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ABSTRACT

The nonlinear RF current condensation effect suggests that magnetic islands might be well controlled with broader deposition profiles than
previously thought possible. To assess this possibility, a simplified energy deposition model in a symmetrized 1D slab geometry is
constructed. By limiting the RF wave power that can be absorbed through damping, this model also describes the predicted hysteresis
phenomena. Compared to the linear model, the nonlinear effects lead to larger temperature variations, narrower deposition widths, and
more robust island stabilization. Although, in certain regimes, the island center can be disadvantageously shaded because of the nonlinear
effects, in general, the RF condensation effect can take place, with current preferentially generated, advantageously, close to the island center.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5118424

I. INTRODUCTION
Magnetic confinement approaches to fusion rely on the ordered

topology of nested magnetic surfaces to prevent the plasma from
escaping. Devices such as tokamaks and stellerators are designed
toward this; however, in reality, magnetic fields are not perfect and are
subject to resonant fields. These change the magnetic topology and
result in magnetic islands appearing at rational surfaces.

Magnetic islands are characterized by flat density and tempera-
ture profiles due to enhanced transport through them. This reduction
of pressure gradients suppresses bootstrap current within the island,
generally making the island grow.1–4 As a result, the confinement abil-
ity of the system decreases, paired with the occurrence of the so-called
neoclassical tearing modes (NTMs).5

NTMs were recognized as a source of major disruptions in
experiments such as JET,6,7 and thus, their stabilization is central.
Among the proposed stabilization approaches, driving current8,9 at the
islands with RF waves has stimulated a long list of added efforts,10–29

including many experimental demonstrations.30–36 By driving current
at the center of the island using electron cyclotron (ECCD)37,38 or
lower hybrid current drive (LHCD),39,40 one may balance the lack of
bootstrap current and prevent the island growth.15 This technique is,
however, limited to its application to islands of smaller size due to
available power constraints. This makes driving current precisely at

their center difficult, as the deposition width is comparable to the
island size.

It has been recently suggested41 that some of these stringent
requirements may be relaxed due to the so-called “RF current conden-
sation effect.” This effect takes into consideration the nonlinear feed-
back of temperature variations42 resulting from RF wave heating onto
the deposition itself. It was found that condensation could improve
mitigation as well as reduce radial sensitivity.

Formally, in Ref. 41, this nonlinear feedback was modeled using a
simplified diffusion energy balance equation that included resonant
power deposition for a prescribed profile. Yet, the lack of a dissipation
mechanism (e.g., radiation) or the unlimited absorbable power from
RF waves, gave, as they observed, a nonphysical temperature blow-up
beyond a bifurcation point. Here, that model is extended to include
the damping of the RF wave.

In what follows, this extended model is first introduced in
detail. Next, the equation is analytically and numerically solved
and a hysteresis effect related to the island heating is described.
Having introduced this phenomenon, the effects of the nonlinear-
ities on different RF deposition schemes are explored. In order to
evaluate these effects fairly, comparisons are made to the analyti-
cal linear solution, which is taken as a representative of current
approaches.
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II. FUNDAMENTAL THEORETICAL MODEL
The model describes both the temperature variations of a mag-

netic island and the RF wave deposition. The latter may be described
as a wave that is being damped along a ray trajectory, so as to provide
the plasma with energy. The temperature of the plasma, driven by the
RF waves, is described as part of an energy balance model with thermal
diffusion. To construct such a model, various approximations are
introduced.

Take, as a starting point, the transport equation,43 representing
the second moment of the Boltzmann equation, to describe tempera-
ture, T, dynamics. Under the assumption of no significant flows, and
considering fast equilibration between electrons and ions, a single
equation may be written combining the two-fluid Braginskii
equations,

3
2
nkB@tT !r " ðjrTÞ ¼ P; (1)

where n is the plasma density, j is the generalized heat conductivity
tensor, and P is a volumetric power deposition which will be later
related to the RF power input.

It has been stated as an assumption for Eq. (1) that electrons and
ions are effectively equilibrated. Thus, the equation should only apply
to those time scales larger than the typical equilibration time seq; this
constitutes the first temporal constraint: t& seq, where t denotes the
time scales that the model is suited to describe.

A second point is related to the use of temperature as a measure
of plasma energy. The concept of temperature customarily applies
only to thermalized systems, in which the populations in v-space are
Maxwellian distributed. However, the continuous injection of RF
waves distorts the distribution function locally so as to deposit energy
resonantly onto a small fraction of faster electrons (e.g., for lower
hybrid (LH) waves, v' 4.5vTe, and for electron cyclotron (EC),
v' 3vTe).

38,44 Hence, the plasma is made up of not only a Maxwellian
bulk with a well defined T but also a resonant minority population. If
the bulk T is to represent the total internal energy of the plasma, then
the energy drawn locally in v-space needs to be redistributed quickly.
Here, a second time ordering is introduced: collisional thermalization
(sse) and isotropization (s?) processes must be faster than the time
scales of interest (t& sse, s?). In that case, non-Maxwellian features
that affect a minute fraction of the total population may be ignored to
leading order. The kinetic details will still prove important for P.

As it stands, Eq. (1) remains a three dimensional problem, but it
may be cast into an approximate reduced 1D problem assuming the
following. Consider as it happens (see Table I),42,45 transport over a
given magnetic flux surface to be much faster than perpendicular to
it, that is, fj ( jk=j?& 1. In that case, magnetic surfaces will be
approximately isothermal, simplifying the derivatives in the diffusive
term [i.e., the second term in Eq. (1)]. For analytical simplicity, the
geometrical factor associated with the particular shape of island flux
surfaces will be ignored, using instead a single slab coordinate x (one
may think of making a cut to an elongated, narrow island). This
reduced form is

3
2
nkB@tT ! @xðj?@xTÞ ¼ P: (2)

As a result of this slab adaptation, areal weighting is made equal for all
points, though in reality this should be larger for the edges. A more

complete treatment considering the flux coordinate is left for future
work, though it was shown in Ref. 41 that the slab geometry shared
the qualitative physics with the more realistic geometry.

Nonetheless, the model retains an important feature of the mag-
netic island geometry: the closed nature of magnetic surfaces about the
island center. Consequently, in the reduced 1D model, temperature
solutions are required to be even about the center x¼ 0.

Proceed now to linearize Eq. (2). Assume that the temperature
changes (~T ) in the island due to directing RF heating (P) to it are
small, i.e., ! ¼ ~T=T0 ) 1, where T0 is the equilibrium temperature.
Seeking precision in this definition, T0 is defined to be the island tem-
perature when the RF power is not aimed directly at the island but is
rather part of the total power budget that heats the center of the toka-
mak (see Fig. 1). Because T0 is constant over the island (as is the den-
sity), any island inhomogeneity that develops will be at least O(!), and
with this ordering, we drop derivatives with respect to j?in Eq. (2),

3
2
nkB@t ~T ! j?@2x ~T ¼ P: (3)

The consideration of stiff temperature profiles that could modify j?
nonsmoothly is left for future work.

To drop the time dependence of Eq. (3), the time scales of con-
cern should exceed those of energy diffusion (j?@2x ~T term) and the
driving times (P term). Consider the former; clearly for the dominance
of the diffusion term, t & sD ¼W2

i =v?. Here, Wi represents the
island width and v?' j?/nkB is the heat diffusion coefficient.

For the latter, nkB@tT * P suggests that the time derivative may
be dropped, provided that the power density of the wave has had
enough time to deposit all the needed thermal energy, i.e., t & sE
¼ nkBDT/P, where DT* !T0 is the characteristic variation of the
island temperature. Then, with t in this regime, and being consistent
with all of previous requirements,

!j?@2x ~T ¼ P: (4)

Prior to detailing the form of P, the problem should be closed by both
defining the spatial domain and setting appropriate boundary condi-
tions. Naturally, one defines the last closed surface of the island

TABLE I. Summary of the various scales relevant to obtain the form of Eqs. (8a) and
(8b) in typical tokamak parameters of T¼ 10 keV, a¼ 1 m, R¼ 5 m, Wi ¼ 0.05 m,
n ¼ 1014 cm!3, ve?¼ 0.5 m2 s!1, Z¼ 1, and q ¼ 2.

Time scale s

sse 1+10!3

s? 1+10!3

sD 3+10!3

sE 8+10!3

seq 4+10!1

si 1
sg 2+102

Dimensionless Scales

fj 1013

! 10!1
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including the X-points as boundaries of the domain of x, i.e.,
jxj,Wi=2. The island width, Wi, will be kept constant. That means
that t must be shorter than the typical island growth46 si
¼ ð@ lnWi=@tÞ!1 'WiD

0sg , where sg is the global resistive time
scale.47 Table I shows that this last requirement is consistent with pre-
vious time orderings. Width changes may then be treated adiabatically,
i.e., the steady state Eq. (4) may be taken to be satisfied at all times as
Wi is changed artificially.

The boundary condition on temperature encodes the influence of
the island on the remaining of the plasma (and vice versa). To specify
it, a simplified treatment of the energy dynamics of the rest of
the tokamak is performed, using a steady state diffusion model like Eq.
(1). It is convenient to apply Gauß’ theorem to magnetic flux surfaces
so that

Ð
wPdV ¼ !@wT

Ð
@wjt n̂ "rw dS, where w is the magnetic flux

coordinate. This shows that the slope of the temperature profile at a
particular flux surface is determined by the power deposited inside it.
For simplicity, let us associate a spatial 1D coordinate R, in the absence
of islands monotonic with w, and take the heat conductivity, jt, to be
constant; then, the slope of temperature at some R0 is determined by
the power deposited at R < R0. With this in mind, let there be some
heating in the tokamak center: Pc (fusion power, Ohmic heating, etc.)
and PRF (RF heating). The temperature profile is then determined by
the heat flux and the fixed plasma edge temperature [see Fig. 1(a)].

Now, let there be an island of size Wi at a distance Ri from the
core over which the temperature profile is flat [see Fig. 1(b)]. Because
heat sources have not changed, the temperature slope remains
unchanged elsewhere. Let then PRF be redirected to the island (i.e., the

case of interest). For those magnetic flux surfaces at R > Ri þ Wi/2,
the enclosed total power does not change, and thus, the slope of T
should neither [see Fig. 1(c)]. Given that the tokamak plasma edge
temperature is fixed, the temperature at the edge of the island, T0,
remains unchanged. The boundary condition for our island tempera-
ture may then be taken to be ~T ðx ¼ 6Wi=2Þ ¼ 0.

It is now the turn of specifying P in Eq. (4) to represent the
energy deposition from RF waves. Adopting a geometrical optics (GO)
description of the wave envelope,48 the evolution of the energy of the
wave may be written as

dt "V ¼ !ðr " vgÞ þ
xt

x
þ 2c

" #
"V ' 2c"V ; (5)

where "V represents the wave energy density, vg is the group velocity of
the wave, xt represents the time derivative of frequency due to a time
dependent medium, dt represents the total time derivative following a
wave along a ray, and c represents the collisionless damping rate.
Assuming the medium to be stationary in the wave damping time
scale (xt/x ) c) and the spatial inhomogeneity to be much smaller
than the variation resulting from the damping (r"vg ) c), the last
approximated equality follows. This condition is not difficult to satisfy,
considering only small variations are created within the island.

Expressing Eq. (5) in terms of x, the distance along the ray
dtx ¼ vg,

dx "V ¼ 2
c
vg

"V ; (6)

which has the form of damped propagation. The factor c may be
obtained under the assumption of a Maxwellian magnetized back-
ground;38,49 one may show that for EC and LH, c / exp(!v2), where
v ¼ ðx! nXeÞ=kvTe ¼ vk=vTe, where vk is the phase velocity of the
wave, vTe is the electron thermal speed, Xe is the electron cyclotron fre-
quency, and n¼ 0 corresponds to LH waves and n ¼ !1 to EC waves.
The power deposition for both electron cyclotron and lower hybrid
waves occurs on the tail of the Maxwellian velocity distribution, with
damping exponentially small in the lowest resonant velocity.

It is this exponential factor which makes deposition highly sensi-
tive to variations in temperature. Indeed, considering the phase veloc-
ity of the wave to remain constant over the extent of the island,

c / e!ðvk=vTe0 Þ
2

exp
v2k~T

v2Te;0T0

 !

! 2c
vg
¼ !aeu:

It is convenient here to define the dimensionless variable u ( v2k~T=
v2Te;0T0 ¼ w2~T=T0, where w ¼ vk=vTe ;0. The location of the wave
damping within the whole plasma is generally dependent on T, B, x,
and k. This location can be determined using ray tracing.50,51 Here, the
picture is simplified by artificially restricting the damping to a particu-
lar defined region within the island, while keeping vk constant, and
that way allowing for the ~T expansion. A fully self-consistent, full GO
analysis is left for future work.

Let us express Eq. (6) as

dx "V ¼ !aðxÞeu "V ; (7)

where the damping strength aðxÞ ( 2a0f ðxÞ=Wi. The factor a0 repre-
sents the strength of the damping, but it is also defined in a

FIG. 1. Schematic sequence of temperature profiles of the full plasma for (a) no
island present, (b) an island present at R ¼ Ri, and (c) RF energy deposition
displaced to within the island. The reddish band represents the region of RF deposi-
tion, while the gray one corresponds to other heating sources.
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dimensionless way to include the island width Wi. For example, for
EC waves,38 a0 'Wi

ffiffiffi
p
p

x2
pe exp ð!w2Þ=2ckvTe. It is helpful to intro-

duce a more physically motivated interpretation of a0. If a linear limit
is taken of Eq. (7), the power deposition profile takes the form jV 0j
/ exp ð!2a0x=WiÞ, i.e., a0 is the ratio of the island half-width to the
characteristic deposition width. Note that the deposition has an expo-
nential shape and not its usual Gaussian form generally considered for
electron-cyclotron waves;50 however, both schemes are peaked and of
finite width and ultimately quite similar.

Now, going back to the original question: how is P related to this
wave energy "V ? From the damping of the wave along a ray, it is easily
seen that the volumetric power deposition at a given point is given by
P ¼ !dt "V ' !vgdx "V ( !vg "V 0ðxÞ. However, because in this partic-
ular geometry the points 6x are linked together (recall this is true due
to them belonging to the same flux surface), these points share the
total deposition at x and!x. All things considered

!j?@2x ~T ðxÞ ¼ !vg
"V 0ðxÞ þ "V 0ð!xÞ

2
; (8a)

"V 0ðxÞ ¼ !aðxÞeu "V ðxÞ: (8b)

These equations may be nondimensionalized, reducing them to

V 0ð~xÞ ¼ !f ð~xÞeuVð~xÞ; (9a)

u00 ¼ V 0ð~xÞ þ V 0ð!~xÞ
2

; (9b)

where the new Vð~xÞ ¼ "V ðxÞWivgv2p=2a0j?T0v2T ¼ "V ðxÞWi!
2=a0

and ~x ¼ 2a0x=Wi. Note that the edges are now at x¼6a0.
In order to complete the setting of the problem, an initial value

must be taken for Eq. (9a). Let VX ( Vð!a0Þ ( V0=a0, where V0 is a
constant representing some wave energy density input. For interpreting
solutions, it is important to bear in mind that VX is independent of the
island width but will, however, scale as 1/a0 with the deposition strength.

For clarity in the following Secs. III and IV, one may refer to
Appendix B as a quick reference for the variables employed.

III. HYSTERESIS PHENOMENA
To investigate the effect of the nonlinear wave deposition, con-

sider the tractable basic problem of wave damping occurring every-
where within the island. This case, represented by f ð~xÞ ¼ 1, allows for
an analytical solution of Eqs. (9a) and (9b) (see Appendix A for a
detailed derivation). Implementing the appropriate boundary and ini-
tial conditions,

uð~xÞ ¼ 2 log c! log
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkþ 1Þ2 ! c2

q
coshc~x þ ðkþ 1Þ

" #
; (10)

where the parameters k and c are determined by

c2 ! ð1þ kÞ
% &2 ¼ cosh2ða0cÞ ðkþ 1Þ2 ! c2

% &
; (11a)

c2 ¼ ð2kþ 1Þ þ ðVX ! kÞ2: (11b)

The integration constant is k ¼ (VX þ Vf)/2, where Vf is the
energy density when exiting the island. Equations (11a) and (11b)
solve k implicitly, which ultimately determines the temperature of the
island as a function of a0 and VX from Eq. (10).

The dependence of perturbed central island temperature on these
two parameters will be represented as contour curves (see, for exam-
ple, Fig. 2). Two main representations are of particular physical inter-
est. First, contours of constant a0 (i.e., fixed deposition strength and
island width) in the u(0) ! V0 plane. These contours show the effects
of the wave power on temperature [see Fig. 2(a)]. The second interest-
ing picture is related to how the heating of the island evolves as its
width or the wave profile width changes. This is captured by curves of
constant VX or V0 at fixed deposition strength in the u(0) ! a0 plane
[see Fig. 2(b) for example].

FIG. 2. (a) Island temperature at fixed
deposition strength for different island
widths, as a function of absorbed RF
power, showing the appearance of the
bifurcation point (shown bigger points).
Dashed lines correspond to the linear limit
of the solution; the dotted line corresponds
to the asymptotic form of the solution
for almost complete power deposition. (b)
Central island temperature with varying
island widths for constant incident wave
energy densities VX. The broken lines rep-
resent the solution to the linear problem
while the dotted ones the asymptotic limit
solution for complete energy deposition.
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There are a number of general features in the solutions to Eqs.
(10)–(11b) worth highlighting. The first of those is the existence of
bifurcation points. As previously observed,41 for sufficiently broad
depositions (small a0), saddle-node bifurcations appear, at which the
two lower temperature solutions disappear. Such points are marked in
Fig. 2(a). The appearance of these points may be linked to the action
of a self-focusing mechanism affecting RF waves. Schematically, below
the bifurcation, significant energy leakage takes place. As the bifurca-
tion is approached, island temperature perturbations become larger,
while the power deposited by the wave increases accordingly. This pos-
itive feedback eventually extracts all RF energy effectively, reaching a
higher temperature steady state and thus jumping into an upper
branch of the solution.

This hot stable solution may be seen in Fig. 2, along with the
asymptotic form of the solution as Vf! 0 (dotted line). The proximity
of the two solutions demonstrates that the upper branch indeed corre-
sponds to nearly complete deposition of the wave energy in the island.
Such a solution branch is also, immediately after the bifurcation point,
significantly larger than the linear prediction (see broken lines).

A consequence of the solution structure obtained is the hysteresis
behavior of island heating. To illustrate such a process, take as a start-
ing point the system to be in equilibrium at the lower temperature
branch in Fig. 2(a) and increase the absorbed energy of the incoming
wave (V0) gradually. As a result, the temperature of the island will
grow until the bifurcation point is reached. Once at this point, and
driven by the self-focusing feedback, the temperature of the island will
rapidly increase toward the upper branch, which is the only stable
solution at high absorbed power.

The hot island exhibits, at this point, a large temperature differ-
ence between its center and the separatrix. A priori, this would help RF
power to be absorbed closer to the O-point and thus also drive current,
j, more centrally.44 For this work, we take the driven current distribu-
tion to be proportional to the power deposition profile, thus assuming
that, to leading order, the current drive efficiency is constant through-
out the island. In the present work, we ignore currents associated with
the DC electric field, which could arise due to changes in Spitzer con-
ductivity or the hot electron conductivity.52,53 These currents are less
important than the directly driven RF current.41

With such presumed centered current drive, the island would
tend to shrink and stabilize, as described by the 0D Rutherford equa-
tion.47 This size reduction corresponds to a leftward displacement
toward smaller values of a0 in Fig. 2(b). In such a case, and if the
energy available to the island is maintained, the reduction does not
imply a return back to the original low temperature but instead
remains in the more effective current driving upper branch for some
time. Similarly, once in the upper branch, driving power requirements
are relaxed, and lower V0 would still keep the plasma hot. This consti-
tutes the hysteresis effect. A more careful discussion on the usefulness,
accessibility, and consistency of this sketched simplified picture for
particular deposition schemes is the concern of Sec. IV.

IV. EFFECTS OF NONLINEAR FEEDBACK
A. Typical parameters

Before proceeding further, a brief estimate and collection of typi-
cal values for both V0 and a0 are presented. We emphasize that our
slab model provides a physical qualitatively correct picture of the
problem, but only a rough guide into the quantitative behavior of the

more realistic geometry, as previous calculations suggest.41 Other sim-
plified features, such as the exponential form of the linear deposition
profile, are also different when compared to actual experiments50 but
do, however, share the fundamental characteristics. Thus, the linear
case will be taken as a reference in guiding conclusions, as well as an
orientative comparison standard to existing experimental parameters.

Focus first on the values for the parameter a0. Two different
routes are taken at this point. One possible method uses, given the def-
inition of a0 as the size of the linear power deposition width, typical
deposition widths in tokamak experiments which could be used to
obtain a0 * 0.5–3.42 It has been recently reported that current drive
profiles are in experiment subject to broadening54 by factors of 2–3
due to effects unaccounted for in ray tracing routines, such as edge
density fluctuations. This effective broadening could make typical a0
values even lower, down to*0.2.

Alternatively, one could use the form for a0 given before and
obtained in the context of GO. In the case of ECCD, for instance, using
typical approximated hydrogen tokamak values (see the caption of
Table I), with w2 * 10,38 wavenumber55 k * 2p/(5mm), density n
* 1020 m!3, andWi* 10cm; a0'Wi

ffiffiffi
p
p

x2
peexpð!w2Þ=2ckvTe*10!1.

Now, consider the wave power density V0. First, we note that
numerical calculations of island temperature variations reported in the
literature42 are already, for certain cases, on the order of 25% for pow-
ers on the order of 20MW. This corresponds to V0 * 5 in the linear
low-power limit of our model. Alternatively, we could arrive at typical
V0 values by relating the analytical expression for the heat diffusion to
the power deposition. This gives V0 ' PWiw2=2Av?nkBT0 * 101,
where we took RF power to be on the order of P * 10MW, with
a beam of cross section A * 1 m2, with v?* 1m2/s, temperature T0
* 10 keV, density n* 1020 m!3, and w2* 10.

Summarizing,

a0 * 0:1! 3 V0 * 101: (12)

B. Central deposition
The spatial distribution of the RF deposition strongly affects the

final temperature of the island, as well as the island mitigation effi-
ciency. In this section, the best case scenario is first analyzed, i.e., depo-
sition starting from the island center. To formally emulate this ideal
case, f ð~xÞ ¼ Hð~xÞ, where H is the Heaviside step function. Given this
newly introduced asymmetry, well defined parity is lost from the equa-
tions and the solution to the equation is only found numerically.

Consider first the occurrence of bifurcation points and, in partic-
ular, how they depend on a0. To illustrate these points, Figs. 3 and 4
are presented.

In the broad linear deposition limit, with 3a0) 1, there always
exists a bifurcation point (see Fig. 3). The turning point, however,
occurs at increasingly larger wave energy densities V0. One may
understand this result by referring to the analytical asymptotic form of
the solution at low V0. In that limit, the system takes the form of the
linear problem, for which uð0Þ * V0ða0 ! 1þ e!a0Þ=2a0. This shows
that the temperature of the island becomes decreasingly responsive
as a0 ! 0 (see the decreasing initial slopes of curves in the inset of
Fig. 3), which is ultimately related to there being a significant wave
energy leakage (Vf ¼ VXe!a0 ).
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Only for those cases for which the initial energy leakage Vf is sig-
nificant will a bifurcation occur. The bifurcation is a result of the sys-
tem being able to access all that previously lost energy when the
damping eu factor becomes significant. This jump will be associated

with a narrowing of the deposition and a current that is more effi-
ciently utilized in stabilization.

As the initial deposition is reduced by increasing a0, Vf in the
lower branch decreases, and it eventually becomes too small to sustain
a bifurcation. Figure 3 shows the boundary value a0 ¼ 0.32 beyond
which no bifurcation occurs.

Where no bifurcation occurs, the temperature of the island only
undergoes a smooth transition in temperature between the linear solu-
tion and the high temperature asymptote (see Fig. 3). That limiting
form of the nonlinear solution as Vf! 0 is u(0)* V0/2 (see the dashed
line in the inset of Fig. 3 and Appendix C), which is also the limit as
a0!1 of the linear deposition. That is, the nonlinear response serves
as a short cut via self-focusing to the linear ideal infinitely narrow
deposition. Thus, for the case of centralized deposition, the nonlinear
mechanism always leads to an enhanced temperature increase.

However, the wave power required to obtain a substantial
improvement exhibits a strong dependence on a0 as shown in Fig.
4(a). The large energy leakage and the small difference between
linear and nonlinear solutions at low and high a0, respectively,
leave a most easily accessible (lower V0) central region at values
a0 * 1–1.5. To emphasize the second of these limitations, Fig. 4(b)
shows the ratio of the analytical asymptotic forms of the nonlinear
and linear solutions. Evidently, the differences become marginal
(i.e., the ratio tends to one) for stronger depositions, which
explains why Fig. 4(a) diverges at a0 * 2.8.

Finally, we examine the extent to which the self-focusing mecha-
nism narrows RF deposition. Figure 4(c) serves as an example of the clear
narrowing of the deposition, which undoubtedly improves stabilization
as current drive is brought closer to the O point. More generally, one
may estimate the deposition width assuming that the island temperature
takes its asymptotic form at large powers. In that case, using the form
for jV 0j ¼ V0eu exp ð!

Ð
eudxÞ and assuming that the deposition

width, Dx, is narrow compared to the island width, jV 0j
* V0euð0Þ exp ð!euð0ÞDxÞ, then the deposition width normalized to the
linear deposition is Dx * exp(–V0/2). This shows the exponential nar-
rowing of the deposition profile (and hence the current drive) resulting
from the temperature perturbations, which will tend to concentrate as
one increases the input power or the island widthWi (asV0/Wi).

This analysis suggests that the region of interest and current
experimental relevance may in some subset of cases (for the broadest
depositions) show some hysteresis behavior, but most will just show a
significantly modified temperature and deposition distribution. In
addition, as a result of the strong narrowing due to temperature,
islands could be stabilized when traditionally predicted not to. This
opens the door to experimental verification of the nonlinear effect, as
well as extension of island stabilization schemes.

C. Edge deposition
The scenario adopted for analysis before was that of central depo-

sition. This is the ideal case, and so it presumes that one is experimen-
tally capable of aiming perfectly at the center of the island without
depositing any energy before that. However, what would happen if the
deposition departs from this idealized case? The worst case scenario is
now presented. To that end, we recover the analytical solution from
Eqs. (10)–(11b),which represents wave deposition from the very edge
of the magnetic island.

FIG. 3. Wave power density value for the bifurcation at a given deposition strength
a0, for deposition starting at the island center. The larger scatter point represents
the limiting value of a0 over which no bifurcation exists. The inset shows curves of
constant deposition strength in the u (0) ! V0 plane. The broken line represents the
asymptotic form of the nonlinear solution.

FIG. 4. (a) Wave power density value for 50% difference between the linear and
nonlinear solutions for centered wave energy deposition. (b) Upper bound to ratio of
nonlinear to linear island temperature. (c) Power deposition half-peak width x1=2 for
the points in the curve in (a) (continuous line) and for the linear equivalent problem
(dotted line) for a0 > 0.1. Solutions for the region a0 to the left of the broken line rep-
resent solutions with existing bifurcation points. For a0 ' 2.8, the nonlinear deposition
profile becomes similar to that of a delta function (within discretization) as V0!1.
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With this analytical result at hand, let us explore first the limit of
complete wave deposition: uð0Þ * log ðV0=2a0 þ 1Þ. The linear solu-
tion gives uð0Þ ¼ V0e!a0ðcosha0 ! 1Þ=a0. It is remarkable that the
nonlinear model gives a logarithmic growth of the island temperature
as the power input is increased, while the linear case grows linearly. It
necessarily follows that some nonlinear inhibition mechanismmust be
present. Indeed, one may relate this to the deposition profile becoming
localized ever closer to the edge of the island.

It is the same self-focusing that narrowed the deposition closer to
the center when central deposition was considered, which displaces
deposition toward the island edge (see Fig. 6). Physically, the RF wave
becomes so strongly damped that it runs out of energy very close to
the edge before penetrating. There, the temperature slope is large, and
thus, heat gets quickly lost across the edges, u(0) becoming limited.

As a result of this detrimental displacement, only over a limited
regime will the nonlinear solution be hotter than the linear one. As
shown in Fig. 5, this interval is larger for the broader depositions but
tends to disappear as a0!1. This is a result of the nonlinear focus-
ing being able to increase the amount of deposited power significantly,
thus allowing for the focusing benefits to outweigh the inhibition for a
wider range of powers.

In addition to temperature, this deposition shift will also bring the
driven current closer to the X-point. This displacement can be cata-
strophic when trying to suppress the growth of magnetic islands as
described by the 0D Rutherford equation. The proximity of the deposition
to the edge may be seen in Fig. 6. For typical values a0* 1 and V0

* 5–10, the peak of deposition xpeak * !0.7, i.e., power is deposited
somewhere between the X- and O-points. The plot shows that in general,
there are two stages to the deposition peak location dynamics: one at large
V0 values, for which the nonlinear self-focusing brings the deposition ever

closer to the edge. This is the result of the large damping eu draining the
incoming wave faster than V0 increases. The other stage corresponds to a
lower V0 region in which the focusing is starting to affect the system,
drawing the power toward the center, and minimizing leakage.

To further explore the sensitivity of stability on xpeak, the proce-
dure in Ref. 15 is followed. The relative Fourier weighting to D0 in the
0D Rutherford equation due to driving current at a particular flux coor-
dinate, w (X in the reference), may be estimated taking the 1D spatial
variable x in our model to match the spatial x in Ref. 15, looking at
n¼ 0 (see Fig. 7). The calculation shows that within approximately
90% of the island, the drive is stabilizing. Therefore, looking back at
Fig. 6, the current drive will still be central enough to be stabilizing for

FIG. 6. Location of the power deposition peak as a function of power for various
deposition strengths (complementary to Fig. 5). A value of xpeak ¼ 0 corresponds
to a centered deposition, while a value of !1 represents the edge.

FIG. 5. Power at which the nonlinear and linear solutions give the same central
temperature with deposition starting from the edge, as a function of the deposition
strength. The region to the left of the curve represents the case for larger nonlinear
solution. The inset shows examples of constant deposition curves as a function of
power. The broken lines represent the linear solution, while the dotted curves show
the logarithmic asymptotic behavior of the nonlinear one.

FIG. 7. Scaled contribution to D0 in the Rutherford equation due to current drive at
different positions within the island. Current drive is stabilizing for D0 < 0, i.e.,
when driving is roughly within 90% of the island extent. The inset shows the deposi-
tion profiles for the linear and nonlinear solutions corresponding to the point shown
in Fig. 6, represented on a log scale (the linear deposition is almost uniform but the
largest at the X point).
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a significant fraction of the cases, even when the nonlinear solution is
colder than the linear one. No definitive conclusion may, however, be
drawn on the precise fraction of the island that is truly stabilizing, as
the treatment of the island geometry in Ref. 15 is different from that of
our model. A fully consistent treatment is left for future work.

We have shown that an initially broad RF profile may then be
used to stabilize islands, so long as the input power remains below
some upper bound thanks to the self-focusing of the RF. This result is
promising and an idea to further explore.

More generally, if deposition was to start midway between the X-
and O-points, then deposition would be driven and narrowed toward
that location instead. The trends will then fit between the extreme cen-
ter and edge cases shown explicitly, with less constraining require-
ments as the center is reached. In this context, RF overshooting
scenarios will never suffer from the inhibition that takes place when
undershooting with increasing V0.

Yet another possibility to circumvent inhibition might be to look
for means to amplify the wave power within the island, such as through
an a-channeling effect.56 This could give a power not peaked at the
island periphery. Unfortunately, this volumetric amplification does not
occur for electron cyclotron waves but might be exploited when using
lower hybrid waves.57 Despite lacking this possible enhancement, EC
waves do, however, have the benefit of having a B-dependent resonance
that allows for deposition starting at a particular point in space.

V. DISCUSSION AND CONCLUSIONS
The possibility of hysteresis involving the heating of magnetic

islands with RF waves is shown for a symmetrized, 1D slab model.
Our slab model gives a rough guide to the quantitative behavior of the
more realistic full-geometry model. Accordingly, the wave power
deposition self focuses mediated by island temperature, leading to
higher temperatures. Past a bifurcation point, the island may remain
in this high temperature solution even as it shrinks or power is
reduced. Exploiting the hysteresis effect could thus provide an easier
and improved way to eliminate magnetic islands.

It predicts that, in typical parameter regimes of current experi-
ments, a bifurcation is likely to occur for the broadest electron cyclotron
profiles. It should be noted that lower hybrid profiles are typically
broader than EC profiles. Even in the absence of such bifurcations, cen-
tered deposition scenarios show that important temperature increments
(on the order of*50%) occur. These differences are, again, most signifi-
cant in broader deposition schemes, where the self-focusing mechanism
of the nonlinear model is most different from the linear model.

Considering the effects of temperature on the deposition, and
hence also the RF current drive, profiles are shown to be significantly
narrowed, a reduction that scales exponentially with power and island
width. This will improve its utility for purposes of stabilization. Though
not shown here, temperature perturbations could in addition lead to
enhanced stabilization through a modified peaked conductivity.41

For broad deposition schemes that deviate from the center, not
dissimilar self-narrowing and stabilization effects take place under cer-
tain circumstances. These circumstances involve the form of EC power
density profiles and must be considered in designing deposition
scenarios. In particular, for deposition profiles that peak before the
O-point, there is a threshold power density above which a self-
inhibition mechanism is encountered; beyond the O-point, this
threshold does not exist. This suggests that it will be important to take

into account nonlinear effects in determining the optimal aiming of
trajectories. It also opens the door to exploring previously disregarded
broad RF deposition stabilization schemes.

The hysteresis effect explored here requires only that there is a
nonlinear current condensation effect limited by some constraint that
halts condensation. The limiting effect explored here was the availabil-
ity of RF power, which is a natural physical limitation to include.
There could, in principle, be other phenomena that arise more impor-
tantly or possibly in addition to the power availability, such as radia-
tion from impurities, nonlinear temperature effects on the transport,
or nonlinear temperature effects that cause deflection of the RF waves.
Although these effects would change the details of the hysteresis effect,
the effect itself should still persist. Similarly, a more detailed and self-
consistent calculation of the ray trajectories would tend to modify, but
not change in character, the hysteresis phenomena observed here.

Another caveat is that the model employed here is a 1D slab
model; more quantitative calculations would consider the 2D or 3D
effects that attend toroidal and specific magnetic island geometry.
Also, considerations of more general island growth behavior,22 beyond
what is captured in the 0D Rutherford model employed here, could
affect the findings here as well.
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APPENDIX A: ANALYTICAL SOLUTION TO
CONSTANT a

Consider the coupled set of equations,

V 0ð~xÞ ¼ !euVð~xÞ; (A1a)

u00 ¼ V 0ð~xÞ þ V 0ð!~xÞ
2

; (A1b)

subject to the conditions shown in Table II. Define the following
symmetric and antisymmetric parts of the wave energy density,

S ¼ Vð~xÞ þ Vð!~xÞ
2

; (A2)

A ¼ Vð~xÞ ! Vð!~xÞ
2

: (A3)

Given these, Eq. (A1b) may be cast in the form,

TABLE II. Initial conditions that specify the problem that is to be solved.

Var ~x limit Var limit

u !a0 0
u0 0 0
V !a0 VX

V 0 !a0 !VX
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u00 ¼ Vð~xÞ ! Vð!~xÞ
2

" #0
¼ A0: (A4)

Substituting definitions (A2) and (A3) into Eq. (A1a),

ðAþ SÞ0 ¼ !euðAþ SÞ;

and realizing that the spatial derivative d
dx is an odd operator while u

is an even function, the equation may be separated into its symmet-
ric and asymmetric parts,

S0 ¼ !euA; (A5)
A0 ¼ !euS; (A6)

which with Eq. (A4) form a set of three coupled nonlinear differen-
tial equations. The set avoids the explicit appearance of !x on the
expense of an additional equation.

Because of even parity, u0ð~x ¼ 0Þ ¼ 0, and so Eq. (A4) may be
integrated as

u0 ¼ A: (A7)

Substituting (A7) and (A4) into Eqs. (A5) and (A6), putting
together, and integrating once,

u00 ¼ eu eu ! ð1þ kÞ½ /; (A8)

where k is an integration constant that must satisfy the initial con-
ditions specified. From Eq. (A4), it follows that k ¼ (VX þ Vf)/2,
which limits VX/2 < k< VX.

To solve Eq. (A8), multiply both sides of the equation by u0

and integrate with respect to ~x . Thus,

u02 ¼ eu eu ! 2ðkþ 1Þ½ / þ C; (A9)

where C is another integration constant to be determined later on.
Let the substitution u ( !logz be implemented in Eq. (A9),

z02 ¼ 1! 2ðkþ 1Þz þ Cz2: (A10)

At his point, one may try a symmetric solution of the form
z ¼ Aðec~x þ e!c~x Þ þ B, where A, B, and c are to be reduced to a sin-
gle integration constant. If this is possible, uniqueness guarantees
this to be the general solution. After some manipulation,

C ¼ c2; B ¼ kþ 1
c2

; A2 ¼ ðkþ 1Þ2 ! c2

4c4
; (A11)

which indeed leaves a single degree of freedom, c, as expected for a
first order ODE. It is then time to implement boundary conditions
to determine k and c. From u¼ 0 at ~x ¼ !a0; zð~x ¼ !a0Þ ¼ 1 is
evaluated, and eliminating A,

c2 ! ð1þ kÞ
% &2 ¼ cosh2a0c ðkþ 1Þ2 ! c2

% &
: (A12)

Having eliminated A, the solution for u is as follows:

uð~xÞ ¼ 2 log c! log
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkþ 1Þ2 ! c2

q
coshc~x þ ðkþ 1Þ

" #
: (A13)

The additional boundary or initial condition may be imposed
requiring u0ð!a0Þ ¼ Að!a0Þ ¼ ðVX ! Vf Þ=2 ¼ VX ! k from Eq.
(A8), which will introduce explicitly the physically relevant parame-
ter VX. Then,

c2 ¼ ð2kþ 1Þ þ ðVX ! kÞ2; (A14)

where c2 > 1þ 2k.

APPENDIX B: SUMMARY OF VARIABLES AND
ABBREVIATIONS

A collection of the variables used in Secs. III and IV is pre-
sented as a reference in Table III. A brief description is also pro-
vided where relevant.

APPENDIX C: ASYMPTOTIC LIMIT NONLINEAR
CENTRAL DEPOSITION

Let us consider the limiting case for complete RF power depo-
sition in island stabilization starting deposition from the center of
the magnetic island.

Begin with

u00 ¼ V 0

2
! u0 ¼ V

2
! VX

2
: (C1)

Now take the wave energy to be damped quickly so that V' 0 for
x> 0. In that case, and as the edge is located at x ¼ a0,

uð0Þ * a0
VX

2
: (C2)
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