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Propagation and scattering of lasers present new phenomena and applications when the plasma
medium becomes strongly magnetized. With mega-Gauss magnetic fields, scattering of optical
lasers already becomes manifestly anisotropic. Special angles exist where coherent laser scattering
is either enhanced or suppressed, as we demonstrate using a cold-fluid model. Consequently, by
aiming laser beams at special angles, one may be able to optimize laser-plasma coupling in magne-
tized implosion experiments. In addition, magnetized scattering can be exploited to improve the
performance of plasma-based laser pulse amplifiers. Using the magnetic field as an extra control
variable, it is possible to produce optical pulses of higher intensity, as well as compress UV and
soft x-ray pulses beyond the reach of other methods. In even stronger giga-Gauss magnetic fields,
laser-plasma interaction enters a relativistic-quantum regime. Using quantum electrodynamics, we
compute a modified wave dispersion relation, which enables correct interpretation of Faraday rota-
tion measurements of strong magnetic fields. Published by AIP Publishing.
https://doi.org/10.1063/1.5017980

I. INTRODUCTION

Magnetic fields affect laser propagation and scattering
when the electron gyrofrequency Xe ¼ eB=me is no longer
ignorable when compared to the laser frequency. For exam-
ple, a magnetic field "10 MG, corresponding to Xe!h " 0:1
eV, will noticeably alter the wave dispersion relation and the
scattering cross section of optical lasers in plasmas. In low
density plasmas, the role of the strong magnetic field is
largely classical. However, as plasma density increases,
quantum effects may emerge when the characteristic size of
electron wave function lB ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2!h=eB

p
becomes comparable

to inter-particle spacing. For example, a magnetic field "10
MG, corresponding to the magnetic de Broglie wavelength
lB " 1 nm, may already allow electrons to feel the Fermi
degeneracy in solid-density plasmas. As the field strength
further increases towards the Schwinger limit Bc " 1013 G,
where the magnetic de Broglie wavelength shrinks to elec-
tron Compton wavelength, relativistic-quantum effects of
magnetic fields will become increasingly prominent.

While magnetic fields on the order of Schwinger limit
can only be found near neutron stars, mega-Gauss to giga-
Gauss magnetic fields can already be produced by a number
of laboratory techniques. For example, using lasers to drive
plasma implosions, seed magnetic fields, either self-gener-
ated1 or externally imposed,2,3 can be amplified to tens of
mega-Gauss by magnetic flux compression. A more control-
lable technique produces magnetic fields of similar strengths
using lasers to drive capacitor-coil targets.4–6 Comparable or
even stronger magnetic fields can be produced by dynamo
effects when solid targets are directly ablated by intense laser

pulses.7–13 Using these techniques, magnetic fields may be
further intensified by employing stronger drive lasers. This
emerging availability of very strong magnetic fields thus
presents new challenges and opportunities that remain to be
investigated. In this paper, we review three research direc-
tions where effects of strong magnetic fields during laser-
plasma interactions have been explored.

The first direction is coherent scattering of lasers, for
which magnetic fields on the order of mega-Gauss can make
noticeable differences for 1-lm lasers. Coherent scattering
happens when the Debye length of the plasma is not much
larger than the laser wavelength. In this case, instead of
interacting directly with individual charged particles,14

lasers interact collectively with plasma waves and scatter
due to nonlinear motion of the plasma medium. Magnetized
waves that scatter lasers are Alfv"en waves, hybrid waves,
and Bernstein waves,15 which replace the Langmuir wave
and the ion-acoustic wave in unmagnetized plasmas.
Consequently, Raman and Brillouin scattering,16 the two
coherent scattering modes in unmagnetized plasmas, are now
replaced by scattering mediated by magnetized plasma
waves, on which the magnetic anisotropy is imprinted.17

Understanding angular dependence due to the anisotropy is
especially important for magnetized laser implosion experi-
ments,18,19 where multiple laser beams propagate at angles
with respect to the magnetic field.

The second direction is laser pulse compression medi-
ated by magnetized plasmas, for which tens of mega-Gauss
magnetic fields bring significant improvements when ampli-
fying 1-lm lasers. During laser pulse compression,20 energy
stored in a long pump laser is transferred, via a plasma wave,
to a seed pulse, whose intensity is amplified and the duration
is shortened. While laser pulses beyond the reach of Chirped
Pulse Amplification (CPA)26 may already be produced using
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Raman21,22 or Brillouin23–25 compression in unmagnetized
plasmas, magnetic fields bring additional improvements.27

For optical lasers, the improvements are largely engineering,
where external magnetic fields allow better control of plasma
uniformity. On the other hand, for shorter wavelength lasers,
the improvements due to alleviation of physical constraints,
such as damping and instabilities, become more substantial.
Due to these improvements, magnetized mediations may be
used to compress intense UV and soft x-ray pulses, which
cannot be compressed using other methods.

The third direction is laser propagation, which remains
largely classical until magnetic fields on the order of giga-
Gauss are present. Although giga-Gauss magnetic fields are
still far below the Schwinger limit, relativistic-quantum
effects may already become observable when they are
boosted near singularities. For example, relativistic-quantum
effects can noticeably alter the dependency of Faraday
rotation on the frequency of lasers, especially when the fre-
quency approaches the cutoff frequency of the right-
circularly polarized (R) wave. When approaching the R-wave
cutoff, the phase velocity of the R wave goes to infinity,
while the phase velocity of the left-circularly polarized (L)
wave remains finite. Therefore, the difference in phase
velocities, which leads to Faraday rotation of linearly polar-
ized lasers, becomes singular. This singularity boosts
relativistic-quantum effects and can produce order unity cor-
rections to Faraday rotation in strongly magnetized plas-
mas.28 Not surprisingly, when the magnetic field becomes
even stronger, relativistic-quantum effects will become more
appreciable.

This paper reviews progress made in these three
research directions and motivates future endeavors towards
understanding and utilizing magnetic fields during laser-
plasma interactions. In Sec. II, we present coherent laser
scattering in magnetized plasmas, using results from a cold-
fluid theory as an illustration. In Sec. III, we demonstrate an
application of strong magnetic fields, using laser pulse com-
pression as an example. In Sec. IV, we discuss the new
regime that strong magnetic fields enable us to reach, by
studying how relativistic-quantum effects modify Faraday
rotation as an example. In Sec. V, we summarize challenges
and opportunities, as strong magnetic fields become
available.

II. COHERENT THREE-WAVE SCATTERING

Coherent scattering is a primary way by which long
wavelength lasers are scattered in high-density plasmas. To
put this type of scattering in the context of other scattering
mechanisms, notice that the degree of coherence of laser
scattering can vary, depending on the wavelength of the
laser. Incoherent scattering is the extreme where the wave-
length of the laser is much smaller than the particle correla-
tion length. In this case, the laser resolves the discreteness of
the medium and directly wiggles individual particles, which
radiate secondary electromagnetic (EM) waves as scattered
lights. In the other extreme, coherent scattering happens
when the wavelength of the laser is much larger than the par-
ticle correlation length. In this case, motion of charged

particles is highly synchronized, and the laser scatters due to
collective nonlinear response of the plasma medium. In this
section, we will focus on coherent scattering of an incident
laser due to resonant three-wave interactions.

A. Resonant three-wave interactions

The lowest order nonlinearities couple three waves, and
resonant three-wave interactions can happen when frequen-
cies xi and wave vectors ki of the three waves satisfy the res-
onance conditions

x1 ¼ x2 þ x3; (1)

k1 ¼ k2 þ k3; (2)

where all xi values are positive. These resonance conditions
only need to be satisfied approximately, because large ampli-
tude waves can have a finite band width. Moreover, when
two of these three waves are strongly driven by external
sources, the third wave does not need to be a linear eigen-
mode of the system.

When all three waves are eigenmodes of the homoge-
neous system, their envelopes evolve slowly due to their
weak resonant coupling. The evolution of wave envelopes
can be described by the three-wave equations29

dta1 ¼ $
C
x1

a2a3; (3)

dta2 ¼
C
x2

a3a1; (4)

dta3 ¼
C
x3

a1a2; (5)

where dtai :¼ ð@t þ vgi &rþ !iÞai denotes the advective
derivative. In the above equations, the real-valued ai

¼ eEiu
1=2
i =mecxi is the normalized wave electric field, where

ui is the coefficient such that the averaged energy of the linear
wave is Ui ¼ "0uiE2

i =2. The normalized wave amplitude ai is
advected at the wave group velocity vgi ¼ @xi=@ki, and is
damped at a rate !i. As the waves advect, they transfer energy
between each other at a rate determined by C, the coupling
coefficient.

B. Coupling coefficient

While resonant three-wave interactions can always be
described by the same three-wave equations, the coupling
coefficient is what encodes the physical details. This essen-
tial coefficient was very difficult to compute in the presence
of a background magnetic field. Although many methods
were attempted,30–37 explicit expressions of the coupling
coefficient were only known in the simple cases where the
collimated waves propagate either parallel38 or perpendicu-
lar39–41 to the magnetic field. Recently, we have obtained a
convenient formula for the coupling coefficient in cold mag-
netized plasmas when waves propagate at arbitrary angles17

C ¼
X

s

fsx2
psReðHsÞ

4ðu1u2u3Þ1=2
: (6)
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In the above formula, xps is the plasma frequency of species
s, whose charge-to-mass ratio fs ¼ esme=ems is normalized
by the ratio of electrons.

The most important term in the coupling coefficient is
the real part of the normalized scattering strength

Hs ¼ Hs
1;!2!3 þHs

!2;!31 þHs
!3;1!2

þHs
1;!3!2 þHs

!2;1!3 þHs
!3;!21: (7)

This linear superposition of the strengths of six scattering
channels corresponds to 3! ¼ 6 ways the three waves can
couple through the interaction Lagrangian. In Eq. (7), we use
notations x!j ¼ $xj; k!j ¼ $kj, and e!j ¼ e(j . Using these
notations, the normalized strength of each scattering channel
is given by the simple expression

Hs
i;jl ¼

1

xj
ðcki & Fs

j ejÞðei & Fs
l elÞ; (8)

where ej is the complex unit polarization vector of the jth
wave. Notice that the relative phases between the three
waves are important. The maximum coupling is attained
when jReðCÞj ¼ jCj, where C ¼

P
s fsx2

psH
s. This happens

when the phases of ej’s are synchronized.
The forcing operator Fs

j , which appears in the scattering
strengths, is related to the linear susceptibility vs

j by
vs

j ¼ $x2
psF

s
j=x

2
j . For example, in a cold-fluid plasma where

gyro radii are much smaller than the wavelength, the forcing
operator is such that

Fs
j z ¼ c2

s;j zþ ibs;jz) b$ b2
s;jðz & bÞb

h i
; (9)

for any complex vector z 2 C3. Here, b is the unit vector
along the background magnetic field, c2

s;j ¼ 1=ð1$ b2
s;jÞ is the

magnetization factor, and bs;j ¼ Xs=xj is the magnetization
ratio. Based on the universality of the interaction Lagrangian,
we speculate that thermal effects might be incorporated by
replacing the above cold-fluid forcing operator with one that
corresponds to the warm plasma susceptibility.

Finally, the last set of terms in the coupling coefficient
is the wave energy coefficients

uj ¼
1

2
e†

j Hjej: (10)

Here, Hj ¼ @ðx2
j "jÞ=xj@xj is the wave energy operator,

where "j ¼ 1þ
P

s vs
j is the dielectric tensor. In terms of the

forcing operator, the wave energy operator can be written as

Hj ¼ 2I$
X

s

x2
ps

xj

@Fs
j

@xj
: (11)

Using the above formulas, the coupling coefficient between
any three resonant eigenmodes can be readily evaluated in
the most general geometry.

C. Experimental observables

To illustrate how the coupling coefficient can be related
to experimental observables, let us consider Stokes scattering.

As the incident electromagnetic (EM) wave a1 propagates, it
may pump the growth of some fluctuations a3 in the plasma,
while being scattered into a2 as some frequency down-shifted
EM wave. In the linear stage, the pump amplitude is roughly
constant, and the Stokes scattering results in parametric
growth of the scattered EM wave at an exponential rate

c0 ¼
jCa1jffiffiffiffiffiffiffiffiffiffiffi
x2x3
p ; (12)

when damping and spatial variations are ignorable. To get a
sense of how large this growth rate is, we can compare it
with Raman scattering c0 ¼ cRM, where the normalized
growth rate

M ¼ 2
jCj
x2

p

x3
p

x1x2x3

 !1=2

; (13)

and cR ¼
ffiffiffiffiffiffiffiffiffiffiffi
x1xp
p ja1j=2 the backward Raman growth rate

in an unmagnetized plasma of the same density. Here, x2
p

¼
P

s x2
ps is the total plasma frequency. In experiments,

most signals will come from the largest growth rate, for
which wave phases are auto-synchronized.

To evaluate the growth rate, we can imagine what hap-
pens in experiments, in which the frequency x1 of the inci-
dent laser and its direction of propagation k̂1 are controlled.
Given these control variables and plasma parameters, the
pump laser can be a superposition of the two EM eigenmo-
des. The eigenmode k$1 with longer wavelength is the R
wave when k̂1 k B0, and it smoothly deforms to the extraor-
dinary (X) wave when k̂1?B0. On the other hand, the eigen-
mode kþ1 with shorter wavelength smoothly deforms from
the L wave to the ordinary (O) wave when h1, the angle
between k̂1 and B0, increases from 0* to 90*. Suppose the
experiment setup selects one of the eigenmodes, then the
wave vector k1 and the wave polarization e1 are fixed. We
can then make observations in the k̂2 direction, which has
polar angle h2 measured from B0 and azimuthal angle /2

measured from the k1B0 plane. The frequency x2 of the scat-
tered light can be measured using some spectrometer, and
the polarization e2 can be selected using some waveplates
and filters. If x3 ¼ x1 $ x2 and k3 ¼ k1 $ k2 correspond to
an eigenmode of the plasma, then resonant three-wave scat-
tering can happen, and the spectrometer will display a peak
centered at x2, whose height is related to the normalized
growth rate.

As an example, we evaluate the normalized growth rate
of a 1.06-lm Nd:glass laser in a magnetized hydrogen
plasma, when the incident laser propagates at polar angle

h1 ¼ 30* in the kþ1 eigenmode (Fig. 1). We take the density

of the fully ionized plasma to be n0 ¼ 1019cm$3, which is
typical for gas jet plasmas. In addition, we take the magnetic
field B0 ¼ 8:12 MG, achievable using current technology. In
this plasma, the laser frequency x1 + 10xp; jXej + 0:8xp,

and the magnetic field plays an important role in coherent
Stokes scattering. In two-species cold plasmas, there exist
three branches of magnetized plasma waves, each resulting
in a different angular dependence of the normalized growth
rate. First, in this over-dense plasma (xp > jXej), the upper
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(u) branch is the Langmuir wave when k3 k B0. The u branch
becomes the upper-hybrid (UH) wave when k3?B0, whose

frequency xUH ’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

p þ X2
e

q
in the large-k3 limit. For scat-

tering off the u branch, the frequency down shift [Fig. 1(a)]

is between xp and xUH. For the kþ2 eigenmode, backscatter-

ing is favored while scattering perpendicular to k̂1, where

e†
1e2 + 0, is forbidden [Fig. 1(b)]. On the contrary, the polar-

ization of the k$2 eigenmode is such that forward and back-
ward scattering are forbidden, while perpendicular scattering
is allowed [Fig. 1(c)]. Second, the EM waves can scatter
from the lower (l) branch plasma wave. The l branch is the
electron-cyclotron wave when k3 k B0, and it becomes the
lower-hybrid (LH) wave when k3?B0, whose frequency

xLH ’
ffiffiffiffiffiffiffiffiffiffiffiffiffi
jXejXi

p
xp=xUH in the large-k3 limit. For scattering

from the l branch, the frequency down shift [Fig. 1(d)] is
between xLH and jXej. In addition to polarization-forbidden

regions, both the kþ2 [Fig. 1(e)] and the k$2 [Fig. 1(f)] scatter-

ings encounter special angles where electron and ion scatter-
ing destructively interfere and therefore cancel one another
(near h2 + h1). Finally, the bottom (b) branch is the Alfv"en
wave in the small-k3 limit, and becomes the ion-cyclotron
wave in the large-k3 limit. For scattering off the bottom (b)
branch, the frequency down shift [Fig. 1(g)] is between zero

and Xi. Both the kþ2 [Fig. 1(h)] and the k$2 [Fig. 1(i)] scatter-

ings encounter energy forbidden regions near h2 + h1, where
plasma waves are energetically too expensive to excite.
Away from these polarization-, interference-, and energy-
forbidden regions where ui , jHsj, coherent Stokes scatter-
ing from magnetized plasma waves has growth rates compa-
rable to that of Raman backscattering.

III. LASER PULSE COMPRESSION

While coherent scattering may be unwanted in laser
implosion experiments, it can, on the other hand, be utilized

to amplify laser pulses beyond what is achievable using other
techniques. The current state-of-the-art technique is Chirped
Pulse Amplification26 (CPA), which can produce optical
pulses with unfocused intensity "1014W=cm2, beyond which
the solid grating, an essential component of CPA, is likely to
be damaged.42,43 Although laser intensity may be further
increased by focusing, the CPA technique is not applicable to
shorter wavelength lasers, such as excimer UV lasers44 and
free-electron x-ray lasers.45,46 However, such high-intensity
short-wavelength lasers are required in many applications,
including inertial confinement fusion47,48 and single molecule
imaging.49,50 Hence, techniques that can amplify and shorten
these pulses are highly demanded. A promising technique is
plasma-based laser pulse compression. This technique con-
templated using unmagnetized plasma as the gain medium,
which only supports the Langmuir mode21 and the Brillouin
mode51 as mediating waves. By magnetizing the plasma
medium, more waves become available. We can thus increase
the intensity of optical pulses, as well as extend pulse com-
pression to the soft x-ray regime,27 which was not accessible
using previous methods. In this section, we use UH-wave
mediation as an example to demonstrate benefits of applying
external magnetic fields in laser pulse compression.

A. Mediation by the upper-hybrid wave

In magnetized plasmas, one of the many waves that can
be utilized to mediate laser pulse compression is the UH
wave. The UH wave is the asymptote of one branch of the
electron Bernstein waves in the low temperature limit. Since

xUH ’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

p þ X2
e

q
, the external magnetic field partially

replaces the role of plasma density in the three-wave reso-
nance conditions. In other words, by applying a magnetic
field transverse to the direction of laser propagation, the
plasma density required to match the resonance conditions
can be reduced.

FIG. 1. Coherent scattering of an incident laser in the kþ1 eigenmode, propagating (h1 ¼ 30*;/1 ¼ 0*, green dots) in a magnetized cold hydrogen plasma with
xp + x1=10 and jXej + 0:8xp. For scattering off the u-branch waves (upper panel), the frequency down shift (a) is between xp and xUH. The normalized
growth rate Mþ of the kþ2 eigenmode (b) is suppressed in polarization-forbidden regions near the equatorial plane (h2 + 90*), while the normalized growth
rateM$ of the k$2 eigenmode (c) is polarization-forbidden in forward (h2 ¼ h1;/2 ¼ 0*) and backward (h2 ¼ 180* $ h1;/2 ¼ 6180*) directions. For scatter-
ing off the l-branch waves (middle panel), the frequency down shift (d) is between xLH and jXej. In addition to polarization forbidden regions, the growth rate
Mþ (e) andM$ (f) are suppressed in interference-forbidden regions where electron and ion scatterings cancel (near h2 + h1), as well as in energy-forbidden
regions where x3 + jXej. Finally, the incident laser can scatter off the b-branch waves (bottom panel). The frequency down shift (g) is between zero and Xi,
and the growth ratesMþ (h) andM$ (i) are suppressed in polarization-forbidden regions, as well as in energy-forbidden regions.
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The reduction of requisite plasma density has immediate
engineering benefits. First, challenging technology for pro-
ducing high-density plasmas can now be substituted by
available technologies for generating strong magnetic fields.
The plasma density required to compress 1-lm pulses using
unmagnetized plasmas is "1019cm$3, which is already at the
verge of what is feasible with gas jet plasmas. To compress
shorter wavelength lasers using unmagnetized plasmas,
denser plasma targets, such as foams and aerosol jets,52

remain to be developed. Allowing dense plasmas to be
replaced by magnetic fields thus relaxes the engineering
challenges. Second, uniformity of the plasma target becomes
more controllable when magnetic fields supply the resonance
frequency. While it is difficult to control the internal plasma
density, adding an external magnetic field introduces an
extra control variable, which may be adjusted to maintain
the three-wave resonance conditions, and tune the perfor-
mance of laser pulse compressors.

When the UH wave mediates resonant energy transfer
between a given pump laser and a given seed pulse, the lower
plasma density results in a slower linear growth rate27

c0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
x3x1
p ja1j=2c3, where c3 ¼ x3=xp > 1 is the electron

magnetization factor, defined in Sec. II. Other than a smaller
growth rate, laser pulse compression mediated by the UH
wave is similar to Raman compression.21 After the linear stage
of the amplification, the pump amplitude a1 starts to deplete.
At this pump depletion stage, the steep front of the seed pulse
keeps on growing, whereas the tail of the pulse starts to decay.
This asymmetric growth of the seed pulse results in an effec-
tive compression of the laser pulse. After the seed pulse tran-
sits the entire length of the pump laser, it emerges as a train of
amplified pulses with shortened durations. Since UH-wave
mediation has a smaller growth rate, it takes longer time, and
equivalently, a longer pump laser and plasma length, to
achieve the same compression of the seed pulse.

B. Limiting effects

Although the amplification rate is reduced for UH medi-
ation, the growth rates of competing instabilities are reduced
more. Therefore, one can use longer pumps than allowed in
unmagnetized plasmas to amplify the seed pulse when the
media become magnetized. For example, one of the most
competitive instabilities is the modulational instability of the
seed pulse, whose growth rate27 cM ¼ x2

3ja2j2=8x1c2
3 is

reduced by an additional factor of c3 > 1. After a few expo-
nentiations, the modulational instability causes the leading
spike in the pulse train to break up, and thereof limits the
allowable amplification time tM. Allowing for the possibility
that subdominant spikes in the pulse train may further
grow,53,54 we may estimate a lower bound27 tM / x$1

3 c4=3
3 .

Notice that the exponent of c3 is larger than one. In fact, this
exponent is larger than 3/2 in particle-in-cell (PIC) simula-
tions.55 The net consequence of a smaller amplification rate
but a longer allowable amplification time is thus a higher
achievable pulse intensity when we magnetize the plasma
medium.

In addition to suppressing competing instabilities,
replacing plasma density with magnetic fields also reduces

wave damping, which dissipates wave energy that could oth-
erwise be used to amplify the laser pulse. Since collisional
damping rates of EM waves are !1;2 ’ !eix2

p=2x2
1;2, where

!ei ¼ neZ2e4K=ð4p"0Þ2m2
ev

3 is the electron-ion collision fre-
quency, the damping rates of EM waves scale with plasma
density as !1;2 / n2

e , as expected of two-body collisions.
Therefore, when plasma density is replaced by magnetic
fields, collisional damping of EM waves can be substantially
reduced. In addition to collisional damping, the plasma wave
also suffers from collisionless damping. Although linear col-
lisionless damping exactly vanishes when the plasma wave
propagates perpendicular to the magnetic field,15 nonlinear
mechanisms such as stochastic heating56,57 and surfatron
acceleration,58,59 can still damp the plasma wave. Since col-
lisionless damping is due to phase mixing, its rate scales as
!3 / ne. Therefore, collisionless damping is also reduced
when magnetized plasmas are used instead.

While moderate magnetic fields improve the perfor-
mance of laser pulse compression, it is not favorable to
impose a magnetic field that is too strong due to wakefield
generation. Laser wakefield is generated when ponderomo-
tive force of the laser expels electrons to form plasma bub-
bles. When plasma density is reduced, wakefield can thus be
excited more easily. Moreover, as the magnetization factor
increases, the spectrum of the wakefield broadens60 and elec-
tromagnetic components of the wakefield enlarge.55

Consequently, magnetized wakefield contains larger degrees
of freedom, which allow the wakefield to partition a larger
fraction of the total energy during nonlinear interactions.
Energy in the wakefield can thereafter be transferred irre-
versibly to accelerate electrons. In addition to wakefield
acceleration in the direction of laser propagation, electrons
are also accelerated in the perpendicular direction due to the
magnetic field, which allows electrons to enter and leave
plasma bubbles in the transverse direction. Therefore, when
magnetic fields increase beyond the optimal value, magne-
tized wakefield inhibits further growth of the laser pulse.

Fortunately, the vulnerability due to electromagnetic
wakefield generation may be compensated by the resilience
of magnetized plasmas to wavebreaking. Wavebreaking of
the plasma wave is what limits the viable pump laser inten-
sity in unmagnetized plasmas. When the pump intensity
exceeds the wavebreaking threshold, the excited plasma
wave becomes so strong that the quivering electrons outrun
the wave, leading to a collapse of the plasma wave envelope.
However, when the plasma density is replaced by a magnetic
field, the plasma wave electric field is reduced, and the back-
ground magnetic field provides an additional restoring force.
Therefore, the plasma wave is able to maintain its coherence
even when the pump laser has exceeded the wavebreaking
threshold.55 Until a larger phase mixing threshold is reached,
we can use more intense pump lasers than allowed in unmag-
netized plasmas to amplify the seed pulse to higher intensity.

C. Validation using PIC simulations

The prediction that applying a moderate magnetic field
improves the performance of laser pulse compression has
been verified using particle-in-cell (PIC) simulations. In a set
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of one-dimensional PIC simulations,55 we use a 1.0-lm
pump laser, with initial intensity I10 ¼ 3:5) 1014W=cm2, to
compress a counter-propagating 1.1–lm seed pulse, whose
initial intensity I20 ¼ 1:8) 1013W=cm2 and initial duration
Dt20 ¼ 33 fs. Given the pump and the seed lasers, we apply a
magnetic field transverse to the direction of laser propaga-
tion, and reduce the plasma density accordingly to maintain
the resonance conditions [Fig. 2(a)]. When there is no mag-
netic field (black line), pulse compression is mediated by
Raman backscattering. After the initial exponential growth,
the seed pulse enters the nonlinear compression stage, until
its intensity saturates at I2 + 5:5) 1017W=cm2 due to the
modulational instability. As we increase the magnetic field
(color lines), the growth becomes slower, but the saturation
is delayed. The net consequence is that the attainable final
pulse intensity increases with the magnetic field, until an
optimal field B + 8:6 MG is reached (red line), where the
final pulse intensity is about twice of what is achievable
using Raman compression. When a stronger magnetic field
is applied (blue line), the seed pulse loses a substantial
amount of energy to the wakefield, which inhibits further
increase of the pulse intensity.

In addition to improving the performance in the optical
regime, applying a magnetic field enables compression of
short-wavelength pulses that cannot be compressed using
unmagnetized plasmas. For example, a 10-nm soft x-ray
laser is at the verge of what can be amplified using Raman
compression.22 At an even shorter wavelength, collisional
damping becomes too strong. The total damping could have
been alleviated by increasing the plasma temperature, if it
were not due to collisionless damping, which increases with

the plasma temperature. Therefore, the operation window in
the plasma parameter space is almost closed.27 In one-
dimensional PIC simulations,61 the 11-nm seed pulse, whose
initial intensity I20 ¼ 1:4) 1018W=cm2 and initial duration
Dt20 ¼ 1:5 fs, barely grows when pumped by the I10

¼ 1:4) 1018W=cm2 laser [Fig. 2(b), black]. However, by
replacing plasma density with a 0.8 GG magnetic field, the
effective growth rate becomes much larger (purple). This is
because although the undamped growth rate c0 / n1=2

e is
reduced in lower density plasmas, the collisionless damping
!3 / ne and the collisional damping !1;2 / n2

e are reduced
more substantially. Therefore, faster effective growth is pos-
sible when we magnetize the plasma medium, using which
compression of soft x-ray pulses beyond the reach of previ-
ous methods becomes possible.

IV. LIGHT PROPAGATION IN RELATIVISTIC-QUANTUM
REGIME

While mega-Gauss magnetic fields introduce new phe-
nomena and applications in the classical regime, an even
stronger giga-Gauss magnetic field may already enable us to
probe relativistic-quantum physics.28 To see when
relativistic-quantum effects are important, we can compare
energy scales in the system. The typical energy scales of
plasmas are thermal energy kBT, Fermi energy "F, plasmon
energy "p ¼ xp!h, and gyro energy "g ¼ Xe!h. The energy
scales of the fields are electric energy "E ¼

ffiffiffiffiffiffiffiffiffiffi
eEc!h
p

, magnetic
energy "B ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
eBc2!h
p

, photon energy "c ¼ xc!h, and pondero-
motive energy Up. Relativistic effects are important when
any energy scale becomes comparable to the electron rest
energy mec2, and quantum effects are important whenever
non-thermal energy "( dominates the thermal energy. An
example where both relativistic and quantum effects are
important is the magnetosphere of an x-ray pulsar. The typi-
cal magnetic field B " 1012 G corresponds to "B " 100 keV.
Since "B is comparable to mec2 + 511 keV, relativistic
effects are important. At the same time, "B is much higher
than the thermal energy kBT " 10 keV, which makes quan-
tum effects important. Although magnetic fields of such
strength are not yet available in laboratory, it turns out that
small relativistic-quantum corrections may already become
observable in giga-Gauss magnetic field through Faraday
rotation.

A. Dispersion relation in QED plasmas

To interpret signals from strongly magnetized plasmas,
it is imperative that we understand how light propagates in
the relativistic-quantum regime. Propagation of small ampli-
tude waves, such as photons, is governed by the linear dis-
persion relation. The dispersion relation can be derived from
the linearized momentum space wave equation, which can
be written in a Lorentz-invariant and gauge-invariant form
ðklk! $ k2gl! þ R̂

l!ÞA! ¼ 0, where kl is the wave 4-
momentum and gl! is the Minkowski metric. The response
tensor R̂

l!
, which satisfies the Ward-Takahashi identity

R̂
l!

k! ¼ klR̂
l! ¼ 0, describes reactions felt by photons, as

they polarize both the plasma medium and the vacuum.
Since the dispersion relation is gauge invariant, we can, for

FIG. 2. Applying a transverse magnetic field improves the performance of
plasma-based laser pulse compression, as shown here using 1D PIC simula-
tions. For a 1-lm optical pulse (a), using a longer plasma and an optimal
magnetic field (red line), the final pulse intensity is twice of what is achiev-
able using unmagnetized Raman (black line). The initial pump intensity
I10 ¼ 3:5) 1014W=cm2, and the 1.1-lm seed has initial intensity I20

¼ 1:8) 1013W=cm2 and initial duration Dt20 ¼ 33 fs. For a 10-nm x-ray
pulse (b), replacing plasma density with a transverse magnetic field on giga-
Gauss scale alleviates strong damping. Consequently, magnetized pulse
compression becomes possible (purple), while unmagnetized amplification
can barely work (black). The pump intensity I10 ¼ 1:4) 1018W=cm2, and
the 11-nm seed pulse has I20 ¼ 1:4) 1018W=cm2 and Dt20 ¼ 1:5 fs.
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example, choose the temporal gauge A0 ¼ 0. In this gauge,
the linear dispersion relation becomes

det

x2 $ k2
k þ R̂

11
R̂

12
k?kk þ R̂

13

R̂
21

x2 $ k2 þ R̂
22

R̂
23

k?kk þ R̂
31

R̂
32

x2 $ k2
? þ R̂

33

0

BBB@

1

CCCA ¼ 0:

(14)

Here, we have used the natural units !h ¼ c ¼ "0 ¼ 1, and
chosen a coordinate system in which the wave 4-momentum
kl ¼ ðx; k?; 0; kkÞ. In this form, it is easy to recognize that
the response tensor R̂

ij ¼ x2vij is related to the linear
susceptibility.

While the dispersion relation is formally identical to that
in the classical regime, relativistic-quantum physics is
encoded in the response tensor. As an example, let us con-
sider the response tensor of a magnetized scalar-QED plasma
in its ground state, when charged-particle responses domi-
nate the vacuum response. In the coordinate system where
B0 ¼ ð0; 0;B0Þ, the diagonal components of the response
tensor are28

R̂
11 ¼ $

mx2
p

2m0

X

1¼61

j2
1Kð1Þ1 ;

R̂
22 ¼ R̂

11 $
mx2

p

2m0

X

1¼61

j2
?ðK

ð0Þ
1 $ 2Kð1Þ1 Þ;

R̂
33 ¼ $

mx2
p

m0
1þ 1

2

X

1¼61

j2
kK
ð0Þ
1

 !
; (15)

where summation over charged species is implied. In the
above formulas, x2

p ¼ e2n0=m is the plasma frequency and
m0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ eB0

p
is the shifted ground state mass. The sum-

mation over 1 ¼ 61 corresponds to the summation of the s-
channel and the t-channel Feynman diagrams. Inside the
summations, jl ¼ lBkl=2 is the wave 4-momentum normal-
ized by the magnetic de Broglie wavelength lB ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2=eB0

p
.

The kernel of the propagator j2
1 ¼ j2

0 $ j2
k þ 1.0j0, where

.l ¼ lBðm0; 0; 0; 0Þ is the normalized 4-momentum of par-
ticles in the ground state. For conciseness, we denote
KðnÞ1 :¼ Kðj2

1 $ n; j2
?Þ, where the K-function is related to

the confluent hypergeometric function 1F1ða; b; zÞ by
Kðx; zÞ :¼1F1ð1; 1$ x;$zÞ=x. Similarly, the off-diagonal
components of the response tensor can be expressed in terms
of the K-function as28

R̂
12 ¼ $R̂

21 ¼ $i
mx2

p

2m0

X

1¼61

1j2
1ðK

ð1Þ
1 $Kð0Þ1 Þ;

R̂
23 ¼ $R̂

32 ¼ þi
mx2

p

2m0

X

1¼61

1j?jkðKð1Þ1 $Kð0Þ1 Þ;

R̂
31 ¼ þR̂

13 ¼ $
mx2

p

2m0

X

1¼61

j?jkKð1Þ1 :

The confluent hypergeometric function arises when we com-
pute the response tensor by summing over all transitions
between relativistic Landau levels.

B. Modifications to Faraday rotation

As a special case, consider photon propagation parallel
to the magnetic field, in which case relativistic-quantum
effects modify Faraday rotation. For exact parallel propaga-
tion k? ¼ 0, the K-functions take special values
KðnÞ1 ¼ 1=ðj2

1 $ nÞ. Substituting these special values into the
dispersion relation, it is straightforward to show that the two
EM eigenmodes are the R wave, which satisfies n2 ¼ R, and
the L wave, which satisfies n2 ¼ L, where n2 ¼ c2k2

k=x
2 is

the refractive index, and the permittivities28

R ¼ 1$
X

s

msx2
ps

ms0x2

x2 $ k2
k $ 2ms0x

x2 $ k2
k $ 2ðms0xþ msXsÞ

; (16)

L ¼ 1$
X

s

msx2
ps

ms0x2

x2 $ k2
k þ 2ms0x

x2 $ k2
k þ 2ðms0x$ msXsÞ

: (17)

In the classical limit x; kk;X- m, the above formulas
recover the classical results. In the opposite limit,
relativistic-quantum effects may substantially modify the
dispersion relations.

Since the R wave and the L wave of the same frequency
have different phase velocities, when they combine to form a
linearly polarized wave, the wave polarization vector rotates
at a rate

dw
df
¼ pDn: (18)

Here, w is the polarization angle, f ¼ z=k0 is the distance of
propagation normalized by the vacuum wavelength
k0 ¼ 2pc=x, and Dn ¼ nL $ nR is the difference in refractive
indexes between the L wave and the R wave of the same fre-
quency. In an electron-ion plasma, since mi , me, the domi-
nant contribution comes from electrons. Keeping only
electron terms in the dispersion relations, the refractive
indexes

n2
R=L ¼ 1$ mX

x2
$

mx2
p

2m0x2
7

m0

x

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mX
x2
þ

mx2
p

2m0x2
6

m0

x

 !2

7
2mx2

p

x3

vuut
; (19)

where the upper signs correspond to the R wave and the
lower signs correspond to the L wave. It is straightforward to
check that in the classical limit x;xp;X- m, the above for-
mulas recover the classical results. As a side remark, notice
that in electron-positron plasmas with charge-conjugation
symmetry, the Faraday rotation remains identically zero as
in the classical case.

Although relativistic-quantum modifications remain
small in giga-Gauss magnetic fields, they are boosted near
the cutoff frequency of the R wave, where Faraday rotation
is maximized. Suppose we measure Faraday rotation by
passing multiple linearly polarized lasers of slightly different
frequencies through the same plasma, then the relativistic-
quantum formula predicts a different frequency dependence
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than expected classically. To see the difference, one can sub-
tract measured data from the classical prediction, and plot
Dw as a function of the laser frequency (Fig. 3). For exam-
ple, in a gas jet plasma with density ne ¼ 1019cm$3, a mag-
netic field B0 ¼ 108 G results in a difference of "1*=k0

when the laser frequency approaches the R-wave cutoff
"1:16 eV (red line). This discrepancy can be resolved if the
measurement uncertainty is !1:5% at the classical cutoff,
and !15 ppm at "0:1 eV above the cutoff. In a stronger
magnetic field B0 ¼ 109 G, the difference is as large as
"10*=k0 near the cutoff "11:5 eV (blue line). This discrep-
ancy can be resolved if measurement uncertainty is !67% at
the classical cutoff, and !0:13% at "0:1 eV above the cut-
off. While corrections introduced by a 0.1 GG magnetic field
are unlikely to be measurable, much larger corrections intro-
duced by giga-Gauss magnetic fields might be discernible
from noise and inhomogeneities.

V. SUMMARY AND DISCUSSION

In this paper, we review three research directions,
addressing challenges and opportunities when strong mag-
netic fields become available. First, we provide a convenient
formula for resonant three-wave coupling coefficient in mag-
netized plasmas [Eq. (6)]. Using this formula, we identify
special angles where the scattering is polarization-, interfer-
ence-, and energy-forbidden in a cold hydrogen plasma (Fig.
1). Away from these forbidden angles, coherent laser scatter-
ing in a magnetized plasma has a growth rate comparable to
that of Raman backscattering. Consequently, magnetic fields
may be applied to either suppress or enhance laser scattering
at selected angles. Further analysis of thermal effects and
wave damping in the presence of multiple laser beams may

enable optimization of laser-plasma coupling in magnetized
implosion experiments.

Second, we analyze benefits of applying magnetic fields
in laser pulse compression. In addition to relaxing engineer-
ing constraints, substituting plasma density with a moderate
magnetic field suppresses competing instabilities and reduces
wave damping. These improvements enable us to use the
magnetic field as an extra control variable to optimize the
performance of 1-lm laser pulse compression [Fig. 2(a)].
Moreover, using upper-hybrid mediation, compression of
soft x-ray pulses beyond the reach of unmagnetized schemes
now becomes possible [Fig. 2(b)]. These results, obtained
from simple analytical estimations and 1D PIC simulations,
remain to be verified by more comprehensive simulations
and ultimately by experiments. In addition to upper-hybrid
mediation, the possibilities of using other magnetized plasma
waves, such as Alfv"en waves, hybrid waves, and Bernstein
waves, to mediate pulse compression remain to be analyzed.

Finally, we speculate experimental possibilities of enter-
ing the relativistic-quantum regime using giga-Gauss mag-
netic fields, which are at the cusp of current feasibility.
Although such magnetic fields are still much smaller than
the Schwinger field, relativistic-quantum modifications may
already become observable using Faraday rotation (Fig. 3),
albeit very challenging. While results in cold scalar-QED
plasmas may be instructive, laboratory plasmas are typically
made of spinor particles at finite temperature. Therefore,
spin and thermal effects on experimental observables remain
to be studied. Beyond the perturbative regime, it might be
possible to use a combination of a strong magnetic field and
an intense laser to probe relativistic-quantum physics that
cannot be probed by neither the magnetic field nor the laser
alone. For this purpose, developing numerical schemes that
can simulate relativistic-quantum plasmas will become
indispensable.
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