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ABSTRACT

Inspired by experimental Z-pinch results, we investigate plasma turbulence undergoing compression. In addition to Z-pinches, plasma turbu-
lence can be compressed in a range of natural and laboratory settings, including inertial fusion experiments and astrophysical molecular
clouds. The plasma viscosity, when modeled as described by Braginskii, depends strongly on both temperature and ionization state, giving it
the possibility to have a large range of behavior. Here, we highlight the importance of viscous variation in these settings, as well as various
insights that can be gained by considering this variation. Included are a “sudden viscous dissipation” effect that leads to a new concept for
inertial fusion or X-ray bursts and a bound on turbulent energy behavior under compression. This bound, which was previously applied in
inviscid molecular cloud turbulence, is here shown in an application to turbulence that transitions from inviscid to viscous regimes. The task
of understanding turbulence under compression can be cast as the process of seeking a “quasi equation of state” for turbulent energy under
compression.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5098790

I. INTRODUCTION

Nonradial hydrodynamic motion in the hot spots (gas fill) of
inertial-fusion experiments may be seeded by interfacial instabilities
(e.g., Rayleigh–Taylor or Richtmeyer-Meshkov instabilities) or by
implosion asymmetry generated by a variety of possible sources.1,2 In
Magnetized Liner Inertial Fusion experiments,3 a laser is used to heat
the fusion fuel prior to compression by a Z-pinch. Spatial nonunifor-
mity of the laser heating may lead to nonradial flows in the fuel, which
will then be compressed, representing a possible source for nonradial
flow in these experiments beyond interface instabilities or implosion
asymmetry. Other mechanisms capable of generating nonradial or tur-
bulent flow may be at play in compression experiments; experiments
in gas-puff Z-pinches suggest significant, and likely turbulent, nonra-
dial hydrodynamic motion at stagnation,4–6 the source of which is still
unclear.

Here, nonradial hydrodynamic motion refers to motion not asso-
ciated with the compression itself; this motion may be regarded as
“wasted energy” to the extent that it does not contribute to heating in
the stagnation process. If a substantial fraction of implosion energy is
converted into such nonradial flow, the drive energy required to com-
press to targeted temperatures and densities may be larger than

expected. The presence of a large quantity of hydrodynamic motion
can have impact beyond the gross energetics. For example, if the
energy in the hydrodynamic motion is comparable to, or larger than,
the thermal energy, the flows can be highly compressible, inducing
density fluctuations. This appears to be the case in a gas-puff Z-pinch
stagnation, where these density fluctuations must be accounted for in
order for a correct, self-consistent, analysis of spectroscopic measure-
ments.6 Even if the amount of energy deposited into nonradial flows is
small enough so as to be negligible from the standpoint of overall
implosion energetics, such flows can still have important impacts on
experiments. Small quantities of nonradial motion may degrade
implosion performance,2,7–9 for example, through inducing mix of
colder or nonfuel capsule material into the hot-spot.

The possibility of nonradial flows in compression experiments,
combined with their broad range of impact, drives a need to under-
stand the effects of compression on the production and evolution of
such flows. For the rest of this paper, we will use turbulent flow and
nonradial flow interchangeably, and focus on 3D compression of
homogeneous, isotropic turbulence. However, we may also consider
the conceptual framework presented here for the case when the nonra-
dial flow is not truly turbulent, and various observed effects (such as
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the sudden viscous dissipation effect touched on later) can still occur
for nonturbulent flows. Further, even the behavior of turbulent nonra-
dial flows during compression may exhibit initial-condition depen-
dence.10 Here we focus solely on the effects of compression on a
volume of flow. In particular, no interface between materials is needed
for any growth of the turbulent kinetic energy (TKE) discussed here.
Further, we will consider constant velocity compressions, where there
is no acceleration of the compression velocity, and thus no acceleration
is necessary for the effects discussed here. Then, the compression
effects here could be considered to exist on top of whatever interface
or other instabilities exist in a compression experiment.

The effects of compression on turbulence have been studied
extensively, in neutral fluids and gases (e.g., Refs. 11–23), largely with
applications in aerodynamics and combustion (e.g., Refs. 24–26) in
mind. The gravitational compression of supersonic neutral-gas turbu-
lence has also been investigated, for application in astrophysics.27

While these prior works form an important knowledge base, there are
many properties and processes that are different between plasmas and
neutral gases, motivating the study of compressing turbulence specifi-
cally in the plasma case. Studying the compression of turbulence
including even a single difference between plasmas and gases, for
example, the fact that a plasma and a neutral gas have different viscos-
ity dependencies on temperature, is enough to give new effects in the
plasma case, such as a sudden viscous dissipation of turbulent
energy.28 For a plasma, the dependency of viscosity on temperature is
far more sensitive. This single difference alone will also mean that new
models are needed to predict the behavior of plasma turbulence under
compression.10,29,30 Although there are many differences between neu-
tral gas and plasma that can be considered, initial work on compress-
ing plasma turbulence has focused on the impact of including a
plasma viscosity. This is particularly important for inertial fusion
experiments, with or without a magnetic field, because viscous effects
can start to become relevant for a plasma of hydrogen isotopes in the
density and temperature regime sought for fusion gain.31 Thus, the
fuel in inertial fusion experiments can cross between inviscid and vis-
cous regimes during the compression,1,32,33 making it important to
study the effects of changing viscosity on compressing turbulence.
While initial studies of new viscous phenomena, like the sudden dissi-
pation effect, focused on zero-Mach turbulence limit, this effect has
also been studied in the finite-mach-number case.34

Beyond differences in viscosity, or other transport coefficients
(e.g., thermal conductivity), the dynamics of turbulent plasma under
compression may also differ from neutral gases due to the presence of
electromagnetic fields. The effect of compression on plasma turbulence
including such fields has been investigated only to a limited degree, in
the context of astrophysical plasmas.35 At a less fundamental, but nev-
ertheless important, level, plasma compression experiments, such as
those for inertial fusion or X-ray generation, aim for much larger com-
pression ratios than typical neutral gas applications. For example, inter-
nal combustion engines compress by a factor of �10 in volume, while
experiments at the National Ignition Facility aim to compress the vol-
ume by a factor of �104. These larger compression factors create more
opportunity for the compression to impact the turbulence evolution,
including more opportunity to input energy into the turbulence.

We can frame the problem of modeling the evolution of plasma
turbulence under compression as the search for a “quasi equation of
state” (“quasi-EOS”), by analogy with the thermodynamics of gases or

plasmas. This analogy will be presented here, and the limitations of
this framing (reflected in the qualifier “quasi”) will be discussed.

While, as introduced above, there are a number of ways in which
turbulence could be an impediment to achieving design targets in
magnetized or unmagnetized inertial fusion experiments, or X-ray
generating experiments, it is also worthwhile to consider whether there
are ways to utilize turbulent flows (or more generally nonradial flows)
to achieve design targets. The possibility for utilization arises because
the impact on an experiment of having energy in these flows is quite
different from having the same energy as thermal energy.

To see this, consider two plasmas with the same energy, parti-
tioned differently: one with all thermal energy (temperature), and the
other with most of the energy in some sort of nonradial (possibly tur-
bulent) flow, which is therefore a much colder plasma. While, as dis-
cussed above, the plasma with flow energy may be more affected by
mix, we should also expect that the energy loss rate from this flowing
plasma will be different than the loss rate from the thermal plasma.
For instance, the colder, flowing plasma will have lower radiation
losses. Thus, in certain circumstances, it may be advantageous, in
order to reach a higher energy density, to compress the cold flowing
plasma rather than the thermal one. In order to convert this flow back
into thermal energy late in the compression, one could imagine utiliz-
ing the sudden viscous dissipation mechanism. Some basic discussion
of this possibility, and challenges confronting such a scheme, are pre-
sented in prior work,28,29,31 but it remains to be determined whether
there exists a practicable design. Even if we are unable to use the sud-
den dissipation mechanism to convert flow energy to thermal energy,
its presence as an energy reservoir with different loss mechanisms
than the thermal energy could still make it advantageous for certain
applications. In other words, it may not always be appropriate to con-
sider such flows wasted energy; apparently there are large quantities of
such flow in gas-puff Z-pinch experiments optimized for K-shell radi-
ation yields4–6 although alternate explanations have not been
exhausted.36 In any event, there is strong motivation, for the sake of
trying to avoid or mitigate such flows where they are likely deleterious,
to study and model the compression of plasma turbulence. Doing so
also enables us to consider its utilization.

The rest of the paper is organized as follows. In Sec. II, we
describe the analogy between seeking to study andmodel the compres-
sion of plasma turbulence and the search for a quasi-EOS. Then, in
Sec. III, we show the application of a bounding technique,37 to bound
the turbulent energy of a plasma as it compresses and crosses between
inviscid and viscous regimes. This bound serves effectively as a type of
model for the quasi-EOS. It was first applied to show that a model for
the turbulent velocity in compressing molecular cloud turbulence is
likely too dissipative37 due to saturation of the turbulent length scale.30

In Sec. IV, we summarize our results and discuss them in a broader
context.

II. QUASI-EOS
A. Setup

To illustrate how compressed turbulence can be described by a
quasi-EOS, we work from a plasma treatment similar to that consid-
ered in prior work.28–30 For a more complete discussion of the treat-
ment, refer to Davidovits and Fisch.29 Although this treatment
operates in the limit where the turbulent flow speeds are small com-
pared to the sound speed (zero-Mach limit), so that compressibility

Physics of Plasmas ARTICLE scitation.org/journal/php

Phys. Plasmas 26, 062709 (2019); doi: 10.1063/1.5098790 26, 062709-2

Published under license by AIP Publishing

https://scitation.org/journal/php


effects in the turbulence can be disregarded, the same ideas can also be
applied to the compressible case. We consider a plasma modeled by
the Navier-Stokes (NS) equations, in a cubic domain, of initial side
length L0. The plasma has a viscosity that in principle depends on the
temperature and charge state. We break the NS velocity flowfield, u,
into two components

u ¼ ubackground þ v: (1)

The background flow generates the compression

ubackground ¼
_L
L
x; (2)

where the side length of the cube contracts at a constant velocity

LðtÞ ¼ L0 � 2Ubt (3)

and the overdot indicates a time derivative. The compression gener-
ated by the background flow is such that, if we place a cube of initial
side length L0 in the flow, and the cube is advected by the flow, it will
remain a cube with a side length that shrinks in time as LðtÞ.

It is convenient then to work in coordinates, X, that move with
the flow; these are related to the original NS coordinates, x, by
x ¼ �LX. Here, we have defined

�L ¼ L
L0
¼ 1� 2

Ub

L0
t: (4)

In the zero-Mach compression limit, any density fluctuations
drop out, and the continuity equation will give us the expected result
for the density, q ¼ q0ðL0=LÞ3.

Our interest is to solve for the rest of the flow, v. Working from
the definitions above, we can write down a NS equation for
VðX; tÞ ¼ vðx; tÞ. This is

@V
@t
þ �L�1V � rV� 2Ub

L
Vþ �L2rP

q0
¼

�LlðT;ZÞ
q0

r2V; (5)

where l is the (dynamic) viscosity, which in principle can depend on
both the temperature T and charge state Z.

In the moving frame, the energy density in the (nonradial) flow is

E ¼ q0V
2=2. The total energy is then Etotal ¼

Ð Ð Ð L0=2
�L0=2 dXE. This

total energy is the same as in the laboratory frame (in the laboratory
frame, the density increases, but the volume to be integrated decreases
in a manner that balances it). Using Eq. (5), we can write an equation
for @E=@t, which can then be integrated in space to arrive at an evolu-
tion equation for dEtotal/dt. This equation will be

dEtotal
dt
¼ 4Ub

L
Etotal � �L�l tð Þ�l; (6)

where �l is associated with the viscous dissipation (and will generally
be positive, so this term overall is a damping), and the first term on
the right of the equals sign comes from the compressive forcing. Here,
we have assumed that the temperature and charge state, and therefore
the viscosity, depend only on time, and have, therefore, written
lðTðtÞ;ZðtÞÞ ¼ l0�lðtÞ. The viscous dissipation is

�l ¼ �
ð ð ðL0=2

�L0=2
dXl0V � r2V: (7)

Rewriting Eq. (6) in terms of the volume, dV ¼ 3L2 _Ldt, we find

� dEtotal
dV

¼ 2
3
Etotal
V
� 1
6UbL0L

�l tð Þ�l: (8)

B. Quasi-EOS and discussion

From Eq. (8), it is natural to define a “turbulent” or “nonradial”
flow pressure

pTKE ¼
2
3
Etotal
V

(9)

since this quantity relates the infinitesimal energy injection (into the flow)
in a compression to the volume increment, dEtotal;injected ¼ �pTKEdV .
Although the system is not in thermodynamic equilibrium, this then
represents a kind of quasi-EOS, relating the flow energy to an effective
pressure. In general, we are interested in trying to capture the full evolu-
tion of Etotal (and therefore also pTKE) in the compression. That is, we
would like to solve Eq. (8), and this modeling task is subsumed in the
quasi-EOS description. If we had a solution for the evolution of Etotal,
we could plug it into Eq. (9), to give us the quasi-EOS in terms of quan-
tities more primitive than Etotal. This will not be a true EOS because this
solution for Etotal, and therefore the effective pressure, will in general
depend on the thermodynamic trajectory (compression history) of the
system, and thus not only on state variables of the system. However,
while the turbulent pressure is not generally a function only of state vari-
ables of the system, in special circumstances it can be included in a new
variable which is, as now described.

We see that the relationship of pTKE with system flow energy den-
sity is the same as that of the pressure of an ideal gas with the thermal
energy density; pgas ¼ 2

3Ugas=V , with Ugas ¼ ð3=2ÞNkbT the ideal
(monatomic in this case) gas thermal energy. As a result, if we consid-
ered as a system both the total nonradial flow energy and the thermal
energy, within an adiabatic compression so that there is no net energy
loss (but flow energy can dissipate into thermal energy through the vis-
cosity), we will find that the total energy (flow plus thermal,
Etotal þ Ugas) or total pressure is still a state-function of the compression;
it depends only on �L, and the total energy will grow as �L�2, as shown in
Davidovits and Fisch.30 This state-function property of the total energy
in an adiabatic compression need not hold in general for nonisotropic
compressions, such as two-dimensional Z-pinch compressions.30

The fact that this total energy is a state function of the compres-
sion when the compression is adiabatic and isotropic (and boundary
effects are ignored) means that, for a given compression, the final
amount of energy present, and therefore the difficulty of compressing
the plasma, depends only on the initial energy present, not on the par-
tition of this energy between turbulent and thermal. It also means that,
in adiabatic compressions that experience the sudden dissipation
effect, there will again be a sudden effect only on the partition of the
energy, and not on the amount of energy present or the difficulty of
compressing the plasma. Of course, this is only in the adiabatic limit,
where there is no net energy loss from the compressing plasma. In
compression experiments such as those for fusion or X-ray produc-
tion, there are typically large energy loss mechanisms at play, which
will break this state function property and end up giving a (time-
dependent) compressibility and overall energy behavior that depends
on the initial energy partition. For the thermal energy, these loss
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mechanisms include radiation and thermal conduction. Boundary
effects and inflows or outflows of mass into the turbulent region con-
sidered are two possible direct effects on the flow energy dissipation.

There are other flow properties we may be interested in modeling
beyond the total turbulent energy, and two states with the same pTKE
could have differences in such properties (e.g., characteristic length
scale); thus, this quasi-EOS for pTKE is not a full descriptor of the state
of the system with respect to the flow, and one may add relations to it.

We can continue the thermodynamic analogy by computing the
effective polytropic index for pTKE. The polytropic relation, pVn ¼ C,
implies

n ¼ @ ln p
@ ln q

: (10)

Using Eq. (9) in Eq. (10), we can find the polytropic index for pTKE,
assuming the turbulent evolution equation, Eq. (8). We find

n ¼ 5
3
� L0
6Ub

�L2
�l�l

Etotal
: (11)

Defining a compression time scale as sc ¼ L=2Ub, and a turbulent
turnover time scale as st ¼ 2Etotal=�L�l�l, we can write the polytropic
index as

n ¼ 5
3
� 2
3
sc
st
: (12)

The dimensionless quantity sc=st can also be written as a Reynolds

number, as follows. First, define a lengthscale l2 ¼ �
Ð Ð Ð L0=2

�L0=2 dXV
2=Ð Ð Ð L0=2

�L0=2 dXV � r
2V, then define a related lengthscale L ¼ Ll2=L20.

With these definitions, we can define Rec ¼ 2UbLq=l, and write

n ¼ 5
3
� 2
3

1
Rec

: (13)

For certain viscosity behavior (�l), it can be shown there is a
steady state solution to Eq. (6).29,38 For this (statistical) steady state
solution, st ¼ sc (Rec ¼ 1), and we will find n¼ 1 in Eq. (12), an
“isoturbulent” compression, as expected. For times when the compres-
sion is very fast compared to the turbulent turnover time scale
(sc � st or, alternatively, Rec � 1), Eq. (12) shows that the turbu-
lence compresses “adiabatically” with n� 5=3. In general, the turbu-
lent time scale, st will evolve during the compression (except for the
steady state case). Since sc is known, finding the polytropic index evo-
lution requires finding the evolution of st (or, Rec). This is a recasting
of the quasi-EOS modeling task described above, where we must solve
Eq. (8). Recent works modeling the evolution of compressing turbu-
lence with a plasma viscosity serve as example solutions for the quasi-
EOS.10,30 In compressions where the turbulent energy first grows and
then dissipates, the peak energy corresponds to zero total energy deriv-
ative with respect to compression, and therefore to n¼ 1, and sc ¼ st
or Rec¼ 1.

In the presentation here, we have restricted our consideration of
the turbulent evolution under compression to the effects included in
Eq. (6). In general, we could consider additional effects which act
either as further forcing or dissipation terms on the turbulence; such
effects would then enter into the evolution equation for Etotal, and
therefore also into the equation for the polytropic index. We could

also relax assumptions, such as the zero-Mach limit assumption or 3D
isotropic compression assumption, and still define a turbulent pressure
[which need not be identical to Eq. (9)] and a quasi-EOS.

III. BOUND

It is possible to bound the TKE (turbulent kinetic energy) behav-
ior of a compressing flow governed by Eq. (5). The bounding tech-
nique which we present here was first developed in an application to
the 3D, isothermal, compression of supersonic turbulence, such as
occurs in molecular clouds. In this context, it was applied as a valida-
tion tool for modeling and simulation.37 Because the molecular cloud
is treated as compressing isothermally, the viscosity is constant during
the compression, and the plasma will stay inviscid. The bound can
also be applied to compressing turbulence in the zero-Mach limit of
Eq. (5), including in the case when the viscosity changes during the
compression. We briefly show this application here, but readers are
referred to Ref. 37 for more detailed discussion of the bounding tech-
nique, and to Ref. 30 for some follow-up discussion of the likely under-
lying mechanism for the apparent violation of the bound by a model
demonstrated in Ref. 37. In addition to showing the application of the
bound to the varying-viscosity, zero-Mach-limit case, we motivate a
new kind of bound on the TKE behavior of compressing turbulence.
Whereas the previous bound is based on consideration of the viscous
dissipation term, the new bound is based on consideration of the non-
linear term. We will therefore refer to these two bounds as a
“dissipation” bound and a “nonlinear” bound.

A. Dissipation bound

With �0 ¼ l0=q0, and again introducing �l ¼ lðtÞ=l0, Eq. (5) is

@V
@t
þ �L�1V � rV� 2Ub

L
Vþ �L2rP

q0
¼ �0�L�lr2V: (14)

We rescale the velocity, pressure, and time as28,29,39

V ¼ �LdV̂; (15)

P ¼ �LgP̂; (16)

d̂t ¼ �Lsdt: (17)

If we then pick d ¼ –1, s ¼ –2, and g ¼ –5, the rescaled momentum
equation becomes

@V̂

@ t̂
þ V̂ � rV̂ þrP̂

q0
¼ �0�L3

�lr2V̂: (18)

Associated with Eq. (14) is an energy equation, Eq. (6), for which we
seek the solution. Call this solution Esol. We can equivalently solve the
energy equation associated with Eq. (18); the solution of this equation,
Ê sol, will be simply related, through the transformed velocity, to the
sought for solution, Esol ¼ �L�2Êsol.

Now, consider the alternate momentum equation

@V̂

@ t̂
þ V̂ � rV̂ þrP̂

q0
¼ �0r2V̂ (19)

which is Eq. (18), but with the time dependent coefficient of the viscos-
ity (dissipation) term removed, �L3

�l ¼ 1. Equation (19) is the usual
Navier-Stokes momentum equation. Turbulence governed by this
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equation will decay, and this decay is well studied. Define Êdecay to be
the solution to the energy equation associated with Eq. (19).

Suppose now that, for all times during the flow evolution, the
time-dependent portion of the viscosity coefficient in Eq. (18), �L3

�l, is
less than or equal to 1. The (unproven) basis for the bound is that the
TKE dissipation in this case should be no greater than the case where
�L3

�l ¼ 1 for all time, Eq. (19), and therefore we should have
Êsol � Êdecay. By the transformation, we can then say

Esol � �L�2Êdecay; ð�L3
�lðtÞ � 1Þ (20)

and the decay solution gives us a lower bound of the energy behavior
of the compressing case. If, instead, we had �L3

�l � 1 for all times, then
we expect the decay solution to instead give an upper bound on the
energy behavior.

B. Nonlinear bound

In Sec. IIIA, we rescaled Eq. (14) so that only the viscous dissipa-
tion term has a time-dependent coefficient. We can instead rescale so
that only the nonlinear term (�V � rV) has a time-dependent coeffi-
cient. For simplicity, as in prior work, assume �l ¼ �L�2b, where b is an
exponent for the viscosity growth (or decrease) under compression,
which is determined by the net effects of heating (or cooling) and ioni-
zation (or recombination) during compression.30 Now, rescaling as
before, but with d ¼ �1; g ¼ �2ð1þ bÞ, and s ¼ 1� 2b, we find
the transformed momentum equation

@V̂

@ t̂
þ �L�3þ2bV̂ � rV̂ þrP̂

q0
¼ �0r2V̂: (21)

As before, the solution to the energy equation associated with Eq. (21),
which we again call Ê sol, will be related to the solution we seek, Esol, as

Esol ¼ �L�2Êsol. Also, as before, we consider the solution Êdecay, to the
energy equation associated with Eq. (19).

To the extent that the effect of the nonlinear term in decaying 3D
Navier-Stokes turbulence is to cascade energy to the dissipation scales,
then we may expect that, for a given flowfield, if the coefficient of the
nonlinear term is made smaller, the (instantaneous) transfer of energy
to the dissipation scales will be reduced. We may hypothesize that, if
�L�3þ2b � 1 for all time, we will have Ê sol � Êdecay, so that the decay
solution represents a lower bound of the energy behavior in this case

Esol � �L�2Êdecay; ð�L�3þ2bðtÞ � 1Þ: (22)

On the other hand, if �L�3þ2b � 1 for all time, the decay solution
should instead give an upper bound on the energy behavior.

C. Bounds discussion

If we substitute �l ¼ �L�2b into the condition for the dissipation
lower bound in Eq. (20), and compare to the condition for the nonlin-
ear lower bound in Eq. (22), we see that, with the exception of when b
¼ 3/2, if one condition is met, the other will not be met. Thus, when
the dissipation bound is a lower bound, the nonlinear bound will be
an upper bound, and when the dissipation bound is an upper bound,
the nonlinear bound will be a lower bound. Thus, if the bounds hold,
we can bound on both sides the TKE behavior of a turbulent flow
undergoing compression using the solution for that field’s TKE decay.
The case b ¼ 3/2 is special, and in this case both bounds will be tight,
since then the equation of interest can be transformed into exactly the
decaying turbulence case.

In Fig. 1, we use direct numerical simulation results to test
both the dissipation and nonlinear bounds for the cases b ¼ 5/2 and b
¼ 3/2. These simulations, carried out in the pseudospectral code
Dedalus,40,41 are the same as those in previous work, but with a

FIG. 1. A comparison of the dissipation based bound (Bound - D) and nonlinear based bound (Bound - NL) with simulation results (solid black line) for the turbulent kinetic
energy (TKE) during an isotropic, initially-rapid, compression of a turbulent flowfield in three dimensions. The initial TKE is normalized to 1, and the compression progresses
from left to right in the plots, with �L the compression ratio (side length of the flowfield). The left and right plots display simulation results (and associated bounds) for an identical
compression, save for the growth rate of the viscosity with compression, l � �L

�2b
. In the case where b ¼ 3/2 (the right plot), it can be seen that the bounds are tight (all lines

coincide). See Sec. III for the more information on the bounds and this figure.
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compression rate normalized to the initial TKE dissipation rate of Ub

¼ 5; see Sec. IV in Ref. 30 and lines 1 and 3 of Table I in the same. The
case b ¼ 5/2 corresponds to a fully ionized plasma with a Braginskii
viscosity, and obeying an ideal gas equation of state, which is being
compressed adiabatically, so that the temperature growth is T � �L�2.
This temperature growth rate ignores the effect of the dissipated TKE,
which is a good approximation in the zero-Mach flow limit. When b
¼ 5/2, the condition in the nonlinear bound, Eq. (22), reads �L2 � 1,
which will be satisfied, since �L ¼ 1 for t¼ 0, and then monotonically
decreases in time. Then, the solution is bounded from below using the
nonlinear bound in this case. On the other hand, the condition for the
dissipation lower bound, Eq. (20), is not satisfied. Instead, the condi-
tion for the dissipation bound to be an upper bound, �L3

�l � 1, is satis-
fied for this case (�L�2 � 1). Comparing with simulations in the left
plot in Fig. 1, we see that, at least in this case, both bounds work as
expected. The case b ¼ 3=2, which is trivial for the reason given
above, is shown in the figure because it serves to emphasize that the
bounds are tight in this situation and may be tight in others, which we
discuss below.

In producing Fig. 1, we have used the numerical solution for
Êdecay to plot the bounds. While turbulent decay is well studied, for a
general initial condition, capturing the TKE behavior during the decay,
including possibly from high to low Reynolds number, with a high
accuracy is still a complicated modeling problem (e.g., see Ref. 42 for
the case where the turbulent length scale is saturated). Nonetheless,
even with uncertainty in the decay behavior, this bounding strategy
can still inform modeling.37

Note that both bounds are motivated and then checked for a few
cases, rather than proven. The two bounds (nonlinear and dissipative)
rest on different assumptions, and it is possible there will be situations
in which one or the other, or both, do not hold. The action of the
Navier-Stokes nonlinearity is quite complex, and so we should not be
surprised if there are turbulent initial conditions, or viscosity time
dependencies, for which the nonlinear bound does not end up holding.
Note that, in the tested cases, the viscosity monotonically increases in
time. Having seen that the bounds become tight as b! 3=2, it is
interesting to ask whether one or the other bound will be tight in any
other scenarios. In the case of the dissipation bound, we may expect
that the bound becomes tight in situations in which changes to the vis-
cous dissipation coefficient, or its precise value, do not influence the
turbulence dynamics. As seen on the left plot of Fig. 1, this is clearly
not the case when the plasma transitions from being inviscid to
viscous.

IV. DISCUSSION AND SUMMARY

This work considering the quasi-EOS for turbulence in a plasma
compression can be placed in a broader context of considering the
behavior of nonthermal energy under compression. As discussed here,
Eq. (9) is written for the isotropic compression case, but we can also
consider turbulence compressed in a nonisotropic fashion and write
an associated quasi-EOS. Beyond turbulent flow states, the dynamics
of organized flow profiles, such as solid body rotation, can be consid-
ered. Such organized flow profiles display interesting and potentially
useful phenomena under compression, and can be at times considered
in a true equation-of-state limit.43–45 We can also consider the utility
of organized flow profiles for fusion or X-ray generation schemes uti-
lizing the sudden viscous dissipation phenomenon (which does not

require the nonradial flow to be turbulent). However, in the high-
Reynolds-number limit, organized flow profiles are not always stable
to compression (see, e.g., Refs. 46–48), so that we may end up with at
least partially disorganized or turbulent flow profiles even starting
from an organized flow.

Similar to storage in various nonradial flow states, nonthermal
energy can also be stored in plasma waves during compression. The
energy in these waves can exhibit a variety of effects, including ones
that are qualitatively similar to certain flow effects, for instance, the
wave energy can first amplify and then dissipate suddenly late in the
compression.49–54

To summarize, plasmas undergo compression in a variety of lab-
oratory experiments, including those targeted at fusion or X-ray pro-
duction, as well as in natural systems. In these plasma compressions,
there are many possible sources for nonradial flow, that is, flow not
associated with the compression itself. This nonradial flow can then
impact experiment performance or produce important effects in natu-
ral systems. As such, understanding and modeling these flows is
important. Here, we show how the process of understanding turbulent
nonradial flow can be thought of as the search for a quasi equation of
state for turbulent flow under compression. We also show two types of
bound, which can be useful as a check on models or simulations, or as
a type of model (quasi-EOS) in their own right.
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