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ABSTRACT

The electrostatic model proposed by Poulos [Phys. Plasmas 26, 022104 (2019)] to describe the electric potential distribution across and along
a magnetized plasma column is used to shed light on the ability to control perpendicular electric fields. The effective electrical connection
between facing end-electrodes is shown to be conditioned upon the smallness of a dimensionless parameter s function of the plasma column
aspect ratio and the square root of the conductivity ratio r ? =rk. The analysis of a selected set of past end-electrode biasing experiments
confirms that this parameter is small in experiments that have successfully demonstrated perpendicular electric field tailoring. On the other
hand, this parameter is Oð1Þ in experiments that failed to demonstrate control, pointing to an excessively large ion-neutral collision fre-
quency. A better understanding of the various contributions to r ? is needed to gain further insights into end-biasing experimental results.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5126083

I. INTRODUCTION
Controlling plasma rotation holds promise for many important

plasma applications. For magnetic confinement fusion, controlling
rotation can provide the rotational transform ensuring particle con-
finement in toroidal geometry, but without the need for poloidal mag-
netic fields.1,2 This alternative concept, referred to as the wave-driven
rotating torus (WDRT), exhibits very natural advantages, including an
improved efficiency compared to the classical radio frequency (RF)
current drive in tokamaks3 and a lower likelihood for plasma disrup-
tion. Controlling rotation also provides a means to affect the mass
differential confinement properties that naturally arise as a result of
centrifugal effects.4,5 These mass dependent phenomena then provide
the basic components for designing plasma mass separation pro-
cesses6,7 such as envisioned for nuclear waste cleanup,8 spent nuclear
fuel (SNF) reprocessing,9–13 and rare earth element (REE) recycling.14

Different schemes can in principle be employed to drive rotation.
One possibility is external momentum input. Neutral beam injection
is for instance routinely used to rotate plasma in tokamaks.15 This
technique might complicate plasma separation applications since the
additional beam ions will require removal. Another possibility is to
rely on rotating magnetic fields.16 In this scheme the premise is that an
infinite conductivity fluid plasma is dragged by the rotating magnetic
field according to Alfv!en frozen in law.17 However, detailed analysis
reveals that the single particle dynamics is much more complex than

simple rotation,18,19 and magnetic field penetration in the plasma is
likely to only be effective for a limited range of plasma parameters.20

Yet another solution, instrumental both in the WDRT concept1 and in
plasma separation devices,21 consists in employing cross-field (or
E# B) configurations. Focusing in this paper on plasmas in which
the magnetic field self-generated by plasma currents is negligible
compared to the background field B0, controlling cross-field driven
rotation then boils down to controlling the electric potential profile in
the direction perpendicular to the magnetic field.

To examine this question, consider a plasma column immersed
in a uniform background magnetic field B ¼ B0ez. Because conductiv-
ity along field lines rk in a magnetized plasma is typically much
greater than conductivity perpendicular to field lines r ? , Lehnert sug-
gested using a set of ring electrodes,22 as illustrated in Fig. 1. The prop-
osition was that, by applying a suitable electric potential on each
electrode, one can tailor the radial electric potential profile throughout
the entire plasma column, with the potential of a given magnetic field
line set by the electrode it intercepts. Even putting aside sheath effects
at the electrodes, this “magnetic line-tying” picture proposed by
Lehnert23 intrinsically assumes l%1 ¼ rk=r ? ! 1 or, in other
words, that magnetic field lines are isopotential.24 Practically, assessing
the efficiency of end-electrode biasing requires determining how the
electric potential distributes itself along and across the plasma column
for finite values of l . Lehnert studied how scattering with neutrals and
viscosity constrain the practical parameter space for B0 and plasma
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and neutral densities.23,25 Bekhtenev et al.26,27 then restated these con-
straints through the requirement for high conductivity between the
plasma and the electrodes. Yet, a generic model describing potential
distribution, and from there the effectiveness of end-electrodes biasing,
for finite l is still lacking. Also note that while we consider here this
problem primarily with electrode biasing in mind, the question of
potential distribution is equally critical for wave driven rotation.28–30

Electrode biasing has been extensively used in experiments,
primarily for the purpose of instability mitigation31 and turbulence
suppression through sheared plasma rotation.32 Despite these differ-
ences in scope, these experimental studies provide indirect informa-
tion on the effect of electrode biasing on the potential distribution and
hence offer opportunities to test new theoretical developments.

In this paper, we show how recent theoretical work by Poulos33

on the potential distribution in a magnetized plasma column provides,
with the consideration of new boundary conditions, a necessary
condition for effective perpendicular electric field control through
end-electrode biasing, and use this finding to offer a perspective on the
results of a number of past end-electrode biasing experiments. In Sec.
II, we review how the electric potential distribution in a homogeneous
magnetized plasma column characterized by rk and r ? can be derived
analytically and identify a dimensionless parameter characterizing
potential distribution across and along field lines. In Sec. III, we pro-
vide rough estimates for this dimensionless parameter in various past
end-electrode biasing experiments and analyze how it can shed light
on the effectiveness of potential tailoring in these experiments. Finally,
the main findings are summarized in Sec. IV.

II. ELECTROSTATIC MODEL
In this section, we largely follow the model proposed by Poulos33

to derive an analytical solution for the electric potential in a homoge-
neous magnetized plasma column. However, while Poulos33

considered an asymmetrical configuration corresponding to a dis-
charge along magnetic field lines between an anode and a cathode, we
focus here on a symmetrical configuration with symmetrical biased
ring end-electrodes. The plasma column is assumed to be azimuthally
symmetrical with uniform axial magnetic field B ¼ B0ẑ and character-
ized by uniform parallel and perpendicular conductivities rk and r ? .

A. General solution from Hankel transform
Depending on whether fully ionized or partially ionized plasmas

are considered, Ohm’s law takes different forms in the literature. For
fully ionized plasmas, an often used form is the “generalized Ohm’s
law” given by Spitzer,34 which in steady state reads

j ¼ r0 Eþ v# B½ (: (1)

Here, j is the current density, E is the electric field, and

v ¼ ui þ
me

mi þme
ue (2)

is the plasma center of mass velocity, with ui and ue the ion and elec-
tron velocities, respectively. In the study of ionospheric physics, an
equivalent though different form,35–38

j ¼ r00 Eþ vn # B½ (; (3)

with vn the neutral flow velocity, is often used to highlight the effect of
neutrals. The replacement of v by vn going from Eq. (2) to Eq. (3)
stems from the fact that these two forms are written in different frames
of reference (the plasma and neutral rest frames, respectively). Note
that, because of this substitution, the conductivity tensor r, which is
typically a function of the collision frequencies, also differs in each of
this form, as indicated by the prime and double-prime notation. Also
note that while Eq. (3) was originally derived without accounting for
Coulomb collisions, a similar equation can be obtained when both
Coulomb collisions and collisions between charged particles and neu-
trals are modeled.39

When the ion-neutral collision frequency !in is small compared
to the ion gyrofrequency Xi, one can typically assume jvnj) juij
*jvj and ui *E# B=B2

0. This regime of weak ion-neutral coupling
thus corresponds to a large ion-slip uis ¼ ui % vn *ui.

35,40 In these
conditions, vn # B can be neglected in the bracketed term on the
right-hand side in Eq. (3). Dropping for simplicity the double-prime
notation, the simplified Ohm’s law used by Poulos,33

jr ¼ %r ?
@/
@r
; (4a)

jz ¼ %rk
@/
@z

; (4b)

is then recovered, with / the electric potential. As we will show in Sec.
III, the weak ion-neutral coupling condition !in ) Xi, which ensures
that Eq. (4) is a valid approximation for Eq. (3), is largely satisfied in
the experiments considered in this study. In contrast, accounting for
vn # B in Eq. (3) will be essential for plasmas exhibiting a strong ion-
neutral coupling (i.e., a small ion-slip juisj) juij), such as in MHD
converters and some high-pressure arc discharges.35,40

Assuming quasineutrality, the charge continuity equation writes
$ + j ¼ 0. Substituting into Eq. (4) then leads to

FIG. 1. Ring end-electrode configuration. A magnetized plasma column terminates
on two symmetrical sets of independently biased ring electrodes with potential
(w1 + + +wn).
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r2
r/þ

rk
r ?
r2

z/ ¼ 0: (5)

Introducing the zeroth order Hankel tranforrm41,42 of /,

~/ðk; zÞ ¼ H0f/ðr; zÞg ¼
ð1

0
r/ðr; zÞJ0ðkrÞdr; (6)

with J0 the zeroth order Bessel function of the first kind, Eq. (5) gives

%k2~/ðk; zÞ þ
rk
r ?

@2

@z2
~/ðk; zÞ ¼ 0: (7)

The general solution to Eq. (7) is then simply

~/ðk; zÞ ¼ AþðkÞ exp %k ffiffiffi
l
p

z
# $

þ A%ðkÞ exp k
ffiffiffi
l
p

z
# $

; (8)

with l ¼ r ? =rk.
The potential can then be obtained from the inverse Hankel

transform42

/ðr; zÞ ¼ H%10 f~/ðk; zÞg

¼
ð1

0
k~/ðk; zÞJ0ðkrÞdk: (9)

The functions A%ðkÞ and AþðkÞ depend on the particular configura-
tion and can be determined from boundary conditions.

Before considering a particular electrode geometry, let us exam-
ine the effect of medium anisotropy on space charge density q.
Combining $ + j ¼ 0 and $ + E ¼ q="0, one gets

q
"0
¼ ðl%1 % 1Þ @

2/
@z2

¼ %ð1% l Þ 1
r
@

@r
r
@/
@r

% &
: (10)

In an anisotropic medium, r ? 6¼ rk, i.e., l 6¼ 1, a space charge distri-
bution qðr; zÞ is therefore associated with the potential solution
/ðr; zÞ.

B. Symmetrical ring electrodes
Consider two identical ring electrodes (annuli with inner radius a

and outer radius b) positioned at z ¼ 6L=2. The boundary conditions
then read

/ðr;6L=2Þ ¼ w0 for a < r < b: (11)

One verifies that choosing

~/ðk;zÞ ¼AðkÞ
exp %k ffiffiffi

l
p jz%L=2j

# $
þ exp %k ffiffiffi

l
p jzþL=2j

# $

1þ exp %k ffiffiffi
l
p

L
# $ ; (12)

with

AðkÞ ¼ 2w0

pk
bj0ðkbÞ % aj1ðkaÞ½ (; (13)

satisfies the Dirichlet condition on the ring electrode pair. The
first term on the right-hand side of Eq. (13) corresponds to a disk
shape parallel plate capacitor of radius b at potential w0, as studied
by Atkinson et al. in vacuum43 (see Appendix A for the simple

case of a single disk electrode). The second term corresponds to a
hole of radius a within the disks.33 Expanding the denominator,
we get

1þ exp %k ffiffiffi
l
p

L
# $' (%1 ¼

X1

n¼0
ð%1Þn exp %nk ffiffiffi

l
p

L
# $

: (14)

Equation (12) rewrites

~/ðk; zÞ ¼ AðkÞ
X1

n¼0
ð%1Þn exp %kv%nð Þ þ exp %kvþn

' (# $
; (15)

with

v6
n ¼

ffiffiffi
l
p

nLþ jz 6 L=2j½ (: (16)

The solution for the potential is then

/ðr; zÞ ¼ 2w0

p

X1

n¼0
ð%1Þn

ð1

0
bj0ðkbÞ % aj1ðkaÞ½ (J0ðkrÞ

# exp %kv%nð Þ þ exp %kvþn
' (# $

dk: (17)

Recalling that44

ð1

0
e%kaJ0ðkbÞ

sin ðkcÞ
k

dk ¼ arcsin
c
l2

% &
(18a)

and
ð1

0
e%kaJ1ðkbÞ

sin ðkcÞ
k

dk ¼ c%
ffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 % l21

p

b
; (18b)

with

l1 ¼
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ ðcþ bÞ2

q
%

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ ðc% bÞ2

q) *
; (19a)

l2 ¼
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ ðb þ cÞ2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ ðb % cÞ2

q) *
(19b)

and also that

@j0ðkaÞ
@k

¼ %aj1ðkaÞ; (20a)

@J0ðkrÞ
@k

¼ %rJ1ðkrÞ: (20b)

Equation (17) can be integrated by part in k-space to yield

/ðr; zÞ ¼ 2w0

p

X1

n¼0
ð%1Þn

X

6

arcsin
b

f6
b;n

 !

þ v6
n

a
arcsin

a
f6
a;n

% &
%

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1%
n6
a;n

a

% &2

;

s

(21)

where we have introduced the variables

f6
a;n ¼

1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v6
n
2 þ ðr þ aÞ2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v6
n
2 þ ðr % aÞ2

q) *
; (22a)

n6
a;n ¼

1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v6
n
2 þ ðr þ aÞ2

q
%

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v6
n
2 þ ðr % aÞ2

q) *
; (22b)
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and the subscript a designates either a or b. Numerical results show
that Eq. (21) rapidly converges to Eq. (17). Quantitatively, the maxi-
mum relative error on the potential for the configuration correspond-
ing to Fig. 2(b) is below 10% for nmax ,5 and below 1% for
nmax ,45, with nmax being the number of terms in the series Eq. (21).

Now, take a radial position centered with respect to the ring
electrode r0 ¼ ðaþ bÞ=2. We see from Eq. (22) that the characteristic
distance over which the electrode potential w0 is projected along the
magnetic field line at r¼ r0 is

D ¼ a
ffiffiffi
l
p : (23)

In particular, we find that whether or not the facing ring electrodes are
electrically connected is controlled by the dimensionless parameter

s ¼ L
a
ffiffiffi
l
p

; (24)

which is the inverse of the “geometric factor” s derived by Poulos33 in
modeling potential partitioning along the field line in a magnetized
plasma in the presence of an emissive cathode.45 Electrical connection
between facing electrodes is effective for s) 1, with the limit s! 0
corresponding to Lehnert’s magnetic line-tying picture.23 On the other
hand, the facing electrodes are not electrically connected for s- 1.
The evolution of the potential distribution /ðr; zÞ as a function of s is
illustrated in Fig. 2. It is worth noting here that although the dimen-
sionless parameter s characterizing the electric potential distribution
has been derived for facing annular ring electrodes at fixed potential,
similar criteria can be obtained when imposing a nearly parabolic
potential profile at both ends of a plasma column (see Appendix B).
This suggests that

ffiffiffi
l
p

L=a is a robust parameter to describe the poten-
tial distribution along and across a plasma column.

Looking in Fig. 2 at the streamlines of current density
j ¼ %rk@/=@zẑ % r ? @/=@rr̂ , one first notices that current emitted
at the annular electrodes primarily flows to infinity. Indeed, since our
model only imposes a fixed potential on the annular electrode [see Eq.
(11)] and does not include a reference electrode to which current could
flow, regions at an infinite distance from the electrodes where the
potential vanishes act here as effective ground. A closer look further
shows that, for the anisotropic cases [Figs. 2(b) and 2(c)], part of the
current is drawn at ð0;6L=2Þ, where local potential minima are
found. This behavior can be interpreted through the existence of a
nonzero space charge q when l 6¼ 1. Indeed, as shown in Eq. (10),
r2/ 6¼ 0 for r ? 6¼ rk.

III. REVISITING RESULTS FROM END-ELECTRODE
BIASING EXPERIMENTS

The analytical model derived in Sec. II assumes a medium with
uniform parallel and perpendicular conductivity, whereas density and
temperature gradients, or magnetic field inhomogeneities, are expected
to often invalidate this assumption in plasma experiments. In addition,
this model neglects the axial variations of potential, which are expected
in the sheaths formed in front of the electrodes. Despite these short-
comings, it is intriguing to confront this simple model with past end-
electrode biasing experiments. In particular, one wishes to know how
the dimensionless parameter s derived above is possibly correlated
with the effectiveness of end-electrode biasing to control the potential
throughout a plasma column.

FIG. 2. Potential distribution /ðr ; zÞ obtained from Eq. (17) for two identical ring
electrodes (inner radius a¼ 1; outer radius b¼ 1.2) positioned at z ¼ 650a (in
solid black) and different values of l ¼ r ? =rk corresponding to s ¼ 100,

ffiffiffiffiffi
10
p

,
and 1=

ffiffiffiffiffi
10
p

. The electrode potential w0 ¼ 1. Black dashed-lines are isopotential
lines. Coral solid lines are current density streamlines, with the linewidth propor-
tional to jjj.
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However, even if neglecting gradients in plasma parameters,
quantifying perpendicular conductivity r ? in a magnetized plasma
represents a challenge. Beyond the classical collisionality driven con-
ductivity, it is well established that instability and turbulence,46 mag-
netic field fluctuations,47,48 ion viscosity,49,50 and particle sources and
sinks50 can all contribute to an enhanced perpendicular conductivity.
Recently, it has also been shown that the interplay between Coriolis,
centrifugal, and collisional drag forces can lead to a nonlinear and pos-
sibly nonlocal relation between the current density j and the nonho-
mogeneous radial electric field E driving rotation in a magnetized
plasma column.50,51

Notwithstanding the possibly important contribution of these
additional phenomena, the analytical derivation suggests that a neces-
sary but not sufficient condition for end-electrode potential control is
that s) 1 at least for collisionally driven electric perpendicular con-
ductivity. With that prediction in hand, we take another look at past
experimental end-electrode biasing results. To avoid further complica-
tions, we focus here on end-electrode biasing experiments in linear
geometry. In addition, and despite the promising results shown by
emissive electrodes for electric field and rotation control,45,52 we fur-
ther restrict our study to nonemissive electrodes and consider a set of
experiments surveyed in a previous study.21 These experiments range
from low density, low temperature plasmas used in the study of basic

plasma phenomena53,54 to high density, high temperature plasmas
produced in magnetic confinement fusion devices55,56 and thus offer
the opportunity to test theoretical models across a wide range of
plasma parameters. The machines on which these experiments were
conducted are listed in Table I, and the particular plasma parameters
used in each of these experiments are given in Table II.

A. Collisionality driven perpendicular conductivity
As shown in Table II, experiments range from fully ionized to

partially ionized plasmas and cover a large range of electron tempera-
tures. As a result, the ordering between electron-ion and electron-
neutral collision frequencies !ei and !en is not consistent across these
experiments. The parallel conductivity,

rk ¼
ne2

með!ei þ !enÞ
; (25)

with e and me the electron charge and mass and n the plasma density,
can be governed by neutrals or ions, or both. The respective contribu-
tions to parallel conductivity are estimated using the order of magni-
tude estimate for electron-neutral collision,

!en ¼ r0N

ffiffiffiffiffiffiffiffiffiffiffi
8kbTe

pme

s

; (26)

with Te the electron temperature, N the neutral density, and r0 a fidu-
cial cross section taken to be 5# 10%15 cm%2, and the electron-ion
collision frequency

!ei ¼
nZ2e4K

6
ffiffiffi
2
p

p3=2"20
ffiffiffiffiffiffi
me
p ðkbTeÞ3=2

; (27)

with Z being the ion charge state and K the Coulomb logarithm. Note
that these are order of magnitude estimates and that a detailed model-
ing will require accounting for the temperature dependence of r0. In
addition, with the exception of F-TAE and M-UW, the neutral densi-
ties N given in Table II correspond to gas fill pressure and not actual
measurements, which adds further uncertainty to the collision fre-
quency estimates. Quantitatively,

TABLE II. Plasma parameters in selected end-electrode biasing experiments: plasma density n, electron temperature Te, ion temperature Ti, magnetic field B, neutral density N,
ion atomic mass M, plasma column radius a, plasma length L, and typical applied bias w0 with respect to machine ground. For mirror experiments (QT-Upgrade, Gamma 10
and Phaedrus), the parameters are taken in the middle of the central cell. For the field reverse configuration (C-2), parameters are taken at the edge.

n (#1012 cm% 3) Te (eV) Ti (eV) B (kG) N (#1012 cm%3) M (amu) a (cm) L (m) w0 (V) References

Q-WVU 0.001 0.2 0.2 1.5 0.099 39 3 0.8 %6 to 18 53, 57
H-KU 0.01 4.5 0.2 1 5.3 40, 131 22 1.7 0 to 250 58
M-TU 0.3 5 0.8 6 0.2 1.5 1.6 40 8.5 1.4 %20 to 20 54, 59
M-UT 0.75 6 0.25 90 6 30 650 6 150 4 0.033 1 20 27 %2000 to 750 60–62
L-UCLA 0.2 1 1 1 3.3 4 15 13 0 to 150 63–65
M-UW 2 17.5 6 2.5 30 0.6 5 6 5 1 17 10 %60 to 60 55
H-UNM 10 4 6 1 0.2 0.44 66 6 33 40 6 3 0 to 40 66, 67
H-PPPL 10 5 6 2 0.2 0.7 6 0.3 165 6 33 40, 84 6 0.4 %25 to 15 68
F-TAE 40 200 500 1 0.05 6 0.05 2 50 15 %1000 56, 69
M-USTC 0.10 6 0.05 7 6 3 0.2 0.3 6 0.1 25 1 12 9 %30 to 350 70, 71

TABLE I. Selected end-electrode biasing experiments.

Experiment Shorthand

Q-machine, West Virginia Univ. Q-WVU
Large diameter helicon, Kyushu Univ. H-KU
QT-Upgrade machine, Tohoku Univ. M-TU
Gamma 10 mirror, Univ. Tsukuba M-UT
LAPD afterglow, Univ. California Los Angeles L-UCLA
Phaedrus tandem mirror, Univ. Wisconsin M-UW
Helcat, Univ. New Mexico H-UNM
PMFX, Princeton Plasma Physics Lab. H-PPPL
C-2 device, Tri Alpha Energy F-TAE
KMAX mirror, Univ. Sci. Tech. China M-USTC
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!en ¼ 0:3# N12
ffiffiffiffiffiffiffiffi
TeeV

p
MHz; (28)

and, using the canonical value K ¼ 16,

!ei ¼ 46# n12Z2T%3=2eeV MHz; (29)

with n12 and N12 the plasma and neutral densities in 1012 cm%3 and
TeeV the electron temperature in electron-volts. The crossover point
where !ei ¼ !en is found to occur for a plasma to neutral density ratio

n
N

++++
c
¼ 6:5# 10%3 Z%2T2

eeV ; (30)

which is about 0.15 and 65 for Z¼ 1 and TeeV ¼ 5 and 100, respec-
tively. The large spread of collisional regimes is illustrated in Fig. 3.

As shown in Table III, the ion thermal gyroradius
qth;i ¼ vth;i=Xi, with Xi and vth;i the ion gyrofrequency and ion ther-
mal speed, is typically 0:1% 1 cm, and the ion thermal gyroradius to
perpendicular length scale ratio qth;i=a is smaller than 1 in these
experiments. Ions can thus be considered magnetized. We also verify
in Table III that !in=Xi ) 1 for most experiments and that at least
!in=Xi .1, supporting the assumption of a weak coupling between
ions and neutrals made in our derivation of Eq. (4). Focusing here on
collisionality driven perpendicular conductivity, r ? is driven by ion-
neutral collisions and characterized by Pedersen conductivity,38

rP ¼
ne2!in

mið!2in þ X2
i Þ
; (31)

with !in the ion-neutral collision frequency. Using similarly the simple
estimate

!in ¼ r0N

ffiffiffiffiffiffiffiffiffiffiffi
8kbTi

pmi

s

; (32)

one finds that, for the experiments considered here, !2in can be
neglected in front of X2

i in the denominator of Eq. (31), and
rP *ne!inB%1 X%1i . Quantitatively,

rP *1:3# 10%3n12N12

ffiffiffiffiffiffiffiffiffiffiffiffi
MTieV

p

ZB2
kG

X%1 m%1; (33)

with TieV the ion temperature in electron-volts, M the ion atomic
mass, and BkG the magnetic field in kilogauss.

The distribution in ðrk; rPÞ space of the selected experiments
obtained using these simple estimates is shown in Fig. 4. The heli-
con experiments H-PPPL and H-UNM feature the largest rP
(*10 X%1 m%1) due to high plasma density and comparatively high
operating pressure. On the other hand, these plasma and neutral
densities, combined with moderate electron temperature, lead to
intermediate rk (*103 X%1 m%1). For similar temperatures, a drop
by two orders of magnitude of both plasma and neutral densities
leaves rk mostly unaltered but decreases rP by 4 orders of magnitude
(*10%3 X%1 m%1) for the electron cyclotron resonance (ECR) mir-
ror experiment M-TU. Similar rP can be obtained at lower rk from a

FIG. 3. Electron-ion and electron-neutral collision frequencies !ei and !en for
selected end-electrode experiments (see Table I). Error bars stem primarily from
uncertainties on the neutral density N and, to a lower extent, from uncertainties on
the electron temperature Te.

TABLE III. Derived plasma parameters for selected end-electrode biasing experiments: electron-ion collision frequency !ei, electron-neutral collision frequency !en, ion-neutral
collision frequency to ion gyrofrequency ratio !in=Xi , ion thermal gyroradius q i, parallel conductivity rk, Pedersen conductivity rP, and dimensionless parameter
sP ¼ L=a

ffiffiffiffiffiffiffiffiffiffiffiffi
rP=rk

p
. Uncertainties stem from the uncertainties in plasma parameters (primarily the neutral density n) given in Table II.

!ei (MHz) !en (MHz) !in=Xi ð#10%2Þ qi (mm) rk (X
%1 cm%1) rP (#10%3 X%1 cm%1) sP ð#10%2Þ

Q-WVU 0.52 0.015 0.015 2.7 0.53 1:6# 10%6 0.15
H-KU 0.049 3.7 1.8 6 0.5 6.0 6 1.6 0.74 ð2:860:8Þ # 10%3 1.5 6 0.2
M-TU 1.2 1.2 0.51 6 0.06 5.4 6 0.7 34 ð1:6260:2Þ # 10%2 1.1 6 0.1
M-UT ð4:162:5Þ # 10%2 1.05 6 0.17 0.017 6 0.002 9.2 6 1.1 ð1:4560:35Þ # 103 ð5:161:8Þ # 10%4 0.3 6 0.02
L-UCLA 9.3 1.1 0.54 2.9 5.4 0.017 15
M-UW 1.27 6 0.27 7 6 7 4 6 4 13 70 6 60 2.0 6 2.0 32 6 29
H-UNM 58 6 22 44 6 23 34 6 17 9.3 28 6 7 ð1:160:4Þ # 102 320 6 100
H-PPPL 42 6 25 123 635 66 6 33 7.1 6 3.3 17.1 62.6 ð1:160:6Þ # 102 52 6 17
F-TAE 0.66 0.24 6 0.23 0.13 6 0.13 46 ð1:2660:33Þ # 104 0.8 6 0.8 0.8 6 0.5
M-USTC 0.25 6 0.20 22 6 5 30 6 10 2.1 6 0.7 1.3 6 0.7 0.16 6 0.13 85 6 30
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combined increase and decrease in N and n, as found in the radio fre-
quency (RF) plasma experiment H-KU, or from a decrease in Te, as
found in the hot-cathode experiment L-UCLA. Alternatively, larger
rk values (*106 X%1 m%1) are found for the higher Te plasmas in
the high power mirror experiment M-UT and the field reverse con-
figuration (FRC) experiment F-TAE. Finally, both low rk and low rP

(*10%7 and 10 X%1 m%1) are estimated for the low temperature and
low density plasma of the Q-machine Q-WVU.

Substituting the plasma radius a and length L yields the dimen-
sionless parameter

sP ¼
L
a

ffiffiffiffiffi
rP

rk

r
; (34)

computed for the Pedersen perpendicular conductivity rP for each of
the selected experiments. Quantitatively, two formulas can be derived
for electron-neutral collisions and electron-ion collisions dominated
parallel conductivity, respectively, with

sP ¼ 1:2# 10%4
L
a

N12

BkG
ffiffiffi
Z
p MTieVTeeVð Þ1=4

if
n12
N12

TeeV

Z

% &2

- 1:5# 102 (35a)

and

sP ¼ 1:5# 10%3
L
a
M1=4T1=4

ieV

BkG

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n12N12Z

T3=2
eeV

s

if
n12
N12

TeeV

Z

% &2

) 1:5# 102: (35b)

The results are plotted in Fig. 5. Although the conductivities used
here are at best very crude estimates and r ? accounts only for ion-
neutral collisions, Fig. 5 already reveals interesting trends. A group of

experiments formed by H-PPPL, M-USTC, and H-UNM is found
to have sP ¼ Oð1Þ, which, according to the simple model derived in
this study, prohibits effective connection between end-electrodes.
Interestingly, this is consistent with experimental measurements show-
ing large potential variation along the machine axis in M-USTC70 and
limited potential control. At the other end of the spectrum, one finds
another group of experiments for which 10%3 .sP .10%2. Barring
other possible contributions to r ? , this in principle allows for end-
electrode potential control. Among these is found M-TU, for which
electric connectivity between end-electrodes has been demonstrated,
and radial electric fields with both polarities have been produced.54

The partial correlation observed experimentally between s and
end-electrode electric field control is encouraging. It suggests that this
simple scaling can indeed be used to identify a priori plasma regimes
where end-electrode biasing is ineffective in controlling the perpendic-
ular electric field. However, it is still insufficient to predict regimes
where end-electrode biasing should be effective. To enable such pre-
dictive capabilities, the model will have to be extended to include pos-
sible additional contributions to conductivity. It should also capture
possible coupling effects between these different contributions. In
addition, spatial gradients of plasma parameters are also expected,
under certain conditions, to play a role and should be included in a
global perpendicular conductivity model. Although such an extensive
analysis goes well beyond the scope of this study, we briefly illustrate
this task in the next paragraph by considering the possible contribu-
tion of inertia to perpendicular conductivity. Finally, detailed compari-
son with experiments will require supplementing conductivity models
with sheath models. Indeed, even if assuming s! 0, the electric field
imposed on ring electrodes (see Fig. 1) will be identically recovered in
the plasma column only if the voltage drop across the sheath does not
vary significantly along the machine radius. For a classical voltage
drop D/ across the sheath of a few Te, this in turn sets an upper limit
on how large the electron temperature gradient can be for a given tar-
get radial electric field.

FIG. 4. Distribution of the selected experiments (see Table I) in ðrk; rPÞ space.
FIG. 5. Estimated dimensionless parameter sP ¼ L=a

ffiffiffiffiffiffiffiffiffiffiffiffi
rP=rk

p
in selected end-

electrode biasing experiments (see Table I).
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B. Contribution of inertia in rotating plasmas
In a rotating plasma, an additional contribution to perpendicular

conductivity stems from inertia.50,51 For a fully ionized plasma with
limited shear, it writes51

rX ¼ 2
nZe
B
!ieX2

X3
i

*2Z
!ie
!in

X2

X2
i

rP; (36)

and one shows that

rX ¼ 9:1# 10%7M2n212T
%3=2
eeV B%6kGE

2
cmr
%2
cm X%1 m%1; (37)

with Ecm the electric field in Vcm%1 and rcm the position in centi-
meters, where the lowest order expansion of the angular frequency
X ¼ E=ðrBÞ has been assumed for simplicity.

Assessing the relative contribution of inertia in front of collision-
ality driven conductivity requires estimating the radial electric field in
these experiments. Unfortunately, potential radial profiles are not
available for all selected biasing experiments and operating conditions.
Short of information on E, a reasonable assumption to infer the
relative importance of rX compared to rP is to take X=Xi ) 1. This
condition is indeed verified in most experiments since the large free
energy content in the azimuthal drift motion leads to instabilities
when X=Xi ¼ Oð1Þ.72 Substitution of data given in Table II shows
that the ratio,

rX

rP

Xi

X

% &2

; (38)

plotted in Fig. 6 is at most Oð1Þ. This suggests that rX ) rP in the
experiments considered here, that is to say that inertia driven effects
are negligible in front of collisionality driven conductivity. Note,
though, that one should, strictly speaking, consider the combined

effect of these two contributions, and not each of them separately as
done here. Such an analysis requires deriving a generalized model for
r ? combining neutral collisionality and inertia, i.e., Eqs. (31) and (36).
This task is left for a future study.

IV. SUMMARY AND DISCUSSION
Controlling plasma rotation in magnetized plasmas holds prom-

ise for various important plasma applications, ranging from magnetic
confinement fusion to plasma separation. One conceptual solution to
drive the required rotation is to take advantage of the drift motion
arising in crossed-field geometry. Practically, though, the important
question of how large a perpendicular electric field can be, and over
which plasma parameters this field can be obtained, remains
uncertain.

Some elements of response are obtained here by considering the
distribution of electric potential along and across a magnetized plasma
column characterized by uniform parallel and perpendicular conduc-
tivities rk and r ? . Beyond the well-known asymptotic regime l%1

¼ rk=r ? ! 1 for which magnetic field lines are isopotential, the
spatial distribution of potential is shown to be governed by a dimen-
sionless parameter function of the aspect ratio of the plasma column
L/a and

ffiffiffi
l
p

. For L=a
ffiffiffi
l
p ) 1, the assumption of isopotential

magnetic field lines holds. On the other hand, the potential shows
important variations along a given magnetic field line when L=a

ffiffiffi
l
p

¼ Oð1Þ.
A look at a selection of past end-electrode biasing experiments

suggests that the inability to control the radial potential profile in
some experiments may be attributable to an excessively large ion-
neutral collisionality driven perpendicular conductivity rP. Plasma
parameters inferred in these experiments indeed correspond to
L=a

ffiffiffiffiffiffiffiffiffiffiffiffi
rP=rk

p
¼ Oð1Þ. In contrast, biasing experiments where appre-

ciable control over E ? are found have L=a
ffiffiffiffiffiffiffiffiffiffiffiffi
rP=rk

p
) 1.

While the partial correlation between the simple model devel-
oped here and experiments is encouraging, it offers at best so far a tool
to identify regimes where electrode biasing is predicted to be ineffec-
tive to control the perpendicular electric field. Turning this model into
a predictive model will require capturing all possible contribution to
r ? as well as any possible interaction between these contributions.
Unfortunately, such a comprehensive picture of r ? is still lacking to
date. It will also require accounting for spatial variations in plasma
parameters. However, comparison with experimental data will become
more and more challenging as these models have more and more free
parameters. This is particularly true when relying on past experiments
for which one has access to only a limited number of plasma parame-
ters and data points. A recurring shortcoming of available experimen-
tal data is the absence of reliable neutral density measurements. To the
extent that it is a key input to infer collisionality driven perpendicular
conductivity, experiments allowing for detailed mapping of the neutral
density appear to be desirable. Finally, detailed comparison with
experiments will require extending this work to include sheath effects
at the electrodes.
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FIG. 6. Relative contribution of inertia effects in selected end-electrode biasing
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APPENDIX A: POTENTIAL DISTRIBUTION FOR A
SINGLE DISK ELECTRODE

Consider a single disk electrode of radius a at potential w0 in
the z¼ 0 plane, as originally treated in vacuum by Weber.73 The
potential must vanish when jzj ! 1. One can thus write

~/ðk; zÞ ¼ AðkÞ exp %k ffiffiffi
l
p jzj

# $
: (A1)

The boundary conditions at z¼ 0 then read

/ðr; 0Þ ¼ w0 for r < a; (A2a)
@/
@z
ðr; 0Þ ¼ 0 for r > a: (A2b)

Here, Eq. (A2b) stems from symmetry. Observing that
ð1

0
j0ðkaÞJ0ðkrÞdk ¼

p
2a

for r < a; (A3a)
ð1

0
kj0ðkaÞJ0ðkrÞdk ¼ 0 for r > a; (A3b)

a solution for A(k) satisfying Eq. (A2) is

AðkÞ ¼ 2aw0

pk
j0ðkaÞ; (A4)

with j0 the zeroth order spherical Bessel function. The potential dis-
tribution in an infinitely long plasma (L- a) due to the biased
electrode at z¼ 0 is hence

/ðr; zÞ ¼ 2w0

p

ð1

0

sin ðkaÞ
k

J0ðkrÞ exp %k
ffiffiffi
l
p jzj

' (
dk: (A5)

The solution /ðr; zÞ is plotted for two different values of
l ¼ r ? =rk in Fig. 7. As expected, the smaller the l value, the
smaller the deviation between isopotential and magnetic field

lines. Using Eq. (18a), Eq. (A5) can be integrated in k space to
finally yield

/ðr;zÞ ¼ 2w0

p
arcsin

2affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lz2þðaþ rÞ2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lz2þða% rÞ2

q
0

@

1

A : (A6)

APPENDIX B: POTENTIAL DISTRIBUTION FOR TWO
FACING ELECTRODES WITH SET RADIAL
POTENTIAL PROFILE AND GROUNDED CHAMBER

Consider two coaxial disks of radius a terminating a cylindrical
conducting chamber of radius a and length L. Let us assume that
the chamber is grounded, that is,

/ðr ¼ a; zÞ ¼ 0 for % L=2.z .L=2; (B1)

and that the electric potential imposed on each disk is

/ r;6
L
2

% &
¼ /diskðrÞ ¼ w0J0 p1

r
a

% &
for r .a; (B2)

with p1 *2:4 the first zero of the zeroth order Bessel function of
the first kind J0. This choice ensures that the potential is continuous
at (a, 6L=2). This boundary condition /diskðrÞ also approximates
closely a parabolic potential profile since

J0 p1
r
a

% &
¼ 1% 2:25

p1r
3a

% &2

þO r
a

% &4
" #

; (B3)

with the fourth order term accounting for no more than 3% at mid-
radius r ¼ a=2.

Solving Eq. (5) for this particular set of boundary conditions,
one gets

FIG. 7. Potential distribution /ðr ; zÞ obtained from Eq. (A5) for an infinitely thin disk electrode of radius a¼ 1 at z¼ 0 (in solid black) and different values of r ? =rk. The elec-
trode potential w0 ¼ 1. Black dashed-lines are isopotential lines. (a) r ? =rk ¼ 10%2 and (b) r ? =rk ¼ 10%3.
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/ r; zð Þ ¼ w0J0 p1
r
a

% &
cosh p1sz=Lð Þ
cosh p1s=2ð Þ

; (B4)

where we introduced the dimensionless parameter s ¼ ffiffiffi
l
p

L=a
defined in Eq. (24). The radial potential profile in the midplane
z¼ 0 then writes

/ r; z ¼ 0ð Þ ¼
/diskðrÞ

cosh p1s=2ð Þ
: (B5)

Equation (B5) shows that the condition for nearly uniform potential
along magnetic field lines is here s) 2=p1. This is, up to a multi-
plying factor of Oð1Þ, identical to the criteria derived in Sec. II B
when considering symmetrical ring electrodes.
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