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ABSTRACT

In a rotating magnetized plasma cylinder with shear, cross field current can arise from inertial mechanisms and from the cross field viscosity.
Considering these mechanisms, it is possible to calculate the irreducible radial current draw in a cylindrical geometry as a function of the
rotation frequency. The resulting expressions raise novel possibilities for tailoring the electric field profile by controlling the density and
temperature profiles of a plasma.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5115788

I. INTRODUCTION
In many technologies that rely on rotating plasmas,1 the cross

field conductivity is of great practical concern. Usually, the rotation is
produced by imposing an electrical potential difference perpendicular
to a magnetic field; the resulting fields and power dissipation depend
critically on the plasma conductivity. However, a large cross field con-
ductivity drives up the cost of maintaining E! B rotation. For
instance, the viability of mass filters based on rotating plasmas as a
replacement for chemical separation techniques is partly dependent
on power efficiency.2–7 Other examples include fusion schemes that
rely on rotating plasmas,8–12 where the efficiency is similarly limited
by the cross field conductivity.

In some of these applications, it is required to have very specific
control over the rotation profile (i.e., the shear). Achieving this control
is a nontrivial problem; past efforts in linear devices have often focused
on biasable annular end electrodes.13–20 Another possibility is through
waves, or stationary perturbations,21 although this has not yet been
attempted experimentally.

A recent paper by Rax et al.22 analyzed the cross field conductiv-
ity in a plasma undergoing solid-body rotation. The present paper
addresses general rotation profiles, supplementing Rax et al.22 as well
as previous considerations of plasma conductivity in a rotating plasma
with general rotation profiles, where the effects of shear have also been

addressed.23,24 In particular, we find that sheared rotation modifies the
form of the inertial conductivity discussed by Rax et al. and results in
additional viscosity-dependent effects. Importantly, the radial current
calculation presented here suggests that control over the radial temper-
ature profile could help to control the rotation profile even without the
use of end electrodes.

This paper is organized as follows: in Sec. II, we derive the basic
drift equations for ions and electrons in a rotating plasma. We then
proceed to order terms based on smallness parameters. The two small-
ness parameters rely on the ion-electron collision frequency and the
plasma rotation frequency, which are small compared to the gyrofre-
quency. We also assume that radial pressure gradients are small com-
pared to the radial electric forces. In Sec. III, we write the governing
equations of the system in nondimensional form and identify the
dimensionless parameters that determine their behavior. In Sec. IV,
we identify the contributions to the radial current arising from plasma
viscosity, inertia, and particle sources. We apply these relations in
Sec. V to show how sources and sinks might be used to control the
rotation profile. In Sec. VI, we compare the results derived here with
previous derivations in the literature, and we discuss how alternate vis-
cosity models, for example, those used to describe rotating turbulent
plasma, might be incorporated. In the Appendix, we provide two deri-
vations of the Braginskii viscosity components in a rotating plasma.
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II. CLASSICAL CROSS-FIELD CONDUCTIVITY IN A
ROTATING PLASMA WITH SHEAR

Consider the two-fluid momentum equations for a plasma with a
single ion species of charge Ze and massmi,
@

@t
ðminiviÞ þr % ðminiviviÞ ¼ ZeniðEþ vi ! BÞ

'rpi 'r % pi þ Ri þmisi vsrci ;

(1)
@

@t
ðmeneveÞ þr % ðmeneveveÞ ¼ 'eneðEþ ve ! BÞ

'rpe 'r % pe þ Re þmese vsrce :

(2)

Here, me is the electron mass, pine ¼ nineTine are the scalar pressures,
pine are the viscosity tensors, and Ri and Re are the ion-electron and
electron-ion friction force densities. If there are sources or sinks of
charged particles (corresponding, e.g., to neutral ionization), their
source rates are denoted by sine and the velocities of the particles being
added or removed are denoted by vsrcine. Using the density continuity
equation, the LHS of Eqs. (1) and (2) can be rewritten as

@

@t
ðmsnsvsÞ þr % ðmsnsvsvsÞ! msns

dvs
dt
þmsvsss; (3)

where d/dt is the advective derivative @=@t þ vs %r.
Equations (1) and (2) can be rearranged, after taking the cross

product with b̂ ¼ B=B on both sides, to get expressions for the com-
ponents of vine that are perpendicular to b̂,

vi? ¼
E! B
B2 ' ðrpi þr % piÞ ! b̂

nimiXi
þ Ri ! b̂
nimiXi

' 1
Xi

dvi
dt
! b̂ þ siðvsrci ' viÞ ! b̂

niXi
; (4)

ve? ¼
E! B
B2 ' ðrpe þr % peÞ ! b̂

nemeXe
þ Re ! b̂
nemeXe

' 1
Xe

dve
dt
! b̂ þ seðvsrce ' veÞ ! b̂

neXe
; (5)

where Xi¼
: ZieB=mi and Xe¼

: ' eB=me. Starting from the left, these
flows are the E! B drift, the diamagnetic drift, the viscosity drift, the
frictional drift, the polarization drift, and a drift due to particle injec-
tion whose physical origin is analyzed in Sec. IVC. If jXej( !ei, the
friction force densities are25

Ri ¼ nimi!ieðve ' viÞ '
3ne!eirTe ! b̂

2Xe
; (6)

Re ¼ neme!eiðvi ' veÞ þ
3ne!eirTe ! b̂

2Xe
; (7)

where !ie and !ei are the ion-electron and electron-ion collision
frequencies.

Consider an axisymmetric plasma with B ¼ Bẑ , E ¼ Er̂ , and all
gradients in the r̂ direction. In the steady state, the velocities in the r̂
and ĥ directions can be written as

vsr ¼
Rsh ' ðr % psÞh þmsssðvsrcsh ' vshÞ

nsmsXs 1þ ðrvshÞ0=rXs

! " ; (8)

and

vsh ¼ '
E
B
þ p0s
nsmsXs

þ
ðr % pÞr
nsmsXs

' Rsr

nsmsXs

' ssðvsrcsr ' vsrÞ
nsXs

' vsrv0sr
Xs
þ

v2sh
rXs

; (9)

where the prime denotes a derivative with respect to r. The bracketed
part of the denominator of Eq. (8) and the last two terms of Eq. (9)
come from the advective part of the total derivative dvs=dt and corre-
spond to the fictitious forces in a rotating frame.

In a strongly magnetized plasma, the ion-electron collision fre-
quency is much smaller than the ion gyrofrequency, and so "¼: !ie=Xi

is a small parameter. In many rotating plasmas of interest, the ratio
d¼: E=ðrBXiÞ of the rotation frequency to the gyrofrequency is also
small. Consider a double ordering in d and ", similar to the one
used by Spitzer,26 where we denote a term of order dn"m by the tuple

(n,m), as in vðn;mÞih .
Assume that p0=neE ) OðdÞ. This assumption is convenient,

and it is reasonable in many cases,1,12 but an analogous calculation can
be carried out for a stronger or weaker pressure force. It will also be
useful to pick an ordering for the viscous forces. This will be discussed
in greater detail later on, but for now, take the r̂ component of
ðr % psÞ=ensE to be Oðd2Þ and the ĥ component to be Oðd2"Þ.
Finally, since the continuity equation suggests vsr ) Rss=ns for a
characteristic scale length R, it makes sense to order ss=nsXs

) Oðvsrd=vð0;0Þsh Þ. This will end up beingOðd
2"Þ.

To zeroth order in d and ", Eq. (8) requires that vir and ver
vanish and Eq. (9) shows that the azimuthal motion is determined by
the E! B drift,

vð0;0Þih ¼ vð0;0Þeh ¼ ' E
B
: (10)

The next order in d includes the diamagnetic drift and an F! B drift
associated with the centrifugal force and evaluated using vð0;0Þsh ,

vð1;0Þsh ¼ p0s
nsmsXs

' 1
Xs

E2

rB2 : (11)

Equation (11) can be used to get the leading-order nonvanishing radial
velocities from the general expression in Eq. (8),

vð1;1Þir ¼ Ti!ie
miX2

i

'ZTe

Ti

p0e
pe
' p0i
pi

# $
þ 1þ Zme

mi

# $
mi

Ti

E2

rB2 þ
3ZT 0e
2Ti

" #

(12)

and

vð1;1Þer ¼ vð1;1Þir : (13)

This velocity, together with the steady-state continuity equation,
governs classical particle transport: At this order, there are radial
drifts due to azimuthal friction, but they are ambipolar in the sense
that they do not produce net radial current, only a net radial mass
flow.

To the next order in d, the radial motion is
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vð2;1Þsr ¼ ' vð1;1Þsr

rXs

@ðrvð0;0Þsh Þ
@r

' ðr % psÞh
nsmsXs

þ
sns ðvsrcsh ' vð0;0Þsh Þ

nsXs
þ
!ss0Dvð2;0Þh

Xs
: (14)

The first term on the RHS of Eq. (14) is the nonambipolar radial
motion resulting from the interplay between frictional and inertial
effects; intuitively, it is the Coriolis F! B drift that results from the
next-lowest order radial flow. The second term is the F! B from
the azimuthal viscous force. The third is an effective F! B due to the
momentum flux from particle sources and sinks. The last—which will
not produce net charge transport at this order—is an ambipolar fric-
tional flux resulting from higher-order corrections to vsh, including
those due to ðr % psÞr . The expression Dvð2;0Þh is the difference between
the ion and electron azimuthal flows ofOðd2Þ.

It is necessary to verify, since the relative size of " and d has not

been specified, that the current is not sensitive to this ordering. vðk;0Þsr

and vð0;kÞsr vanish for all k since there are no radial flows that could

compete with vð1;1Þsr in the inertial part of Eq. (14). There could con-

ceivably be other orders contributing to Dvð2;0Þh in Eq. (14), but the
resulting flows do not contribute to the leading-order current or parti-
cle flux anyway.

Moreover, no term other than vð2;1Þsr will produce the leading-
order current. When constructing a nonambipolar radial flow, one fac-
tor of d is needed to produce any differential azimuthal motion and a
second factor of d is needed to make the drift due to Rsh in Eq. (8) not
be intrinsically ambipolar. Without one factor of ", there is no friction
force to begin with. As such, there is no need to worry about competi-
tion from, e.g.,Oðd3Þ orOðd"2Þ radial flows; the leading-order current
comes from the motion described by Eq. (14).

With that in mind, the current jr ¼ neeðvð2;1Þir ' vð2;1Þer Þ can be
written as

jr ¼ '
nimiv

ð1;1Þ
ir

rB
@ðrvð0;0Þih Þ

@r
' nemev

ð1;1Þ
er

rB
@ðrvð0;0Þeh Þ

@r

'ðr % piÞh
B

' ðr % peÞh
B

þ
misiðvsrcih ' vð0;0Þih Þ

B
þ
meseðvsrceh ' vð0;0Þeh Þ

B
: (15)

So far, the generalization of this calculation to the case of multiple ion
species would largely be trivial; the friction would have to include
interactions between all pairs of species, and the thermal friction takes
a slightly different form for particles of general mass; but, otherwise,
the calculation would be the same. However, it is possible to simplify jr
in the case of a single ion species by making use of the small mass
ratio. Dropping anything of Oðme=miÞ and defining p¼: pi þ pe,
Eq. (15) is

jr ¼ '
ðr % pÞh

B
þ ZeniTi!ie

miX3
i

1
r
@ðrE=BÞ
@r

! mi

Ti

E2

rB2 þ
3ZT 0e
2Ti
' ZTe

Ti

p0e
pe
' p0i
pi

" #

þ
misiðvsrcih þ E=BÞ

B
: (16)

This can be separated out into several terms, with different scalings
and behaviors, as we will discuss in Secs. III and IV.

III. CONSERVATION EQUATIONS AND
NONDIMENSIONALIZATION

In order to relate our sources of charge and current to the den-
sity, temperature, and rotation profiles in the system, we use the parti-
cle and charge conservation equations. In a cylindrically symmetric
system, in the limit where axial losses and gradients are small com-
pared to their radial counterparts, these are given by

si ¼
1
r
@

@r
rniv

ð1;0Þ
ir ; (17)

eðZsi ' seÞ ¼
1
r
@

@r
rjr : (18)

Integrating, we obtain

SiðrÞ ¼ rniv
ð1;1Þ
ir ; (19)

CðrÞ ¼ rjr ; (20)

where we have defined the integrated source functions

SsðrÞ ¼
ðr

0
ssr0dr

0; (21)

CðrÞ ¼ e
ðr

0
ðZsi ' seÞr0dr0: (22)

In order to understand the relationships between the different
current terms, it is useful to introduce a number of dimensionless
parameters. To that end, let R be the radial device size, B0 be the on-
axis field strength, and n0, T0, and gi10 be the characteristic density,
temperature, and Braginskii perpendicular viscosity (discussed in
Sec. IV), respectively. The frequencies are defined as

Xi0¼
: ZeB0

mi
; (23)

!ie0¼
: Z2e4m1=2

e n0 logKie

3ð2pÞ3=2"20miT
3=2
0

; (24)

!ii0¼
: Z4e4n0 logKii

12p3=2"20m
1=2
i T3=2

0

; (25)

xthi0¼
: vthi

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
T0=mi

p

R
; (26)

xrot¼
: vð0;0Þsh

r
¼ ' E

rB
: (27)

Here, logKie and logKii are the Coulomb logarithms. Note that xrot is
the only frequency here with a radial dependence, as it represents a
dynamical variable which will be solved for.

Finally, define the total integrated source rates for particles and
charge S0 ¼ SiðRÞ and C0 ¼ CðRÞ. In terms of these constants, the
total number of ions and charge per unit axial length added to or
extracted from the system per unit time are 2pS0 and 2pC0,
respectively.

This collection of parameters can be used to construct the nor-
malized variables listed in Table I. These variables are characteristically
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Oð1Þ by construction (at least in the case of an approximately sonic
flow, for ~xrot).

Substitution of these variables into the continuity Eq. (19) and
charge conservation Eq. (20), using the velocity in Eq. (12) and the
current in Eq. (16), as well as the Braginskii transport coefficients,25

yields several dimensionless constants, listed in Table II. These param-
eters determine the characteristic sizes of the relevant particle fluxes
and currents in the systems, as a function of the typical gradients.
They depend on the relation between the source terms S0 (for par-
ticles) and C0 (for currents), on the number of particles N0 in a cylin-
der of area q2

i0, and on the relevant collision frequencies.
In terms of these parameters, our nondimensionalized continuity

equation becomes

P~S¼~r
~ni~ne~T i

~T
3=2
e

~B
2
'Z

~Te

~T i

@~r~pe
~pe
'@~r~pi

~pi

 !

þ 1þZme

mi

# $
~r ~x2

rotþ
3Z@~r ~T e

2~T i

" #

:

(28)

Here, the LHS represents the charge added to the system, whereas the
RHS determines the response of the system to the added charge.
Because all tilde quantities (other than ~xrot) areOð1Þ, the dimension-
less constant P determines the strength of the system response. If the
normalizations are chosen appropriately, if the flow is not substantially
supersonic, and if the gradient scale lengths of the various parameters
are not small compared to R, then Eq. (28) implies that P is not larger
than Oð1Þ. This means that we cannot drive fluxes that are too large
through our system without creating extremely large gradients, which
will likely lead to instabilities and anomalous transport. Thus,

P!Oð1Þ mathematically formalizes the requirement for smooth, sta-
ble solutions with device-scale gradients.

Current conservation takes a similar form

I ~C ¼ ~r J viscous þ J inertial þ J src
' (

: (29)

We will explore each of these terms in detail; the final result is given in
Eq. (43).

IV. PHYSICAL MECHANISMS OF CROSS-FIELD
CURRENT

The various terms in Eq. (29) describe cross field currents that
come from three distinct physical mechanisms. Subsections IV A–IV
D discuss their physical origins and relative sizes.

A. Viscous current
The viscous current is a radial F! B drift resulting from the azi-

muthal viscous force (see Fig. 1)

jviscousr ¼ 'ðr % pÞh
B

: (30)

If p ¼
P

s ps is the Braginskii viscosity,
25 then keeping the contribu-

tions from the leading-order flow vð0;0Þs ¼ vð0;0Þsh ðrÞĥ,

ðr % psÞh ¼ '
1
r2
@

@r
r3gs1

@

@r
vð0;0Þsh

r

 !" #

; (31)

ðr % psÞr ¼ '
1
r2
@

@r
r3gs3

@

@r
vð0;0Þsh

r

 !" #

; (32)

where the relevant viscosity coefficients are

gi1 ¼
3!iipi

10
ffiffiffi
2
p

X2
i

ge1 ¼
0:51!eepeffiffiffi

2
p

X2
e

; (33)

gi3 ¼
pi
2Xi

ge3 ¼
pe
2Xe

: (34)

The mass dependence in these coefficients means that it is generally
safe to set p ¼ pi.

TABLE I. Normalized variables used throughout this paper, based on quantities in
Eqs. (22) and (23), as well as Eq. (33). Horizontal lines delineate coordinate varia-
bles, specified profiles, and finally dynamical variables which are solved for. The vis-
cosity ~g falls in the final category due to its density-dependence.

Parameter Definition

~r r/R

~B B=B0
~T s Ts=T0
~S SiðrÞ=S0
~C CðrÞ=C0

~ns ns=n0
~xrot xrot=xthi0

~g gi1=gi10

TABLE II. Dimensionless parameters which characterize the solution. Here, N0
¼ n0q2

i0 is the number of ions per unit length in a cylinder of area; q2
i0: this quan-

tity appears repeatedly as an important characteristic of the system. A is a numer-
ical constant, A ¼ 3=10

ffiffiffi
2
p

.

Parameter Definition Interpretation

P S0=ðN0!ie0Þ Particle outflow
I C0=½Aðqi0=RÞðZeN0!ii0Þ+ Current
Q A'1!ie0=!ii0 Inertia/viscosity

FIG. 1. This schematic illustrates the physics of the viscous current. Shear in the
leading-order azimuthal flow (1) leads to a viscous force with a component in the
azimuthal direction (2), whose sign will depend on vaðrÞ and gi1ðrÞ. The resulting
Oðd2"Þ F! B flow carries a current (3).
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The azimuthal viscous force results in a radial F! B drift, which
carries ion current. This current has the behavior that one would intui-
tively expect from a viscosity: it acts to relax shear in the E! B flow. It
is somewhat suppressed because it is a collisional finite-Larmor-radius
effect. The radial viscous force comes from the gyroviscosity. Its form
is very similar to that of its azimuthal counterpart, but (perhaps coun-
terintuitively) it is substantially larger—in the case of the ions, by a fac-
tor of 10Xi=3

ffiffiffi
2
p

!ii ) 2=". Its contribution to jr is nonetheless small
compared to the contribution of the azimuthal viscous force since the
current associated with this large azimuthal effect is ordered down
by a factor of Oð"dÞ from the original azimuthal drift, as discussed in
Sec. IVB. In other words, ðr % pÞh is more important for conductivity
calculations because its F! B flow is nonambipolar to start with,
whereas ðr % pÞr can only drive current indirectly through inertial
effects.

In terms of dimensionless variables, the viscous current can be
written as

J viscous ¼ 1
~r2~B

@

@~r
~r3~g

@ ~xrot

@~r

) *
: (35)

When using the Braginskii viscosity, define ~g¼: ~n2=~T
1=2~B

2
and

gi10¼
: gi1=~g. There are two classes of rotation profiles that make the

viscous current vanish. The first consists of any solid-body rotation
profile. This is straightforward; without shear, the viscous force van-
ishes. The second class of profiles can be defined by

@ ~xrot

@~r
¼ D

~r3~g
(36)

for any constant D. These profiles are closely related to the irrotational
vortices often found in neutral fluids. The intuition behind Eq. (36) is
much the same: There is viscous stress everywhere, but that stress pro-
duces no net force on any particular fluid element away from the ori-
gin, where these profiles are generally not physical (see, e.g., the text by
Kundu et al.27)

B. Inertial Current
The inertial current can be written as

jinertialr ¼ ZeniTi!ie
miX3

i

1
r
@ðrE=BÞ
@r

! mi

Ti

E2

rB2 þ
3ZT 0e
2Ti
' ZTe

Ti

p0e
pe
' p0i
pi

" #

: (37)

Physically, this current can be explained in terms of a series of F! B
drifts. Temperature gradients and differences in the centrifugal
and diamagnetic drifts between species [vð1;0Þhs , Eq. (11)] produce a
ĥ-directed friction between species. This friction force leads to a radial
F! B drift [vð1;1Þrs , Eq. (12)]. This initial radial flow does not carry net
current, but the motion results in an azimuthal Coriolis force, which
depends on the mass and therefore affects the ions far more than the
electrons. The F! B associated with this Coriolis force is the flow
which carries the leading-order radial current. This sequence of effects
is shown in Fig. 2.

In the limit where xrot is constant and where particle injection
effects can be neglected, the inertial current is the only current. If, in

addition, the densities and temperatures are constant, the current can
be written as

jinertialr ¼ 2Zeni!ie
r2X3

i

E3

B3 : (38)

This expression is equivalent to the nonlinear Ohm’s law described by
Rax et al.22

In terms of dimensionless variables, the inertial current can be
written as

J inertial ¼ 'PQ
~S

~B~r2
@ð~r 2 ~xrotÞ

@~r
: (39)

The inertial current vanishes whenever ~xrot / 1=~r2. The Coriolis
force can be understood as a mechanism that enforces the conserva-
tion of angular momentum during radial motion; these profiles have
flows with uniform angular momentum, so it makes sense to find that
they do not have Coriolis F! B drifts.

C. Particle injection current
In a region where there are particle sources or sinks, there is an

additional current

jsrcr ¼
misiðvsrcih þ E=BÞ

B
: (40)

The vsrcih term comes from the momentum injection due to sources
and sinks, and the E/B term is inertial in the sense that it comes from
the left-hand side of Eqs. (1) and (2).

However, this current can be explained more intuitively in terms
of single-particle dynamics.24,28,29 Consider a particle placed in crossed
E ¼ Ex̂ and B ¼ Bẑ fields with some initial velocity v0 ¼ vx0x̂ þ vy0ŷ
and position r0 ¼ x0x̂ þ y0ŷ . In the limit of locally constant fields, it
will gyrate about an x-coordinate that is shifted from its initial position

xgyro ¼ x0 þ
m
qB

vy0 þ
E
B

# $
: (41)

FIG. 2. This figure shows the physics behind the inertial current. Differences in local
velocities vð1;0Þsh between different species (1) lead to azimuthal friction forces (2).

These produce ambipolar radial drifts vð1;1Þsr (3) which in turn produce azimuthal
Coriolis forces (4). The resulting Coriolis F! B drifts vð2;1Þsr (5) carry the current.
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Thus, there will be a current resulting from the fact that particles move
from their initial to their average position as they are added to the sys-
tem, which results in Eq. (40). When vsrcih ¼ 0, this has been termed
the “pickup current”28 or “mass-loading current.”24,29

This current can be written in terms of dimensionless param-
eters as

J src ¼ QP @~S
@~r
ð~xsrc ' ~xrotÞ

~B
: (42)

The dependence on @~S=@~r follows from the reliance of this mecha-
nism on the local value of si.

D. Comparing the currents
Substituting in the expressions for the components of J , Eq. (29)

becomes

I ~C ¼ 1
~r~B

@

@~r
~r3~g

@ ~xrot

@~r

) *

'QP
~S
~B~r
@ð~r2 ~xrotÞ

@~r
þ ~r

@~S
@~r
ð~xrot ' ~xsrcÞ

~B

) *
: (43)

Q is

Q ¼ 10
ffiffiffi
2
p

!ie0
3!ii0

; (44)

and I is

I ¼ 10
ffiffiffi
2
p

3
C0

ðqi0=RÞðZeN0!ii0Þ
: (45)

Equation (45) gives some insight into the relative sizes of the different
currents. Depending on, for instance, the shape of ~xrot, any of the
mechanisms can be dominant. However, suppose that all gradient
scale lengths are on the order of R. Recall that, in many cases,
P ) Oð1Þ. When the currents are written in terms of dimensionless
Oð1Þ quantities, the inertial and particle injection currents are
attached to a prefactor ofQ, which is small compared to 1. If I is also
small compared to 1, then any current may dominate. If I ) Oð1Þ,
then the viscous current likely dominates. If I is large compared to 1,
then the aforementioned assumption about the gradient scale lengths
is probably invalid.

We can estimate the total current drawn by the machine by bal-
ancing the two sides of Eq. (45), yielding I ) ~xrot, and solving for
2pC0. This gives

2pC0 )
3p

5
ffiffiffi
2
p qi0

R

# $
ZeN0!ii0 ~xrot; (46)

and so

2pC0

11A=m
) Z2

#
R

10 cm

$'1 mi

mp

# $# B
1 kG

$'3

! n0
1014 cm'3

# $2 logKii

10

# $
~xrot: (47)

V. CALCULATING ROTATION PROFILES FROM OHM’S
LAW

In a system with defined sources and sinks of charged particles,
the steady-state total current through the system can often be written
easily in terms of those sources and sinks. That information, combined
with the appropriate Ohm’s law, can be used to extract other useful
information about the system.

Suppose the particle sources and sinks are known, so that SsðrÞ
and CðrÞ ¼ ZeSiðrÞ ' eSeðrÞ are specified. Suppose the particle sources
have vsrcih ¼ 0. Invoking Ohm’s law and the continuity equations and
simplifying,

~r3~g ~x0rot 'QP ~r2~S ~xrot ¼ I
ð~r

0
~r 0~Cð~r 0Þ~Bð~r 0Þd~r 0: (48)

This has a general solution for xrot,

~xrotð~rÞ¼eQP
Ð ~r

1
ð~S=~x~gÞd~x

! ~xrotj~r¼1þI
ð~r

1
d~s

 
e'QP

Ð ~s

1
ð~S=~y~gÞd~y

~s3~gð~sÞ

ð~s

0
~r 0~Cð~r 0Þ~Bð~r 0Þd~r 0

!2

4

3

5:

(49)

for a boundary condition imposed at R.
For example, suppose B is constant in space and xðRÞ ¼ 0. For

some a , 0, suppose C ¼ C0ðr=RÞa and Si ¼ S0ðr=RÞa. Then,

~xrot ¼ '
I
QP

~B
aþ 2

! 1' exp 'QP
ð1

~r

~sa'1d~s
~gð~sÞ

 !" #

: (50)

The case of uniform volumetric particle injection is given by a ¼ 2.
The case in which all particles are injected at r¼ 0 is given by a ¼ 0.
Note that

~xrot !
'I

~B
aþ 2

ð1

~r

~sa'1d~s
~gð~sÞ

QP - 1

' I
QP

~B
aþ 2

QP ( 1;

8
>>>><

>>>>:

(51)

consistent with the intuition from Sec. III.
Now, consider a scenario in which B, gi1, and C have arbitrary

shapes, but where Si is not much larger than ZiSi ' Se. In this case,
the orderings described in Sec. II come out slightly differently; if
the ambipolar flow is not much larger than the nonambipolar flow,
then the inertial current will be small compared to the viscous cur-
rent. For example, if the system has a radial flow of electrons but
no net flow of ions, then (using the same boundary condition as
before),

~x 0rot ¼
I

~r3~g

ð~r

0
~r 0~Cð~r 0Þ~Bð~r 0Þd~r 0 (52)

and
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~xrot ¼ 'I
ð1

~r

d~s
~s3~gð~sÞ

ð~s

0
~r 0~Cð~r 0Þ~Bð~r 0Þd~r 0: (53)

There are practical contexts in which it is important to control
the rotation profile xrotðrÞ. For example, the double well mass filter
concept relies on a rotating plasma with a particular shear profile.30 It
may be possible to control shear with end electrodes, but the calcula-
tions in this section suggest an additional strategy: that the viscosity,
temperature, and particle input profiles can be used to control xrotðrÞ.
Viscosity depends on the density and temperature profiles as

gi1 / n2i T
'1=2
i ; there may be contexts in which these are easier to

manipulate than the electric field itself.

Suppose some sufficiently sophisticated heating system could be
used to specify T(r). Then, Eqs. (28), (33), and (49) determine n(r),
gi1ðrÞ, and xrotðrÞ. Figure 3 shows several numerical solutions in the
case of uniform particle and charge injection (~S ¼ ~r2 and ~C ¼ '~r2).
If a particular xrotðrÞ were desirable, it might be possible to tailor T(r)
to get that profile.

However, there are limits to what can be done with T(r) alone.
To see this, consider the following expression, which follows from Eq.
(48),

~g ¼ QP
~S ~xrot

~r ~x 0rot
þ I

~r 3 ~x0rot

ð~r

0
~r 0~Cð~r 0Þ~Bð~r 0Þd~r 0: (54)

FIG. 3. This figure shows several profiles of T, n, xrot, and gi1 which are consistent with the particle and charge transport equations; here, T(r) was specified and the other con-
sistent profiles were computed numerically. Curves of the same color correspond to the same scenario.

Physics of Plasmas ARTICLE scitation.org/journal/php

Phys. Plasmas 26, 082309 (2019); doi: 10.1063/1.5115788 26, 082309-7

Published under license by AIP Publishing

https://scitation.org/journal/php


For instance, if ~x 0rot is to change its sign at ~r without ~g becoming sin-
gular, ~xrotð~rÞ must be equal to 'ðI=QPÞð

Ð ~r
0 ~r 0~C~Bd~r 0Þ=ð~r2~SÞ. In

fact, for the simple volumetric sources used in Fig. 3, it is possible to
show analytically that all solutions for xrot must be monotonic.
Nonetheless, even for this very simple choice of sources, an experi-
mentalist with good control over T(r) could achieve a wide range of
density and rotation profiles.

VI. DISCUSSION AND SUMMARY
We described the motion of charge across magnetic field lines in

a sheared rotating system and offered physical descriptions of the key
terms in our derivation. We also suggested that sufficient control over
the temperature and density profiles should allow control over the
rotation profile xrotðrÞ.

Note that the form of Ohm’s law presented here can be related to
expressions in a number of places elsewhere in the literature. Rax
et al.22 analyzes a case which does not include shear. Their expression
for Ohm’s law includes an inertial current consistent with the one
derived here, but because they studied solid-body rotation, they do not
include the viscous current. The review by Rozhansky24 includes
expressions for the viscous and mass-loading currents that agree with
the ones derived here. He discusses inertial currents in general but
does not derive the Coriolis-driven inertial current that appears in a
rotating plasma. The current edition of the book by Helander and
Sigmar23 includes a nice derivation of the inertial current, but their
treatment of the viscosity (in the case of an axisymmetric rotating
plasma) does not agree with the one presented here, essentially because
of a mismatch between Eq. (31) and their Eq. (5.12). The derivation of
Eq. (31) is given in the Appendix.

Other treatments of this problem have generally not considered
the gyroviscosity, which produces ðr % pÞr as per Eq. (32). In many
situations, this is not a major problem. After all, for the ordering used
in this paper, ðr % pÞr does not contribute to the leading-order current
despite the fact that it is substantially larger than ðr % pÞh.
Nonetheless, there is some value in being aware of this term. For
instance, for a plasma approaching the Brillouin limit, d will no longer
be small and the gyroviscous ðr % pÞr will no longer necessarily be
suppressed relative to rp (although the form of the viscosity tensor
might need to be revisited in that limit).

This derivation was done for a quiescent plasma. However, some
models for anomalous transport provide prescriptions for alternate
forms of the viscous force density r % p. To the extent that the rest of
the bulk behavior of the plasma is unchanged, it is possible to substi-
tute alternate viscosities into results like Eq. (16) or Eq. (49) to under-
stand how to control current flow or rotation profiles in turbulent
regimes.

A number of authors have written about models in which (in an
appropriate regime) anomalous transport produces something that
looks like cross field classical transport but with a higher effective colli-
sion frequency.31–33 Rognlien and Ryutov called this “pseudoclassical
transport.”33

Finn et al. studied cross field transport for the case of stochastic
field lines.32 Their work suggested a viscosity coefficient

g?F ¼ mini

#
dB
B

$2

‘ccs: (55)

Here, dB is the magnitude of the nonaxisymmetric field fluctuations,
‘c is the turbulent correlation length (often the connection length),
and cs is the sound speed. There are laboratory observations in which
this viscosity model appears to accurately describe momentum trans-
port.34 In such a case, Eq. (49) describes how xrotðrÞ reacts to the sup-
pression of or increase in turbulence.

There is no guarantee that an anomalous viscosity should respect
the same ordering as the Braginskii viscosity, either for ðr % pÞr or
ðr % pÞh. If either of these is very large, then the expression for the
inertial current might need to be reconsidered.

There are a number of other contexts in which the cross field
conductivity described in this paper would have to be modified.
Cross-field dynamics can turn out quite differently in plasmas with
significant ion-neutral collisions, weak magnetization, or more
complicated geometries.7,19,20,24,35–40 In the regime where this cal-
culation does apply, it suggests some novel techniques with which
the rotation profile might be controlled. Neutral beams, pellet
injection, and electron injection can help shape the rotation profile
by changing P and I . Moreover, charge transport is substantially
temperature-dependent, and so heating or cooling particular
regions of the plasma can change xrotðrÞ. These techniques might
be used either in place of more conventional techniques for rota-
tion control or as a supplement to them.
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APPENDIX: THE BRAGINSKII VISCOSITY IN A
ROTATING PLASMA

This paper uses Eqs. (31) and (32) for the components of r % p
when v ¼ vðrÞĥ. This Appendix will present two approaches to cal-
culating these components from Braginskii’s viscosity expression,25

which was originally given in Cartesian coordinates.

1. Viscosity in arbitrary orthonormal coordinates
When we wish to include viscous effects while working

with curvilinear coordinates, we encounter a problem: Braginskii’s
viscosity tensor [Eqs. (4.41) and (4.42)] is not expressed in a coordinate-
invariant way, although the later, low-flow-ordered transport
equations relevant to tokamak physics included more adaptable
expressions.41–43 This part of the Appendix will express the origi-
nal Braginskii viscosity in a tensorial way that is easy to adapt to
many coordinate systems.

We will start by reviewing the original form of the Braginskii
viscosity matrix. The proper covariant expression should then be
the tensorial expression which reduces to this expression. Finally,
we will explain how our results provide an easy recipe to calculate
the Braginskii viscous force in an arbitrary orthonormal coordinate
system.

Our notation will follow, e.g., Carroll’s book on general
relativity.44 Thus, the covariant derivative is denoted as
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rlV! ¼: @lV! þ C!
lrV

r: (A1)

Here, C!
lr is the Christoffel symbol, given by

C!
lr¼
: 1
2
g!k @lgrk þ @rgkl ' @kglrð Þ: (A2)

In addition, we will adopt the convention of using vi to refer to the
conventional (orthonormal-basis) velocity and ui to refer to
the generalized velocity, which is a proper (contravariant) vector in
the appropriate coordinate basis. This will be important in the h
direction in cylindrical coordinates since

uh ¼ dh
dt
; (A3)

vh ¼ r
dh
dt
: (A4)

Whether we write vi with upper or lower indices has no signifi-
cance; however, an upper vs lower index on ui denotes a different
object (vector vs one-form). For a diagonal metric, these quantities
are related by

ffiffiffiffiffi
gii
p

ui ¼ vi ¼ ui=
ffiffiffiffiffi
gii
p

: (A5)

Similarly, we will adopt the convention of using hi to refer to the
orthonormal magnetic field unit vector and bi to refer to the contra-
variant vector.

The Braginskii viscosity matrix is given by25

pab ¼ 'g0
0Wab ' g1

1Wab ' g2
2Wab

þ g3
3Wab þ g4

4Wab; (A6)

where

0Wab ¼
3
2

hahb '
1
3
dab

# $
hmhn '

1
3
dmn

# $
Wmn; (A7)

1Wab ¼ d?amWmnd
?
nb þ

1
2
hmWmnhnd

?
ab; (A8)

2Wab ¼ d?amWmnhnhb þ hahmWmnd
?
nb; (A9)

3Wab ¼
1
2
ðd?amWmn~"nbkhk ' ~"amkhkWmnd

?
nbÞ; (A10)

4Wab ¼ hahmWmn~"nbkhk ' ~"amkhkWmnhnhb: (A11)

Here, hi is the ith component of the magnetic field unit vector, dij is
the Kronecker delta, ~" ijk is the Levi-Civita symbol, d?ij ¼ dij ' hihj,
andWij is Braginskii’s traceless rate-of-strain tensor, given by

Wij .
@vi

@xj
þ @v

j

@xi
' 2
3
dijr % v: (A12)

In the above definitions, repeated indices are summed over, even if
they do not appear in upper-lower pairs. (Note that, in contrast to
Braginskii, we have moved the matrix label for iWab to the left hand
side of the symbol, to make it clear that this is not a tensor index,
but rather a label to a specific tensor.)

Now, we need to find the covariant generalizations of the
various quantities that appear in Eqs. (A7)–(A12). Make the
substitutions

dij) gij; (A13)

@i ) ri; (A14)

vi ) ui; (A15)

hi ) bi; (A16)

~" ijk ) "ijk; (A17)

where "ijk is the Levi-Civita tensor (rather than symbol), defined by

"ijk ¼
ffiffiffiffiffi
jgj

p
~"ijk: (A18)

This implies that d?ij will become gij ' bibj. It will be conve-
nient to define a tensor bij (following the notation from the study
by Krommes45) by

bij¼
: ' "ijkbk: (A19)

Making these substitutions and raising indices where necessary
(since only an up-down pair of indices can be summed over), Eqs.
(A7)–(A12) become

0Wab ¼
3
2

babb '
1
3
gab

# $
bmbn '

1
3
gmn

# $
Wmn; (A20)

1Wab ¼ d?amd?nb þ
1
2
d?abbmbn

# $
Wmn; (A21)

2Wab ¼ ðd?ambbbn þ d?nbbabmÞW
mn; (A22)

3Wab ¼ '
1
2
ðd?ambnb ' d?nbbamÞWmn; (A23)

4Wab ¼ 'ðbabmbnb þ bbbnbamÞWmn; (A24)

and

Wij ¼ rjui þriuj '
2
3
gijrkuk: (A25)

Equations (A6) and (A20)–(A25) completely define the viscous
stress tensor, in a manifestly covariant way.

Now that we have the stress tensor, we can calculate the vis-
cous force. The generalization of the tensor divergence is again
given by the covariant derivative. Let F be the conventional force
vector and f be the force vector in covariant notation. Then,

F ¼ r % p)f j ¼ ripij; (A26)

where

f j ¼ ripij ¼ @ipij þ Ci
ikp

kj þ Cj
ikp

ik: (A27)

Our conventional vector components are finally given by converting
this back from a contravariant vector (noting that gij is diagonal by
assumption),

Fi ¼ ffiffiffiffiffi
gii
p

f i: (A28)

This gives a clear prescription for calculating the viscous force in an
arbitrary coordinate system. The sums can be carried out fairly
straightforwardly in a symbolic math language such as Mathematica.

1. Start with the metric gij that defines the coordinate system, and con-
struct the inverse metric gij.

2. Construct the Christoffel symbols C!
lr via Eq. (A2).

3. Convert velocity vectors vi and magnetic field vectors hi to covariant
one-forms ui and bi via ui ¼ vi

ffiffiffiffiffi
gii
p

.
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4. Construct the viscosity tensor given by Eqs. (A6) and (A20)–(A25).
Indices are raised and lowered by applying the metric and inverse
metric, e.g., Wmn ¼ gnsWm

s .
5. Calculate the contravariant force according to Eq. (A27).
6. Convert the force back to orthonormal coordinates via Fi ¼ ffiffiffiffiffi

gii
p

f i.

This method was used to calculate the viscous forces used in
the text, using the metric for a cylindrical coordinate system,

gij ¼
1 0 0

0 r2 0

0 0 1

0

B@

1

CA: (A29)

In Appendix 2, we explicitly calculate the forces in an alternate way,
by converting the velocity vectors to Cartesian coordinates for sub-
stitution into the original Braginskii viscosity matrix. The results
agree.

2. Calculation in Cartesian coordinates
A straightforward way of calculating ðr % pÞr and ðr % pÞh

directly from Braginskii’s result is to first compute the Cartesian
components of r % p and then to convert the result into cylindrical
coordinates. In this section, we will use the index notation but
assume a Cartesian coordinate system. Braginskii has

Wab ¼
@va

@xb
þ @vb

@xa
' 2
3
dabr % v (A30)

and

pzz ¼ 'g0Wzz; (A31)

pxx ¼ 'g0
Wxx þWyy

2
' g1

Wxx 'Wyy

2
' g3Wxy; (A32)

pyy ¼ 'g0
Wxx þWyy

2
' g1

Wyy 'Wxx

2
þ g3Wxy; (A33)

pxy ¼ pyx ¼ 'g1Wxy þ g3
Wxx 'Wyy

2
; (A34)

pxz ¼ pzx ¼ 'g2Wxz ' g4Wyz; (A35)

pyz ¼ pzy ¼ 'g2Wyz þ g4Wxz: (A36)

If v ¼ vðrÞĥ, then,

@xvx ¼ '
xy
r2

v0 þ xy
r3

v; (A37)

@xvy ¼
x2

r2
v0 þ y2

r3
v; (A38)

@yvx ¼ '
y2

r2
v0 ' x2

r3
v; (A39)

@yvy ¼
xy
r2

v0 ' xy
r3

v; (A40)

and r % v ¼ 0, and so

Wxx ¼ 2 ' xy
r2

v0 þ xy
r3

v
# $

; (A41)

Wxy ¼Wyx ¼
x2 ' y2

r2
v0 ' x2 ' y2

r3
v; (A42)

Wyy ¼ 2
xy
r2

v0 ' xy
r3

v
# $

; (A43)

Wiz ¼Wzi ¼ 0: (A44)

Then, we can evaluate the components of p. Let x¼: v=r. Note that
x is sometimes used elsewhere to denote the vorticity r! v; these
are equivalent in the case of solid-body rotation, but not for general
rotation profiles.

pzz ¼ 0; (A45)

pxx ¼ 'pyy ¼ g1ð2xyÞ ' g3ðx2 ' y2Þ
! "x0

r
; (A46)

pxy ¼ pyx ¼ 'g1ðx2 ' y2Þ ' g3ð2xyÞ
! "x0

r
; (A47)

piz ¼ pzi ¼ 0: (A48)

The necessary derivatives of these components are

@pxx

@x
¼ g01

2x2y
r
' g03

xðx2 ' y2Þ
r

) *
x0

r

þ g1ð2yÞ ' g3ð2xÞ½ +x
0

r

þ g1ð2xyÞ ' g3ðx2 ' y2Þ
! " x

r
x0

r

# $0
; (A49)

@pyy

@y
¼ 'g01

2xy2

r
þ g03

yðx2 ' y2Þ
r

) *
x0

r

þ 'g1ð2xÞ ' g3ð2yÞ½ +x
0

r

þ 'g1ð2xyÞ þ g3ðx2 ' y2Þ
! " y

r
x0

r

# $0
; (A50)

@pxy

@y
¼ 'g01

yðx2 ' y2Þ
r

' g03
2xy2

r

) *
x0

r

þ g1ð2yÞ ' g3ð2xÞ½ +x
0

r

þ 'g1ðx2 ' y2Þ ' g3ð2xyÞ
! " y

r
x0

r

# $0
; (A51)

@pyx

@x
¼ 'g01

xðx2 ' y2Þ
r

' g03
2x2y
r

) *
x0

r

þ 'g1ð2xÞ ' g3ð2yÞ½ +x
0

r

þ 'g1ðx2 ' y2Þ ' g3ð2xyÞ
! " x

r
x0

r

# $0
: (A52)

The components of r % p can be written as

ðr % pÞx ¼ pxx;x þ pxy;y; (A53)

ðr % pÞy ¼ pyy;y þ pyx;x; (A54)

and

ðr % pÞr ¼
xðr % pÞx þ yðr % pÞy

r
; (A55)

ðr % pÞh ¼
'yðr % pÞx þ xðr % pÞy

r
: (A56)
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All that remains is to evaluate the following:

ðr % pÞx ¼ yg01x
0 ' xg03x

0

þ 4y
r

g01x
0 ' 4x

r
g03x

0

þ yrg1
x0

r

# $0
'xrg3

x0

r

# $0
; (A57)

ðr % pÞy ¼ 'xg
0
1x
0 ' yg03x

0

' 4x
r

g1x
0 ' 4y

r
g3x

0

'xrg1
x0

r

# $0
'yrg3

x0

r

# $0
: (A58)

Then, in cylindrical coordinates,

ðr % pÞr ¼ 'rg
0
3x
0 ' 4g3x

0 ' r2g3ðx0=rÞ
0 (A59)

¼ 'rg03x
0 ' 3g3x

0 ' rg3x
00 (A60)

¼ ' 1
r2
ðr3x0g3Þ

0; (A61)

ðr % pÞh ¼ '
1
r2
ðr3x0g1Þ

0: (A62)

The azimuthal expression is the same as the radial expression, just
replacing g3 with g1. It can be rewritten as

ðr % pÞh ¼ 'g1
@

@r
1
r
@ðrvÞ
@r

) *
' @g1
@r

r
@

@r
v
r

# $
: (A63)
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