2

xpe

c
ðx! L=4Þ

# +

' tanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bm ! 1
p

2

xpe

c
ðx! L=4Þ

# +
(41)

is initialized with E0 ¼ ðBm ! 1Þ3=2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
mi=me

p
VAB0. This pulse

propagates towards the right with a velocity MAVA. Note that
compared to the model derived in Sec. II, and more specifi-
cally Eqs. (6)–(8), the field amplitude is here smaller by a
factor MA ¼ ð1þ BmÞ=2, and the width of the pulse is larger

by a factor
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2

p
. These choices are however consistent

with the standard Korteweg-de-Vries (KdV) solution (see
Appendix A and Refs. 17 and 56). In this simple unmagne-
tized model, the pulse is assumed to reverse direction while
maintaining form upon reaching the plasma vacuum inter-
face. The width and amplitude of the reflected pulse are cho-
sen as

wr
s ¼ wi

s 1! 2
xci

xpi

! "!1

; (42a)

Er
0 ¼ Ei

0 1! 2
xci

xpi

! "3=2

; (42b)

with wi
s and Ei

0 the width and amplitude of the incident pulse,
respectively.

The displacement of a test ion initialized in the middle
of the plasma slab of length Lp (x 2 ½!Lp=2; Lp=2+) is shown
in Fig. 4 for xci=xpi ¼ VA=c ¼ 7' 10!3; g2 ¼ 10!2 (i.e.,

FIG. 4. Relative position of a test ion as a function of time as an ideal soliton
is reflected successively at the plasma-vacuum interfaces of a plasma slab.
Time is normalized by t1 ¼ 2L½VAð1þ BmÞ+!1, the transit time of a MS soli-
ton of amplitude Bm across the plasma slab of length L. Displacement is nor-
malized by the first order expansion Dx0 given in Eq. (22). The first order
expansion for an infinite number of reflections Dx0

1, defined by Eq. (39), is
shown in red.

TABLE I. Lowest-order expansion [Oð½Bm ! 1+3=2Þ] of the displacement

induced by a single pulse passage [Eq. (22)] and by an infinite number of
passages after reflection in a bounded slab [Eq. (39)].

Displacement Expression

Single passage
Dx0 ¼

c

xpe

4

1þ g2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bm ! 1

p

Infinite # of passages Dx0
1 ¼ xpi

xci
Dx0
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mi ¼ 100 me), and Bm ! 1 ¼ 10!2 (i.e., dMA;0 ¼ 5' 10!3).
The reason for the use of a reduced ion to electron mass ratio
will become clear in Sec. IV. The computed evolution of
the ion position at early times, as highlighted in the inset in
Fig. 4, matches well the first order expansion Dx0 given in Eq.
(22). A closer look confirms that the ion displacement for com-
pressive pulses (odd displacements here) is larger than Dx0 by
about 1%, while it is lower than Dx0 by about 1% for rarefac-
tion pulses (even displacements). This result is consistent with
the higher order terms from Eqs. (21) and (28).

Results at long times, i.e., in the limit where the pulse
intensity in the plasma slab goes to zero, match well with the
asymptotic limit Dx0

1 for the ion displacement after an
infinite number of reflections derived in Eq. (39). This is
confirmed in Fig. 5. The observation that the simulated dis-
placement exceeds Dx0

1 for small dMA can be traced back
to the small differences in the pulse amplitude and width dis-
cussed earlier. Indeed, by choosing, compared to Sec. II, the
field amplitude and the width of the pulse, respectively,

smaller by a factor MA and larger by a factor
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2

p
, the

parameter d from Eq. (14) is modified by a factorffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2

p
=MA. For weak pulses (Bm ! 1! 0), this factor is

about
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2

p
, 1:005. For stronger pulses, the linear

decrease in ðx1 ! x0Þ=Dx0
1 with Bm ! 1 in Fig. 5 is consis-

tent with dMA
3=2 terms in Eq. (38) and the slope matches well

with the second order term ! 2þ3
ffiffiffiffiffiffiffiffiffiffiffiffi
1þg2

p) *
= 18

ffiffiffiffiffiffiffiffiffiffiffiffi
1þg2

p) *

,!5=18.
Although this simple unmagnetized simulation confirms

the asymptotic results, it is important to point out here some
of its limitations. First, since the width of a soliton grows as
dMA

!1=2, the width of the ideally reflected soliton will
become larger and larger as its amplitude decreases upon
reflection. As a result, this model is only valid up to the point
when the width of the soliton becomes comparable to the
plasma slab width. In other words, by the nth reflection, the
width of the soliton has grown by a factor 1, with
1 ¼ ð1! 2xci=xpiÞ!n=2, while the ion displacement pro-
duced by this soliton has decreased by the same factor. In the
simulation results presented above, we used 1!1 ¼ 5' 10!4.

In addition, two strong and unphysical hypotheses of this
model are the assumptions that a soliton maintains its form
on reflection at the plasma-vacuum interface and that rare-
faction pulses maintain form.

IV. NUMERICAL VALIDATION

To relax these constraints and test the validity of the
results drawn in Sec. III, particle-in-cell (PIC) simulations
are carried out in the same configuration.

A. Numerical model

The PIC code used here is a 1D version of the fully elec-
tromagnetic relativistic code EPOCH.57 Taking a plasma slab
of a few soliton width ws ¼ dMA

!1=2c=xpe, and recalling
that a small amplitude soliton (dMA ( 1) propagates at the
velocity MAVA, the simulation duration is about gxci

!1=ffiffiffiffiffiffiffiffiffi
dMA

p
. Consequently, the simulation time scales roughly

with the square root of the ion mass. In order to make such sim-
ulations tractable, we choose a reduced ion to electron mass
ratio g2 ¼ 10!2, and focus on the first few soliton reflections.

To offer a valid point of comparison with the results
established in Secs. II and III, the simulated plasma has to be
cold. In particular, the peak ion kinetic energy associated
with the ion longitudinal velocity in the soliton, ei

, g!2meðBm ! 1Þ2VA
2=2 [see Eq. (A16b)], should be much

larger than the ion thermal energy. However, low plasma
temperature leads to severe constraints on the number of grid
points required to resolve the Debye length. As a compro-
mise, we choose to initialize the plasma with Te0

¼ 0:1 eV;
Ti0 ¼ 0:03 eV, and Bm ! 1 ¼ 0:1. The grid size is chosen
equal to one Debye length. A soliton amplitude Bm ! 1
¼ 0:1 ensures that ei is more than two orders of magnitude
larger than the ion thermal energy while remaining small
enough to allow comparison with the asymptotic models for
Bm ! 1( 1 derived in Secs. II and III.

The configuration simulated here consists of a plasma
slab of width Lp , 89c=xpe, surrounded by vacuum. The
total length of the simulation domain is L ¼ Lp=0:8.
The background magnetic field is B0 ¼ 1 T. The width of the
original soliton is then of the order of 2ðBm ! 1Þ!1=2c=xpe

, 6c=xpe. The plasma density is n0 ¼ 2' 1021 m!3, so that
the over-dense regime assumption is well satisfied with
xce=xpe , 1=14. Accordingly, VA , c=143 for the reduced
mass mi ¼ 100 me used here. The pulse magnetic and electric
fields, as well as ion and electron velocity fields within the
pulse, are initialized in the form of a compression MS soliton
[see Appendix A and Eqs. (A14)–(A16c)] located at
x ¼ !L=6. The main plasma parameters for the initial
upstream plasma are listed in Table II, while the PIC simula-
tion dimensionless parameters are given in Table III.

B. Soliton propagation and reflection

Figure 6 shows the time evolution of the magnetic field
over the entire computational domain. The plasma region is
located in between the two black-dotted lines in Fig. 6(a).
The plasma-vacuum boundaries are initially located near
645c=xpe and move with time as particles are pushed and

FIG. 5. Ratio of the ion displacement after an infinite number of reflection,
ðx1 ! x0Þ, to the first order expansion Dx0

1 defined by Eq. (39). The Bm ! 1
scaling is consistent with higher order terms in Eq. (38).
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pulled in response to the perturbating fields, similarly to the
plasma displacement discussed at the end of this section. The
form self-preserving property of the soliton is recovered
as the compression pulse propagates towards the right up
until the first reflection at the plasma-vacuum interface.
Furthermore, the pulse propagation velocity inferred from the
magnetic field maximum for 0 & txci & 5 is 1:048 VA, which
is consistent with the phase velocity v/ ¼ VAð1þ BmÞ=2 of
MS solitons6,19,20 for the normalized pulse amplitude Bm

!1 ¼ 0:1 used here.

PIC results confirm the formation of a rarefaction wave
upon reflection of the compressive pulse at the interface
(txci , 6). However, in contrast with the assumption made
when computing the unmagnetized ion trajectory in Secs.
III B and III C, PIC results indicate that the pulse is no longer
a soliton after reflection and that the left propagating pulse fea-
tures a trailing wave. The result that the reflected pulse is not a
soliton is analogous to what has been observed and modelled
for ion-acoustic solitons.51 As the reflected pulse propagates
towards the left boundary, the amplitude of the trailing wave
appears to grow. A closer look shows that the leading rarefac-
tion pulse’s width broadens, while its amplitude decreases and
suggests that a fraction of the leading pulse energy is trans-
ferred to the trailing wave. A similar energy transfer from the
leading pulse to the trailing wave has been reported for ion-
acoustic solitons propagating in non-homogeneous unmagne-
tized plasmas.40,46 This behavior is also found to result from
dissipation in dispersive shock waves.15

Reflection of the left propagating rarefaction pulse and
its trailing wave at the left plasma-vacuum boundary
(txci , 15) leads to a compression pulse and a new trailing
wave. Together with the first reflection, this result confirms
the successive transformation of a compressive pulse into a
rarefaction pulse, and vice-versa, upon reflection at the
plasma-vacuum boundary. However, in contrast with the car-
toon picture given in Fig. 3, PIC simulations highlight the
modifications induced by reflection on the pulse’s form, and
in particular, the formation of a trailing wave. PIC results
also indicate that the width of the leading pulse grows.

C. Pulse energy breakdown

Figure 7 shows the time evolution of the breakdown
between the volumic energy of fields, ions, and electrons

TABLE II. Plasma upstream parameters at t¼ 0. The notation p0 is used to

denote pjt¼0.

Parameter Value

Plasma slab width Lp (mm) 10.6

Ion to electron mass ratio g!2 100

Electron and ion density ne0
and ni0 (cm!3) 2' 1015

Electron temperature Te0
(eV) 0.1

Ion temperature Ti0 (eV) 0.03

Background magnetic field B0 (T) 1

Plasma frequency xpe0
(s!1) 2:5' 1012

Electron gyro-frequency xce0
(s!1) 1:8' 1011

Ion gyro-frequency xci0 (s!1) 1:8' 109

Debye length kD0
(nm) 50

Electron skin depth c=xpe0
(lm) 120

Alfv!en velocity VA0
(m s!1) 2:1' 106

Sound speed cs0
(m s!1) ,104

TABLE III. Dimensionless parameters in PIC simulations.

Parameter Bm ! 1 Lxpe=c Lpxpe=c xpe=xce xpi=xci Lpxci=VA

Value 0.1 112 89 14 143 9

FIG. 6. (a) Contour plot of the magnetic field perturbation over the entire domain, with solid-black curves denoting the plasma-vacuum boundaries (normalized
magnetic perturbation), and (b) profiles at every Dt ¼ p=ð2xciÞ. Each profile is shifted upward by 0.15 (profile of the normalized magnetic field perturbation
Bm ! 1 at different times). The self-preserving nature of the initial soliton is clearly seen until reflection (txci , 6) at the right plasma/vacuum boundary.
Reflection leads to a rarefaction pulse and the formation of a trailing wave.
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integrated over the plasma slab. The integrated field energy
is defined in Eq. (B1), while ion and electron energy is
obtained by summing the kinetic energy of all particles of a
given species. All energies are normalized to the initial field
energy content of the soliton

e0
F ¼

4

3

B0
2ðBm ! 1Þ3=2

l0

c

xpe
; (43)

derived in Appendix B. As expected from the lowest order
expansion derived from the KdV solution and given in Eqs.
(B3) and (B4), the particle energy is initially larger than the
field energy by a factor Bm. Other than the energy loss result-
ing from the transmission of part of the wave to the vacuum
region upon reflection (txci , 6, 16 and 24), the last panel in
Fig. 7 shows that total energy (field plus particles) in the
plasma is well conserved. The measured relative variation in
total energy away from reflections is less than 10!4. The
energy lost to the vacuum region as a result of the first reflec-
tion of the soliton at the plasma-vacuum interface is about
2.4%, that is to say, that the energy reflection coefficient R is
about 97.6%. Interestingly, this figure falls in between the
energy reflection coefficient

Rl ¼ jrj2 ¼ 1! 4
xci

xpi
þ 8

xci

xpi

! "2

þO xci

xpi

# +3
 !

(44)

obtained from the continuity equation for linear waves given
in Eq. (31) and the Rs ¼ jrj3=2 scaling obtained by Lonngren
et al.48 for KdV solitons. For the simulation parameters used
here, Rl , 97.2% and Rs , 97.9%.

For the second and third pulse reflections (txci , 16)
and (txci , 24), the energy loss to the vacuum region
appears to decrease slightly. The relative decrease in total
energy is about 2.2% and 1.9%, respectively. These devia-
tions may be related to the increasing importance of radia-
tion modes which are found in addition to the “soliton-like”
mode. Another explanation might lie in the increase in the
pulse’s width. Indeed, simulations with ion-acoustic solitons
showed that the reflection coefficient grows with the soliton
width.51 Notwithstanding these small deviations, the good
agreement found here supports the assumption made about
the amplitude of the reflected soliton when computing the
unmagnetized ion trajectory in Secs. III B and III C.

A remarkable feature in Fig. 7 is the nearly linear
decrease in the pulse energy (first panel) with time in between
reflections. One explanation for this behavior is energy depo-
sition by the soliton to the electrons. More precisely, the lin-
ear decrease in eF is consistent with the propagation of a
soliton at a velocity MAVA and depositing an energy

DEe ¼ !
1

n0MAVA

deF
dt

(45)

per electron. From the linear fit before the first reflection
(txci & 5) shown in red dots in the first panel in Fig. 7, one
gets DEe , 0:11 eV. This result roughly agrees with the
result obtained from the slope of eelec in the second panel.
However, the energy deposition obtained from eelec does
not strictly match Eq. (45) since eelec is a global quantity
which includes phenomena occurring outside of the pulse,
such as collisional effects. It is interesting to note that DEe

is very close to the peak longitudinal kinetic energy [see
Eq. (A16b)]

eex ¼
me

2
VA

2ðBm ! 1Þ2 , 0:12 eV (46)

acquired by an electron in the soliton. However, one should
be cautious when trying to interpret this result. Indeed,
because of the reduced mass g!2 ¼ 100 used here, the max-
imum transverse (eey ) and longitudinal (eex ) kinetic energy
acquired by an electron in the soliton [see Eqs. (A16b)
and (A16c)] only differs by a factor 4ðBm ! 1Þg!2=27
, 1:5. As a result, one also has DEe=eey ¼ Oð1Þ. Yet, simu-
lations for a real electron to ion mass ratio should allow
differentiating these two contributions since eey ) eex for
g!2 ¼ 1836.

A complete picture of the pulse energy breakdown
between fields, electrons, and ions requires considering the
effects of electron-ion (e ! i) collisions. To assess the role of
collisions, one is interested in the ordering between Spitzer’s
equipartition time58

FIG. 7. Time evolution of the volumic energy integrated over the plasma
domain for the fields [eF , see Eq. (B1)], ions (eion), and electrons (eelec).
Energy contents are normalized by the initial field energy content e0

F defined
in Eq. (43). The energy loss to the vacuum region upon pulse reflection is
clearly visible in the last panel.
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sie
e ¼ ð4p!0Þ2

4
ffiffiffiffiffiffi
2p
p g!2 ffiffiffiffiffiffi

me
p

Te
3=2

n0e4 ln Kie
; (47)

with ln Kie the Coulomb logarithm, and both the soliton
interaction time sr defined in Eq. (10) and the soliton propa-
gation time Lp=ðMAVAÞ. For the low-temperature and over-
dense regime studied here, sie

e is a fraction of xci
!1. To the

extent that sr & sie
e, the effect of e ! i collisions on the par-

ticle dynamics within the soliton can be neglected in first
approximation. On the other hand, since sie

e & Lp=ðMAVAÞ,

e ! i collisions will modify the plasma in between passages
of the pulse. However, as discussed in Appendix C, these
modifications do not appear to play a significant role in the
soliton’s dynamics. Furthermore, we note that since sie

e

/ g!2 while the simulation duration is proportional to the
soliton width to soliton velocity ratio and thus scales like
g!1, e ! i collision effects will be weaker for a real electron
to ion mass ratio.

D. Particle displacement

An example of ion trajectory obtained by averaging the
PIC simulated trajectories of over 150 individual ions initial-
ized at L=20 & x0 & ð1þ 10!4ÞL=20 is overlayed on the
magnetic field perturbation map in Fig. 8. One verifies that
the passage of the pulse leads to a displacement of the parti-
cle. This displacement is in the direction of the pulse propa-
gation for a compressive pulse, and in the direction opposite
to the pulse propagation for a rarefaction pulse. Since a
rarefaction pulse is turned into a compressive pulse upon
reflection, and reciprocally, the displacement induced by
each pulse passage adds to the previous one, as predicted in
Sec. III.

In order to quantitatively check the results derived in
Secs. II and III, PIC results are compared in Fig. 9 with the
asymptotic expansions Eqs. (21) and (28). In this figure is
also plotted for comparison the displacement obtained by
numerically integrating the trajectory of a single test ion for
two different cases. First, the case of an unmagnetized ion
interacting with a purely electrostatic pulse (Ex only) as
defined in Eq. (41). This is the same model as the one used
in Sec. III and Fig. 4. Second, the more general case of a
magnetized ion interacting with an electromagnetic soliton
with longitudinal and transverse electric fields Ex and Ey and

FIG. 8. Example of ion trajectory (in black filled-circles) predicted by PIC
simulations. The trajectory is overlayed on a subset of the perturbation mag-
netic field map given in Fig. 6(a).

FIG. 9. Displacement computed for a single unmagnetized ion (see Sec. III) and for a single magnetized ion interacting with a soliton (Ex, Ey and Bz) along
with the results of the electromagnetic particle-in-cell (PIC) simulation. The displacement is normalized by the first order expansion Dx0 derived in Eq. (22).
Ions are located at x0 ¼ L=20 at t¼ 0, and the relative variation in x0 between selected PIC test ions is & 10!4.
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perpendicular magnetic field Bz, as defined in Eqs.
(A14)–(A15b).

The ion displacement after the first passage (txci , 2:5)
of the pulse agrees very well both with the unmagnetized ion
model and with the asymptotic expansion Dx0 given in Eq.
(22). Quantitatively, the ion displacement after the first pulse
as computed from the PIC simulation is within 2% of the
predictions of these two idealized models.

The second passage of the pulse as predicted by PIC
results is delayed compared to single ion calculations (both
magnetized and unmagnetized). This delay stems from the
reflection process at the plasma-vacuum interface. As shown
in the first panel in Fig. 7, the soliton field energy is entirely
transferred to the ions upon reaching the edge of the plasma
region, before being transferred back to the field energy of
the counter-propagating pulse. From Figs. 6 and 7, the time-
scale for this energy exchange and hence for the formation
of the counter-propagating pulse is s! , xci

!1. On the other
hand, single ion calculations assume that the pulse is imme-
diately reflected. As a result, the second, third, and fourth
push predicted by PIC simulations is observed with a delay
s!; 2 s!, and 3 s!, respectively.

The ion displacement obtained from PIC simulations
after the passage of the pulse after its first reflection
(txci , 11) is found to be about 10% larger than both the
asymptotic expansion to order dMA

3=2 and the predictions of
the unmagnetized ion model. This discrepancy lies in the
transverse ion dynamics. Specifically, two main mechanisms
can be brought forward to explain this deviation. First, due
to the artificially high electron to ion mass ratio used in the
simulation, g=

ffiffiffiffiffiffiffiffiffi
dMA

p
, 0:45, and, from Eq. (10), the resi-

dence time of an ion in the pulse is about 0:07 tci. This indi-
cates that the magnetic field will be responsible for
redirecting some fraction of the longitudinal momentum to
transverse momentum during the pulse passage. Second, ions
also acquire a transverse velocity in response to Ey. These
two mechanisms, which have not been accounted for in
Secs. II and III, will lead to a transverse velocity Vy when
the ion exits the pulse, which will in turn lead to an addi-
tional displacement along x by rL ¼ mpVy=ðeB0Þ. Comparing
these two mechanisms, the transverse velocity Vy resulting
from the magnetic field effect is about vxsrxci, with vx the
longitudinal ion velocity, while the contribution of the trans-
verse electric field is Eyxcisr=B0. Here, we used sr ( xci

!1.
Plugging in Eqs. (A15b) and (A16b), it turns out that both
contributions are comparable and Vy , dBVAxcisr. This
leads to an additional longitudinal displacement rL

, Dx0

ffiffiffiffiffiffi
dB
p

g!1xcisr=4, which is about 0:1Dx0 for the simula-
tion parameters, in good agreement with simulation results
after the second pulse passage. Note however that since Vy

depends on the gyro-phase of the ion when it enters the
pulse, the amplitude of this additional displacement will vary
from one pulse passage to the next. Furthermore, a rigorous
analysis of the transverse dynamics will require accounting
for the spatial and temporal variations of the transverse elec-
tric field and longitudinal velocity. Nevertheless, this simple
analysis and the role played by the ion transverse dynamics
are supported by the good agreement observed between PIC
results and the guiding center position obtained from the

magnetized ion model once oscillations resulting from the
trailing wave have faded away.

The agreement between the asymptotic expansion and
PIC results is further confirmed after the passage of the
twice-reflected soliton (txci , 21). Quantitatively, PIC ion
displacement is here found to be a few percents smaller than
both the asymptotic expansion and the single ion models.
One explanation for this small deviation is the energy trans-
fer observed from the leading pulse, which accounts for most
of the ion displacement, to the trailing wave as the pulse
propagates across the plasma slab. Furthermore, due to the
limited width of the plasma slab, the reflected rarefaction
pulse begins pushing here the test ions before the trailing
wave of the incident compression pulse has fully gone by.
This makes it impossible to determine the displacement after
the passage of the entire right propagating pulse (leading
pulse plus trailing wave).

Due to the significant computational cost of these PIC
simulations, only the first three reflections of the pulse can be
modeled. Nevertheless, these results confirm the main finding
of this study: the passage of a MS pulse induces a displace-
ment of particles in a magnetized plasma slab, and the dis-
placements induced by the passages of the successive
reflections of this pulse at the vacuum boundaries of a bounded
plasma slab act constructively. These results also demonstrate
that the reflected pulses are no longer MS solitons, similarly to
what had been reported for ion-acoustic solitons.51

Interestingly, this divergence from a pure soliton does not
appear to have a strong effect on the displacement induced by
those pulses, as shown by the good agreement found between
PIC results and the idealized soliton reflection models.
However, this observation will have to be confirmed by study-
ing many reflections, which is beyond our current capabilities.

V. SUMMARY

In this paper, the plasma displacement resulting from
the bouncing motion of a magnetosonic (MS) soliton within
a plasma slab bounded by vacuum was investigated.

By analyzing the structure of a transverse compression
MS soliton and in particular, its longitudinal electric field, an
analytical expression for the plasma displacement resulting
from the passage of a soliton is derived in the limit of small
amplitude pulses and over-dense plasmas. This displacement
scales like the electron skin depth times the square root of
the pulse amplitude. Then, by observing that a compression
pulse is turned into a rarefaction pulse upon reflection at a
plasma-vacuum boundary and vice-versa, the displacements
resulting from each successive passage of a pulse bouncing
back and forth in a plasma slab are shown to add up. The dis-
placement after the pulse’s energy has fully radiated to the
surrounding vacuum region is found to be larger than the dis-
placement induced by the original pulse by a factor equal to
the ion plasma frequency to ion gyro-frequency ratio. This
displacement is independent of the plasma density and scales
as the square root of the magnetic perturbation amplitude
divided by the hybrid gyro-frequency.

Particle-in-cell (PIC) simulations of the first three reflec-
tions of a compression MS soliton in a plasma slab confirm
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that the displacement induced by each pulse passage adds to
the previous one. Furthermore, PIC results corroborate the
amplitude of the plasma displacement obtained from analyti-
cal models. This good agreement is particularly interesting
since analytical models assume a stationary pulse form,
whereas PIC simulations reveal that the original soliton
evolves into a pulse and a trailing wave after the first reflec-
tion. Although this agreement can only be verified here for
the first three reflections, it suggests that these findings may
be valid for other pulse forms.

While the plasma displacement induced by a single soli-
ton passage is likely to be negligible for most applications,
the cumulative effect associated with successive reflections
may become significant for particular applications featuring
over-dense plasmas. For example, in fast magnetic compres-
sion configurations considered for plasma densification in
plasma-based particle accelerators,59 the soliton formed
ahead of the shock60 may, under some conditions, be
reflected by the density discontinuity associated with the
counter-propagating shock. This mechanism would repro-
duce the bouncing configuration considered in this paper and
may in turn impact the plasma densification scheme.
Similarly, bouncing solitons could in principle be found in
between colliding shocks, both in laboratory61 and space
plasmas.62
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APPENDIX A: KORTEWEG-DE-VRIES (KdV)
EQUATION FOR A MAGNETOSONIC WAVE
IN A SINGLE ION SPECIES COLD PLASMA

The set of equations considered here is made of the con-
tinuity equation for electrons and ions, the momentum equa-
tion along x and y for electrons and ions, as well as
Faraday’s and Ampere’s equations. The background mag-
netic field is B ¼ B0ẑ and the unperturbed plasma density is
n0. The perturbation propagates along x̂. Under the assump-
tions @=@y ¼ @=@z ¼ 0, it writes

@ne

@t
þ @nevex

@x
¼ 0; (A1a)

@ni

@t
þ @nivix

@x
¼ 0; (A1b)

me
@

@t
þ vex

@

@x

! "
vex ¼ !eðExþveyBzÞ; (A1c)

mi
@

@t
þ vix

@

@x

! "
vix ¼ eðExþveyBzÞ; (A1d)

me
@

@t
þ vex

@

@x

! "
vey ¼ !eðEy!vexBzÞ; (A1e)

mi
@

@t
þ vix

@

@x

! "
viy ¼ eðEy!vexBzÞ; (A1f)

@Bz

@t
¼ !

@Ey

@x
; (A1g)

@Bz

@x
¼ !l0eðniviy!neveyÞ; (A1h)

with me and mi the electron and ion mass, respectively, and e
the elementary charge. Here, we introduced the normalized
variables

x ¼ x=
c

xpe
; (A2a)

t ¼ t=
c

vAxpe
; (A2b)

via ¼ via=vA; vea ¼ vea=vA; (A2c)

n ¼ n=n0; (A2d)

Bz ¼ Bz=B0; (A2e)

Ea ¼ Ea=vAB0; (A2f)

where a designates x or y; vA ¼ Xi=xpic is the Alfv!en veloc-
ity with Xi ¼ eB0=mi the ion cyclotron frequency, xpi

¼ ½n0e2=ðmie0Þ+1=2 the ion plasma frequency, and c the speed
of light and xpe ¼ ½n0e2=ðmee0Þ+1=2 is the electron plasma
frequency. Equation (A1) then reads

@ne

@t
þ @nevex

@x
¼ 0; (A3a)

@ni

@t
þ @nivix

@x
¼ 0; (A3b)

@

@t
þ vex

@

@x

! "
vex ¼ !g!1ðEx þ veyBzÞ; (A3c)

@

@t
þ vix

@

@x

! "
vix ¼ gðEx þ veyBzÞ; (A3d)

@

@t
þ vex

@

@x

! "
vey ¼ !g!1ðEy ! vexBzÞ; (A3e)

@

@t
þ vix

@

@x

! "
viy ¼ gðEy ! vexBzÞ; (A3f)

@Bz

@t
¼ !

@Ey

@x
; (A3g)

@Bz

@x
¼ !gðniviy ! neveyÞ; (A3h)

with g ¼ ðme=miÞ1=2 the square root of the mass ratio. We
now introduce the stretched coordinates

n ¼ !1=2ðx! tÞ (A4a)

s ¼ !3=2t; (A4b)

so that

@ð.Þ
@x

! !1=2 @ð.Þ
@n

; (A5)
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@ð.Þ
@t

! !!1=2 @ð.Þ
@n
þ !3=2 @ð.Þ

@s
; (A6)

and expand the plasma variables as

Bz ¼ 1þ !Bz1 þ !2Bz2 þ . . . ; (A7a)

ni ¼ 1þ !ni1 þ !2ni2 þ . . . ; (A7b)

ne ¼ 1þ !ne1
þ !2ne2

þ . . . ; (A7c)

vex ¼ !vex1
þ !2vex2

þ . . . ; (A7d)

vix ¼ !vix1
þ !2vix2

þ . . . ; (A7e)

Ey ¼ !Ey1
þ !2Ey2

þ . . . ; (A7f)

Ex ¼ g!1ð!3=2Ex1
þ !5=2Ex2

þ . . .Þ; (A7g)

vey ¼ g!1ð!3=2vey1
þ !5=2vey2

þ . . .Þ; (A7h)

viy ¼ g!1ð!3=2viy1
þ !5=2viy2

þ . . .Þ: (A7i)

Plugging Eq. (A7) into Eq. (A3) yields

!3=2 ! @ne1

@n
þ @vex1

@n

# +
þ !5=2 ! @ne2

@n
þ @ne1

@s

#

þ @vex2

@n
þ @ne1

vex1

@n

+
þ . . . ¼ 0; (A8a)

!3=2 ! @ni1

@n
þ @vix1

@n

# +
þ !5=2 ! @ni2

@n
þ @ni1

@s
þ @vix2

@n
þ @ni1vix1

@n

# +

þ . . . ¼ 0; (A8b)

g!2!3=2 Ex1
þ vey1½ + þ g!2!5=2 Ex2

þ vey2
þ vey1

Bz1½ + þ . . . ¼ 0;

(A8c)

!3=2 @vix1

@n
þ Ex1

þ viy1

# +
þ !5=2 @vix2

@n
! @vix1

@s

#

!vix1

@vix1

@n
þ Ex2

þ viy2
þ viy1

Bz1

+
þ . . . ¼ 0; (A8d)

g!1! Ey1
! vex1½ + þ g!1!2 !

@vey1

@n
þ Ey2

! vex2
! vex1

Bz1

# +

þ . . . ¼ 0; (A8e)

g!1!2 @viy1

@n
þ g!1!3 @viy2

@n
!
@viy1

@s
! vix1

@viy1

@n

# +

þ g! Ey1
! vix1½ + þ g!2 Ey2

! vix2
! vix1

Bz1½ + þ . . . ¼ 0;

(A8f)

!3=2 !@Bz1

@n
þ
@Ey1

@n

# +
þ !5=2 !@Bz2

@n
þ@Bz1

@s
þ
@Ey2

@n

# +
þ.. . ¼ 0;

(A8g)

!3=2 @Bz1

@n
þ vix1

! vex1

# +
þ !5=2 @Bz2

@n
þ ni1vix1

#

!ne1
vex1
þ vix2

! vex2

+
þ . . . ¼ 0: (A8h)

From lowest order terms in Eq. (A8), one gets

ne1
¼ vex1

¼ Ey1
¼ Bz1

; (A9a)

ni1 ¼ vix1
: (A9b)

Now, the choice of a given plasma composition determines
g ¼ ðme=miÞ1=2. For an electron/proton plasma, g , 1=43.
For a soliton amplitude such that g( !( 1, lowest order
terms in Eq. (A8) further give

viy1
¼ 0; (A10a)

vix1
¼ Bz1

; (A10b)

vey1
¼ !Ex1

¼ @Bz1
=@n: (A10c)

The ! and !2 terms in Ampere’s law expansion along the x
direction give, respectively, vex1 ¼ vix1 and vex2 ¼ vix2 .
Plugging these results into the Oð!5=2Þ term of Eq. (A8d)
yields

@Bz1

@s
! @vex2

@n
þ 1

2

@ðBz1
Þ2

@n
! Ex2

¼ 0; (A11)

where use has been made of Eq. (A9). Equation (A11),
together with the Oðg!2!5=2Þ term in Eq. (A8c), the
Oðg!1!2Þ term in Eq. (A8e), the Oð!5=2Þ term in Eq. (A8g),
and the Oð!5=2Þ term in Eq. (A8h), is then used to eliminate
second order coefficients vex2

; vey2
; Ex2

; Ey2
, and Bz2

to yield
the evolution equation for Bz1

,

@Bz1

@s
þ 3

2
Bz1

@Bz1

@n
þ 1

2

@3Bz1

@n3
¼ 0: (A12)

Equation (A12) is the Korteweg-de Vries (KdV) equation for
a perpendicular magnetosonic solitary wave in a single ion
species cold plasma. The general solution to Eq. (A12) is

Bz1
¼ a sech2

ffiffiffi
a
p

2
n! a

2
s

! "" #

; (A13)

with a 2 IR>0. Equation (A13) shows that the only soliton
solutions for perpendicular propagation are compressive soli-
tons. Rarefaction solitons only exist for oblique propagation
when cosðhÞ > g,17 with h the angle between the magnetic
field and the pulse propagation direction. Returning to the
dimensionless variables x and t defined in Eq. (A4), Eq.
(A13) gives

Bzðx; tÞ¼1þ!sech2

ffiffi
!
p

2
x! tð1þ!=2Þ½ +

! "
þOð!2Þ: (A14)

From Eqs. (A7), (A9), and (A10), one similarly obtains the
wave electric field components Ex and Ey,

Ex ¼ g!1 !3=2sech2

ffiffi
!
p

2
x! tð1þ !=2Þ½ +

! "#

' tanh

ffiffi
!
p

2
x! tð1þ !=2Þ½ +

! "
þOð!5=2Þ

+
; (A15a)

Ey ¼ ! sech2

ffiffi
!
p

2
x! tð1þ !=2Þ½ +

! "
þOð!2Þ; (A15b)

and the density and fluid velocities,
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n ¼ ne ¼ ni ¼ 1þ ! sech2

ffiffi
!
p

2
x! tð1þ !=2Þ½ +

! "
þOð!2Þ;

(A16a)

vx ¼ vex ¼ vix ¼ ! sech2

ffiffi
!
p

2
x! tð1þ !=2Þ½ +

! "
þOð!2Þ;

(A16b)

vey ¼ !g!1 !3=2 sech2

ffiffi
!
p

2
x! tð1þ !=2Þ½ +

! "#

' tanh

ffiffi
!
p

2
x! tð1þ !=2Þ½ +

! "
þOð!5=2Þ

+
: (A16c)

In dimensional units x and t, the magnetic field reads

Bzðx;tÞ¼B0 1þ!sech2 xpe

2c

ffiffi
!
p

x!vAtð1þ!=2Þ½ +
! "

þOð!2Þ
# +

:

(A17)

APPENDIX B: SOLITON ENERGY

The field and particle energy contents associated with
the pulse are defined as

eF ðtÞ ¼
ðLp

!Lp

!0

2
E2

x þ E2
y

h i
þ 1

2l0

Bz ! 1½ +2
! "

dx; (B1)

and

ePðtÞ ¼ vA

ðLp=2

!Lp=2

nmi

2
ð1þ g2Þvx

2 þ viy
2 þ g2vey

2
' (% &

dx:

(B2)

At t¼ 0, these quantities can be estimated from the first order
expansion of the solution of the KdV equation given in
Appendix A and read as

eF ¼
4

3

B0
2ðBm ! 1Þ3=2

l0

c

xpe
1þ 1

5

ðBm ! 1Þ
g2

vA
2

c2
þ vA

2

c2

" #

(B3)

and

eP ¼
4

3

B0
2ðBm ! 1Þ3=2

l0

c

xpe

' Bm þ
4

35
ðBm ! 1Þ2þg2 þ 4

5
ðBm ! 1Þg2

# +
; (B4)

where we used the results

ð1

!1
sech4ðxÞdx ¼ 4=3; (B5a)

ð1

!1
sech4ðxÞ tanh2ðxÞdx ¼ 4=15; (B5b)

ð1

!1
sech6ðxÞdx ¼ 16=15; (B5c)

ð1

!1
sech6ðxÞ tanh2ðxÞdx ¼ 16=105: (B5d)

To the lowest order in soliton amplitude ðBm ! 1Þ, the field
and particle energy contents are equal, with

e0
F ¼ e0

P ¼
4

3

B0
2ðBm ! 1Þ3=2

l0

c

xpe
: (B6)

We note that for the over-dense regime considered here
(g!1vA

2=c2 ( 1), the particle energy content is Bm times
larger than the field energy content.

APPENDIX C: THERMALIZATION AND GRID-EFFECTS

Figure 10(a) depicts the evolution of the relative elec-
tron temperature Te=Te0

, with Te0
¼ 0:1 eV, over the entire

simulation domain, while Fig. 10(b) shows the evolution of
the electron and ion temperature at two specific positions
indicated in grey dots in Fig. 10(a). Because of the ordering
sr & sie

e & Lp=ðMAVAÞ, these results can be analyzed in two
steps: the modifications induced by the pulse on the one
hand and the plasma evolution in between passages of the
pulse on the other hand.

For each of the pulse passages (txci , 3:5 and txci , 9
for x ¼ Lp=4 and txci , 14 for x ¼ !3Lp=10), a step
increase in Te is clearly visible in Fig. 10(b). This increase is
consistent with the energy deposition by the pulse discussed
in Sec. IV. Figure 10(b) also confirms that the energy depos-
ited by the pulse is essentially transferred to the electrons.
This is particularly true for the first passage (txci , 3:5)
when the pulse’s shape is still very close to a magnetosonic
soliton and the upstream plasma remains undisturbed.

In between passages of the pulse, Fig. 10(b) shows that
electrons cool down on ions as expected from electron-ion
(e! i) collisions in the regime where sie

e & Lp=ðMAVAÞ.
However, e ! i collisions are not included in this PIC model.
Here, energy relaxation occurs as a result of grid effects.
Indeed, finite size particles in PIC models are known to lead
to spurious numerical thermalization.63,64 The rate of this
unphysical energy relaxation sN depends on ND, the number
of simulated particles in a Debye sphere, and sN / ND

2 has
been verified for one-dimensional simulations.65 Based on
Fig. 10(b), the characteristic time for numerical thermalization
sN , xci

!1, which is a few times larger than Spitzer’s equi-
partition time sS given in Eq. (47). Grid effects therefore
reproduce thermalization from e ! i collisions but underesti-
mate the equipartition rate.

Enforcing the physical equipartition rate may have
an impact on the simulation results. Yet, although the
initial pulse encounters plasma with electron and ion
temperatures varying by up to 20% as a result of numer-
ical thermalization along its first pass towards the right
boundary, it does not show significant changes in prop-
erties. In particular, the ion displacement computed for
ions with initial positions 0:05 & x0=L & 0:35, i.e., ions
with varying temperature when reached by the pulse,
shows little relative variation (,1%). This suggests that
the plasma’s distance from thermal equilibrium and
therefore the equipartition rate do not play a dominant
role in this plasma regime or at least not on the ion dis-
placement prediction.
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Note that numerical thermalization is a separate effect
from the numerical spurious heating observed with electro-
static particle-in-cell codes when the Debye length is not
resolved.66 Numerical thermalization occurs even if the grid
size is smaller than the Debye length, as it is in the simula-
tions presented here.
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