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ABSTRACT

An axisymmetric fully ionized plasma rotates around its axis when a charge separation between magnetic surfaces is produced
from DC fields or RF waves. On each magnetic surface, both electrons and ions obey the isorotation law and perform an
azimuthal E cross B rotation at the same angular velocity. When Coulomb collisions are taken into account, such a flow displays
no Ohmic current short circuiting of the charge separation and thus no linear dissipation. A nonlinear Ohmic response appears
when inertial effects are considered, providing a dissipative relaxation of the charge separation between the magnetic surfaces.
This nonlinear conductivity results from an interplay between Coriolis, centrifugal, and electron-ion collisional friction forces.
This phenomenon is identified, described, and analyzed. In addition, both the quality factor of angular momentum storage and
the efficiency of wave driven angular momentum generation are calculated and shown to be independent of the details of the
charge separation processes.
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I. INTRODUCTION
Axisymmetric, fully ionized, magnetized plasmas can be set

in rotation around their axis through a small breakdown of qua-
sineutrality sustained by DC or RF power. The uncompensated
polarizing free charges rapidly rearrange along the magnetic
field lines to screen the electric field component along the mag-
netic field. A steady state electric field E, perpendicular to the
magnetic field B, drives an E cross B azimuthal flow around the
axis.1,2 The steady-state sustainment of the charge imbalance
between magnetic surfaces can be achieved either (i) with an
applied DC radial voltage drop between magnetic surfaces or (ii)
through a resonant wave induced radial drift across magnetic
surfaces. The first scheme requires a set of polarized end plates
intercepting themagnetic field lines at the edge of the discharge,
and the second scheme needs the propagation and absorption
of a plasma wave with the right dispersion relation carrying a
significant amount of angular momentum around the axis. Both
schemes are associated with injected power consumption. This
power is ultimately dissipated through the nonlinear Ohmic
radial current identified and described in this study.

Two classical rotating configurations have been widely
investigated in plasma physics: the Brillouin rigid body rotation

associated with homogeneous magnetic fields3 and the
Ferraro isorotation associated with axisymmetric inhomoge-
neous magnetic fields.4 The study of axisymmetric rotating
pulsar magnetospheres offers a third,5,6 more complex, model
of rotating configurations where the uncompensated charge
density q is called the Goldreich-Julian charge density (G-J).7,8

Because of the absence of relativistic and radiative effects, the
axisymmetric laboratory plasmas analyzed in this paper are
much simpler than pulsar magnetospheres. Nevertheless, we
will adopt this nomenclature and call G-J charges the uncom-
pensated charges driving the rotation to mark the differences
with the background quasineutral charges. Besides pulsar
magnetospheres, rotating axisymmetric plasmas and the gen-
eral problem of angular momentum conversion and dissipa-
tion with radial electric field, axial magnetic field, wave
helicity, and plasma vorticity have received considerable
attention within the framework of (i) plasma centrifuge for iso-
tope separation,9–14 (ii) nonneutral plasma physics,15,16 (iii)
thermonuclear magnetic confinement studies with homopolar
devices, rotating mirrors, and tokamaks,17–20 and (iv) particle
acceleration and magnetic field generation with plasma bub-
bles and channels.21–23
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If we consider the classical MHD Ohm’s law on an axisym-
metric magnetic surface rotating at velocity v ¼ E" B=B2, such
that E # B ¼ 0, then the current

j ¼ r Eþ v" Bð Þ; (1)

where r is the conductivity,24 cancels. This cancellation of the
linear Ohmic response is exact only if the E cross B drift is uni-
form.25 If the E cross B drift is accelerated, Eq. (1) must be com-
plemented with inertial forces, and as we will demonstrate, a
nonlinear Ohmic response comes into play to ensure G-J charge
relaxation and dissipation.

If we study a conducting fluid of free particles with charge
q and mass m per particle, rather than Eq. (1), we must consider
the relation26

j ¼ r Eþ v" B'm
q

v #rv
! "

: (2)

For electrons in metals, the effects associated with the last term
of the right hand side of Eq. (2) are called excitation of current by
acceleration and Eq. (2) provides the right tool to describe rotat-
ingmetallic conductors.26

For ions and electrons in fully ionized plasmas, these effects
are called inertial effects and Eq. (2) must be revisited with a two
fluid model.25,27 Inertial effects, associated with centrifugal and
Coriolis forces, are usually small, but, as we will demonstrate,
they must be taken into account to describe the collisional
Ohmic short circuiting of the G-J charges both for Brillouin and
Ferraro flows.

Besides inertial effects, finite Larmor radius effects, driving
dissipative diamagnetic flows, and ion-ion collisions, driving vis-
cous momentum transfer,25,27 are also responsible for a small
dissipative current short circuiting the G-J charges. For plasmas
considered in this study, the order of magnitude of these finite
Larmor radius and viscous effects is evaluated and shown to be
typically smaller than that of inertial effects for Brillouin and
quasi-Brillouin flows.

To analyse the impact of the inertial effects, rather than the
one fluid MHD relation Eq. (2), we will use a two fluid model all
along this study. This paper is organized as follows: in Sec. II, we
consider a rigid body, fully ionized, collisional Brillouin flow and
set up the two coupled, fourth order, algebraic equations ful-
filled by the ion and electron vorticities. These equations are
solved for the slow branch of Brillouin rotation modes through
an expansion with respect to collisionality, and a dissipative
nonlinear current is found to provide G-J charge relaxation. The
conductivity is nonlinear and displays a quadratic scaling with
respect to the electric field. The origin of this conduction is
rather intricate as it involves an interplay between Coriolis, cen-
trifugal, and Coulomb friction forces. A step by step physical
analysis of this response is proposed in Sec. IV. In Sec. III, to pre-
pare the study of Sec. IV, we review the basic electrodynamics of
rotating axisymmetric plasmas. We derive the Ferraro isorota-
tion law and some new expressions for the G-J charges.

In Sec. IV, we calculate the conductivity induced by
electron-ion collisions combined with inertial drifts for a fully

ionized discharge fulfilling isorotation in an axisymmetric mag-
netic configuration. Then, in Sec. V, this new result is used (i) to
evaluate the quality factor of energy storage in a rotating plasma
and, in Sec. VI, (ii) to describe and analyse the efficiency of wave
driven rotation.We calculate the efficiency of wave orbital angu-
lar momentum conversion into plasma orbital angular momen-
tum and show that it is independent of the details of the wave
dispersion and the wave-particle resonance. These new results
on the quality factor and the efficiency clearly display the inter-
est of schemes with wave sustainment of plasma rotation which
have been put forward both for isotope separation and magnetic
confinement.13,17,20

The impact of diamagnetic flows is then analyzed in Sec.
VII. This finite Larmor radius effect induces a linear electric con-
duction, and this current is shown to be smaller than the inertial
nonlinear current. Section VII is also devoted to the comparison
between viscous damping, resulting from the coupling between
slow and fast magnetic surfaces, and Ohmic dissipation. The
original results of this study are summarized in Sec. VIII con-
cluding this study.

II. NONLINEAR OHMIC CONDUCTION IN A BRILLOUIN
FLOW

In this section, we set up the two coupled nonlinear alge-
braic equations, Eqs. (17a) and (17b), fulfilled by electrons and
ions vorticities describing a collisional, fully ionized, Brillouin
flow.3,15 Then, we expand the solutions of these equations
with respect to the collision frequency and express the non-
linear conductivity resulting from this expansion. The exten-
sion and confirmation of the final result of this section to a
general axisymmetric flows are considered and analyzed in
Secs. III and IV.

Consider a rotating, cylindrical, fully ionized, uniform, mag-
netized plasma illustrated in Fig. 1 where a set of concentric
polarized electrodes provides a radial voltage drop
(/0 > /1 > /2…) between the various cylindrical magnetic surfa-
ces.We use cylindrical polar coordinates ðr; h; zÞ associated with
the cylindrical polar basis ½er; eh; ez). The magnetic field B is uni-
form and directed along the z axis, and the electric field E is
radial and increases linearly with respect to r

B ¼ Bez; E ¼ E rð Þer: (3)

As r # B ¼ 0, we can introduce the flux function 2pWðrÞ to
describe the magnetic field. As r" E ¼ 0, we can introduce the
electrostatic potential /ðrÞ to describe the electric field. With
these flux and potential functions, the expressions of the fields
become

B ¼ rW" eh

r
; E ¼ 'r/: (4)

Introducing the low frequency permittivity, e? ¼ 1þ x2
pi=x

2
i

* x2
pi=x

2
i ðxpi ¼ nq2=e0mi and xi ¼ qB=mi are the ion plasma

and ion cyclotron frequencies), these flux and potential func-
tions can be expressed as

W ¼ B
r2

2
; / ¼ ' q

e0e?

r2

4
; (5)
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where q is the uniform guiding center charge density such
that r # e?e0E ¼ q. We assume that heating and fuelling sys-
tems, such as waves and pellet injections, complemented by a
particle and power exhaust system, ensure a steady state
complete ionization and a steady state flat density profile.
The small breakdown of quasineutrality q is short circuited by
a collisional current j and is sustained either by wave absorp-
tion or DC radial polarization. For the latter case, a set of
concentric electrodes, illustrated in Fig. 1, provides a voltage
drop (/0 > /1 > /2 > /3) between the various cylindrical
magnetic surfaces as the conductivity along the field lines is
very large.

The collisional depletion of q through j is continuously
compensated by the power supply driving these electrodes, or
through wave induced charge separation, in order to ensure
steady state rotation. In this section, we will demonstrate that j
is directed along E but is not a linear function of E.

In a fully ionized plasma, with electron velocity ve and
ion velocity vi, electron-ion collisions are the source of fric-
tion forces, Fi!e ¼ 'Fe!i, between electrons and ions. At the
single particle level, these dissipative forces can be
expressed as

Fi!e ¼ 'me!e ve ' við Þ; Fe!i ¼ 'mi!i vi ' veð Þ; (6)

where we have introduced !e and !i, the momentum exchange
frequencies between the two populations, according to the clas-
sical definitions

me!e ¼ mi!i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mime

me þmi

r
nq4 logK

6pe02 2pð Þ
1
2 kBTð Þ

3
2

¼ m!; (7)

where q is the electron charge, me and mi are the electron and
ion masses, and the other notations are standard.27 We have

considered a fully ionized hydrogen plasma with a quasineutral
density n such that q+ nq. The temperature T ¼ Te ¼ Ti is uni-
form, and the effectivemass is defined asm ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

mime
p

.

The relation me!e ¼ mi!i describes the fact that the
momentum lost by one population is gained by the other, strictly
speaking that the two friction forces are not dissipative as there
is no entropy production because the macroscopic momentum is
not dispersed into a large number of microscopic degrees of
freedom but transferred, at the macroscopic level, from the
slow population to the fast one if ve 6¼ vi. The steady-state
momentum balance for the electron and ion populations is given
by two Euler fluid equations coupled through these Coulomb
friction terms Fi!e ¼ 'Fe!i.

In this section,we will follow the method used previously to
study the weakly ionized collisional Brillouin flow.28 The inertial
term of Euler’s equations, dv=dt ¼ ðv #rÞv, is expressed through
the classical identity: ðv #rÞv ¼ rv2=2þ ðr" vÞ " v. In writing
Euler’s equations, we explicitly display the axial vorticities Xe=i
associated with a velocity field ve=i and defined as Xe=i
¼ ðr" ve=iÞ # b=2, where b¼B/B. The steady state momentum
balances between centrifugal ðrv2=2Þ and Coriolis ð2Xb" vÞ
inertial forces, on the left hand side of Eqs. (8a) and (8b), and
electric Coulomb forces, magnetic Laplace forces, and electron-
ion friction forces, on the right hand side of Eqs. (8a) and (8b),
which is given by

1
2
rve

2 þ 2Xeb" ve ¼ '
q
me

E' q
me

ve " Bb' !e ve ' við Þ; (8a)

1
2
rvi

2 þ 2Xib" vi ¼
q
mi

Eþ q
mi

vi " Bb' !i vi ' veð Þ: (8b)

We do not consider viscous dissipation because Dve
¼ Dvi ¼ 0 is exactly fulfilled by the rigid body rotation solu-
tions. For a generic rotation considered here, if the tempera-
ture, density, and vorticity distributions are rather flat with
respect to the radial variable, viscosity effects and diamag-
netic responses are pushed toward the boundary of the
plasma and are negligible in the core of the column, and at
this boundary, the matching of the rotation to the wall is
another problem which requires the identification and anal-
ysis of electrical, thermal, and mechanical boundary layers;
this problem is out of the scope of this study. The typical
radial profiles of the various dynamical quantities
(flux, potential, vorticity, etc.) describing this flow are illus-
trated in Fig. 2. Euler’s equations Eqs. (8a) and (8b) can be
rewritten as

ve þ aeve " b ¼ vi '
1

m!
r meve2=2' q/
$ %

; (9a)

vi þ aivi " b ¼ ve '
1

m!
r mivi2=2þ q/
$ %

; (9b)

where we have introduced the electron cyclotron frequency
xe ¼ qB=me and the ion cyclotron frequency xi and defined the
generalized Hall parameters, ae and ai,28 according to the
definitions

!eae ¼ xe ' 2Xe; !iai ¼ 'xi ' 2Xi: (10)

FIG. 1. Fully ionized Brillouin flow driven by a set of concentric electrodes sustain-
ing a radial electric field E; the current path from /1 to /3 is made of two highly
conducting axial field lines (1) and ð3Þ short circuited by the radial nonlinear Ohmic
current j.
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In order to find the rigid body rotation solutions of Eqs. (9a)
and (9b), we take (i) the rotational and then (ii) the divergence of
these two equations. We consider that all the variations of the
ve=i and / fields are radial so that r" ðv" bÞ ¼ 'ðr # vÞb and
r # ðv" bÞ ¼ ðr" vÞ # b. With the help of these relations, we
obtain

2Xe ' aer # ve ¼ 2Xi; 2Xi ' air # vi ¼ 2Xe; (11)

by taking the rotational of Eqs. (9a) and (9b). Then, taking the
divergence of Eqs. (9a) and (9b) leads to the equations fulfilled by
the vorticities Xe=i

Xe ' Xið Þ 1
ae
þ 1

ai

! "
þ aeXe ¼ '

1
2m!

D meve2=2' q/
$ %

; (12a)

Xi ' Xeð Þ 1
ae
þ 1

ai

! "
þ aiXi ¼ '

1
2m!

D mivi2=2þ q/
$ %

: (12b)

Under the rigid body rotation hypothesis,28 the azi-
muthal velocities of ions and electrons are given by vhe ¼ Xer
and vhi ¼ Xir, and the relations Eq. (11) give the following
radial components after integration: vre ¼ ðXe ' XiÞr=ae
and vri ¼ ðXi ' XeÞr=ai. Note that Dve ¼ Dvi ¼ 0 is exactly
fulfilled. This allows us to express the radial current j
¼ nqðvri ' vreÞ as

j ¼ nq Xi ' Xeð Þ 1
ai
þ 1

ae

! "
rer: (13)

On the basis of these components, the electron and ion terms
associated with the centrifugal force, Dv2 ¼ Dðv2r þ v2hÞ, can be
expressed as

Dve2

4
¼ Xe

2 þ Xe ' Xið Þ2

a2e
;

Dvi2

4
¼ Xi

2 þ Xi ' Xeð Þ2

a2i
: (14)

The final relations fulfilled by the vorticities Xe=i as a function of
the electric potential drive/ are thus given by

Xe ' Xið Þ 1
ae
þ 1

ai

! "
þ aeXe þ

me

m!
Xe

2 þ Xe ' Xið Þ2

a2e

" #

¼ q
2m!

D/ (15a)

and

Xi ' Xeð Þ 1
ae
þ 1

ai

! "
þ aiXi þ

mi

m!
Xi

2 þ Xi ' Xeð Þ2

a2i

" #

¼ ' q
2m!

D/: (15b)

Xi=e are the two unknowns of these two equations, and the right
hand side of these relations, D/, must be independent of the
radial position in order to find rigid body rotation solutions to
this set of algebraic equations Eqs. (15a) and (15b). This can be
achieved if we consider a small uniform space charge
q ¼ qðni ' neÞ ðni ' ne + nÞ. This uniform space charge is the
source of a linear electric field E and a parabolic potential / with
respect to r illustrated in Fig. 2.

We define the E cross B angular velocity X ¼ E/Br and the
frequencyxE according to the definition

xE
2

xixe
¼ mE

qB2r
¼ mX

qB
+ 1; (16)

such that Poisson’s equation becomes D/ ¼ '2xE
2m=q. With

this definition of xE, we have to solve a set of two coupled fourth
order algebraic equations, Eqs. (17a) and (17b), with two
unknowns, the vorticities Xi=e

Xe ' Xið Þ a'1e þ a'1i

& '
þ aeXe þ

me

m!
Xe

2 þ a'2e Xe ' Xið Þ2
h i

þ xE
2

!
¼ 0; (17a)

Xi ' Xeð Þ a'1e þ a'1i

& '
þ aiXi þ

mi

m!
Xi

2 þ a'2i Xi ' Xeð Þ2
h i

' xE
2

!
¼ 0: (17b)

The solutions of this system of two algebraic equations describe
the various branches of collisional rigid body rotation in a
fully ionized collisional plasma. The solutions of Eqs. (17a) and
(17b), completed with relation Eq. (13), provide the exact expres-
sion of the Ohmic current short circuiting the G-J charge q.

Rather than an exact solution of the fourth order coupled
equations [Eqs. (17a) and (17b)], we seek an approximate expres-
sion of the current based on a small collisionality expansion of
the solution whichmatches the Brillouin slowmode when ! ! 0.
The ordering between the various time scales involved in these
equations is !i + ! + !e + Xi , Xe , X+ xi + xe; thus, we
consider two small parameters: m!=qB ¼ !i=xi ¼ !e=xe + 1 and
mX=qB ¼ X=

ffiffiffiffiffiffiffiffiffiffiffi
xexi
p + 1.We will solve Eqs. (17a) and (17b) through

an expansionwith respect to these two small parameters.

The zero order solution is simply the E cross B flow without
inertial and collisional effects. The first order slow Brillouin solu-
tions are the sum of this azimuthal E cross B drift plus the first
inertial drift corrections

FIG. 2. Electric potential /, magnetic flux W, vorticity X, charge density q, and
current j profiles for a Brillouin flow.
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Xe

xe
¼ ' xE

2

xe
ffiffiffiffiffiffiffiffiffiffiffi
xixe
p ' xE

4

xe3xi
þO

mX
qB

! "3

þO
m!
qB

! "
; (18a)

Xi

xi
¼ ' xE

2

xi
ffiffiffiffiffiffiffiffiffiffiffi
xixe
p þ xE

4

xi3xe
þO

mX
qB

! "3

þO
m!
qB

! "
: (18b)

We can plug the expression of Xi ' Xe in Eqs. (17a) and (17b) to
get the next order and so on, but this level of expansion is suffi-
cient to analyze the nonlinear Ohmic current Eq. (13) as

1
ae
þ 1

ai
¼ 2

m!
qB

Xe

xe
þ Xi

xi

! "
1þO

mX
qB

! "2
" #

: (19)

Using the relations Eqs. (18a), (18b), and (19) and the expres-
sion Eq. (13), the first order electric current j, with respect to an
mX=qB+ 1 andm!=qB+ 1 expansion, is given by

j

2nq
¼ !

ffiffiffiffiffiffiffiffiffiffiffi
xixe
p

xE
4

xi3xe
Xirer ¼

!iX
2

xi3
E

B
: (20)

As X , E, this Ohmic current j is a cubic function of the electric
field E, and its origin, analyzed in Sec. IV, is to be traced back to
an interplay between Coriolis, centrifugal, and Coulomb frictions
forces. The current Eq. (20) scales as B'6 with respect to the
magnetic field strength, and this scaling explains the high effi-
ciency of rotation generation in confined plasmas identified and
analyzed within the context of wave driven magneto-electric
confinement studies.20

To summarize this section, the weak dissipative current j,
expressed by Eq. (20), continuously short circuits the G-J
charges q between field lines. To evaluate this space charge q
and validate the ordering q+ nq, we apply Gauss theorem to
this cylindrical configuration, q=e0e? ¼ 2E=r, to get the
expression

ni ' ne

ni þ ne
¼ q

2nq
¼ e0e?XB

nq
¼ X

xi
+ 1; (21)

which is coherent with the fact that we consider the slow
branch (X+ xi) of the two fast and slow Brillouin rotation
modes.3,15

Note the Maxwell time sM associated with the resistive
decay of the uncompensated free charges q is no longer given
by the classical expression sM , jq=r # jj , !e=x2

p but is given by
the ratio: sM , jq=r # jj , x2

i =X
2!i. Thus, (i) along the field lines,

the relaxation time of free charges scales as !e, and (ii) across
the field lines as ðxi=XÞ2=!i, this is also the classical behavior, !e
versus 1/!i, of both mobility and diffusion (i) along and (ii) across
the magnetic field. A complete analysis of the dynamics of the
G-J charge relaxation will be presented in Secs. V and VI where
the quality factor of angular momentum storage and the effi-
ciency of angular momentum generation will give two practical
characterizations of this relaxation besides theMaxwell time.

Although the occurrence of dissipative inertial effects of
the type Eq. (2) in accelerated flows is described in the litera-
ture,25–27 the analysis and expansion of the inertial term dv=dt
¼ ðv #rÞv with a rotating two fluid model leading to the general
nonlinear conductivity Eq. (20) did not appear in the literature.

The relaxation of a fully ionized collisional Brillouin flow did not
attract much attention, and the exact solution of the weakly ion-
ized collisional Brillouin flow appears only recently in the litera-
ture.28 Equation (20) is therefore one of the new results of this
study. Finally, while Eq. (20) has been derived assuming rigid
body rotation and cylindrical geometry, we will expose in Sec. IV
that this result can be recovered and generalized in the more
general case of an axisymmetric rotating flow fulfilling Ferraro
isorotation. As it will be shown, the only difference between Eq.
(20) and the generic case is a geometrical factor associated with
the radial profile of the magnetic flux function.

III. ISOROTATION OF AN AXISYMMETRIC PLASMA
In order to set the frame for a generalization of the expres-

sion of the nonlinear Ohmic current Eq. (20), we consider a fully
ionized, steady state, axisymmetric, plasma depicted in Fig. 3.
We use cylindrical polar coordinates ðr; h; zÞ associated with the
cylindrical polar basis ½er; eh; ez). The structure of this general
axisymmetric configuration around the z axis is described by the
electric field E andmagnetic field B

B r; zð Þ ¼ Brer þ Bzez ;E r; zð Þ ¼ Erer þ Ezez: (22)

We introduce the magnetic flux function 2pWðr; zÞ and the elec-
trostatic potential /ðr; zÞ to describe these magnetic and elec-
tric fields. With these flux and potential functions, the
expressions of these fields become

B r; zð Þ ¼ rW" eh

r
;E r; zð Þ ¼ 'r/: (23)

Because of the very large conductivity along the field lines,
E # B ¼ 0, and the electric field is everywhere perpendicular to
the magnetic field. Magnetic surfaces Wðr; zÞ ¼ Cte are therefore
equipotential surfaces /ðr; zÞ ¼ Cte. As a result, / is determined
by the magnetic flux W : /ðr; zÞ ¼ /ðWÞ. When we will consider
diamagnetic flow,we will also assume that the pressure gradient
is perpendicular to the magnetic surfaces, i.e., Wðr; zÞ are iso-
baric and isopotential surfaces.

FIG. 3. Rotating axisymmetric magnetized plasma: R is the radius of curvature, /
is the electric potential, W is the magnetic flux, and XðWÞ is the angular velocity;
ðW; h; sÞ or ð/; h; sÞ provides a set of generalized coordinates.
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Both electrons and ions rotate around the z axis with an E
cross B velocity v defining the angular velocity Xðr; zÞ

v r; zð Þ ¼
E" B

B2 ¼ X r; zð Þreh: (24)

We introduce s the curvilinear abscissa along each field line
such that ðW; h; sÞ provide a set of coordinates illustrated in
Fig. 3. Let us call du the small perpendicular distance between
two neighbouring magnetic surfaces. According to Fig. 3, the
conservation of magnetic flux can be written as B2prdu ¼ 2pdW,
and the relation between the electric field and potential is Edu
¼ 'd/. The elimination of du between these two relations leads
to the Ferraro isorotation law

X Wð Þ ¼ d/
dW

: (25)

Eachmagnetic surface can be viewed as an equipotential surface
rotating uniformly and the full configuration as a set of nested
magnetic surfaces rotating around the z axis.4

We assume that the temperature difference DT ¼ T1 ' T2

between two magnetic surfaces W1 and W2 is smaller than the
voltage drop D/ ¼ /1 ' /2 between these two surfaces accord-
ing to the ordering as follows: kBDT+ qD/. Thus, the pressure
force can be neglected in front of the electric force as
jrnkBTj+ nqjr/j. This strong ordering is fulfilled by the fast
rotating discharges of interest for thermonuclear fusion and
allows us to study separately inertial effects and finite Larmor
radius effects. For the weak ordering, jrnkBTj , nqjr/j, the
pressure profiles PðWÞ and /ðWÞ provide a set of given data to
solve a Grad-Shafranov equation for Wðr; zÞ similar to the pro-
files PðWÞ and IðWÞ for the classical Grad-Shafranov equation.
This analysis of the mechanical/electrical MHD equilibrium is
far beyond the scope of this study which is only devoted to the
analysis of Ohmic dissipation for a given configuration Wðr; zÞ
and /ðWÞ.

Before analyzing the collisional nonlinear short circuiting of
the G-J charges q, we will demonstrate that they are completely
determined by the magnetic flux Wðr; zÞ and the electric poten-
tial /ðWÞ. In the historical papers on the pulsar magnetosphere,
the G-J charges were usually derived starting from Ampère and
Poisson equations associated with W and /.7,8 Here, we will
introduce the radius of curvature of the field lines,
R'1 ¼ jdb=dsj, to get new simple expressions. Let us call RðW; sÞ
the radius of curvature of a field line and u the angle along the
osculating circle. Consider, in Fig. 3, a small grey box
ðdu;Rdu; 2prÞ between two magnetic surfaces: du is along E,
Rdu along B, and 2pr along eh. We use the Gauss theorem,
ðEþ dEÞðRþ dRÞdu' ERdu ¼ qRdudu=e0e?, and the relation
between the electric field and potential, Edu ¼ 'd/, to express
the guiding center charge density q as

q
e0
¼ ' c2

VA2
E

XR
@RE
@W

; (26)

where VA is the Alfv!en’s velocity and c is the velocity of light.
Consider, in Fig. 3, a small closed loop ð6du;6RduÞ along two
field lines and between two magnetic surfaces, du along E, and

Rdu along B. Ampère’s theorem can be written as
BRdu' ðBþ dBÞðRþ dRÞdu ¼ 'l0RduduqE=B, where we have
neglected the diamagnetic currents in front of the E cross B
convection current. The guiding center charge density q is thus
given as a function of the magnetic field as

q
e0
¼ 'c2 B

XR
@RB
@W

: (27)

Note that R¼1 for the Brillouin flow.

To summarize this brief presentation of a generic axi-
symmetric rotating plasma, the magnetic field is structured
by magnetic surfaces Wðr; zÞ such that BðW; sÞ ¼ rW" eh=r,
the electric field EðW; sÞ ¼ 'XðWÞrW is everywhere perpen-
dicular to the magnetic field, and the plasma flow fulfils the
Ferraro isorotation law vðW; sÞ ¼ XðWÞreh. For this classical
flow, as the velocities of electrons and ions are equal, there is
no Coulomb friction between electrons and ions and thus no
Ohmic collisional dissipation of this equilibrium described by
the two given functions ½Wðr; zÞ; /ðWÞ) or equivalently by
½Wðr; zÞ; XðWÞ).

IV. NONLINEAR OHMIC CONDUCTION IN A FERRARO
FLOW

In this section, we consider the two fluid model, but we
adopt a Lagrangian point of view, different from the Eulerian
point of view used in Sec. II. Moreover, taking advantage of the
Ferraro isorotation law Eq. (25), we consider the dynamics on a
magnetic surface W in the frame corotating at the angular veloc-
ity XðWÞ, different from the laboratory frame point of view used
in Sec. II.

In this (co)rotating frame, the electron and ion velocities
are ve and vi, the electric field cancels everywhere on the W
magnetic surface, but we have to take into account the Coriolis
and centrifugal forces to write down that electron and ion
forces balance

meX2rer þ 2meve " Xez ' qve " Bb ¼ me!e ve ' við Þ; (28a)

miX
2rer þ 2mivi " Xez þ qvi " Bb ¼ mi!i vi ' veð Þ; (28b)

where the local unit vector b ¼ B=B is given by

Brb r; zð Þ ¼
@W
@r

ez '
@W
@z

er: (29)

The first terms on the left hand side of Eqs. (28a) and (28b) are
the centrifugal and Coriolis forces and the terms on the right
hand side describe collisional friction. In these equations, we do
not consider the pressure gradient across the magnetic surfaces
as we assumed in Sec. III that it is smaller than the electric force.
Along the magnetic field line, the dynamics of electrons and ions
is controlled by the parallel component of the centrifugal force
and the diamagnetic and parallel friction forces. This parallel
dynamics does not interfere with the perpendicular one and is
regulated by an ambipolar field and a pressure gradient. These
components are hence not included here in the analysis of the
perpendicular dynamics. Introducing the cyclotron frequencies,
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we have to solve the following set of equations for the velocities
ve and vi on the flux surface W in the frame rotating at angular
velocity XðWÞ

2ve "
X
!e

ez ' ve "
xe

!e
b' ve þ vi ¼ '

X2

!e
rer; (30a)

2vi "
X
!i

ez þ vi "
xi

!i
b' vi þ ve ¼ '

X2

!i
rer; (30b)

under the strong ordering: !i + ! + !e + X+ xi + xe;
ve , vi + Xr. Note that in the lab frame,
!i + ! + !e + X+ xi + xe, but ve , vi , Xr. Following the
ordering, the ion dynamics Eq. (30a) is dominated by the balance
between the magnetic Laplace force and the inertial centrifugal
force: X2rer ¼ 'xivi " b. The last equation is solved as a guiding
center centrifugal force drift

vi ¼ '
X2

xi
rb" er: (31)

Equation (31) describes an ion collisionless azimuthal
cross-field flow driven by the centrifugal force. The same
azimuthal collisionless flow for the electrons is smaller by an
me=mi mass ratio factor. Then, we have to consider the
Coulomb collisions and the friction force of the ions with
azimuthal velocities vi with the electrons with azimuthal
velocities ve ¼ mevi=mi. This collisional coupling is the
source of an azimuthal force Fi on the ions and Feð¼ 'FiÞ on
the electrons

Fi ¼ 'mi!ivi ¼ mi!i
X2

xi
rb" er: (32)

These azimuthal friction forces are the source of a cross-field
ion flow Vi and a cross-field electron flow Veð¼ ViÞ; thus, no net
electric current is observed at this level of analysis

Vi ¼
Fi " B

qB2 ¼
!iX

2

x2
i
r b" erð Þ " b: (33)

Now, we take into account the Coriolis force, which has
been neglected until now according to the ordering. The two
small collisional flows Ve and Vi are responsible for small azi-
muthal Coriolis forces f i and feð+ f iÞ

f i ¼ 2miVi " Xez ¼ 2miX!i
X2

xi2
r b" erð Þ " b½ ) " ez: (34)

This Coriolis/collisional force drives a cross-field ion flow wi
and a cross-field electron flow weð+ wiÞ

wi ¼
f i " B

qB2 ¼ 2!i
X3

xi3
r b" erð Þ " b½ ) " ezð Þ " b: (35)

The direction of this flow is along the electric field, and it is pro-
portional to the momentum exchange frequency

b" erð Þ " b½ ) " ezð Þ " b ¼ 1
rB
@W
@r

E

E
" ez

! "
" b

¼ 1
r2B2

@W
@r

! "2
E

E
: (36)

The associated electric current j ¼ nqwi is the nonlinear Ohmic
current providing G-J charge relaxation. Its final expression is
given by

j

2nq
¼ !i

E2B
X4

xi3
@W
@r

! "2

E ¼ !iX
2

xi3
E2
r

E2
E

B
; (37)

where we have used the Ferraro isorotation law Eq. (25) to
express the right hand side of this relation.

Moving back to the laboratory frame does not change this
expression of the radial Ohmic current Eq. (37) which is one of
the main new results of this study. For a Brillouin flow Er ¼ E, we
recover exactly the result Eq. (20) obtained at the end of Sec. II
through a careful expansion of the solutions of the exact fourth
order coupled equations fulfilled by the vorticities in the labora-
tory frame. As X , E, the conductivity scales as E2 and is clearly
nonlinear.

To compare this new result j ¼ rNLE described by Eq. (37)
with the usual picture on Ohmic dissipation, we introduce the
classical Braginsky expression for the electric conductivity per-
pendicular to the magnetic field,29 rB ¼ nq2!e=mexe

2, to get the
scaling and ordering

rNL

rB
¼ 2

X
xiB

! "2 1
r
@W
@r

! "2

, X
xi

! "2

+ 1: (38)

To summarize Secs. III and IV, we have demonstrated that a
small breakdown of quasineutrality described by the G-J charges
Eq. (26) leads to a (iso)rotation of the axisymmetric plasma and
that these charges are short circuited by a nonlinear Ohmic cur-
rent Eq. (37) resulting from an interplay between (i) Coriolis, (ii)
centrifugal, and (iii) Coulomb friction forces. To complete this
description of charges, we have also identified through Eq. (33)
an outward ambipolar particle flow nVi þ nVe, perpendicular to
the magnetic surfaces such that the associated mass flow J is
given by

J

nmi
¼ !i

X2

xi2
r b" erð Þ " b ¼ s6

!iX
xi2

Bz

B
E

B
; (39)

where s6 is the sign of 'ðX # ezÞðE # erÞðB # ezÞ. Note that for the
Brillouin flow, the expression ðb" erÞ " b ¼ er clearly shows that
this ambipolar mass flux is radially outward. Moving back to the
laboratory frame does not change the expression of this colli-
sional radial ambipolar flow Eq. (39).

V. QUALITY FACTOR OF ANGULAR MOMENTUM
STORAGE

As depicted in Fig. 3, axisymmetric plasma rotation can be
sustained through the polarization of each magnetic surface W
with a system of concentric conductive electrodes intercepting
the magnetic field lines at the left and right edges of the plasma.
A voltage generator is used to sustain a voltage drop D/ in
between the magnetic surfaces W and Wþ DW, resulting in a
plasma rotation X ¼ D/=DW of these surfaces according to the
Ferraro isorotation law Eq. (25).

This voltage drop D/ is short circuited by the inertial
Ohmic current Eq. (37), and a steady state active power
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consumption takes place to sustain the rotation. The reactive
power is associated with energy storage during the initial tran-
sient buildup of the polarization and rotation. The rotating
plasma discharge can be viewed either as an electrostatic
energy storage or as a kinetic energy storage, with total energy
UX given by

UX ¼
ð ð ð

q/
2

ds ¼
ð ð ð

e?e0
E2

2
ds

¼
ð ð ð

nmi
X2r2

2
ds; (40)

where ds is the volume element and the integrations run over
the volume of the plasma. Note that Xr ¼ E=B and e? ¼ xpi

2=xi
2

lead directly to the last identity of Eq. (40).

This global energy content UX is dissipated through
electron-ion collisions. If the power and control systems are
switched off, rotation slows down and the density decays
because (i) on each magnetic surface, the angular momentum
around z is continuously destroyed by the resistive Ohmic tor-
que associated with the force j" B, Eq. (37), and (ii) energy leaks
out of the magnetic surface through the outward convection of
energy associated with the ambipolar mass flow J, Eq. (39).

At a given point r, the decay of the density of kinetic energy
is the sum of two terms: (i) the resistive work of the density of
force j" B and (ii) the convective ambipolar mass flux described
by J

@

@t
n
mi

2
X2r2

! "
¼ nmiX

@X
@t

r2 þ @n
@t

mi

2
X2r2: (41)

The decay of the angular velocity @X=@t is due to the dissipative
work of the torque r" ðj" BÞ, and the decay of the density
mi@n=@t ¼ 'r # J is due to the ambipolar mass flux J

nmiX
@X
@t

r2 ¼ 'r" j" Bð Þ #X; (42a)

mi

2
@n
@t

X2r2 ¼ 'X2r2

2
r # J: (42b)

The rate of collisional energy dissipation dUX=dt is thus given as
a function of j and J, Eqs. (37) and (39), by

dUX

dt
¼ '

ð ð ð
r" j" Bð Þ #Xþ

X2r2

2
r # J

) *
ds; (43)

where integration runs over the volume of the plasma. In this
section, to establish the expression of the quality factor, we will
use the Brillouin flow approximation @W=@r ¼ rBz * rB or
@W=@r ¼ Er=X * E=X so that the expressions of the collisional
electric current flow Eq. (37) and the collisional ambipolar parti-
cle flow Eq. (39) become

j ¼ 2nq
!iX

2

xi3
E

B
; (44a)

J ¼ nmi
!iX
xi2

E
B

er: (44b)

Note that r # J ¼ 2nmi!iX2=xi
2 and r # j ¼ 4nq!iX3=xi

3 are
independent of the radius r. The generalization of the results

obtained in this section to a generic Ferraro flow requires the
inclusion of @W=@r and @W=@z factors associated with the full
expressions given by Eqs. (37) and (39). With these simple
expressions, the power of the resistive torque and the energy
convection by the ambipolar mass flow are given by

r" j" Bð Þ #X ¼ 2qn!i
X4B
xi3

r2; (45a)

X2r2

2
r # J ¼ qn!i

X4B
xi3

r2: (45b)

Thus, one third of the energy decay is due to the collisional
particles losses and two thirds due to the nonlinear Ohmic con-
ductivity. The ratio of the energy decay during one turn
'ðdUX=dtÞð2p=XÞ to the stored energy UX defines the quality
factor Q of this energy storage system

1
Q
¼ ' 2pdUX=dt

XUX
¼ 12p

ð ð ð
q!iX4Bx'3i r2ds

X
ð ð ð

miX
2r2ds

¼ 12p
!iX
xi2

: (46)

The time scale for collisional relaxation is not 1=!i but far longer
by a factor ðxi=XÞ2 already identified for the evaluation of the
Maxwell time at the end of Sec. II.

Rather than using the resistive torque r" ðj" BÞ Eq. (45a)
to evaluate the power of the Ohmic current Eq. (37) short cir-
cuiting the G-J charges, we can consider the rate of resistive
charge depletion @q=@t given by @q=@t ¼ 'r # j. This Ohmic
charge decay is then used to express the power

'
ð ð ð

/
@q
@t

ds ¼
ð ð ð

2nq!i
X4

xi3
Br2ds; (47)

where the electrostatic potential is / ¼ 'Er=2 ¼ 'BXr2=2. We
recover Eq. (45a) which confirms that, as expected, the electrical
andmechanical power balances give the very same result.

VI. EFFICIENCY OF RF ANGULAR MOMENTUM
GENERATION

Section V was devoted to the study of the free decay of a
rotating plasma column after all the sustaining and control sys-
tems have been switched off.

In this section, we consider instead a situation where the
plasma column is sustained in steady state rotation (i) by an RF
wave system, providing angular momentum injection, and (ii) by
a pellet, or a gas puffing, system providing particle fuelling to
maintain a steady state density profile. We thus assume that
there is a source of particles on each magnetic surface SðWÞ
such that @n=@t ¼ 0.When an ion at rest appears on the surface
W from neutral ionization, it starts to rotate at the velocity
rXðWÞ ¼ E=B and compensates the collisional ambipolar deple-
tion associated with J given in Eq. (39).

Instead of polarizing end plate electrodes with a voltage
generator, the angular momentum of the axisymmetric dis-
charge depicted in Fig. 3 can be sustained using RF waves carry-
ing angular momentum. To ensure continuous angular
momentum input, resonant and dispersive conditions for these
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waves to propagate and be absorbed within the plasma can be
identified.

To simplify the analysis, we limit ourselves here to the
Brillouin flow approximation @W=@r ¼ rBz * rB or
@W=@r ¼ Er=X * E=X. Note although that the generalization of
the results to a generic Ferraro flow simply requires including
the @W=@r and @W=@z factors. The resistive torque r" ðj" BÞ
slows down rotation, while the absorption of angular momen-
tum from the wave spins up rotation. If we call dL/dt the rate of
wave angular momentum absorption per particle, the angular
momentum balance between absorption and dissipation is
given by

dL
dt
¼ r" j" B

n
# ez ¼ 2q!i

X3B
xi3

r2: (48)

When a wave is absorbed by a plasma, (i) energy, (ii) linear
momentum, and (iii) angular momentum are transferred from the
wave to the particles. Consider (i) a cylindrical wave,
fðrÞsin ðlh' xtÞ, with azimuthal mode number l and frequency
x=2p, and (ii) an ion at radial position rwith energy E and guiding
center orbital angular momentum L ¼ miXr2 with respect to the
z axis. Each time a quantum of energy dE ¼ "hx is absorbed by this
ion, a quantum of angular momentum dL ¼ "hl is also absorbed.
This angular momentum gain is then dissipated as a result of the
collisional torque C Eq. (45a). We call wlx the steady state power,
per particle, needed to sustain the angular momentum L

wlx ¼
dE
dt
¼ x

l
dL
dt
¼ x

l
C ¼ 2q!i

xX3B
lxi3

r2; (49)

where we have balanced the wave driven angular dL/dtmomen-
tum gain by the nonlinear Ohmic loss Eq. (45a). Starting from
this single particle power absorptionwlx, the efficiency of angu-
lar momentum generation can be easily expressed.

Before expressing this efficiency, we will recover this result
Eq. (49) with the full picture of the Hamiltonian dynamics along
the lines used in the recent studies on wave driven rotational
transform and transport driven current generation in centrally
fuelled discharges.20,30

Consider an electromagnetic wave displaying orbital angu-
lar momentum around z and linear momentum along z, that is to
say, with typical space-time periodicity of the type
fðrÞsin ðlhþ kjjz' xtÞ, where l is the azimuthal mode number
and kjj is the parallel wave vector. Near a given point r, this cylin-
drical wave can be viewed locally as a plane wave sin ðk?x
þ kjjz' xtÞ where ðx; y; zÞ is a local set of Cartesian coordinates
centered on r such that y is directed along er, x is directed along
eh, and k? ¼ l=r is the local perpendicular wave vector. When
this electromagnetic wave propagates and is absorbed in a
rotating plasma, a certain amount of (i) energy, (ii) linear
momentum along the z axis, and (iii) angular momentum around
the z axis are exchanged between the wave and the particles.

The energy E, the parallel momentum mvjj along z, and the
cyclotron velocity vc around B of resonant particles are changed
through the wave interaction, and also, the guiding center posi-
tions yg across B as part of the momentum are no longer free

but bound to the static magnetic field through the invariance of
the canonical momentum along y.20,31,32 This variation of the
guiding center positions yg drives a radial charge separation
between magnetic surfaces and provides orbital angular
momentum deposition (rotation around z) inside the magne-
tized plasma column in addition to energy (heating) and linear
momentum (current generation along z) depositions.33,34

This picture of the resonant wave-particle interaction has
already been presented in previous studies, both for plane waves
and for cylindrical waves.20,30–32 It has been demonstrated, on
the basis of Hamilton’s equations, that the increments of the
various dynamical variables E; vjj, vc, and yg are not independent
but fulfill

dyg
dE
¼ k?

mixix
;

dvc
dE
¼ xi

mivcx
;

dvjj
dE
¼

kjj
mix

: (50)

During a small time dt, the steady state power transferred from
the wave to the particle is simply dE ¼ wlxdt, and for continuous
absorption, this power induces a radial particle velocity

dr
dt
¼

dyg
dE

@E
@t
¼ l

qBxr
wlx; (51)

where we have used the relationship between global cylindri-
cal and local plane waves k? ¼ l=r. This wave induced radial
current is continuously short circuited by the collisional
velocity wi given by Eq. (35). At a radius r, the power needed
to sustain the RF driven G-J charge separation against colli-
sional relaxation is locally given by the balance wi ¼ erdr=dt
between Eqs. (35) and (51)

2!i
X2E
xi3B

¼ lwlx

qBxr
: (52)

Thus, as X ¼ E/Br, we recover is the result Eq. (49) obtained on
the basis of a simple quantum transition argument.

These results aremore conveniently presented if we consider
the total power Wlx needed to sustain the full plasma column
rotation. This global power is proportional to the energyUX stored
in the rotation, and this relation can be expressed by the efficiency

Wlx

UX
¼

2
ð
nwlx2prdr

ð
nmiX

2r22prdr
¼ 4x

l
X!i
xi2

: (53)

Equation (53) is one of the main new results of this paper. It
expresses the efficiency of angular momentum generationwhen
the wave ðx; lÞ sustains a rigid body rotation X in a magnetized
fully ionized plasma ð!i;xiÞ. It is to be noted that the electron-
ion collision frequency must be replaced by an effective decor-
relation frequency if dissipation and transport are dominated by
the turbulent activity of the plasma. In this turbulent regime,
more power is needed to sustain rotation compared to the colli-
sional regime.

According to Eq. (49), to sustain a rigid body rotation in a
uniform plasma, the power deposition profile wlxðrÞ must be
quadratic with respect to the radius r. To sustain a rigid body
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rotation in an axisymmetric configuration such as the one
depicted in Fig. 3, the power deposition profile wlxðWÞmust fol-
low the scaling of the ratio !ir2Bz

2=B2 as a function ofW.

Note that this analysis of the angular momentum genera-
tion process is simpler than the wave driven current generation
because the relaxation does not involve a kinetic description of
the resonant particles.33,34 Here, the short circuiting of the wave
driven charge separation is ensured by a bulk inertial ionic cur-
rent Eq. (37) even if the wave power is absorbed by a minority
population.

Equation (53) is a new universal result independent of the
particular wave branch and wave-particle resonance. The rela-
tion Eq. (53) indicates that low frequency waves with a high azi-
muthal number are more efficient to drive rotation through
orbital angular momentum deposition.

VII. FINITE LARMOR RADIUS AND ION-ION
DISSIPATIONS

Up to this point, we assumed that the temperature differ-
ence kBDT between two magnetic surfaces W1 and W2 is smaller
than the voltage drop qD/ between these two surfaces, and
thus, the pressure force can be neglected in front of the electric
force as jrnkBTj+ nqjr/j. This ordering is fulfilled by the fast
rotating discharges of interest for thermonuclear fusion and
allows us to study separately inertial effects and finite Larmor
radius diamagnetic effects which are smaller. Besides diamag-
netic effects, ion-ion Coulomb collisions drive a friction force
such that an additional dissipation takes place if dX=dW 6¼ 0 as
the fast magnetic surfaces will transfer angular momentum to
the slow ones through ion-ion friction. This effect can be mini-
mized down to a very small value since a well-shaped power
deposition profile wlxðWÞ can be identified from the relation Eq.
(49) in order to ensure that dX=dW ¼ d2/=dW2 , 0.

In this section, we set up the frame to identify the basic
scaling and ordering of thermal and viscous effects providing
collisional relaxations of G-J charges. A deeper analysis of the
impact of these finite Larmor radius effects and ion-ion collision
effects is left to a future work.

Consider a fully ionized axisymmetric plasma such that the
ion pressure is equal to the electron one everywhere and the
total pressure is PðWÞ. The ion and electron diamagnetic veloci-
ties, v-i and v-e , are azimuthal, and they flow in opposite direc-
tions v-i ð¼ 'v-eÞ can be expressed as

v-i ¼ b" rW
2nqB

dP
dW

: (54)

The collisional friction between the electron and ion flows is the
source of an azimuthal force F-i on the ions and F-eð¼ 'F-i Þ on
the electrons

F-i ¼ '2mi!iv
-
i ¼ '

!i
xi

dP
dW

b"rW
n

: (55)

The factor 2 comes from the relation v-i ' v-e ¼ 2v-i . These azi-
muthal friction forces are the source of a cross-field ion flow V-i
and a cross-field electron flow V-eð¼ V-i Þ

V-i ¼
F-i " B

qB2 ¼ !i
nqBxi

dP
dW

b" b"rWð Þ: (56)

Now, we consider the Coriolis force in the (co)rotating
frame. The two small collisional flows V-e and V-i Eq. (56) are
responsible for small azimuthal Coriolis forces f-i and f-eð+ f-i Þ

f-i ¼ 2miXV-i " ez ¼ 2
!iX
nxi2

dP
dW

b" b"rWð Þ½ ) " ez: (57)

This Coriolis collisional force drives a cross-field ion flow and a
smaller cross-field electron flow. The current associated with
these flows is

j- ¼ n
f-i " b

B
¼ 2

!iX
Bxi2

dP
dW

b" b"rWð Þ½ ) " ezð Þ " b: (58)

The direction of this flow is along the electric field as

b" b"rWð Þ½ ) " ezð Þ " b ¼ ' @W
@r

E

E
; (59)

and its amplitude is proportional to the momentum exchange
frequency. The final diamagnetic current providing G-J charge
relaxation is thus given by

j- ¼ 2!i
X

xi2B
j @P
@r
jE
E
: (60)

The associated conduction is linear, and the conductivity,
independent of the electric field, displays a fourth power scaling
with respect to the magnetic field. The finite Larmor radius lin-
ear conductivity associated with Eq. (60) is smaller than the non-
linear inertial one described by Eq. (37) since

j
j-
¼ nq

E
X3

xi

@W
@r

! "2

=
@P
@r
, X

xi

r
qi

! "2

: (61)

For a small Larmor radius and significant angular velocity,
which is the regime needed for isotope separation, Ohmic dissi-
pation is thus larger than collisional/diamagnetic dissipation. It
is to be noted that the parameter Xr=xiqi is theMach numberM
which is an important control parameter when the thermal
energy content of the plasma becomes of the order of the
mechanical energy contents Eq. (40). Besides this small diamag-
netic effect, ion-ion collisions offer also a possibility to relax the
G-J charges. If we assume that the ion viscosity is given by the
Braginsky relation,27,29 then the viscous ion-ion friction force
per particle is

Fi!i ¼
3kBT
10

ffiffiffi
2
p !

xi2
Dvi: (62)

This force cancels for the Brillouin flow, but for a Ferraro flow
on each magnetic surface, the isorotation law Xðr; zÞ ¼ XðWÞ is
fulfilled, and if dX=dW 6¼ 0, the fast magnetic surfaces accelerate
the slow ones and the slow magnetic surfaces slow down the
fast ones through ion-ion momentum transfer Fi!i. The azi-
muthal component of the force Fi!i describing this momentum
exchange is given by the classical expression for the azimuthal
viscous stress component

eh # Fi!i ¼
3kBT
10

ffiffiffi
2
p !

xi2
1
r2
@

@r
r3
@X
@r
þ r

@2X
@z2

! "
; (63)

Physics of Plasmas ARTICLE scitation.org/journal/php

Phys. Plasmas 26, 012303 (2019); doi: 10.1063/1.5064520 26, 012303-10

Published under license by AIP Publishing

https://scitation.org/journal/php


where we have assumed flat density and temperature profiles.
The azimuthal component of the viscous force drives a cross-
field flow Fi!i " B=qB2 which is colinear with the electric field
E, and the viscous current jv ¼ nqFi!i " B=qB2 is given by

jv ¼
3nkBT
10

ffiffiffi
2
p !B

xi2E2 X2 @

@r
r3
@X
@r
þ r3

@2X
@z2

! "
E

E
: (64)

This conduction process is linear with respect to the electric
field but is non-local as it involves @E=@r; @2E=@r2, and @2E=@z2

through the derivatives of X ¼ E=Br.

In order to set up an ordering between Ohmic dissipation
and viscous damping, we simply have to compare the azimuthal
Coriolis force f i given by Eq. (34) with the azimuthal viscous
stress component eh # Fi!i given by Eq. (63). Viscous damping is
unimportant if eh # Fi!i < eh # fi, which rewrites

++++
1

X3r3
@

@r
r3
@X
@r

! "++++ < 10
ffiffiffiffiffiffiffiffiffiffiffiffi
memi
p

kBT
: (65)

Note that this ordering is easily fulfilled: (i) for rigid body rota-
tions Xðr; zÞ ¼ X0, (ii) for Keplerian rotation Xðr; zÞ ¼ L=r2, and
(iii) if the power deposition profile wlxðWÞ is tailored such that
dX=dW , 0. To explore this nearly non-viscous behavior
dX=dW , 0, we consider power law profiles X ¼ X0ðr=r0Þa. With
this scaling, the previous condition becomes

10M > ja aþ 2ð Þj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mi=me

p
; (66)

whereM is the Mach number defined as the ratio of the angular
velocity to the thermal velocity. For a rigid body rotation, a is a
small number and Ohmic dissipation dominates over viscous
dissipation if a < 5M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
me=mi

p
. For a strongly sheared rotation

dX=dW 6¼ 0, we have to identify the critical radius where the
transition from Ohmic to viscous dissipation occurs since
@X=@r ¼ 0 on axis at r¼0.This deeper analysis of viscous damp-
ing is left for a future study.

To summarize this section, we have addressed the issues of
the finite Larmor radius and ion-ion collisions as candidate
mechanisms to relax G-J charges in rotating plasmas, and both
effects have been quantified and shown to be smaller than the
nonlinear Ohmic dissipation Eq. (37) for typical plasmas of inter-
est such as Brillouin rotation and generic isorotation with
dX=dW , 0.

VIII. SUMMARY AND CONCLUSION
The main three new results of this study are given by Eqs.

(37), (46), and (53) obtained in Secs. IV,V, and VI.

The relation Eq. (37) provides the general expression of the
Ohmic nonlinear current short circuiting G-J charges, Eq. (26),
in an axisymmetric rotating plasma described by the magnetic
flux Wðr; zÞ and electric potential /ðWÞ. Compared to the classi-
cal Braginsky expression for the conductivity perpendicular to
the magnetic field, the axisymmetric rotating plasma displays a
B'6 scaling with respect to the magnetic field strength instead
of the classical B'2 scaling. This scaling and the small value of
the current for typical plasma parameters explain the high RF

efficiency of rotation generation in fully ionized magnetically
confined plasmas.

This efficiency and the quality factor for energy storage
Q are given by Eqs. (46) and (53). To keep these expressions
simple, we have neglected the curvature R'1 of the field
lines through the approximation, @W=@r ¼ rBz * rB or
@W=@r ¼ Er=X * E=X. Taking into account the curvature leads
to the expression of the power associated with the Ohmic
torque

ð ð ð
r" j" Bð Þ½ ) #Xds ¼ 2q

ð ð ð
!i

X4

xi3
Er

2

E2 Br2nds; (67)

in the place of Eq. (45a). The general relations, with a full account
of finite curvature R, can be then easily derived on the basis of
Eq. (37). Whether or not curvature is accounted for, the quality
factor and efficiency will still be written as the ratio of two inte-
grals with geometrical factors @W=@r and will display the same
final scaling as Eqs. (46) and (53) with respect to the plasma
parameters.

The original result given by Eq. (37) completes the results of
a previous study where the relaxation of a Brillouin flow in a
weakly ionized rotating plasma was analyzed on the basis of the
exact solution of the uncoupled fourth order algebraic equations
describing electron and ion vorticities.28 This problem was
much simpler than the present one since the geometry was sim-
pler, and the electron and ion dynamics were uncoupled
because neutral collisions, rather than Coulomb collisions,
ensured relaxation. The relation Eq. (37) is directly relevant to
the analysis of the power balance in innovative magneto-
electric toroidal traps in the limit of a very large aspect
ratio.20,35,36

Equation (53) gives the efficiency of wave orbital angular
momentum conversion into plasma orbital angular momentum.
It shows that the conversion efficiency does not depend on the
details of the wave dispersion and the wave-particle resonance.
This analysis completes the results obtained on wave driven
rotational transformwhere the problem of poloidal rotation sus-
tainment was addressed for the purpose of toroidal magnetic
confinement.20 There the efficiency was directly compared to
classical current generation efficiency33,34 and was constrained
from the very beginning of the study by the goal of a large rota-
tional transform to counteract the vertical magnetic drift of the
toroidal trap. The high efficiency of angular momentum genera-
tion in a closed toroidal configuration predicted in these earlier
studies is thus confirmed and extended here to open axisym-
metric configurations of the mirror type. It is to be noted that
because of the finite aspect ratio, viscous damping is more
important for toroidal traps than for the mirror type discharges
considered here.

Although this study was restricted to hydrogen plasmas,
the generalization to Z 6¼ 1 single species plasmas is straightfor-
ward. On the other hand, the generalization to a multiple ion
species plasma is less straightforward. Yet, this extension
appears necessary given the practical interest of these
discharges.37

Physics of Plasmas ARTICLE scitation.org/journal/php

Phys. Plasmas 26, 012303 (2019); doi: 10.1063/1.5064520 26, 012303-11

Published under license by AIP Publishing

https://scitation.org/journal/php


This work also provides an electrical engineering point of
view on axisymmetric rotating plasmas. The magnetic surfaces
W1; W2; W3… in Fig. 3 can be viewed as a set of nested conduct-
ing cylindrical shells. The equivalent network associated with
two neighbouring shells is described by a capacitor with capaci-
tance C ¼ e?e0S=d and nonlinear resistanceR ¼ d=SrNL

C ¼
xpi

2

xi2
e0S
d
; R ¼ xi

4

xpi2X2
d

2e0!iS
; (68)

where d is the radial gap between the two neighboring magnetic
surfaces and S is their surfaces, and we have used Eq. (20) to
evaluate the conductivity rNL. We recover the scaling of the
relaxation time for this equivalent elementary RC cell,
RC ¼ xi

2=2!iX2, already identified in Secs. II and V. Thus, we
can set up an operational transmission line model of axisymmet-
ric discharge as a radially distributed circuit with a well-defined
impedance per unit length along the radial direction: the inverse
capacitance per unit length is xi

2=e0Sxpi
2 and the resistance per

unit length is xi
4=2e0!iSxpi

2X2. The RF driven charge separation
or the DC voltage drop sustainment, described in Secs. V and VI,
can be viewed as a continuous recharging of this distributed
capacity to compensate the short circuiting associated with the
distributed conductance.

Besides this electrical engineering model, the analysis and
description of the interplay between Coriolis, centrifugal, and
Coulomb friction forces, offered in Sec. IV, provide a clear
description of the G-J charge relaxation process in fully ionized
plasmas.

Finally, a promising feature identified in this study is the
possibility to tailor the power deposition profile wlxðWÞ in order
to reach approximately a Brillouin regime d2/=dW2 ¼ 0 in an axi-
symmetric configuration Wðr; zÞ, that is to say, to design a rotat-
ing plasma free of rotational shear. This is particularly
interesting given that velocity shear is typically a source of both
instabilities and damping.
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