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ABSTRACT

Nonradial hydrodynamic flow can be generated or amplified during plasma compression by various mechanisms, including the compression
itself. In certain circumstances, the plasma may reach a viscous state; for example, in compression experiments seeking fusion, the fuel
plasma may reach a viscous state late in the compression due in part to the rising fuel temperature. Here, we consider viscous dissipation
of nonradial flow in the case of initially isotropic, three-dimensional (3D), turbulent flow fields compressed at constant velocity in two
dimensions. Prior work in the case of 3D compressions has shown the possibility of effective viscous dissipation of nonradial flow under
compression. We show that, theoretically, complete viscous dissipation of the nonradial flow should still occur in the 2D case when the
plasma heating is adiabatic and the viscosity has the (strong) Braginskii temperature dependence (l � T5=2). However, in the general case,
the amount of compression required is very large even for modest initial Reynolds numbers, with the compression reaching an intermediate
state dominated by variations only in the noncompressed direction. We show that both the nonlinearity and boundary conditions can play
important roles in setting the characteristics and ease of the viscous dissipation.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5111961

I. INTRODUCTION

Compression experiments seeking fusion of hydrogen fuel are
carried out in both three-dimensions (typically with compression in
the spherical radius) and two-dimensions (typically with compression
in the cylindrical radius). Examples of the former are ignition experi-
ments at the National Ignition Facility (NIF),1,2 while examples of the
latter are Magnetized Liner Inertial Fusion (MagLIF) experiments.3,4

Detailed simulations seeking to understand the hydrodynamics of NIF
ignition experiments have shown that flows in the fuel plasma, which
can be generated by a variety of mechanisms during the compression,
can be substantially affected by viscosity when the fuel becomes hot
near bang time.5,6 Viscous effects on nonradial flow in compressions
(flow not associated with the compression itself) have also been stud-
ied in detail in isolation for the case of such 3D compressions.7–14

Nonradial flow in the fusion fuel can have a variety of impacts.
At the most basic level, such motion can be regarded as “wasted” com-
pression energy, if it remains as flow in the stagnation process and
therefore is energy that is not converted to the high temperatures
required for fusion. Even if this impact is negligible, small quantities of
nonradial flow may degrade implosion performance,15–18 for example,
by causing mixing of the nonfuel capsule material, or cold fuel, into
the hot-spot. As such, understanding the behavior of such flows is
important, including the impacts that the viscosity has, if it grows large
enough to influence the flow.

Here, we study the impact of a transition from inviscid to viscous
on nonradial flows in 2D compressions. While this work has potential
applications in understanding nonradial flow dynamics in 2D fusion
compression experiments, we note that there is no magnetic field
included in the present work, an important limitation to relax in future
work. The present study is also useful to assess the possibility of utiliz-
ing sudden viscous dissipation7 to achieve a new design for generating
fusion or X-ray bursts in a 2D compression geometry, rather than the
previously studied 3D compressions.

The rest of this paper is organized as follows: in Sec. II, we
describe the set of equations used to model the 2D compression of 3D
turbulence in this work. Then, in Sec. III, we calculate a linear solution
to the 2D compression system, which is useful for understanding
some key features of the viscous dissipation process. Section IV
discusses the insights that can be gained from the linear solution and
analyzes the results of (nonlinear) simulations of the full 2D compress-
ing system. Finally, in Sec. V, we summarize the main results and
discuss them in the context of sudden viscous dissipation and inertial
fusion experiments.

II. APPROACH

In order to investigate the viscous dissipation process for 2D
compressions, we use a plasma treatment similar to that in prior work
on viscous dissipation in 3D.7–9 See, in particular, the appendix in
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Davidovits and Fisch.8 As before, we consider the plasma behavior to
be governed by the Navier-Stokes (NS) equations and assume the
compression is caused by a given background flowfield, vi0ðx; tÞ
¼ AijðtÞxj. The full flow in the NS momentum equation is viðx; tÞ
¼ vi0ðx; tÞ þ v0iðx; tÞ, and our interest is to solve the behavior of the
flow v0iðx; tÞ, given the background flow. While, for the 3D case, we
took an isotropic compression, AijðtÞ ¼ aðtÞdij, with dij being the
Kronecker delta, here we consider a 2D compression,

AijðtÞ ¼
aðtÞ i ¼ j ¼ 1 or i ¼ j ¼ 2

0 otherwise:

(
(1)

As in the 3D case, we will have

aðtÞ ¼
_L
L
; (2)

with the overdot indicating a time derivative, and

LðtÞ ¼ L0 � 2Ubt: (3)

In the present case, we will work in Cartesian coordinates and take the
compressed directions to be along x and y, with the z direction uncom-
pressed. The background flow is such that if we took a cube of initial
side length L0 and put it in the flow, it will have a contracting side
length of L(t) along the x and y directions and a constant side length
of L0 in the z direction. The rate of contraction is determined by the
compression velocity, Ub.

As in Ref. 8, we will assume homogeneity of the flow under
ensemble averaging and ignore density perturbations (low Mach
assumption). Consistent with this, the density is spatially constant and
increases with compression as expected,

qðtÞ ¼ q0

�L2 ; (4)

where

�L ¼ LðtÞ
L0
¼ 1� 2

Ub

L0
t: (5)

Similarly, the temperature, which is determined through the ideal gas
equation of state, assuming adiabatic compression, will be spatially
uniform, with a time dependence given by T ¼ T0�L

�4=3.
In order to eliminate any explicit spatial dependence from the NS

equations, we work in coordinates, X, that move with the background
flow, x ¼ �LX; y ¼ �LY , z¼Z. Writing v0iðx; tÞ ¼ ViðX; tÞ and
p0ðx; tÞ ¼ PðX; tÞ, the NS momentum equations are

@Vx

@t
þ

_L
L
Vx þ CðVxÞ þ

�L
q0

@P
@X
¼ �0�lDðVxÞ; (6)

@Vy

@t
þ

_L
L
Vy þ CðVyÞ þ

�L
q0

@P
@Y
¼ �0�lDðVyÞ; (7)

@Vz

@t
þ CðVzÞ þ

�L2

q0

@P
@Z
¼ �0�lDðVzÞ: (8)

The continuity equation is

1
�L

@Vx

@X
þ @Vy

@Y

� �
þ @Vz

@Z
¼ 0: (9)

In Eqs. (6)–(8), we have used a shorthand operator form for both the
convective term (C) and the viscous dissipation term (D),

CðAÞ ¼ 1
�L

Vx
@A
@X
þ Vy

@A
@Y

� �
þ Vz

@A
@Z

; (10)

DðAÞ ¼ @2A
@X2
þ @

2A
@Y2
þ �L2 @

2A
@Z2

: (11)

The dynamic viscosity, l, is taken to be l ¼ l0�lð�T Þ, with
�T ¼ T=T0. The kinematic viscosity coefficient appearing in Eqs.
(6)–(8), �0, is �0 ¼ l0=q0. For the unmagnetized Braginskii viscosity,
we have �lð�T Þ ¼ �T 5=2.19 In general, we could consider arbitrary rates
of heating (or cooling) during compression and we could also more
generally permit ionization effects on the viscosity and study the
impacts on the flow compression.8 A simple first approach to parame-
terizing these effects is to let �l ¼ �L�4b=3, with b being a parameter
determined by the net heating and ionization processes in the com-
pression, which are restricted to power-law behavior under compres-
sion.8,11 The simulations in this work will have the adiabatic, ideal gas,
2D compression result for T given above, �T ¼ �L�4=3, and will assume
no ionization. In this case, b ¼ 5=2 and �l ¼ �L�10=3.

A few features of the 2D compression NS system, Eqs. (6)–(8),
stand out. The system is forced (linearly) by the compression in the x
and y directions, the second term in Eqs. (6) and (7), while the z direc-
tion, Eq. (8), is unforced, and therefore, Vz can only increase in the
compression due to nonlinear transfer. The convective term, Eq. (10),
has an increasing coefficient on the terms associated with velocities
and derivatives in the compression plane (x, y), while the noncom-
pressed direction (z) has a constant coefficient. All velocity compo-
nents experience viscous dissipation of the same form, Eq. (11). In
general, the dissipation due to derivatives along the noncompressed
direction (z) is scaled smaller by �L2 in the compression than deriva-
tives in the compression plane. However, when the viscosity scales as
�l ¼ �L�10=3, all viscous terms scale at least as strongly as �L�4=3 in the
compression.

III. LINEARIZED BEHAVIOR (VISCOUS RAPID
DISTORTION THEORY)

In order to get a basic understanding of the viscous dissipation
behavior in the system of NS equations for 2D compression of a
variable-viscosity plasma, Eqs. (6)–(9), it is useful to solve the linear
system of equations which results from dropping the convective deriv-
ative. Both the forcing from the compression and the viscous dissipa-
tion are linear in the present model (more generally, with a viscosity
that depends on a temperature which is a field, the viscous term will
be nonlinear). In an initially rapid compression, the (linear) forcing
term will be dominant for the compressed directions at the start of the
compression (by definition). If the flow reaches a viscous state, the
(linear) viscous term will be dominant. Thus, at least for compressions
at a modest Reynolds number, which have an initially rapid phase,
and a final viscous phase, we can get some picture of the system behav-
ior with the linear model. Then, also, we will find that the differences
between the linear model results and the (nonlinear) simulations can
help us understand the essential features of the system. The solution of
the system Eqs. (6)–(9), with the convective term dropped, is essen-
tially a viscous version of a rapid distortion theory (RDT) solution.20

Our interest is to solve the initial value problem for the system,
Eqs. (6)–(9), given an initial incompressible flowfield, VðX; t ¼ 0Þ in
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the domain (a cube of side length L0 in the moving frame) and a com-
pression velocity Ub. We will use periodic boundary conditions. First,
we drop the convective derivative, CðViÞ, from Eqs. (6)–(8). Then, we
scale the velocity and pressure as

Vx;y ¼ �Ld ~Vx;y; (12)

Vz ¼ �Lr ~Vz; (13)

P ¼ �Lg~P: (14)

Further, we use Eq. (5) to change the time variable to �L, with the com-
pression then proceeding from �L ¼ 1 at t¼ 0 toward �L ! 0 as
t ! tf ¼ L0=2Ub. Note that because the lab-frame domain collapses
to a line at t¼ tf, we never reach this final time. We select r ¼ dþ 1
and g ¼ d� 1. These choices allow us to put the momentum equa-
tions, Eqs. (6)–(8), on equal footing, including to make each pressure
term have identical time scaling. While we can carry through the anal-
ysis of this section with general d, the value will drop out from the final
(unscaled) result (as we would hope), and therefore, for convenience,
we take d ¼ �1, which eliminates the compressive forcing from the
scaled equation. Then, the scaled momentum equations can be written
as

@ ~V i

@�L
�

tf
q0

@~P
@Xi
¼ ��0tf �lð�LÞDð~V iÞ; (15)

where the index i runs over x, y, z and Xx¼X, Xy¼Y, Xz¼Z. As
per the discussion in Sec. II, it is assumed that the viscosity is a
function of �L, through the temperature, although we need not spec-
ify this function now. After scaling, the continuity equation can be
written (for �L 6¼ 0) as

@ ~Vx

@X
þ @

~Vy

@Y
þ �L2 @ ~Vz

@Z
¼ 0: (16)

We now consider the vorticity, ~x ¼ r� ~V. Utilizing Eq. (15),
we arrive at an equation for the components of ~x,

@ ~x i

@�L
¼ ��0tf �lð�LÞDð~xiÞ: (17)

We will solve the initial value problem of Eq. (17) in Fourier
space. Then, we find the Fourier-space velocity expression by inverting
the vorticity definition, taking account of the fact that ~V satisfies Eq.
(16) and is therefore not divergence free except at �L ¼ 1 (t¼ 0). We
define ~x in Fourier space as ~xðX; tÞ ¼

P
kx ;ky ;kz

x̂kðtÞ exp ðik � XÞ.
Here, the k values are kx;y;z ¼ 2pnx;y;z=L0, with nx;y;z 2 Z. The
Fourier coefficients are found as usual, x̂kðtÞ ¼

Ð Ð Ð
dX ~xðX; tÞ

expð�ik � XÞ=L30, with the integrals taken over the cube of side length
L0. In Fourier space, Eq. (17) is

dx̂k

d�L
¼ �0tf �lð�LÞ k2x þ k2y þ �L2k2z

� �
x̂k; (18)

which can be integrated in �L in order to find x̂kð�LÞ. Doing so yields

x̂kð�LÞ ¼ x̂k;0 exp /ð�L; kÞ
� �

; (19)

/ð�L; kÞ ¼ ��0tf
ð1

�L
�lð�L0Þ k2x þ k2y þ �L02k2z

� �
d�L0; (20)

where the subscript 0 denotes the initial condition, x̂k;0

¼ x̂kð�L ¼ 1Þ.
By expressing the curl of the vorticity in terms of second deriva-

tives of the velocity, making use of Eq. (16), and working in Fourier
space, we can solve for V̂k in terms of x̂k . In Fourier space, the curl of
the vorticity can be expressed as �ik � x̂k ¼ �ð1� �L2ÞkkzV̂ k;z

þ k2V̂k . First, the z component of this can be solved for V̂ k;z (the z
component of V̂k), and then, the x and y components of the velocity
can be found. Doing so yields

V̂ k;z ¼ V̂ k;z;0
k2

k2 � ð1� �L2Þk2z
exp /½ �; (21)

V̂ k;xjy ¼ V̂ k;xjy;0 þ V̂ k;z;0
ð1� �L2Þkxjykz
k2 � ð1� �L2Þk2z

 !
exp /½ �; (22)

where the subscript xjy indicates either x or y (to be chosen consis-
tently across all such subscripts).

The total energy in the flow V (integrated over the cubic
domain), which is the same as the total energy in the flow v0, can be
written as

E ¼ q0L
3
0

2

X
kx ;ky ;kz

�L�2 V̂ k;xV̂
�
k;x þ V̂ k;yV̂

�
k;y

� �
þ V̂ k;zV̂

�
k;z

h i
: (23)

Here, the asterisk indicates complex conjugation.
Specifying �l ¼ �L�4b=3 (see Sec. II), the integral in the exponent

/, Eq. (20), can be carried out, yielding

/ ¼ � 2p2

ReU

1� �L1�4b=3

1� 4b=3
n2x þ n2y
� �

þ 1� �L3�4b=3

3� 4b=3
n2z

" #
; (24)

where it is assumed b 6¼ 3=4; b 6¼ 9=4 (separate / expressions valid
for these cases can be found). Here, ReU ¼ UbL0=�0 is a Reynolds
number using the compression velocity Ub instead of a flow velocity,
and nx, ny, and nz are integer mode numbers (from above).

In the case when b ¼ 5=2 (adiabatic heating of an ideal gas with
no ionization), / is

/ ¼ � 2p2

ReU

3
7

�L�7=3 � 1
� 	

n2x þ n2y
� �

þ 3 �L�1=3 � 1
� 	

n2z


 �
: (25)

IV. DISCUSSION AND COMPARISON WITH
SIMULATIONS

We now discuss the behavior of the 2D compression system,
Eqs. (6)–(9), as it relates to viscous dissipation. First, we focus our
analysis on the linear (viscous RDT) solution given in Sec. III. Then,
we compare the linear solution with direct numerical simulations
(DNSs) of the 2D compression system carried out in the pseudospec-
tral code Dedalus,21,22 which, among other things, will show the
important influence of nonlinear transfer to larger scales on the
viscous dissipation process (or lack thereof).

The energy behavior of the linear (viscous RDT) solution to the
2D compression of 3D flow is given by Eq. (23), evaluated with Eqs.
(21), (22), and, most generally, with / given by Eq. (20). Broadly,
examining Eq. (20) [or Eqs. (24) and (25)], we see that there are two
classes of Fourier modes in terms of their viscous damping behavior.
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First, there are modes with kx 6¼ 0 and/or ky 6¼ 0. For these modes,
the dominant viscous damping contribution as �L ! 0 will come from
the nonzero kx or ky component (derivatives in the plane of compres-
sion). Second, there are modes for which kx ¼ ky ¼ 0. For these
modes, only the kz component of / contributes to damping; since the
exponent for these modes is scaled smaller by �L2, these modes will be
much more resistant to viscous damping than modes with either (or
both) kx 6¼ 0 or ky 6¼ 0, for a given jkj.

This distinction between the two mode classes should become
apparent in the case when the viscosity increases sufficiently in the
compression (such that the value of the viscosity has an influence on
the flow). Parameterizing the net heating and ionization influence
with b, as discussed in Sec. II, and therefore also the rate of viscosity
increase (or decrease) in compression (�l ¼ �L�4b=3), we have / as
given by Eq. (24). When b > 9=4, all Fourier modes are exponentially
damped in the linear model, which, after sufficient compression, will
overcome the �L�2 scaling in the energy, Eq. (23), such that eventually
all Fourier modes will be damped, linearly. Thus, in this case, the
energy should eventually viscously dissipate under continuing com-
pression. Since b ¼ 5=2 for an adiabatic compression of an ideal gas,
with no ionization, this situation falls into the b > 9=4 case presently
discussed. The simulations in this work focus on the b ¼ 5=2 situa-
tion, and as such, most of our discussion will as well. Before specializ-
ing to the b ¼ 5=2 situation, we finish considering the impact of the
two broad linear mode classes for other values of b.

When 3=4 < b < 9=4, all modes in the first mode class
(kxjy 6¼ 0) are still damped linearly after sufficient compression, while
this will no longer be the case for the second mode class (kx ¼ ky
¼ 0); for the latter class, the mode growth due to the compression can
outpace the viscous damping as �L ! 0, in the linear solution. Then,
we expect that the system will have a tendency to pile energy in modes
with kx ¼ ky ¼ 0 and that the efficiency (or inefficiency) of nonlinear
exchange from these modes into modes with kxjy 6¼ 0 may be impor-
tant in setting the system behavior under continuing compression.
Nonlinear transfer to kx ¼ ky ¼ 0 modes with higher kz may also be
important in setting the system behavior. When b < 3=4, no modes at
a fixed jkj are damped linearly as �L ! 0, and both cascade to higher
mode numbers and transfer between mode classes may be important.
These problems are beyond the scope of the current work, and we
now focus on the viscous dissipation behavior of the b ¼ 5=2 case and
a surprising influence of the nonlinearity in this case.

When b ¼ 5=2, the exponent / in the linear solution, Eqs.
(21)–(22), is given by Eq. (25). In Fig. 1, the red solid line shows the
linear turbulent kinetic energy (TKE) solution, Eq. (23) vs compres-
sion ratio (�L) for b ¼ 5=2 and ReU ¼ 375. The initial condition is a
saturated, isotropic, turbulent state with 128 Fourier modes in each
direction (1283 total modes), generated by using Dedalus to solve the
Navier-Stokes equations with the real-space forcing scheme described
by Lundgren23 (see also Rosales and Meneveau24). We use a box of
side length L0 ¼ 1, with � ¼ 1=600 and A¼ 1.45, in the notation of
Rosales and Meneveau.24 The numerical pseudospectral solution uses
1963 modes dealiased to 1283. This particular initial condition has a
Taylor Reynolds number Rek � 101, a mean initial kinetic energy
E0 ¼ hV2=2i � 0:87, and an initial mean viscous dissipation �0
¼ ��hV � r2Vi � 2:6. The energy spectrum of the initial condition
is in line with those typically generated by the real-space forcing
scheme, see, e.g., Figs. 11 and 12 in Rosales and Meneveau.24 Of

particular note is that this initial condition contains all modes (except
kx ¼ ky ¼ kz ¼ 0). While not a general feature, for this particular
ReU and initial condition, we can see in Fig. 1 that the energy experi-
ences two growth phases (increasing energy as �L decreases) as the
compression progresses, each followed by a dissipation phase where
the energy decreases. These two dissipation phases, which are
well-separated in compression ratio �L, correspond to first modes with
kxjy 6¼ 0 dissipating, followed much later by modes with kx ¼ ky ¼ 0
dissipating.

To further illustrate the substantial difference in the dissipation
characteristics of the two mode classes, we can “truncate” the spectrum
of Fourier modes in the initial condition. In this work, we truncate the
initial condition by zeroing out the energy in all modes with
kx ¼ ky ¼ 0; that is, we remove all initial energy from the second
mode class. The blue dashed line in Fig. 1 shows the linear energy solu-
tion, Eq. (23), with this truncated linear spectrum, again for b ¼ 5=2
and ReU ¼ 375. In this case, we see that the initial energy behavior is
similar (albeit with somewhat lower energy growth in the first growth
phase) but that the first dissipation phase completely dissipates the
energy, with the energy then remaining at 0 for the rest of the com-
pression. This further illustrates that the first dissipation phase noted
in the full-spectrum case (red solid line) is in fact due to the kxjy 6¼ 0
modes dissipating.

We now consider the energy behavior of the full (nonlinear) sys-
tem, Eqs. (6)–(9), and again the situation where the viscous behavior is
adiabatic, no ionization, b ¼ 5=2. We use Dedalus to simulate the

FIG. 1. The evolution of the turbulent kinetic energy (TKE) as a function of (linear)
compression ratio for two different initial conditions for a two-dimensional, constant
velocity compression of an initially isotropic turbulent flowfield. The TKE evolves
according to the linear viscous rapid distortion theory (RDT) solution, Eq. (23), with
Eqs. (21), (22), and (25). The red solid line shows two growth phases (increasing
TKE with decreasing �L), each followed by a dissipation phase, corresponding to a
different class of Fourier mode being dissipated. First modes with variation in the
compression plane dissipate (kxjy 6¼ 0), and then, after much more compression,
modes with variation only in the noncompressed direction dissipate (kx ¼ ky ¼ 0).
This point is emphasized by the dashed blue line, which uses the same initial condi-
tion, but with kx ¼ ky ¼ 0 modes removed. In addition to emphasizing the differ-
ence in mode behavior, this could also correspond to the linear behavior in a
situation where such modes (kx ¼ ky ¼ 0) are disallowed, for example, by hard-
wall boundary conditions. In both cases, the initial energy is normalized to 1,
b ¼ 5=2, and ReU ¼ 375, see Sec. IV for more discussion.
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nonlinear evolution of the same two initial conditions (full and
truncated) that were used to calculate to the viscous RDT solution for
Fig. 1. We set �0 ¼ 1=600 and use L0 ¼ q0 ¼ 1. The compression
velocity is set such that the initial compression time, sc;0 ¼ L0=2Ub, is
1/10 the initial turbulent dissipation time scale, st;0 ¼ E0=�0. For the
untruncated spectrum, this corresponds to Ub � 15, while the
required velocity for the truncated spectrum is slightly different,
Ub � 16 (in the truncated case, E0 � 0:75 and �0 � 2:5). Thus, in
both cases, we have an initially “fast” compression (by a factor of 10),
and we expect the TKE to initially grow; this is in fact the case, as seen
in Fig. 2, with the TKE in the full-spectrum case plotted as the solid
blue line and the energy in the truncated-spectrum case plotted as the
dotted green line. After this initial growth under compression, the
TKE in each case behaves in a qualitatively similar fashion to the cor-
responding case of the linear RDT solution, with one particularly nota-
ble difference. In Fig. 2, we see that the truncated spectrum TKE no
longer dissipates to 0 in the initial dissipation of kxjy 6¼ 0 modes
(instead reaching a minimum energy in this case similar to the initial
energy). Even though this case starts with zero energy in kx ¼ ky ¼ 0
modes, the nonlinearity has transferred some energy into these modes
before the kxjy 6¼ 0 mode energy dissipates. If we continue the com-
pression further, the TKE in the nonlinear, truncated-spectrum case
will grow up very substantially after the initial dissipation phase. This
is in contrast to the linear case, where the lack of initial energy in the
kx ¼ ky ¼ 0 modes persists and the energy dissipates for good in the
initial dissipation.

Note that we have used a much lower value of ReU in the linear
viscous RDT cases in Fig. 1 compared to the nonlinear simulations in

Fig. 2, in order to more easily reach the point of the second dissipation,
which already occurs only after a huge compression ratio for this mod-
est value of ReU . Figure 3 shows a comparison of the nonlinear simula-
tion results in Fig. 2 with the viscous RDT solution.

In order to give a visual sense of the flow during the compression,
we plot slices (y, z) through the domain, at x ¼ �L=2, both early
(�L ¼ 0:2, before the domination by kx ¼ ky ¼ 0 modes) and late
(�L ¼ 0:03, after the domination by kx ¼ ky ¼ 0 modes), in the com-
pression, in Figs. 4 and 5, respectively. The corresponding locations in
the TKE behavior figure, Fig. 2, are indicated by a yellow diamond
(�L ¼ 0:2, Fig. 4) and by an orange star (�L ¼ 0:03, Fig. 5). Note that in
both Figs. 4 and 5, each flow-field plot is stretched in y (has a wrong
aspect ratio), in order to make the plots readable. We can see in Fig. 5
that where the flow is dominated by kx ¼ ky ¼ 0 modes, it corre-
spondingly has structure almost exclusively in the z direction (plots in
the x, y plane are nearly constant). Since this direction is uncom-
pressed, the viscous derivatives act more weakly and allow the preser-
vation of this structure. Note also that Vx and Vy velocity magnitudes
are much larger than the Vz velocity magnitude (which appears �0
when plotted on the same scale as the x and y components). This is
reflective of the fact that, in this case, the nonlinearity has been ineffec-
tive at transferring energy from the linearly forced x and y directions
into the linearly unforced z direction. This fact is already apparent in
Fig. 4, where we observe that the Vz velocities are smaller than the Vx

or Vy velocities; the initial condition is isotropic.

V. CONCLUSION AND IMPLICATIONS

In summary, we show that two “classes” of Fourier modes are
important in determining the viscous dissipation behavior of 3D flows
compressed in 2D. In Cartesian coordinates, these two classes are first
modes with kxjy 6¼ 0 and second modes with kx ¼ ky ¼ 0, but we
may expect that these classes will translate to alternate coordinate

FIG. 2. Similar to Fig. 1, but now with the TKE evolution given by the numerical
solution to the full (nonlinear) equations for 2D compression, Eqs. (6)–(9). The
same compression of an isotropic, turbulent, initial condition is carried out, with the
difference between the two cases shown being that the dashed green line shows
the TKE evolution when the initial condition has all energy in kx ¼ ky ¼ 0 modes
removed (“truncated”). However, now, unlike in the linear case shown in Fig. 1, the
nonlinearity transfers energy into kx ¼ ky ¼ 0 modes during the compression of
the truncated case; as a result, the energy in this case no longer fully dissipates
and begins to grow again after the dissipation of kxjy 6¼ 0 modes. Thus, unless
kx ¼ ky ¼ 0 modes are forbidden, say, by hard-wall boundary conditions, it will be
difficult to dissipate the TKE through viscosity, even in this case with a modest initial
viscosity (�0 ¼ 1=600) and strong viscous growth during compression (b ¼ 5=2).
The cases shown use a compression velocity such that the initial compression rate
is 10 times the initial turbulent dissipation time, see Sec. IV for more discussion.

FIG. 3. The same as Fig. 2, but also showing, for comparison, the nontruncated
viscous RDT solution (red dashed) and the truncated viscous RDT solution (black -
dashed) associated with each nonlinear simulation. Prior to the dissipation of the
kxjy 6¼ 0 modes, the RDT solution overpredicts the TKE, because, on the net, the
nonlinearity cascades energy to the dissipation scale, leading to more dissipation
than the linear case. However, after the dissipation of the kxjy 6¼ 0 modes, the RDT
solution underpredicts the TKE, because it has not accounted for nonlinear transfer
into kx ¼ ky ¼ 0 modes.
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systems; for example, in cylindrical coordinates, the coordinate pair x,
y should be translatable into the coordinate pair r; h.

The second class of modes, kx ¼ ky ¼ 0, is much more difficult to
dissipate viscously, due to the fact that all the structures are in the z direc-
tion which is uncompressed and therefore has a length scale that does
not enhance derivatives through shrinking. Furthermore, even if this
class of modes is not present in the flow at the start of the compression,
the nonlinearity can transfer energy into it, thereby greatly increasing the
difficulty of fully dissipating the initial nonradial flow through increasing
viscosity from temperature growth in compression. Even in the example
cases here, with rapid initial compression of modest initial Reynolds
numbers (�600) and perfect adiabatic heating increasing the unmagne-
tized Braginskii viscosity, we find extreme compression ratios
(L=L0 	 10�2) are needed to induce dissipation when all modes are
present (blue solid line in Fig. 2). One could reduce the required amount
of compression to achieve viscous dissipation of the difficult-to-dissipate
modes by any of the following: less rapid compression, higher initial vis-
cosity, or a faster rate of heating (viscosity rise) with compression than
the adiabatic heating due solely to compression considered here.

While the nonlinearity, by being able to transfer energy into
modes with kx ¼ ky ¼ 0, can make completely dissipating the TKE
through viscosity difficult, we can see, from the green dashed line in
Fig. 2, that, at least temporarily, we may dissipate much of the TKE
through compression, at least when we start with no energy in such
modes. The presence or absence of these modes will likely be influ-
enced by a number of factors, including any instabilities present in the

system, as well as boundary conditions. For example, hard-wall
boundary conditions in the compression directions (x and y here) will
disallow modes with kx ¼ ky ¼ 0, thereby meaning the TKE should
completely dissipate with the dissipation of the first class of modes
(kxjy 6¼ 0, in this case, both kx and ky being nonzero).

There are three contexts in which we briefly consider the implica-
tions of the present work.

The first is the proposed utilization of viscous dissipation in a
scheme for achieving fusion or a burst of X-rays,7 which has previously
been investigated in 3D compressions. We note first that this scheme
imagines supersonic nonradial flows, where the TKE dominates the
thermal energy, and the feedback of dissipated TKE into thermal
energy has an important influence on the temperature and therefore
also on the viscosity and the dissipation process. Therefore, we should
be cautious in using the present results to consider the scheme;
nonetheless, if modes in the second mode class (kx ¼ ky ¼ 0) are not
forbidden for some reason and are present from early in the compres-
sion, we expect it to be difficult to trigger viscous dissipation in light of
the results here. If these modes are forbidden or if there is essentially
no energy in them from the start of the compression, the scheme
may still have promise in the 2D compression case. Also, if the rate of
heating during the compression (or at its conclusion) is greater than
that considered here (so that b > 5=2), it will be easier to achieve
viscous dissipation, due to the sensitivity of the viscosity to the temper-
ature. Such heating could be provided by the release of dissipated TKE

FIG. 5. Slices through the midplane (x ¼ 0:5�L) of the simulation domain at �L ¼
0:03 showing the velocity components partway through the compression for the
nonlinear simulation in solid blue in Fig. 2. This point in the compression is indi-
cated by the orange star in that figure. Unlike the velocity field slices in Fig. 4, the
field now has a structure almost exclusively in the z direction; this is reflective of
the fact that the viscosity has dissipated most of the energy in ky 6¼ 0 modes, with
energy primarily remaining in kx ¼ ky ¼ 0 modes. Continuing the trend observable
in Fig. 4, the magnitude of Vz is now relatively even smaller than the magnitude of
the other velocity components; on this uniform scale, no structure is visible (but
there is an observable structure if plotted on a velocity scale with a smaller magni-
tude). As shown in Fig. 4, the slices are “stretched” in the y direction for the sake of
readability.

FIG. 4. Slices through the midplane (x ¼ 0:5�L) of the simulation domain at
�L ¼ 0:2 showing the velocity components partway through the compression for the
nonlinear simulation in solid blue in Fig. 2. This point in the compression is indi-
cated by the yellow diamond in that figure. The velocity field slices show the struc-
ture in both the y and z directions; the structure in the y direction is reflective of the
presence of ky 6¼ 0 modes, which have not yet dissipated in the dissipation phase
observable in Fig. 2. The magnitude of Vz is smaller than the magnitude of the
other velocity components; apparently, the nonlinearity is not sufficient in this case
to isotropize the linearly forced components (Vx, Vy) with the linearly unforced Vz
component. See Sec. IV. Note that the y direction is “stretched” for readability of the
slices; the aspect ratio is not 5 : 1 in Lz : Ly as would be indicated by �L ¼ 0:2.
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into thermal energy when the TKE is substantial or through other
effects, such as in fast ignition mechanisms instigated by beams or
lasers.

The second is in relation to gas-puff Z-pinch experiments (which
are 2D plasma compressions) that have inferred large quantities of
nonradial hydrodynamic motion,25 which apparently persists at stag-
nation as TKE.25,26 The plasma in these experiments remains inviscid
throughout the compression and stagnation; indeed, if the plasma was
viscous enough to reach a state like that in Fig. 5, measurements made
along radial lines of sight may not infer TKE, since the plasma motion
is approximately uniform along any given x, y plane. This of course
will depend on the z extent of plasma that is averaged over in the mea-
surement, and we should be cautious in applying the present results to
these gas-puff Z-pinch experiments, both because the flows there are
supersonic and because while the magnetic field pressure is a very
small contribution at stagnation,26–28 its potential influence must still
be examined.

The third context in which we consider the implications of the
present work is the generally expected flow state of the deuterium-
tritium (D-T) fuel in inertial fusion experiments which utilize
2D compression. In particular, it is suggested that viscous effects
can substantially influence the flow field in the high-temperature
D-T fuel late (near bang time) in 3D inertial fusion experiments.5,6

Fusion schemes utilizing 2D compression, such as the
magnetoinertial-fusion concept MagLIF,3,4 may also reach a viscous
flow regime near bang-time; this is because they aim to reach simi-
larly high temperatures in D-T fuel and have a similar linear length
scale in the compression directions and characteristic compression
(flow) velocities which are not larger than the 3D cases. However,
to the extent that it applies, the present work hints that it may be
difficult in such 2D compressions to dissipate uniform flows in the
compression plane with slow variation along the uncompressed
direction z, that is, flows with a structure similar to those in Fig. 5.
Of course, the present work does not include any magnetic field,
nor is it clear what the appropriate effective fuel boundary condi-
tions are for an experiment such as MagLIF. The influence of a
strong applied magnetic field could substantially change the results,
and this case should be considered in future work. Nonetheless, we
hope the present work serves as a useful starting point for consider-
ing viscous dissipation in 2D compressions.
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