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When a cylindrically symmetric magnetized plasma compresses or expands, velocity-space anisot-
ropy is naturally generated as a result of the different adiabatic conservation laws parallel and per-
pendicular to the magnetic field. When the compression timescale is comparable to the collision
timescale, and both are much longer than the gyroperiod, this pressure anisotropy can become sig-
nificant. We show that this naturally generated anisotropy can dramatically affect the transport of
impurities in the compressing plasma, even in the absence of scalar temperature or density gra-
dients, by modifying the azimuthal frictions that give rise to radial particle transport. Although the
impurity transport direction depends only on the sign of the pressure anisotropy, the anisotropy
itself depends on the pitch magnitude of the magnetic field and the sign of the radial velocity.
Thus, pressure anisotropy effects can drive impurities either towards or away from the plasma core.
These anisotropy-dependent terms represent a qualitatively new effect, influencing transport partic-
ularly in the sparse edge regions of dynamically compressing screw pinch plasmas. Such plasmas
are used for both X-ray generation and magneto-inertial fusion, applications which are sensitive to
impurity concentrations. Published by AIP Publishing. https://doi.org/10.1063/1.5055568

I. INTRODUCTION

In both inertial and magnetic confinement fusion reac-
tors, highly charged impurities from the wall can penetrate
into the core plasma, choking the fusion reaction. The pres-
ence of a magnetic field, introduced to improve heat con-
finement, can vastly change the impurity transport. In the
unmagnetized case, relevant for inertial fusion, impurities
tend to be pushed into hot, dense regions of the plasma.1–3 In
the magnetized case, relevant for steady-state magnetic
fusion, impurities tend to be relegated to cold, dense regions
of the plasma.4–6 Recently, the development of magnetized
inertial fusion concepts such as magnetized liner inertial
fusion (MagLIF)7,8 and magnetic target fusion9,10 has made
magnetized transport processes relevant to the inertial fu-
sion community as well since they can be harnessed to
reduce fuel pollution due to impurities1,8,11 and ash12 in the
fusion core.

Because magneto-inertial fusion involves the com-
pression of a magnetic field, it can introduce additional
complications to the transport. In particular, a compressing
magnetized plasma naturally generates pressure anisotropy,
due to the conservation of adiabatic invariants parallel and
perpendicular to the field.13 When the magnetic field is axial,
the perpendicular pressure increases faster than the parallel
pressure, while the converse is true in an azimuthal-
magnetic-field plasma. Since this anisotropy can alter the
divergence of the pressure tensor, it can also alter the dia-
magnetic flows and frictions that determine the impurity
transport in a magnetized plasma.

In this paper, we show that the generated anisotropy
is non-negligible when the compression rate is a substantial
fraction of the collisional isotropization rate, and that this
anisotropy can significantly impact the transport when the

magnetic field lines are curved. For example, a test case with
approximate low-density laboratory screw pinch parameters
yields a transient 40% deviation in impurity density from the
isotropic-pressure case.

Although these conditions are not relevant to transport
in the core region of MagLIF,12 they could occur in more
dilute experiments or regions of the plasma. For instance, the
axial current in MagLIF results in a curved magnetic field in
the rarified edge regions of the plasma. In addition, Z-pinch
experiments have employed helical return-current wires to
stabilize the implosions,14,15 and a similar strategy has been
proposed for MagLIF.16 Such return-current wire arrays pro-
duce a dynamically compressing screw pinch outside the
core plasma, in a region which could contain many different
density and temperature regimes, including those which sup-
port temperature anisotropy.

In general, solving for the multi-fluid extended MHD
dynamics of compression is a complex problem. However,
we are primarily interested in the relative radial motion of
the impurity and the background. In a low-Mach plasma, this
relative radial motion consists primarily of an F!B drift
arising from the azimuthal friction force between the species.
This azimuthal friction arises from the difference in the spe-
cies’ diamagnetic drifts, which depends both on the density
gradients and pressure anisotropy within the plasma. These
density gradients and anisotropies should evolve in a qualita-
tively similar way for a wide variety of compression profiles.
Thus, rather than solving the perpendicular collisional trans-
port with self-consistent electric fields, we instead choose
electric and magnetic fields which make our analytical calcu-
lation straightforward and tractable. Specifically, we choose
a magnetic field with a constant rotational transform and uni-
form initial magnitude, and an electric field consistent with
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self-similar exponential compression. By making these sim-
plifying assumptions, we elucidate the qualitatively new
transport effects that result from pressure anisotropy gener-
ated in the compressing plasma.

We therefore begin in Sec. II by deriving the transport
equations in a slowly compressing plasma with an imposed
anisotropy. This allows us to determine the tendency of
anisotropic effects to draw impurities towards the plasma
center vs. towards the edge, as a result of radial F!B drifts
from the anisotropy-dependent azimuthal friction forces.
Then, in Sec. III, we derive the anisotropy that naturally
arises in the compressing plasma, by combining the double-
adiabatic MHD closure with an anisotropy relaxation model.
In particular, we show how compressing plasmas with strong
axial magnetic fields tend to have larger perpendicular pres-
sure, while those with strong azimuthal fields tend to have
larger parallel pressure, and how the converse is true during
plasma expansion. In Sec. IV, we combine this anisotropy
model with our transport model and take the limit of infi-
nitely fast diffusion to yield the quasi-stationary state, i.e.,
the impurity distribution towards which the plasma naturally
tends to evolve at a given snapshot in time during the com-
pression. Finally, in Sec. V, we consider the full dynamical
problem, transforming the impurity diffusion equation into a
compressing frame, to elucidate how the transport dynamics
naturally change over the course of the compression.

II. ION TRANSPORT MODEL

We begin by deriving the transport equations in a
cylindrically symmetric compressing plasma from the fluid
momentum equations, allowing for pressure anisotropy. We
will then show how anisotropy is naturally generated in the
plasma from the adiabatic equations. By combining these
models, we will show that the tendency of impurities to
accumulate in the plasma core depends both on the direction
of radial acceleration and the curvature of the magnetic field.

Consider a cylindrically symmetric, isothermal, multi-
species plasma, with Br ¼ 0. The plasma contains a bulk
species b, and a trace high-charge impurity s. Each species
i 2 {b, s} obeys the fluid momentum equation

nimi
dvi

dt
¼ niZie Eþ vi ! Bð Þ &r ' Pi þ

X

j

Rij; (1)

where the friction force is given by

Rij ¼
mini

sij
ðvj & viÞ; (2)

and the momentum exchange collision time is given by17

sij ¼
3

4
ffiffiffiffiffiffi
2p
p miffiffiffiffiffiffi

mij
p

T3=2

kije4Z2
i Z2

j

: (3)

Here, mij ( mimj/(mi þ mj) is the reduced mass, kij is the
Coulomb logarithm, and Zi is the charge state of ion i.

Now, define the direction !̂ ¼ r̂ ! b̂. We assume

E ¼ Err̂ þ E ! !̂; (4)

so that there are no electric fields along the field lines. Then,
crossing Eq. (1) with b̂ yields

vi ¼ &
E !

B
r̂ þ Er

B
!̂ & 1

Xi

r ' Pið Þ ! b̂

nimi

þ 1

Xisij
vj & við Þ ! b̂ & 1

Xi

dvi

dt
! b̂: (5)

This equation describes dynamics purely perpendicular to a
helical magnetic field.

Now, we order this equation for magnetized transport by
taking the following as small:

1

Xisij
) 1; (6)

1

Xi

1

vi

""""
dvi

dt

"""") 1: (7)

We will make the second ordering more explicit later, when
we examine the constituent terms in the total velocity deriva-
tive. With this ordering, Eq. (5) becomes

vð0Þi ¼ &
E !

B
r̂ þ Er

B
!̂ & 1

Xi

r ' Pið Þ ! b̂

nimi
; (8)

vð1Þi ¼
1

Xisij
vð0Þj & vð0Þi

# $
! b̂ & 1

Xi

dvð0Þi

dt
! b̂; (9)

¼ & 1

miX2
i sij

Zi

Zj

r ' Pj

nj
&r ' Pi

ni

% &
! b̂ ! b̂

& 1

Xi

dvð0Þi

dt
! b̂: (10)

The 0th-order motion consists of E!B and diamagnetic
drifts, whereas the 1st-order motion contains the friction-
driven transport and inertial effects.

The transport dynamics greatly simplify if the first order
bulk ion radial velocity vanishes, i.e., vð1Þbr ¼ 0. To this end,
we assume that the impurity forms a small enough fraction
of the overall plasma that sbs ! 1, which allows us to
neglect the first term in Eq. (9), i.e., the transport motion of
the bulk due to collisions with the impurities. To eliminate
the inertial terms, we first expand the total derivative of the
velocity

1

Xi

dvð0Þi

dt
! b̂ ¼ 1

Xi

" 
dvð0Þir

dt
&
'
vð0Þih

(2

r

!

r̂

þ
dvð0Þih

dt
þ

vð0Þir vð0Þih

r

 !

ĥ

þ

 
dvð0Þiz

dt

!

ẑ

#

! b̂: (11)

Here, we have rewritten the total (Lagrangian) derivative of
the velocity vector in terms of the total derivative of its
components.

We now make our main simplification. We take a given
form of E which leads to analytically tractable results, so as
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to more clearly elucidate the transport mechanisms involved.
Limitations of this model will be addressed in Sec. VI.

To choose E, we first note that if vð0Þih ¼ 0 and vð0Þiz ¼ 0,
then the r̂ component of Eq. (11) (given by the second two
terms in the brackets) vanishes. Thus to eliminate inertial
effects on the radial transport of the bulk, we take

Er (
B

Xb

r ' Pbð Þ ! b̂

nbmb
: (12)

This ensures that the non-r̂ components of Eq. (8) cancel for
species b. Second, because it leads to an analytically simple
form of compression, we take E ! ¼ krB, leaving us with the
equation (valid to first order)

vbr ¼ vð0Þbr þ vð1Þbr ¼ &kr: (13)

The subsequent analysis could be extended to other self-
similar compression profiles18,19 by simply taking a time-
dependent k(t), as long as dk/dt) 1.

With our bulk species dynamics established, we turn to
the impurity s. First, we note that r ' Ps k r̂ for any diagonal
pressure tensor that is a function only of r. Second, we note
that vð0Þsh ¼ &bzv

ð0Þ
s ! , and vð0Þsz ¼ bhv

ð0Þ
s ! . Thus, plugging our

explicit electric field forms into Eqs. (8) and (9) and noting
vb ! ¼ 0, we find

vð0Þs ¼ &krr̂ þ 1

Xb

r ' Pbð Þ ' r̂
nbmb

& 1

Xs

r ' Psð Þ ' r̂
nsms

% &
!̂; (14)

vð1Þs ¼
1

Xsssb
vð0Þs !

# $
r̂

þ 1

Xs
& dvð0Þsr

dt
& b2

z

vð0Þs !

# $2

r

0

@

1

A
!̂

2

4

þ dvð0Þs !

dt
& b2

z kvð0Þs !

 !

r̂

3

5: (15)

We adopt the ordering

""""
k

Xs

kr

vs !

"""") kssb; (16)

""""b
2
z

vð0Þs !

Xsr

"""") kssb: (17)

This ordering ensures that inertial effects from rotation and
compressional acceleration are negligible compared to the
pressure anisotropy effects. For details on the effect of non-
negligible plasma rotation, see e.g., Kolmes et al.20

For the calculation of vð0Þs ! , we use a model for the pres-
sure tensor with different pressures parallel and perpendicu-
lar to the magnetic field, i.e.,

Pi ¼ p?iIþ ðpki & p?iÞb̂b̂: (18)

The divergence of this tensor is given by

r ' Pi ¼
@p?i

@r
þ p?i & pkið Þ

b2
h

r
: (19)

Thus, assuming that T? is spatially constant and the
same for each species, the !̂ component of the velocity is

vð0Þs ! ¼ &
T?

msXs

@rns

ns
& Zs

Zb

@rnb

nb
þ !s &

Zs

Zb
!b

% &
b2

h

r

" #

; (20)

where !i ( ðT?i & TkiÞ=T?i is a parameter describing the
temperature anisotropy of species i. The first two terms, in a
scalar-pressure plasma, give rise to the well-known impurity
pinch effect.5 The last term is new, and describes the effect
of pressure anisotropy on the transport dynamics.

From the single-particle perspective, the new term can
be viewed as arising from the different strengths of the cur-
vature and gradient drifts. To see this, consider the vacuum-
form of the curvature and gradient drifts, given for instance
in Ref. 21 by

vRi þ vrBi ¼
mi

Zie

Rc ! B

R2
cB2

v2
ki þ

1

2
v2
?i

% &
; (21)

where Rc is the curvature radius of the magnetic field. Here,
we see that for two particles with the same total energy, the
particle with vki > v?i will have a larger drift. This drift
asymmetry means that even in the absence of a scalar pres-
sure gradient, the pressure anisotropy can still influence the
drift speed and thus create a friction force between species
with different drifts.

It is the F!B drift from this friction force that produces
radial magnetized transport. Thus, as long as there is a fric-
tion force, there will be transport, and the steady state
requires the elimination of this diamagnetic friction. Thus, if
one species has an imposed, non-negligible anisotropy and
the other does not, the steady state will require a density gra-
dient to form in each species, to counteract the diamagnetic
friction due to the anisotropy. This fundamental need for
cancellation within the diamagnetic drift terms will underlie
the effects that we later derive.

The radial velocity can be calculated by plugging vð0Þs !
into the radial component of Eq. (15)

vð1Þsr ¼
1

Xsssb
vð0Þs !

# $
þ 1

Xs

dvð0Þs !

dt
& b2

z kvð0Þs !

 !

: (22)

Here, the first term on the RHS is the friction-driven magne-
tized transport, i.e., the random walk diffusion of ions across
the magnetic field. The second term on the RHS arises from
inertial effects due to compression and rotation, which will
have a smaller effect on the dynamics in the regimes of
interest.

In order to proceed from this point, we will need to cal-
culate both the total time derivative of the azimuthal velocity
and the pressure anisotropy. Because it will turn out to be
less important, we relegate the calculation of the time deriva-
tive to Appendix A, and focus on the pressure anisotropy.

III. ANISOTROPY GENERATION

Consider now the generation of anisotropy in the com-
pressing plasma. During compression, the plasma will obey
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the continuity equation and the flux-freezing equation,
giving22

n ¼ n0
r

r0

% &&2

; (23)

Bz ¼ Bz0
r

r0

% &&2

; (24)

Bh ¼ Bh0
r

r0

% &&1

: (25)

Because the axial magnetic field is associated with a circular
area which scales as r2, while the azimuthal field is associ-
ated with a rectangular area that compresses as r, flux freez-
ing ensures that the axial field increases faster than the
azimuthal field during compression. However, the compres-
sion leaves the magnetic rotational transform parameter j
constant.

We will assume that the pressure evolves according to
the double adiabatic MHD equations, given by13

d

dt

p?i

nB

% &
¼ 0; (26)

d

dt

pkiB
2

n3

% &
¼ 0: (27)

Here, Eq. (26) is related to conservation of l ¼ mv2
?=2jBj,

while Eq. (27) is related to conservation of J ¼
Þ

mvkds.
During this compression, let the isotropization proceed

according to a species-dependent collision operator

dp?i

dt

""""
coll

¼ 1

2si
pki & p?ið Þ; (28)

dpki
dt

""""
coll

¼ 1

si
p?i & pkið Þ: (29)

Here, the single subscript i on s denotes the isotropization
time of species i, in contrast to the double subscript ij from
earlier, which denotes the momentum transfer collision time
of species i on species j.

Combining the adiabatic and relaxation models yields

dp?i

dt
¼ p?i

nB

d

dt
nBð Þ þ 1

2si
pki & p?ið Þ; (30)

dpki
dt
¼

pki
n3B&2

d

dt
n3B&2ð Þ þ 1

si
p?i & pkið Þ: (31)

We can solve these equations by orders in sid/dt ) 1.
To the 0th order, Eqs. (30) and (31) reduce to

pð0Þki ¼ pð0Þ?i ( p: (32)

Then, by taking a linear combination of Eqs. (30) and
(31), we solve for the evolution of the 0th-order pressure

dp

dt
( 2

3

dpð0Þ?i

dt
þ 1

3

dpð0Þki
dt

; (33)

¼ 2

3

pð0Þ?i

nB

d

dt
nBð Þ þ 1

3

pð0Þki
n3B&2

d

dt
n3B&2ð Þ; (34)

¼ p
5

3

1

n

dn

dt
; (35)

¼ 10

3
kp: (36)

To the 0th order, the plasma adiabatically compresses in 3
dimensions, i.e., p * nc with c ¼ 5/3.

The anisotropy is then given from the first order of
Eq. (30), which can be put into the form

1

2si
pð1Þ?i & pð1Þki

# $
¼ pð0Þ?i

nB

d

dt
nBð Þ & dpð0Þ?i

dt
: (37)

Expanding p(0) ¼ nT(0) and rearranging yield

!i (
pð1Þ?i & pð1Þki

p
¼ 2ksi

1

B

dB

dt
& 1

Tð0Þ
dTð0Þ

dt

% &
: (38)

Taking B ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2

z þ B2
h

q
and plugging in the scaling rela-

tions Eqs. (23)–(25) and (36), we thus find

!i ¼ 2ksi b2
z &

1

3

% &
: (39)

Thus, the sign of the anisotropy !i depends on the mag-
netic geometry. When Bz + Bh; !i , 4

3 ksi, while when
Bz ) Bh; !i , & 2

3 ksi.
We can understand this result by considering the adia-

batic invariants l and J. When Bz + Bh, then we have the
relatively strong scaling jBj * r2, and l conservation rap-
idly heats the perpendicular degrees of freedom during
compression. Simultaneously, the path length parallel to
the (axial) magnetic field remains the same, so that the
parallel degree of freedom is not heated. Conversely, when
Bz ) Bh, we have the relatively weak scaling jBj * r, so
the perpendicular degrees of freedom are heated less than
in the axial-field case. Furthermore, the path length parallel
to the (azimuthal) magnetic field is now a circle, and thus
scales as r. Thus the parallel degree of freedom is strongly
heated, while the perpendicular degrees of freedom are
weakly heated.

The isotropization time si will in general be species-
dependent. To see this, consider a trace impurity s and a bulk
ion b, both colliding with the bulk b, and with ms > mb.
Then, simply from the perpendicular diffusion scalings

ss * Z&2
b Z&2

s m&1=2
b ms; (40)

sb * Z&2
b Z&2

b m&1=2
b mb; (41)

so

ss

sb
* Zb

Zs

% &2 ms

mb

% &
: (42)

Thus, for Zs > Zb, we will generally have !s - !b; i.e., less
anisotropy in the impurity than the bulk.
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IV. QUASI-STATIONARY STATE

We now have all the equations we need to calculate the
transport that results from the naturally produced pressure
anisotropy. Plugging our expressions for anisotropy [Eq. (39)]
and inertia (Appendix A) into our radial velocity [Eq. (22)],
we find

vð1Þsr ¼ &
T?

msX2
s ssb

1þ kssb
4

3
& 2b2

z

% &* +,

!
*

1

ns

@ns

@r
& Zs

Zb

1

nb

@nb

@r

% &
þ !s &

Zs

Zb
!b

% &
b2

h

r

+-
;

(43)

!i ¼ 2ksi b2
z &

1

3

% &
: (44)

Before solving for the dynamics of the system, which
will involve transforming our fluid equations to a compress-
ing frame, it is helpful to consider the quasi-stationary state
of the system; i.e., the state in which the radial transport
velocity [Eq. (43)] vanishes. Although this is not a true
stationary state of the full system of equations, since the
anisotropies will tend to change over the course of the com-
pression, it does represent the state towards which the
diffusion equation is evolving on the characteristic diffusion
timescale of the system. Thus, the quasi-stationary state
qualitatively reflects the tendency of the impurity to accumu-
late at the core or edge, and the strength with which it will
accumulate.

To get a global solution for the impurity distribution, we
must choose a specific form for the magnetic field. For sim-
plicity, we will consider a screw pinch with a constant rota-
tional transform parameter j, defined by

j ( @h
@z
¼ BhðrÞ

rBzðrÞ
: (45)

This setup, in the P ! 0 limit, is the basis for the well-
known Gold-Hoyle flux tube.23 In such a field, the z compo-
nent of b̂ is given by

bz ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ j2r2
p ; (46)

bh ¼
jrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ j2r2
p : (47)

Note that the scaling Eqs. (24) and (25) imply that j is con-
served during the compression. For further simplicity, we
will also assume that the initial magnetic strength is spatially
homogeneous.

Consider for now the case of flat bulk plasma density.
By setting the left hand side of Eq. (43) to 0 and plugging in
our magnetic field shape [Eqs. (46) and (47)], we find

nsðrÞ / 1þ ðjrÞ2
# $1

2
Zs
Zb
!b&!s

' (
: (48)

Thus, even when the scalar density and temperature are flat,
the gradient in the pressure anisotropy leads to gradients
in the impurity distribution—a qualitatively new classical
transport effect. This anisotropy-dependent transport effect
grows stronger as jr grows larger. Furthermore, since usu-
ally !s ) !b, positive anisotropy (p?b > pkb) will result in
impurity expulsion, while negative anisotropy will result in
impurity peaking in the core.

Although the impurity transport direction depends only
on the sign of the pressure anisotropy, the anisotropy itself
depends on zeroth-order radial velocity (through k), and the
field pitch magnitude j. To see this, we simply plug in our
expression for anisotropy [Eq. (44)] and our anisotropization
rate scaling [Eq. (42)] into Eq. (48)

nsðrÞ / 1þ ðjrÞ2
# $Zs

Zb
ksb

1

1þðjrÞ2
&1

3

' (
1& Zb

Zs

' (3
ms
mb

# $

: (49)

According to Eq. (49), in a compressing pinch (k> 0),
ns(r) initially increases with radius, achieving a maximum of
around 1:147ksbZs=Zb at jr ¼ 0.60, before decaying to 0 in the
large-jr limit (Fig. 1). Thus, if ja < 0.6, impurities will tend
to be flushed outwards, while if ja > 0.6, they will peak
around an interior maximum. Conversely, in an expanding
plasma, anisotropy is driven in the opposite direction, and so
too is the transport (Fig. 2).

FIG. 1. The quasi-stationary state of a compressing screw pinch, i.e.,
Eq. (49), as a function of jr. Here, ksb ¼ 0.2, Zs/Zb ¼ 5, and ms/mb ¼ 10.
Impurities will tend to peak at jr ¼ 0.6.

FIG. 2. The quasi-stationary state of an expanding screw pinch, i.e., Eq.
(49), as a function of jr. Here, ksb ¼ &0.2, Zs/Zb ¼ 5, and ms/mb ¼ 10.
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V. DYNAMICS IN THE COMPRESSING FRAME

Our bulk ion population distribution is governed by the
equation

@nb

@t
¼ & 1

r

@

@r
rnbvbrð Þ ¼

1

r

@

@r
kr2nb

' (
: (50)

If we define our variables in terms of new, scaled variables

nbðr; tÞ ¼ nb0~nð~r;~tÞe2~t ; (51)

~r ¼ r

a
ekt; (52)

~t ¼ kt; (53)

then our differential equation becomes simply

@~nb

@~t
¼ 0: (54)

Thus, our background distribution in the new coordinates is
simply frozen in place.

We can make the same transformation with our impurity
distribution. We start with

@ns

@t
¼ & 1

r

@

@r
rnsvsrð Þ ¼

1

r

@

@r
kr2ns & rnsvð1Þsr

# $
: (55)

After a change of variables, this becomes

e2~t @~n

@~t
¼ & e~t

a~r

@~r

@r

@

@~r

% &
ae~t ~r ~nsvð1Þsr

# $
(56)

@~n

@~t
¼ & 1

~r

@

@~r

e~t

a
~r ~nsvð1Þsr

% &
: (57)

Now, our scaling equations [Eqs. (23)–(25) and (36)]
combined with our scaled radial coordinate in Eq. (52)
imply

Bzð~rÞ ¼ Bz0ð~rÞe2~t ; (58)

Bhð~rÞ ¼ Bh0ð~rÞe~t ; (59)

Tð0Þ ¼ T0e
4
3
~t ; (60)

ssbð~rÞ ¼ ssb0ð~rÞ: (61)

These combine with the specific form of our field to
allow us to calculate the magnetic field unit vectors. Define
K ( ja. Then

bzð~rÞ ¼
Bzð~rÞ

B
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ K2~r2e&2~t
p ; (62)

bhð~rÞ ¼
Bhð~rÞ

B
¼ K~rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e2~t þ K2~r2
p : (63)

Note that as ~t !1; bz ! 1 and bh ! 0, i.e., the magnetic
field becomes straighter.

The above scalings allow us to translate most of the
terms in our first-order radial velocity. The final piece is the

inertial term dvð0Þs ! =dt. Because this term is dominated by the
contribution from Er, which depends on the background
diamagnetic drift [see Eq. (12)], to 0th order this will have
the form

dvð0Þs !

dt
, vð0Þs ! k

4

3
& b2

z

% &
; (64)

where we have made use of the above scalings in the explicit
form of vð0Þs ! [Eq. (8)], and assumed that changes in the back-
ground pressure due to transport were slow.

When we plug in our radial pinch velocity from Eq.
(43), and also plug in the above scalings, we find

@~ns

@~t
¼ 1

~r

@

@~r

(
~r ~nsD0ð~rÞe

4
3
~t 1þ K2~r2

e2~t þ K2~r2

 !

! 1þ kssb0ð~rÞ
4

3
& 2

1þ K2~r2e&2~t

% &* +

! 1

~ns

@~ns

@~r
& Zs

Zb

1

~nb

@~nb

@~r

% &*

þ !s &
Zs

Zb
!b

% &
K2~r

e2~t þ K2~r2

% &+)

; (65)

where

D0ð~rÞ ¼
q2

s0ð~rÞ
a2

1

kssb0ð~rÞ
; (66)

K ¼ ja: (67)

The first term in the brackets on the second line repre-
sents diffusion, and the second represents drive due to anisot-
ropy. Here, D0ð~rÞ is the initial classical diffusion coefficient
as a function of radius, and ssb0ð~rÞ and qs0ð~rÞ are the initial
collision frequency and Larmor radius as a function of the
radius.

Note that the equations at this point are yet fully speci-
fied as a function of the densities ~nb and ~ns. Although we
have specified the ratio j ¼ Bh/rBz, we have not yet specified
the initial magnetic field profile jBðrÞj. For our initial study,
we take jBðrÞj to be constant; this choice ensures that that the
diffusion coefficient only varies by a factor of Oð1Þ across the
plasma. From our scaling Eqs. (58)–(63), we thus find

D0ð~rÞ ¼ D0a
~nb0ð~rÞ
~nb0a

; (68)

where

D0a ¼
q2

s

a2

1

kssb

""""
~r¼1;~t¼0

(69)

is the initial normalized diffusion coefficient at ~r ¼ 1, i.e., at
r¼ a.

Finally, we translate our anisotropy result Eq. (39) to
our normalized coordinates, taking account of our scaling
relations—this is fairly straightforward. The final result, put-
ting everything together, is
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@~ns

@~t
¼ 1

~r

@

@~r

(
~r ~nsD0ae

4
3
~t 1þ K2~r2

e2~t þ K2~r2

 !
~nb0ð~rÞ
~nb0a

! 1þ kssb0a
~nb0ð~rÞ
~nb0a

4

3
& 2

1þ K2~r2e&2~t

% &* +

! 1

~ns

@~ns

@~r
& Zs

Zb

1

~nb

@~nb

@~r

% &*

þ !s &
Zs

Zb
!b

% &
K2~r

e2~t þ K2~r2

% &#)

; (70)

!s ¼ 2kss0a
~nb0a

~nb0ð~rÞ
1

1þ K2~r2e&2~t
& 1

3

% &
; (71)

!b ¼
Z2

s

Z2
b

mb

ms
!s; (72)

where we have defined ~nb0a ( ~nb0ð~r ¼ 1Þ. Equations
(70)–(72) are the full evolution equations for magnetized
transport in the contracting system, including the effects of
anisotropy produced by the compression. In addition to the
initial profiles ~nb and ~ns, the system evolution is determined
by 3 dimensionless parameters, evaluated initially at r¼ a.
These are the anisotropy generation kssb0a, the diffusion
D0a ( q2

s
a2

1
kssb

, and the field line curvature K ( jr.
Several other dimensionless parameters must also be

checked to ensure that the model is valid, which we derive in
Appendix B. These small parameters correspond to the
Collisionality, the Mach number of compression, the
Larmor radius, and the Anisotropy, all being small compared
to relevant scales

Ci (
1

Xisib
; (73)

M ( jkLj
vthb

; (74)

L ( qs

L
; (75)

Ai ( ksi: (76)

The only parameter which grows over the course of a com-
pression is L, which attains a maximum value

Lmax ¼ L
21=3

ffiffiffi
3
p 1þ 1

K2

% &1=2

K1=3 , 0:72K1=3L: (77)

A. Features of the dynamics

Several features are apparent from the governing equa-
tions (70)–(72). First, over the course of the shot, the anisot-
ropy drive in the diffusion equation will become less
significant, due to the e2~t term in the denominator of the sec-
ond term in brackets in Eq. (70). Thus, anisotropy effects
occur on an intermediate timescale, before the magnetic field
reaches a point where Bz+ Bh.

A second interesting feature of the equations is the sign
of the anisotropy in Eq. (71). At early times during a com-
pression, the high value of K ensures that !b < 0. However,
as the compression continues, Bz becomes larger, until at
Bz ¼ Bh=

ffiffiffi
2
p

the sign of the anisotropy flips. At this point,
the anisotropy terms will actually try to force the impurities
outward, until Bz becomes so large that the anisotropy terms
become negligible.

B. Numerical simulations

The parabolic Eqs. (70)–(72) can be solved using
Matlab’s pdepe function, with reflecting boundary condi-
tions. Consider a distribution with ~ns and ~nb both constant in
~r , recalling that ~nb does not change throughout the compres-
sion. Take Zs ¼ 5, ms ¼ 10 for the impurity, and Zb ¼ 1, mb

¼ 1 for the background. Further consider the compression of
a fairly low-density, high-field implosion plasma, with B¼ 5
T, T¼ 200 eV, n¼ 3! 1016 cm&3, k&1 ¼ 2 ls, a¼ 1 cm, and
K¼ 100. For these parameters, our small parameter order-
ings are satisfied, with Cs ¼ 0.06, M¼ 0.036, Lmax ¼ 0.06,
and Ab ¼ 0.11.

The results of this simulation, for 0 < ~t < 7 and
0 < ~r < 1, are shown in Fig. 3. Initially, the anisotropy is
negative, i.e., pki > p?i, which drives the impurities inwards.

FIG. 3. Simulation of the anisotropy pinch effect in a flat background plasma. Here, K¼ 100, indicating that the plasma initially has large Bh relative to Bz.
Initially, the plasma compression results in pki > p?i, driving impurities inward, as can be seen at ~t ¼ 2, where a peak 40% higher than the average density
forms at ~r , 0:1. Around ~t ¼ 3:5, starting at small ~r , Bz grows larger than Bh in a significant part of the plasma interior, and the anisotropy reverses at low-~r .
By ~t ¼ 5, the anisotropy has the reversed sign throughout the plasma, driving impurities outward. Finally, around ~t ¼ 7, the ever-straightening magnetic field
makes effects due to anisotropy negligible, and the impurity distribution flattens out.
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This impurity accumulation is significant, resulting in an
interior peak 40% higher than the average density. However,
around ~t ¼ 3:5, enough compression occurs that Bz > Bh in
most of the plasma; thus, the sign of the anisotropy reverses,
which starts to drive the impurities back out. This reversal
results by ~t ¼ 5 in an impurity distribution which is *15%
less concentrated in the core than the edge. Finally, by ~t ¼ 7,
Bz becomes so large that effects due to anisotropy are negli-
gible, and the distribution flattens back out due to normal
classical diffusion.

These results are not unique to this parameter set. For
instance, extremely similar dimensionless dynamics are
obtained for B¼ 3 T, T¼ 20 eV, n¼ 5! 1015 cm&3, k&1

¼ 500 ns, a¼ 1 cm, and K¼ 100, for 3 times ionized Argon
(ms ¼ 40) interacting with singly ionized helium (ms ¼ 4), in
the range of several experimental gas-puff experiments.24–26

However, the small-parameter orderings are more marginally
satisfied for this case.

VI. SUMMARY AND DISCUSSION

In this paper, we derived how pressure anisotropy in a
cylindrical plasma with a non-negligible azimuthal magnetic
field can lead to new impurity transport dynamics. These
dynamics, in the low-pressure limit, can be interpreted as aris-
ing from the difference in strength between the (pki-dependent)
curvature drift and the (p?i-dependent) rB drift. This differ-
ence in drift strengths results in a relative drift velocity (and
hence a friction force) between species with different ratios
of p?i to pki, which in turn results in radial F!B drifts that
constitute the transport motion. In particular, a plasma with
p?i > pki tends to flush highly charged impurities to the
plasma periphery, while a plasma with p?i < pki tends to
draw in highly charged impurities to the plasma center.

We then showed how pressure anisotropy can be natu-
rally generated in a compressing cylindrically symmetric
plasma, as different adiabatic invariants are conserved paral-
lel and perpendicular to the magnetic field. The sign of the
generated anisotropy (i.e., whether pk or p? is larger)
depends on the relative strength of the axial and azimuthal
fields, and on the direction of compression or expansion. In a
compressing plasma with Bz ) Bh, the pressure will satisfy
pk > p?, which will pull highly charged impurities into the
plasma. Conversely, when Bz + Bh; pk < p?, which will
flush the highly charged impurities outwards. The anisot-
ropy, and thus the direction of impurity transport, reverses
for an expanding plasma.

Because the axial field increases relative to the azi-
muthal field over the course of the compression, the impuri-
ties will thus tend to be drawn towards the plasma core at
short times, before being flushed to the edge at long times.
These effects can be significant, with changes in impurity
density on the order of 40% observed for low-density Z-
pinch-like parameters.

Our model relied on several simplifying assumptions.
We neglected the anisotropy-dependence of the isotropiza-
tion si and frictional collision time sib. Fortunately, any cor-
rection to the isotropization time would only show up in our
analysis to next order in the anisotropy parameter. While

corrections to the frictional collision rate could have a non-
negligible impact on our governing equations, any resulting
changes would only show up as an overall (local) multiplica-
tive factor to the diffusion coefficient D0ð~rÞ, and so would
not affect the quasi-stationary state[Eq. (49)]. Thus, while
there could be O(!b) corrections to the diffusion time, there
would not be any substantial difference in the core results.

We have also assumed throughout the derivation that
the trace impurities are heavier and more highly charged
than the bulk plasma ions. Care must therefore be taken
when applying our results to heavy plasmas (such as Argon)
with light liners (such as Carbon), or when impurities form a
large fraction of the plasma. While the core results will
remain similar, with the more highly charged species tending
to isotropize more quickly, the particulars of the isotropiza-
tion rate scaling [Eq. (42)] will change. This change will
propagate through to the diffusion equation and quasi-
stationary state [Eq. (49)].

Because the electric and magnetic field evolution was
not considered, the analysis was not fully self-consistent;
i.e., the form of compression did not represent the actual
magneto-hydrodynamic forces on the plasma. In any real
compression, these forces are likely to produce density, tem-
perature, and electromagnetic field gradients which will
modify our results, often substantially. Thus, the current
work should be seen not as a realistic calculation of a labora-
tory compression, but rather as an elucidation of a new pro-
cess in transport dynamics, which will occur concurrently
with other known effects.

A reasonable first step towards a self-consistent calcula-
tion would be to make use of known self-similar MHD com-
pression profiles,18 and to examine the dynamics of
impurities within these profiles. However, such a calculation
presents several challenges. First, it requires the re-inclusion
of thermal gradient driven terms such as the Nernst friction,
which must be calculated in the presence of finite anisotropy.
Second, it introduces regimes of mixed collisionality, where
Xisib can be greater or less than one depending on the loca-
tion within the plasma. Thus, both magnetized and unmagne-
tized transport will occur in the plasma at different locations,
significantly complicating the self-consistent dynamics.

For plasmas with Bh + Bz, one additional complication
is likely to occur as the plasma compresses and the ratio of
thermal to magnetic pressure (plasma b) increases. At high
beta, the anisotropy will eventually be determined not by
collisions, but rather by kinetic instabilities such as the mir-
ror and firehose,27 which will cause the anisotropy to saturate
around !b * 1/b.

Nevertheless, the large effects of anisotropy on the
transport should be visible during low-density laboratory
plasma implosions, especially as they are pushed towards
larger magnetic fields. The greatest difficulty in experimental
analysis is likely to be disentangling these transport effects
from those driven by temperature and density gradients,
since this requires having accurate radial profiles for the den-
sity and temperature. Thus, understanding the interesting
transport consequences of the pressure anisotropy, which can
flush out or draw in impurities depending on the field struc-
ture, is important in understanding experimental results.
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APPENDIX A: TOTAL TIME DERIVATIVE OF
AZIMUTHAL VELOCITY

Here, we calculate the total derivative of the azimuthal
velocity as required by Eq. (22). From Eq. (8), we have

vð0Þs ! ¼
r ' Pbð Þ ' r̂
nbZbejBj

& r ' Psð Þ ' r̂
nsZsejBj

: (A1)

During a short period of contraction (compared to the diffusion

timescale), we have r ¼ r0e&kt; Pð0Þ ¼ Pð0Þ0 e10kt=3; n¼ n0e2kt,

and jBj¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2

z0e4kt þB2
h0e2kt

q
. Thus, over a short contraction

time

vð0Þs ! ¼
e7kt=3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2

z0e4kt þ B2
h0e2kt

q r ' Pbð Þ ' r̂
nbZbejBj

& r ' Psð Þ ' r̂
nsZsejBj

% &

t¼0

;

(A2)

¼ e7kt=3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2

z0e4kt þ B2
h0e2kt

q vð0Þs !

# $

t¼0
: (A3)

Taking the time derivative and evaluating at t¼ 0, we find

dvð0Þs !

dt
¼ k

4

3
& 2b2

z

% &
vð0Þs ! : (A4)

APPENDIX B: SMALL PARAMETERS

Over the course of the derivation, we have collected sev-
eral parameters which must be small

1

Xisib
) 1; (B1)

""""
k

Xs

kr

vð0Þs !

"""") kssb; (B2)

""""b
2
z

vð0Þs !

Xsr

"""") kssb; (B3)

jksibj) 1; (B4)

where the subscript i indicates that the expression applies to
both species s and b. The first represents the requirement of
magnetized diffusion, the second and third represent the neg-
ligibility of inertial terms, and the last represents the assump-
tion of small anisotropy. As our system compresses, these
parameters will evolve. Thus, we must ensure that we con-
fine our analysis to systems in which our approximations
remain valid throughout the compression.

We start by making simpler small parameters that
enforce the orderings in Eqs. (B1)–(B4). To do this, we note
that jr ' Pij * niT=r. Thus, plugging Eq. (8) into Eq. (B2)
and noting that the background diamagnetic drift term is
larger than the impurity diamagnetic drift term, we find

""""
k

Xs

kr

vð0Þs !

"""" *
Zb

Zs

msr2k2

T
* mbr2k2

T
¼ vð0Þr

' (2

v2
thb

( M2; (B5)

where M is the Mach number of the compressing flow. Note
that in the second-to-last scaling, we assumed that Zb/Zs

*mb/ms. If s is only weakly ionized, the second to last scal-
ing might not hold, since then mb ) ms but Zb * Zs; thus,
when dealing with very different charge to mass ratios, it is
best to keep M2

s ) Zs=Zb.
Similarly, we can express Eq. (B3) as

""""b
2
z

vð0Þs !

Xsr

"""" *
qsqb

r2
b2

z !
qs

r

% &2

: (B6)

Thus, we see that the second inertial constraint is satisfied
when we adopt the familiar requirement that the Larmor
radius be smaller than the system size.

Our formal small parameters that we adopt correspond
to the Collisionality, the Mach number of compression, the
Larmor radius, and the Anisotropy, all being small compared
to relevant scales

Ci (
1

Xisib
; (B7)

M ( jkLj
vthb

; (B8)

L ( qs

L
; (B9)

Ai ( ksi; (B10)

where L ¼ ae&~t is the compressing system scale. Note that if
M, L * Ai ) 1, then M2, L2 ) Ai, and our constraints Eqs.
(B2) and (B3) for anisotropic effects to dominate over iner-
tial effects are automatically satisfied.

Note also that these four parameters are not fully inde-
pendent since

ML ¼
ffiffiffiffiffiffi
mb

ms

r
ssb

ss
CsAs: (B11)

Finally, note that anisotropy effects are determined by
Ab ¼ Z2

s

Z2
b

mb
mi

As, and the diffusion coefficient is given by the
~t ¼ 0 value of D0a ¼ (ss/ssb)L2/As.

1. Scaling of small parameters

As we compress, the small parameters will evolve in a
way determined by the scalings in Eqs. (58)–(63). We find

Ci *
1

B
* e&~t 1þ K2

e2~t þ K2

% &1=2

; (B12)
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M * r

T1=2
* e&

5
3
~t ; (B13)

L * T1=2

rB
* e

2
3
~t 1þ K2

e2~t þ K2

% &1=2

; (B14)

Ai * const: (B15)

As we compress, all our small parameters shrink or stay con-
stant, with the exception of L. Thus, we need to choose an
initial L small enough such that at no point during the simu-
lation will L " 1.

A sufficient condition to meet this constraint is to take

L < Lmaxe&2~tmax=3: (B16)

However, this is in general too stringent, since for a long
compression, S should begin to shrink (once Bz * Bh).
Indeed, for K> 1, the maximum value achieved by S for
~t > 0 is

Lmax ¼ L
21=3

ffiffiffi
3
p 1þ 1

K2

% &1=2

K1=3 , 0:72K1=3L: (B17)

Thus, we simply choose

L ¼ Lmaxmax e&2~tmax=3; 1:36K&1=3
' (

: (B18)

This constraint will limit the initial value of our diffusion
coefficient significantly.
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