
PHYSICAL REVIEW E 97, 032202 (2018)

Transition between inverse and direct energy cascades in multiscale optical turbulence
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Multiscale turbulence naturally develops and plays an important role in many fluid, gas, and plasma
phenomena. Statistical models of multiscale turbulence usually employ Kolmogorov hypotheses of spectral
locality of interactions (meaning that interactions primarily occur between pulsations of comparable scales) and
scale-invariance of turbulent pulsations. However, optical turbulence described by the nonlinear Schrodinger
equation exhibits breaking of both the Kolmogorov locality and scale-invariance. A weaker form of spectral
locality that holds for multi-scale optical turbulence enables a derivation of simplified evolution equations that
reduce the problem to a single scale modeling. We present the derivation of these equations for Kerr media with
random inhomogeneities. Then, we find the analytical solution that exhibits a transition between inverse and
direct energy cascades in optical turbulence.
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I. INTRODUCTION

In focusing Kerr media, coherent laser pulses of powers
much exceeding the so-called “critical power” [1–4] cannot
propagate, without transverse filamentation, much longer than
the distance of self-focusing. The propagation distance can
be greatly increased in a weak turbulence regime where the
nonlinear filamentation is prevented by a stronger transverse
dispersion of incoherent laser pulses [5]. There is a larger
propagation length limit imposed by stimulated 4-photon
scattering. This process tends to produce an “inverse cascade”
of photons, directed toward small transverse wave numbers,
in contrast to the classical Richardson-Kolmogorov-Obukhov
cascade [6–10] directed to large wave numbers. At small
transverse wave numbers, the transverse dispersion is too small
to sustain the phase randomness. The coherent Bose-Einstein
condensate thus formed exhibits the transverse filamentation.

The propagation limit could be overcome by suppressing
the inverse cascade. What enables the inverse cascade in weak
optical turbulence is an additional integral of motion. It is
the “transverse energy” of photons conserved in homogeneous
media, in addition to the total energy of photons. The transverse
energy flux is directed to large transverse wave numbers. It
is carried by a small fraction of photons, which results in
the transverse cooling of the most photons in the pulse. It
was suggested recently [11] that the transverse heating of the
pulse through photon scattering on random inhomogeneities of
the medium can stop the nonlinear transverse cooling before
the unstable condensate formation and thus enable extended
propagation of powerful laser pulses.

Below, we analytically find the spectra of weak optical
turbulence in randomly inhomogeneous Kerr media. These
results significantly refine heuristic estimates of Ref. [11]
and broaden the class of analytically tractable regimes of
optical turbulence previously found for homogeneous media
[5]. Apart from importance for the optical turbulence itself
and its direct applications, these results may be useful for other
kinds of turbulence described by nonlinear Schrodinger equa-
tions (see, for example, Refs. [12,13]). In broader contexts,

these results may be conceptually important for less tractable
cases including Navier-Stokes turbulence. This relates both
to general issues associated with possible deviations from
Kolmogorov locality and scale-invariance in turbulence, and
to issues associated with transitions between different kinds of
cascades, like two-dimensional inverse cascades [14,15] and
direct or bidirectional cascades in thicker fluid layers [16,17].

The outline of this paper is as follows. In Sec. II, we start
from the Liouville kinetic equation for photons with 4-photon
collisional integral. Statistical averaging of this equation over
random inhomogeneities of the medium captures the effect of
inhomogeneities into a term describing diffusion of photons
in wave-vector space. In Sec. III, we review basic properties
of this kinetic equation. In Sec. IV, we explain reduction
of the 4-photon collisional integral to a quasilocal in wave
vectors form suggested in Ref. [5]. In Sec. V, we find solutions
of the kinetic equation at transverse wave-numbers much
smaller the largest one, where the 4-photon scattering is fast
enough to establish a quasistationary spectrum. In Sec. VI, we
derive an evolution equation for photon spectrum around its
upper boundary in transverse wave-numbers. In Sec. VII, we
solve this equation with proper boundary conditions at smaller
transverse wave numbers. In Sec. VIII, we use the solution
to determine in which parameter space domain the diffusion
stops the condensation before the filamentation occurs. In
Sec. IX, we discuss the results.

II. KINETIC EQUATION FOR PHOTONS IN KERR MEDIA
WITH RANDOM INHOMOGENEITIES

Consider an incoherent laser pulse paraxially propagating
in z direction with a fixed group velocity vg . The transverse
motion of photons will be described by Hamilton equations for
rays,

dk⊥

dt
= −∂ω(k,r,t)

∂ r⊥
,

d r⊥

dt
= ∂ω(k,r,t)

∂k⊥
,
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with frequency taken in the form

ω(k,r,t) = ω0 + ωr (r) + ωl(k⊥) + ωnl(I ),

where ωr (r), ωl = βk2
⊥ and ωnl = αI are small additions to

the pulse carrying frequency ω0, associated with the medium
inhomogeneities, transverse dispersion, and Kerr effect pro-
portional to the local field intensity I , respectively.

Statistical averaging over random phases of the rays leads to
an evolution equation for the photon spectral density Ik⊥ (r,t),

[
∂

∂t
+ vg

∂

∂z
+ 2βk⊥ · ∂

∂ r⊥

−∂(ωr + αI )
∂ r⊥

· ∂

∂k⊥

]
Ik⊥ = Sk⊥ , (1)

which can be viewed as the Liouville kinetic equation for
photons with the “collisional integral” Sk⊥ . For the 4-photon
scattering of interest here,

Sk⊥ = U

∫
dk1⊥dk2⊥dk3⊥δ(k⊥ + k1⊥ − k2⊥ − k3⊥)

× δ
(
k2
⊥ + k2

1⊥ − k2
2⊥ − k2

3⊥
)

× Ik⊥Ik1⊥Ik2⊥Ik3⊥

(
I−1

k⊥
+ I−1

k1⊥
− I−1

k2⊥
− I−1

k3⊥

)
; (2)

see, for example, Refs. [18–21]. For the spectral density
normalization

∫
dk⊥Ik⊥ = 2πI , the coefficient is

U = α2/β.

Consider now statistical averaging over random medium
inhomogeneities. The photon spectral density fluctuations,
Ĩk⊥ = Ik⊥ − Īk⊥ , can be approximately expressed through the
averaged value, Īk⊥ , by keeping just leading terms in the linear
part of Eq. (1). This gives the formula

Ĩk⊥ ≈ v−1
g

∫ ∞

0
dζ

∂ωr (z − ζ )
∂ r⊥

∂

∂k⊥
Īk⊥ (r⊥,z − ζ,t).

Substituting Ik⊥ = Ĩk⊥ + Īk⊥ into Eq. (1) and averaging gives
(

∂

∂t
+ vg

∂

∂z
+ 2βk⊥

∂

∂ r⊥

)
Īk⊥

≈ ∂ωr

∂ r⊥

∂ Ĩk⊥

∂k⊥
+ α

∂ Ī

∂ r⊥

∂ Īk⊥

∂k⊥
+ Sk⊥ . (3)

For media statistically isotropic in r⊥ plane,

∂ωr (z)
∂ r⊥

∂ωr (z − ζ )
∂ r⊥

= 1
2

(
1 0
0 1

)
∂ωr (z)
∂ r⊥

∂ωr (z − ζ )
∂ r⊥

,

Eq. (3) takes the form
(

∂

∂t
+ vg

∂

∂z
+ 2βk⊥

∂

∂ r⊥

)
Īk⊥

≈ D
∂2Īk⊥

(∂k⊥)2
+ α

∂ Ī

∂ r⊥

∂ Īk⊥

∂k⊥
+ Sk⊥ ,

D = 1
2

∫ ∞

0
dζ

∂ωr (z)
∂ r⊥

∂ωr (z − ζ )
∂ r⊥

. (4)

For the kinetic equation applicability, the rate of phase
mixing should exceed the rate of nonlinear interaction. In sta-
tistically uniform media, this condition also ensures stability of

spectra uniform in the transverse directions to small transverse
modulations.

For a single-scale initial spectrum with the typical spread
of transverse dispersion corrections to wave frequencies ωl ∼
βk2

⊥0, the kinetic equation applicability condition is

βk2
⊥0 ≫ UI 2/k2

⊥0 ⇐⇒ βk2
⊥0 ≫ αI.

Generalizations for multiscale spectra will be considered
below.

Kinetic Eq. (4) is further simplified in the coordinate frame
moving with the group velocity vg in z direction. For wave
spectra uniform in the transverse directions, the simplified
equation takes the form

∂Ik⊥

∂t
= D

∂2Ik⊥

(∂k⊥)2
+ Sk⊥ . (5)

The averaging bar over I is omitted here and further (also, “=”
is used instead of “≈” where it is not confusing).

III. BASIC PROPERTIES

Kinetic Eq. (5) conserves the number of photons,

I = (2π )−1
∫

dk⊥Ik⊥ . (6)

The conservation can be formally verified by noticing that the
expression under integral in Eq. (2) is antisymmetric to the
switching variables k⊥,k⊥1 ! k⊥2,k⊥3.

The “transverse energy” of photons linearly grows with
time,

E(t) ≡ (2π )−1
∫

dk⊥k2
⊥Ik⊥ = 4IDt + E0. (7)

This can be verified by integrating Eq. (5) multiplied by k2
⊥ and

noticing that
∫

dk⊥k2
⊥Sk⊥ = 0 (due to the symmetries which

allow to produce the combination k2
⊥ + k2

⊥1 − k2
⊥2 − k2

⊥3 = 0
under the integral).

Since
∫

dk⊥k2
⊥Sk⊥ = 0, the quantity k2

⊥Sk⊥ can be pre-
sented in the form of divergence of a vector field. The physical
meaning of this field is the density of transverse energy spectral
flux associated with the stimulated 4-photon scattering. For
axisymmetric spectra, this vector field is radial, so that Eq. (5)
can be rewritten in the form

∂

∂t
k2
⊥Ik⊥ = Dk⊥

∂

∂k⊥
k⊥

∂

∂k⊥
Ik⊥ − 1

k⊥

∂

∂k⊥
Jk⊥ , (8)

Jk⊥ = − U

2π

∫
((k⊥ − k4⊥)k2

4⊥dk4⊥dk1⊥dk2⊥dk3⊥

× δ(k4⊥ + k1⊥ − k2⊥ − k3⊥)

× δ
(
k2

4⊥ + k2
1⊥ − k2

2⊥ − k2
3⊥

)

× Ik4⊥Ik1⊥Ik2⊥Ik3⊥

(
I−1
k4⊥

+ I−1
k1⊥

− I−1
k2⊥

− I−1
k3⊥

)
,

((x) =
{

1, x ! 0
0, x < 0 . (9)

We are interested here in regimes for which the linear
diffusive scattering is initially negligible compared to the
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stimulated 4-photon scattering. For single-scale initial spectra
(k⊥ ∼ k⊥0), this means

D ≪ UI 2.

As long as the linear diffusive scattering remains negligible,
the stimulated 4-photon scattering accumulates waves at small
transverse wave numbers k⊥ ≪ k⊥0. For D = 0, it would
ultimately make the kinetic equation inapplicable at the small
k⊥. However, a small finiteD could stop the wave accumulation
at small transverse wave numbers still within the kinetic
equation applicability range. This may keep the turbulence
weak through the entire evolution at each k⊥.

The spectra dominated by stimulated 4-photon scattering
have the wave-populated domain k⊥ " k⊥M expanding with
the rate of 4-photon scattering at k⊥ ∼ k⊥M . Due to a much

higher rate of 4-photon scattering at k⊥ ≪ k⊥M , a nearly
equilibrium spectrum is established there,

Ik⊥ = Tk⊥

k2
⊥ + k2

⊥m

. (10)

A slow variation of the “transverse temperature” Tk⊥ across the
spectrum is kept here to enable a nonzero spectral flux Jk⊥ of
the transverse energy.

IV. REDUCTION OF THE TRANSVERSE ENERGY
SPECTRAL FLUX INTEGRAL

As seen from the symmetries of Eq. (9), a nonzero contri-
bution to this integral comes only from such photon quartets
in which max{k2

4⊥,k2
1⊥,k2

2⊥,k2
3⊥} > k2

⊥. By a proper renaming
of the indexes, Jk⊥ can be presented in the form

Jk⊥ = U

2π

∫
dk4⊥dk1⊥dk2⊥dk3⊥((k1⊥ − k⊥)((k1⊥ − k2⊥)((k1⊥ − k3⊥)

×
[
((k⊥ − k2⊥)k2

2⊥ + ((k⊥ − k3⊥)k2
3⊥ − ((k⊥ − k4⊥)k2

4⊥
]

× δ(k4⊥ + k1⊥ − k2⊥ − k3⊥)δ
(
k2

4⊥ + k2
1⊥ − k2

2⊥ − k2
3⊥

)
Ik4⊥Ik1⊥Ik2⊥Ik3⊥

(
I−1
k4⊥

+ I−1
k1⊥

− I−1
k2⊥

− I−1
k3⊥

)
. (11)

For k⊥ ≫ k⊥m, the major contribution to this integral comes from the domain k4⊥ ≪ k⊥, and is large in the parameter
ln(k2

⊥/k2
⊥m) ≫ 1. This allows us to simplify Eq. (11) as follows:

Jk⊥ ≈ UIk⊥

∫
dk1⊥dk2⊥dk3⊥((k1⊥ − k⊥)

[
((k⊥ − k2⊥)k2

2⊥ + ((k⊥ − k3⊥)k2
3⊥

]

× δ(k1⊥ − k2⊥ − k3⊥)δ
(
k2

1⊥ − k2
2⊥ − k2

3⊥
)
Ik1⊥Ik2⊥Ik3⊥

(
I−1
k1⊥

− I−1
k2⊥

− I−1
k3⊥

)
, (12)

Ik⊥ =
∫ k⊥

0
dk4⊥k4⊥Ik4⊥ . (13)

This shows explicitly that the spectral flux of transverse energy
Jk⊥ does not satisfy the Kolmogorov locality hypothesis.
Rather, each of scales k4⊥ < k⊥ equally contributes to Jk⊥ .
The nonlocality is encapsulated within the quantity Ik⊥ . This
can be viewed as a weaker form of locality, where the flux
Jk⊥ is produced by a spectrally local 3-wave scattering with
the probability proportional to Ik⊥ slowly varying across the
spectrum.

Equation (12) can be rewritten in the form

Jk⊥ ≈ 2πUIk⊥

∫ ∞

0

∫ ∞

0
dk2⊥dk3⊥((k2

2⊥ + k2
3⊥ − k2

⊥)

×
[
((k⊥ − k2⊥)k2

2⊥ + ((k⊥ − k3⊥)k2
3⊥

]

× I√
k2

2⊥+k2
3⊥

Ik2⊥Ik3⊥

(
I−1√

k2
2⊥+k2

3⊥
− I−1

k2⊥
− I−1

k3⊥

)
. (14)

The major contribution to this integral comes from the domain
k3⊥ ∼ k2⊥ ∼ k⊥.

This formula can be further simplified in the domain where
the transverse temperature Tk⊥ ≈ k2

⊥Ik⊥ just slowly varies
with k⊥,

∣∣∣∣
∂ ln Tk⊥

∂ ln k⊥

∣∣∣∣ ≪ 1. (15)

There,

I−1√
k2

2⊥+k2
3⊥

− I−1
k2⊥

− I−1
k3⊥

≈ k2
2⊥

(
T −1√

k2
2⊥+k2

3⊥
− T −1

k2⊥

)
+ k2

3⊥
(
T −1√

k2
2⊥+k2

3⊥
− T −1

k3⊥

)

≈
∂T −1

k⊥

∂ ln k⊥

(
k2

2⊥ ln
√

1 + k2
3⊥/k2

2⊥ + k2
3⊥ ln

√
1 + k2

2⊥/k2
3⊥

)
,

so that Eq. (14) reduces to

Jk⊥ ≈ −AU Ik⊥Tk⊥

∂Tk⊥

∂ ln k⊥
,

A = π

2

∫ ∞

0
du

[u2 ln(1 + u−2) + ln(1 + u2)]2

(1 + u2)u2
≈ 3.0.

(16)

Equation (16) was first suggested in Ref. [5].

V. QUASISTATIONARY SPECTRUM AT k⊥ ≪ k⊥M

As the upper boundary k⊥M of the photon-populated domain
grows, the spectrum evolves, but slowly compared to the 4-
photon scattering rate at k⊥ ≪ k⊥M , which is much larger than
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at k⊥ ∼ k⊥M . Therefore, the time-derivative term in Eq. (8) can
be neglected at k⊥ ≪ k⊥M , and the quasistationary spectrum
Eq. (10) establishes there. The diffusion term in Eq. (8) is
approximately equal to 4DTk⊥/k2

⊥, for k⊥m ≪ k⊥ ≪ k⊥M .
Thus, Eq. (8) takes the form

∂Jk⊥

∂ ln k⊥
≈ 4DTk⊥ . (17)

The integration and using Eq. (13) gives

Jk⊥ ≈ 4D Ik⊥ . (18)

The solution of Eqs. (16) and (18) is

Tk⊥ ≈

√

T 2
∗ + 8D

AU
ln

k⊥M

k⊥
, (19)

where T 2
∗ is the integration constant. The applicability condi-

tion Eq. (15) reduces then to

4D

AUT 2
k⊥

≪ 1. (20)

Equation (13) takes the form

Ik⊥ ≈
∫ k⊥

k⊥m

Tk⊥

dk⊥

k⊥
≈ AU

12D

(
T 3

k⊥m
− T 3

k⊥

)
. (21)

According to the Eq. (19), there are three domains in the
parameter space where the spectrum looks different:

(1) For AUT 2
∗ ≫ 8D ln(k⊥M/k⊥m), the transverse tem-

perature is approximately the same for all populated states,
Tk⊥ ≈ T∗. The conservation law I ≈ T∗ ln(k⊥M/k⊥m) allows
to reduce the above inequality to AUT 2

∗ ≫ 8DI/T∗.
(2) For 8DI/T∗ # AUT 2

∗ ≫ 8D, the diffusion reshapes
the spectrum at 8D ln(k⊥M/k⊥) # T 2

∗ AU , while at
8D ln(k⊥M/k⊥) ≪ T 2

∗ AU the temperature profile stays
flat, Tk⊥ ≈ T∗.

(3) For AUT 2
∗ " 8D, the diffusion reshapes the entire

spectrum.

VI. REDUCED EVOLUTION EQUATION

The analytical expression of the spectrum at k⊥ ≪ k⊥M

through parameters at its upper boundary allows to reduce the
problem of multiscale spectrum evolution to a much simpler
problem of solving Eqs. (8) and (9) just for photons with
k⊥ ∼ k⊥M . The problem can be further simplified by using,
instead of Eq. (9), the reduced Eq. (14) for the transverse
energy flux Jk⊥ . Also, the approximation Ik⊥ ≈ I can be used
in Eq. (14) at k⊥ ∼ k⊥M , since nearly all photons are located
at k⊥ ≪ k⊥M . In the Eq. (8) at k⊥ ∼ k⊥M , the diffusion term
(which is about ∼ DTk⊥M

/k2
⊥M ) can be neglected compared

to the 4-photon scattering term (which is about Jk⊥M
/k2

⊥M #
4DI/k2

⊥M ≫ DTk⊥M
/k2

⊥M ). Thus simplified, Eqs. (8) and (9)
can be presented in the form

∂

∂t
k⊥Tk⊥ ≈ − ∂

∂k⊥
Jk⊥ , (22)

Jk⊥ ≈ UIT 2
∗ J (x), x = k⊥

k⊥M

, y(x) = Tk⊥

T∗
, (23)

J (x) = 4π

∫ x

0
dx2x

2
2

∫ ∞

√
x2−x2

2

dx3

[
y(x2)y(x3)

x2
2x2

3

−
y
(√

x2
2 + x2

3

)
y(x3)

(
x2

2 + x2
3

)
x2

3

−
y
(√

x2
2 + x2

3

)
y(x2)

(
x2

2 + x2
3

)
x2

2

]
.

(24)

For a moderately small x = k⊥/k⊥M , the solution of these
equations should merge with the quasi-stationary spectrum
found above. This provides the boundary condition for
Eqs. (22)–(24) at x ≪ 1. According to the Eqs. (18) and (19),
it can be presented in the form

J (x)|x≪1 ≈ 4D

UT 2
∗

, y(x)|x≪1 ≈
√

1 + 8D

AUT 2
∗

ln
1
x

. (25)

Since nearly all transverse energy is located at k⊥ ∼ k⊥M ,
its variation should be correctly described by the simplified
equations. This can be verified by integrating Eq. (22) over
k⊥ ∼ k⊥M , which gives

d

dt

∫
dk⊥k⊥Tk⊥ ≈ 4ID, (26)

in agreement with Eq. (7). Equation (7) now takes the form

k2
⊥MT∗F1 ≈ E0 + 4IDt, F1 =

∫ ∞

0
dxxy(x). (27)

Integration of the multiplied by k⊥ Eq. (22) over k⊥ ∼ k⊥M

gives

d

dt
k3
⊥MT∗F2 ≈ UIk⊥MT 2

∗ F3, (28)

F2 =
∫ ∞

0
dxx2y(x), F3 =

∫ ∞

0
dxJ (x). (29)

So far, k⊥M was defined just up to a factor of the order of 1.
This factor can be selected now such that

F3 = F2. (30)

VII. SPECTRUM AT THE UPPER BOUNDARY

A. The stage AU T 2
∗ ≫ 8D ⇐⇒ E0 ≫ 16I Dt

During the stage AUT 2
∗ ≫ 8D, the boundary condition

Eq. (25) can be approximately presented in the form

J (+0) ≈ 0, y(+0) ≈ 1. (31)

The condition AUT 2
∗ ≫ 8D is equivalent to E0 ≫ 16IDt (see

below), so that the transverse energy variation can be neglected
and

k2
⊥MT∗F1 ≈ E0. (32)

The functions y(x) and J (x) appear to be time-independent at
this stage. The variable separation in Eq. (22) and integration
of the split equations gives

J (x) ≈ x2y(x), (33)

k4
⊥M ≈ k4

⊥M0 + 4UIE0t/F1. (34)
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FIG. 1. The normalized transverse temperature of photons y(x)
(dashed line) and spectral flux of transverse energy J (x) (solid
line) around the spectrum upper boundary x = k⊥/k⊥M ∼ 1 at early
evolution stage.

Solution of Eqs. (24) and (33) with the boundary condition
Eq. (31) is shown in Fig. 1. For this solution,

F1 ≡ F1− ≈ 1.5, F2 ≡ F2− ≈ 2.0. (35)

Using Eqs. (32), (34) (at k4
⊥M ≫ k4

⊥M0), (35), and A ≈ 3.0, the
condition AUT 2

∗ ≫ 8D can be presented in the form

1 ≫ 8D

AUT 2
∗

≈ 8DF 2
1 k4

⊥M

AUE2
0

≈ 16IDt

E0
; (36)

i.e., E0 ≫ 16IDt , as mentioned above.

B. The stage 4I Dt ≫ E0

During this stage T∗ is constant. The functions y(x) and
J (x) are also time-independent, but not the same as found
above for the earlier stage, and the integrals F1 and F2 are not
the same as in Eq. (35). It follows from Eqs. (27)–(30) that

T 2
∗ ≈ 6D

UF1
, k2

⊥M ≈ I t

√
8UD

3F1
. (37)

The boundary condition Eq. (25) now takes the form

J (+0) ≈ 2F1/3, y(x)|x≪1 ≈
√

1 + 4F1

3A
ln

1
x

. (38)

Equation (22) reduces to

x2 d

dx
y(x) ≈ 3

d

dx
J (x). (39)

By integration from x to ∞, it can be presented in the form

x2y(x) + 2
∫ ∞

x

dx1x1y(x1) ≈ 3J (x), (40)

which automatically gives correct J (+0). Solution of Eqs. (24)
and (40) with y(x)|x≪1 given by Eq. (38) is shown in Fig. 2.
For this solution,

F1 ≡ F1+ ≈ 2.6, F2 ≡ F2+ ≈ 4.4. (41)
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FIG. 2. The normalized transverse temperature of photons y(x)
(dashed line) and spectral flux of transverse energy J (x) (solid line)
around the spectrum upper boundary x = k⊥/k⊥M ∼ 1 at advanced
evolution stage.

VIII. WEAK TURBULENCE APPLICABILITY DOMAIN

To keep the multiscale turbulence weak at all k⊥, the rate of
phase mixing should be much larger than the rate of 4-photon
scattering at each k⊥. This requirement is the most restrictive at
k⊥ ∼ k⊥m where the rate of phase mixing is the smallest, while
the rate of 4-photon scattering is the largest. The condition for
turbulence be weak at k⊥ ∼ k⊥m is

βk4
⊥m ≫ UT 2

k⊥m
⇐⇒ βk2

⊥m ≫ αTk⊥m
. (42)

According to Eqs. (19) and (21),

ln
k⊥M

k⊥m

≈ AU

8D

(
T 2

k⊥m
− T 2

∗
)
, (43)

Tk⊥m
≈

(
12ID

AU
+ T 3

∗

)1/3

. (44)

According to Eqs. (32) and (34), the quantity T 2
∗ ∝ k−4

⊥M

decreases inversely with time during the stage AUT 2
∗ ≫ 8D.

As long as T 3
∗ ≫ 4ID/U , it follows from Eqs. (43) and (44)

that ln(k⊥M/k⊥m) ≈ I/T∗ , the diffusion is negligible, and k⊥m

decreases exponentially in time like at D = 0. The decrease of
k⊥m continues, but already slowed down by the diffusion, at
T 3

∗ ≪ 4ID/U ≈ T 3
k⊥m

, when Eq. (43) takes the form

ln
k⊥M

k⊥m

≈ 3
4

(
2UI 2

D

)1/3

− 3UT 2
∗

8D
. (45)

The weak turbulence applicability condition Eq. (42) then takes
the form

βk2
⊥M

αI
≫

(
4D

UI 2

)1/3

exp

[

3
(

UI 2

4D

)1/3

− 3UT 2
∗

4D

]

. (46)

The decrease of k⊥m stops at AUT 2
∗ ∼ 8D, i.e., at 16IDt ∼ E0.

Later, at 4IDt ≫ E0, both k2
⊥M and k2

⊥m grow linearly in the
time, while T∗ and Tk⊥m

no longer change. For 4IDt # E0
(when E ∼ 4IDt), the weak turbulence applicability condition
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FIG. 3. Divisions of the parameter plane (Q,P ).

Eq. (46) reduces, taking into account Eqs. (27), (37), and (41),
to

βE
αI 2

≫
(

UI 2

D

)−5/6

exp

[

3
(

UI 2

4D

)1/3
]

. (47)

It is the strictest at E ∼ E0, and gets softer, as E grows. For a
single-scale initial spectrum E0 ∼ Ik2

⊥0, so that the quantity

P ≡ βE0

αI 2
= βk2

⊥0

αI
≫ 1

has the physical meaning of the ratio of the initial phase
mixing rate to the initial nonlinear frequency shift. The physical
meaning of the quantity

Q ≡ UI 2

D
≫ 1

is the ratio of the 4-photon scattering initial rate to the initial
rate of ray diffusion on random inhomogeneities. Divisions of
the parameter plane (Q,P ) are shown schematically in Fig. 3.
The diffusion basically prevents the filamentation at

P > Q−5/6 exp[3(Q/4)1/3].

If this is not satisfied, but

Q−5/6 exp[3(Q/4)1/3] > P > 6(2Q)−2/3 exp[(2Q)1/3],

then the diffusion starts modifying the spectrum within the
weak turbulence regime and thus somewhat delays the con-
densate formation and filamentation. For an even smaller P ,
the diffusion basically does not affect the filamentation onset.

IX. DISCUSSION

We described analytically the evolution of transverse spec-
trum of photons paraxially propagating in a Kerr medium
with small random inhomogeneities of refractive index. This
evolution can be outlined as follows. As long as the pho-
ton diffusive scattering on random inhomogeneities remains
negligible compared to the nonlinear 4-photon scattering,
the lower spectrum boundary k⊥m decreases exponentially in
the propagation time (or distance). The diffusive scattering
first manifests at the lower spectrum boundary and starts
reshaping the spectrum from there. The reshaping then spreads
across the spectrum toward its upper boundary k⊥M . Dur-
ing this stage, k4

⊥M keeps growing linearly in time, while
k⊥m keeps decreasing though slower than earlier. The Bose-
Einstein condensation associated with the decreasing k⊥m

stops when the reshaping front reaches the upper spectrum
boundary k⊥M . The further spectrum evolution occurs in a
self-similar regime with both k2

⊥M and k2
⊥m growing linearly in

time.
The analytical theory developed here may be useful in sug-

gesting improvements in possible applications, in particular,
in backward Raman amplification of powerful laser pulses in
plasmas [22]. The transverse filamentation instability of pow-
erful coherent lasers in plasmas is a major factor that may limit
the extended backward Raman amplification regimes proposed
in Refs. [23,24]. This limitation can be overcome by transverse
randomization of amplified pulses. From the theoretical view-
point, the most straightforward would be the scheme that splits
amplification and randomization processes. In such a scheme,
the amplification would occur in uniform plasma layers, while
the randomization would occur in relatively thin transverse
sheets of denser randomly inhomogeneous plasma inserted
periodically in the uniform plasma. These sheets would act
similarly to standard random phase plates [25–27] (which
obviously cannot withstand nearly relativistically intense laser
pulses in plasmas). More practical might be, however, to have
the amplification and randomization going together in the same
plasma with statistically more or less uniform random den-
sity inhomogeneities. Such inhomogeneities may significantly
modify the amplification process. An accurate theory for this
modification still has to be developed. Since inhomogeneities
reduce Raman coupling between amplified and pump laser
pulses, the amplification to a given intensity would likely
take a longer distance. Assuming complete pump depletion,
a longer output pulse carrying a larger fluence could be
expected.

In a broader context, the substantially extended propagation
of powerful laser pulses in plasma without filamentation could
make feasible quite new laser amplification regimes, including
plasma-based powerful random lasers [28–30].

Beyond plasma-based applications, our theory may be used,
for example, to describe how small random inhomogeneities
affect the experimentally observed condensation of classical
waves in photonic crystals [31]. These experiments were
carried out in defocussing crystals, but there is no differ-
ence between focusing and defocussing regimes within the
applicability range of weak turbulence theory. Even when the
condensate forms, it does not make much difference, as long
as the number of photons in weakly turbulent component of
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spectrum is larger than in condensate. The level of inhomo-
geneities in this kind of experiments can be controlled [32],
which allows to verify how it affects the condensation. For very
small inhomogeneity levels, most of photons could condensate
before the effect of transverse heating of the photon beam
through the scattering on random inhomogeneities is manifest.
Yet, even that small transverse heating can ultimately lead to

the condensate evaporation; and the theory can be extended to
describe this regime as well.
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