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For a plasma with fixed total energy, number of particles, and momentum, the distribution function that 
maximizes entropy is a Boltzmann distribution. If, in addition, the rearrangement of charge is constrained, 
as happens on ion-ion collisional timescales for cross-field multiple-species transport, the maximum-
entropy state is instead given by the classic impurity pinch relation. The maximum-entropy derivation, 
unlike previous approaches, does not rely on the details of the collision operator or the dynamics of the 
system, only on the presence of certain conservation properties.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

Cross-field particle transport is a problem of central impor-
tance throughout much of plasma science. Many controlled fusion 
technologies, including magnetic mirrors [1–3], tokamaks [4–10], 
and stellarators [11–14], rely on the physics of cross-field trans-
port. Other applications include devices such as plasma mass filters 
[15–27], magnetic traps for high-Z ion sources [28,29], plasma 
thrusters [30,31], and non-neutral particle traps [32–37]. Similar 
concerns (though involving quite different parameter regimes) ap-
pear in plasma astrophysics [38–41].

The relative motion of different ion species is often of particular 
significance. In a fusion plasma, differential cross-field transport is 
important for fuel injection and ash removal. In any hot plasma or 
implosion experiment, high-Z impurities have the potential to ra-
diate a great deal of power, so purging them can be important. On 
the other hand, for certain radiation sources in the x-ray regime, 
the higher-Z ions are useful [42–44], and understanding their be-
havior is important. For a number of diagnostic applications using 
trace impurity radiation [44,45], the degree to which impurities 
concentrate must be determined in order to inform correctly on 
the ambient plasma. Moreover, differential cross-field ion transport 
is crucially important for plasma mass filters, which are designed 
to separate out different components of a plasma.
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In a fully ionized, magnetized plasma, in the absence of temper-
ature gradients, it is a well-known result of cross-field transport 
theory that collisional species a and b reach steady state only 
when [46–52]

n1/Za
a ∝ n1/Zb

b . (1)

In the presence of a species-dependent potential �s , this becomes 
[53](
nae�a/T )1/Za ∝ (

nbe�b/T )1/Zb . (2)

Eq. (1), which holds for any number of species, is what we might 
call the classic impurity pinch relation. Eqs. (1) and (2), and special 
cases thereof, appear in descriptions of differential ion transport 
for a variety of different applications [4,15,18–22,25,35–37,46–56]. 
For instance, the case where �s is the centrifugal potential is cen-
trally important in descriptions of species separation in rotating 
plasmas.

These equations have been derived using a number of different 
approaches and in a number of different contexts. Previous treat-
ments proceed by writing down a model for the dynamics of the 
system, then studying the requirements for the system to reach 
steady state. Such an approach inevitably brings with it a number 
of assumptions: for instance, choices about the form of the colli-
sion operator and the parameter regime.

These assumptions are often natural and reasonable, but they 
raise a question: what characteristics of a system are necessary in 
order to produce Eqs. (1) and (2)? The answer is not obvious; the 
usual approach does not readily yield generalizations.
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This paper generalizes the previous derivations of Eqs. (1) and 
(2) by deriving them from a thermodynamic perspective. This new 
derivation provides physical insight into their origins. Section 2
shows how the calculus of variations can be used to directly max-
imize the entropy in a cylinder of plasma with some fixed energy, 
particle number, and momentum and some externally imposed 
magnetic field; the result is the Boltzmann distribution, up to a 
frame transformation. Section 3 describes how an additional con-
straint on charge transport leads instead to Eqs. (1) and (2). Sec-
tion 4 discusses the context and implications of this result.

2. Boltzmann distribution from maximum entropy

Consider a fully ionized, ideal plasma with N species, contain-
ing Ns particles of species s. Suppose the joint distribution can be 
written as

f ({rsj,vsj}) =
N∏

s=1

Ns∏
j=1

f s(rsj,vsj)

Ns
, (3)

such that f s(r, v) d3r d3v/Ns is the probability of finding a given 
particle of species s in an infinitesimal phase space volume 
d3r d3v. The product of the one-particle distribution functions is 
typically a good approximation of the joint distribution when the 
number of particles in a Debye sphere is large [57]. For non-
Cartesian coordinates, take the expression d3r d3v to include the 
appropriate Jacobian determinant implicitly (for instance, in spher-
ical coordinates, take the convention that d3r = r2 sin θ dr dθ dφ).

The entropy can be written up to multiplicative and additive 
constants as [58]

S = −
∫ ( N∏

s=1

Ns∏
j=1

d3rsj d3vsj

)
f log f . (4)

Eq. (3) can be combined with Eq. (4) to get

S = −
N∑

s=1

∫
d3r d3v f s log

(
f s

Ns

)
. (5)

Suppose the system has a fixed number of particles Ns for each 
species and a fixed total energy E . These constraints can be written 
in terms of f s as

Ns =
∫

d3r d3v f s (6)

and

E =
∫

d3r
[

uEM +
∑

s

∫
d3v

(
1

2
ms|v|2 + �s

)
f s

]
, (7)

where uEM is the energy density in the electromagnetic fields and 
�s(r) is any externally imposed non-electromagnetic potential that 
does not depend on f s (such as an imposed gravitational poten-
tial).

Depending on the geometry of the system, there may also be 
some conserved momenta. The linear momentum could be written 
as

P =
∫

d3r
(

pEM +
∑

s

∫
d3v msv f s

)
. (8)

In a system with appropriate rotational symmetries, there can also 
be a conserved angular momentum

L =
∫

d3r
(

�EM +
∑

s

∫
d3v msr × v f s

)
. (9)
Here pEM and �EM are the linear and angular momentum densities 
in the electromagnetic fields.

In order to compute the choices of f s that extremize the en-
tropy S while conserving Ns , E , and L, consider a small perturba-
tion to f s such that f s → f s + δ f s . Let δX/δ f s denote the func-
tional derivative of X with respect to f s; if X is expressed as a 
k-dimensional integral,

dX( f s + εδ f s)

dε

∣∣∣∣
ε=0

=
∫

dky
δX

δ f s
δ f s. (10)

Then the condition for an entropy-extremizing f s is

δS

δ f s
= λNs

δNs

δ f s
+ λE

δE
δ f s

+ λP · δP

δ f s
+ λL · δL

δ f s
, (11)

where λNs and λE are scalar constants and λP and λL are, in gen-
eral, vector constants. Of course, for s′ �= s, δNs′/δ f s = 0.

The derivatives of S and Ns have the simplest dependences on 
f s and are straightforward to obtain. The entropy derivative is

δS

δ f s
= − log

(
f s

Ns

)
− 1 (12)

and the particle number derivative is

δNs

δ f s
= 1. (13)

The other functional derivatives are a little more involved because 
the fields depend on the behavior of the charged particles.

2.1. Geometry, boundary conditions, and fields

Consider a cylindrical (r, θ, z) geometry with unit vectors r̂, θ̂ , 
and ẑ. In order to externally impose a magnetic field, surround 
the plasma with a superconducting boundary at r = R; this will 
confine the plasma to r < R and exclude E and B fields from r > R . 
Assume homogeneity in the θ̂ and ẑ directions. In order to keep 
the constraints finite, assume that they are all taken over a region 
of some axial length h.

The calculations that follow will neglect the effects of fluctu-
ations in the plasma. This is typically a safe approximation. For 
instance, in a macroscopically neutral plasma the energy due to 
fluctuations will be smaller than the thermal energy by a factor of 
O(�−1), where � is the plasma parameter [59].

Suppose the plasma is net neutral, so that although there may 
be places where ρc(r) �= 0 locally, there do not need to be surface 
charges on the boundary in order to exclude the field from r > R . 
Then the electric field is given by

E(r) = r̂

ε0r

r∫
0

dr′ r′ρc(r
′) (14)

and the electric potential is

ϕ(r) = 1

ε0

r∫
0

dr′ r′ log

(
r′

r

)
ρc(r

′). (15)

The boundary condition will enforce the conservation of mag-
netic flux, which is equivalent to fixing the cross-section-averaged 
field

B0
.= 2

R2

R∫
0

dr′ r′Bz(r
′). (16)
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Let B = Bp + Bext, where Bp is the field generated by any currents 
in the plasma and Bext is the field generated by the external su-
perconductor. The current density can be defined by

j(r)
.=

∫
d3v qsv f s(r,v). (17)

Then

Bp(r) = μ0

[
ẑ

R∫
r

dr′ jθ (r
′) + θ̂

r

r∫
0

dr′ r′ jz(r
′)
]

(18)

and Bext = Bext ẑ is described by

Bext = B0 − 2

R2

R∫
0

dr′ r′ ẑ · Bp(r′), (19)

which is

Bext = B0 − μ0

R∫
0

dr′
(

r′

R

)2

jθ (r
′). (20)

Fixing a (Lorenz) gauge, the corresponding vector potential compo-
nents can be written as

Aθ = μ0

2r

[ r∫
0

dr′ (r′)2 jθ (r
′) + r2

R∫
r

dr′ jθ (r
′)

− r2

R2

R∫
0

dr′ (r′)2 jθ (r
′)
]

+ rB0

2
(21)

and

Az = μ0

R∫
r

dr′

r′

r′∫
0

dr′′ r′′ jz(r
′′). (22)

This choice of geometry and boundary conditions is intended 
to be the simplest one that illustrates all of the relevant physics. A 
cylinder has translational and rotational symmetry, so it can have 
conserved linear and angular momenta. The choice of supercon-
ducting boundaries allows a magnetic field to be imposed on the 
system. This will be important in Section 3, which discusses addi-
tional constraints characteristic of magnetized systems.

These fields could also be imposed with external coils held at 
some constant current. However, this would introduce some com-
plications. For instance, if the plasma were perturbed in a way 
that changed the flux inside the coils, it would be necessary to 
account for the energy expended in order to keep the coil current 
constant. The superconducting boundaries result in cleaner conser-
vation laws.

2.2. Momentum

The total linear and angular momenta are given by Eq. (8) and 
Eq. (9), respectively. In a cylinder, set P = P ẑ and L = Lẑ. The mo-
mentum density in the electromagnetic fields is

pEM = ε0E × B (23)

and the angular momentum in the fields is

�EM = ε0r × (E × B). (24)
Using these expressions, together with the description in Sec-
tion 2.1 of the dependence of E and B on f s , it is possible to show 
that the functional derivative of the linear momentum is

δP

δ f s
=

(
msv + qsA + qsvϕ

c2

)
· ẑ (25)

and the functional derivative of the angular momentum is

δL

δ f s
= msrvθ + qsr Aθ − qs R2 B0

2

− qs vθ

c2

1

r

r∫
0

dr′ (r′)2 Er(r
′)

+ qs vθ

c2

r

R2

R∫
0

dr′ (r′)2 Er(r
′). (26)

2.3. Energy

The field energy density uEM can be written as

uEM = ε0 E2

2
+ B2

2μ0
. (27)

Using this, let E = Ep + EEM, where

Ep =
∫

d3r d3v
(

1

2
ms|v|2 + �s

)
f s (28)

EEM =
∫

d3r
(

ε0 E2

2
+ B2

2μ0

)
. (29)

These variations can be taken separately. Keeping in mind that �s

does not depend on f s ,

δEp

δ f s
= 1

2
ms|v|2 + �s. (30)

The part due to the fields is, after some calculation,

δEEM

δ f s
= qsϕ + qsv · A − qsrvθ B0

2
. (31)

This A includes both the plasma-generated field and the one im-
posed by the boundary conditions.

2.4. Constructing a distribution function

The distribution function f s(r, v) can now be calculated by in-
serting the functional derivatives into Eq. (11). Without simpli-
fication, this results in a fairly unwieldy expression. Relabel the 
Lagrange multipliers by defining the following constants:

T
.= 1

λE
(32)

uz
.= −T λP · ẑ (33)

�
.= −T λL · ẑ (34)

f s0
.= Nse−1−λNs −qs R2�B0/2T +msu2

z /2T . (35)

Define the velocity u .= uz ẑ + r� θ̂ . In the non-inertial frame mov-
ing at u, to leading order in u/c, the electric potential is [60,61]

ϕ̃
.= ϕ − u · A. (36)

This is the same as the relativistic expression with the Lorentz 
factor γ set to 1; recall that the original expressions for the sys-
tem’s conserved quantities were also written in their nonrelativis-
tic forms.
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In the frame moving at u, the externally imposed potential in-
cludes a centrifugal part, so that

�̃s
.= �s − msr2�2

2
. (37)

Finally, define a modified vector potential Ã by

Ãθ
.= Aθ − rB0

2
+ �

rc2

r∫
0

dr′(r′)2 Er(r
′)

− r�

R2c2

R∫
0

dr′(r′)2 Er(r
′) (38)

and

Ãz
.= Az − uzϕ

c2
. (39)

Ãθ includes frame-transformation terms as well as terms due to 
the externally imposed field. Ãz is the ẑ component of the vec-
tor potential in the moving frame (with γ → 1). Strictly speaking, 
whether uzϕ/c2 is first or second order in u/c depends on the rel-
ative ordering of u and ϕ/Az . In either case, Eq. (39) is accurate 
up to a relativistic O(u2/c2) correction.

Using these definitions,

f s = f s0 exp

[
− ms(v − u + qsÃ/ms)

2

2T
− qsϕ̃

T

− �̃s

T
+ ms(u − qsÃ/ms)

2 − u2

2T

]
. (40)

In the frame moving at u, species s will have an average ve-
locity of −qsÃ/ms . Recall that the gauge for the vector potential 
was fixed in Eqs. (21) and (22). It follows immediately that the 
only self-consistent choice for the ẑ component is Ãz = 0, since a 
nonzero value would need to be generated by currents moving in 
one direction but would produce currents that move in the oppo-
site direction.

In order to understand the θ̂ component, note that Eq. (38) can 
also be written as

Ãθ = 1

r

[ r∫
0

dr′ r′ B̃ z − r2

R2

R∫
0

dr′ r′ B̃ z

]
, (41)

where

B̃ z(r
′) .= Bz(r

′) + r′�Er(r′)
c2

(42)

is Bz in the moving frame. In other words, Ãθ is positive at r if the 
region within r has an average B̃ z that is larger than the average 
within R and negative in the opposite case. Ampère’s law specifies 
that the current in the moving frame is j̃θ = −∂ B̃ z/∂r. The sign 
of j̃θ is opposite the sign of Ãθ , so if at some r the average field 
within r is larger than that within R , B̃ z will be increasing at that 
r; in the opposite case, it will be decreasing. This implies that the 
average enclosed field at r′ must be above (or below) that within 
R for all r′ > r, which leads to a contradiction at r′ = R . As such, 
Ãθ must vanish everywhere.

In the end, the self-consistency of Ã requires

f s = f s0 exp

[
− ms(v − u)2

2T
− qsϕ̃

T
− �̃s

T

]
. (43)
The expression for ϕ̃ retains a dependence on the magnetic field, 
in spite of the conventional intuition that thermodynamic equi-
libria should not have such a dependence. However, in the (gen-
erally non-inertial) frame that is comoving with the plasma, this 
dependence disappears and f s is the expected Boltzmann dis-
tribution. To see this, note that u is the bulk velocity of the 
plasma, and recall that ϕ̃ and �̃s are the potentials evaluated in 
the frame moving at u. The Boltzmann distribution for a plasma, 
as well as generalizations that include conserved momenta, has 
been derived from constrained maximum-entropy techniques else-
where [37,62–65], though the superconducting boundary condi-
tions and self-consistent treatment of the self-organized electro-
magnetic fields used here are unusual. A closely related discussion, 
albeit for a system with somewhat different boundary conditions, 
can be found in Dubin [37].

Eq. (43) specifies the form of the maximum-entropy state in 
terms of the parameters T , uz , �, and f s0. In order to fully de-
termine f s for a particular choice of the global constraints Ns , E , 
P z , and Lz , it would be necessary to map these constraints to the 
four parameters in the solution. This mapping is described im-
plicitly by Eqs. (6), (7), (8), (9), and (43). Problems of this kind 
are not trivial [32–35,37,63–65], though in some cases it is pos-
sible to read off self-consistent solutions. If P z = Lz = 0, if there 
is no additional imposed �s , and if 

∑
s qs Ns = 0, it is consis-

tent to pick uz = � = 0, f s0 = Ns(ms/2π T )3/2/π R2h, and T =
(E − π R2hB2

0/2μ0)/ 
∑

s(3Ns/2). Computing general, explicit ex-
pressions for the constants T , uz , �, and f s0 is not the focus of 
this paper. In the general case, one would have to both find con-
sistent choices of the parameters and determine their uniqueness.

Even without explicit expressions for T , uz , �, and f s0, Eq. (43)
contains information about the maximum-entropy states of the 
plasma. For instance, the net flow of the plasma must be a su-
perposition of solid-body rotation and axial translation. The flow 
must be the same for all species; there can be currents, but only 
as a result of flow in regions where there is charge imbalance. In 
any case, for the analysis in Section 3, the actual values of the pa-
rameters in Eq. (43) are not needed.

3. Constrained charge transport

This section will use the formal machinery and intuition from 
Section 2 to derive Eqs. (1) and (2). Physically, the difference be-
tween Eq. (2) and Eq. (43) comes from the way in which magnetic 
fields restrict plasma transport.

For motivation, consider the case of magnetized cross-field 
transport in a system containing two species a and b with densi-
ties na and nb . If the interaction between the two species produces 
a cross-field force Fab on species a and Fba on species b, then 
naFab = −nbFba . The resulting cross-field fluxes will be

�ab = naFab × b̂

qa B
= −qb

qa
�ba, (44)

where b̂
.= B/B . If these are the dominant cross-field fluxes, then 

it follows from the continuity equation that ∂t(qana + qbnb) ≈ 0, so 
the local charge density is approximately fixed; there may be other 
processes that can push net charge across the field lines, but they 
are typically slow.

With that in mind, consider a charge density constraint:

ψ(r, f s/∈C) =
∫

d3v
∑
s∈C

qs fs(r,v). (45)

This is the local charge density due to the species in some set 
C . The distinction between s ∈ C and s /∈ C accommodates the 
possibility that some species may be able to move across field 



E.J. Kolmes et al. / Physics Letters A 384 (2020) 126262 5
lines more easily than others. For instance, it is often appropri-
ate over ion-ion collisional timescales not to include electrons in 
C , since the classical cross-field transport associated with electron-
ion collisions is much slower than the transport associated with 
ion-ion collisions; the accumulation of ions generally associated 
with Eq. (1) takes place on this faster ion-ion timescale. Indeed, 
if Eq. (1) is applied to all ion and electron species in a quasineu-
tral plasma, it requires that all density profiles be flat. It might 
also be appropriate to include additional constraints involving only 
s /∈ C (i.e., fixing the electron density to its initial profile), but this 
would not affect the rest of the analysis.

Similarly, an arbitrary dependence of ψ on f s/∈C is allowed but 
not required. The constraint on ψ can be used to fix the charge 
density to its initial value, but note that formally it does not have 
to do so. Also note that Eq. (45) was motivated by the vanishing 
net flux of charge, and that it would lead to a constraint of that 
form, but that the constraint could be imposed for any other rea-
son with the same effect.

ψ(r) is different from the constraints introduced in Section 2
in that it specifies a value for every point in space rather than 
a single scalar or vector for the whole system. Instead of a con-
stant Lagrange multiplier, the condition for the extremal f s pairs 
δψ(r)/δ f s with a multiplier that is a function of r:

δS

δ f s
= λNs

δNs

δ f s
+ λE

δE
δ f s

+ λP · δP

δ f s
+ λL · δL

δ f s
+ λψ(r)

δψ

δ f s
. (46)

For any s ∈ C ,

δψ

δ f s
= qs. (47)

Continuing to use the definitions from Section 2 for u, Ã, ϕ̃ , and 
f s0, the resulting distribution is

f s = f s0 exp

[
− ms(v − u)2

2T
− �̃s

T
− qs

(
λψ(r) + ϕ̃

T

)]
. (48)

Recall that f s0, u, and T do not depend on r. Even without deter-
mining λψ(r), it follows that

{
fa

fa0
exp

[
ma(v − u)2

2T
+ �̃a

T

]}1/Za

=
{

fb

fb0
exp

[
mb(v − u)2

2T
+ �̃b

T

]}1/Zb

(49)

for any a, b ∈ C . Here Zs
.= qs/e.

Integrating out the velocity dependence gives back a familiar 
expression:
(
nae�̃a/T )1/Za ∝ (

nbe�̃b/T )1/Zb . (50)

The difference between this and Eq. (2) is a matter of whether or 
not �s is defined from the beginning to include effective potential 
terms like the centrifugal potential. The expression takes the same 
form whether or not �s is defined to include the electrostatic 
potential, since ϕs ∝ Zs and therefore cancels. In the case where 
either �̃s = 0 or �̃s ∝ Zs , Eq. (50) reduces to Eq. (1). Note that 
Maxwell-Boltzmann distributions satisfy Eq. (50), but that they are 
a special case; Eq. (50) holds even when Eq. (43) does not.

The same physics that is responsible for the conservation of ψ
may be associated with additional physical constraints, even if they 
are not necessary in order to derive Eq. (50). For instance, in the 
Braginskii fluid model [48], viscous interactions are one of the ma-
jor mechanisms that can move net charge across field lines. The 
smallness of the viscous force compared to the local friction be-
tween ion species is one of the reasons why ψ can be treated as 
constant over sufficiently short timescales. The viscous force is also 
one of the major mechanisms for the spatial redistribution of me-
chanical momentum. If the viscosity is approximated as small, it 
may also be appropriate to enforce local momentum conservation 
laws, such as

�(r) =
∫

d3v
∑
s∈C

msr × v f s, (51)

or more generally, constraints of the form

ξ(r) =
∫

d3v
∑
s∈C

v · βs(r) f s. (52)

Constraints of this type would change the velocity-space struc-
ture of Eq. (48) without changing Eq. (50), so there is no physical 
requirement that Eq. (50) must be associated with solid-body ro-
tation or uniform axial translation.

4. Discussion

In the existing literature, Eqs. (1) and (2) have been derived 
from fluid models [46,50,53], using a jump-moment formalism 
[47], by solving kinetic equations [49], and from a single-particle 
perspective [52]. In all of these cases, the resulting expression is 
understood as a condition for the steady state of some particular 
model for the time-evolution of the plasma.

Although these derivations all end with Eqs. (1) or (2), they 
leave open questions about the general class of collision operators 
that will lead to the same result. The calculation in Section 3 gives 
a different (and perhaps more fundamental) derivation of Eqs. (1)
and (2). This calculation does not rely on the details of the form 
of the collision operator. In order to produce the classic impurity 
accumulation result, it is sufficient for a system to (i) conserve 
energy, (ii) constrain the motion of charge across field lines, and 
(iii) cause the system to attain its maximum-entropy state subject 
to (i) and (ii).

The derivation in Section 3 also includes conservation laws for 
particle number and momentum. These are useful for understand-
ing the system, but they are not necessary in order to derive 
Eq. (50) (though the inclusion of the constraint on L changes 
the rotation profile, which affects the effective potential). Non-
conservation of Ns , L, and P simply results in a particular choice 
of f s0 and in uz = � = 0.

There are ways in which the thermodynamic derivation of 
Eqs. (1) and (2) is more general than previous derivations, but 
there is an important way in which it is less general: in the 
form presented here, it does not capture the effects of temper-
ature gradients or of temperature differences between species. 
The maximum-entropy state naturally enforces a spatially uniform 
temperature that is the same for all species. The physics of differ-
ential ion transport in the presence of temperature gradients and 
temperature differences is of significant theoretical and practical 
interest [7,8,47,50,55,56,66,67].

Of course, in a real system, the charge density constraint de-
scribed by Eq. (45) is not exact. Even in a strongly magnetized, 
quiescent plasma, there are a variety of mechanisms that can drive 
cross-field currents. These include viscous forces, inertial effects, 
and collisions with neutral particles [54,68–70]. The important 
thing is that these processes be comparatively slow, so that the 
system will smoothly transition between states that satisfy Eq. (2)
as ψ varies. Approximate conservation laws of this kind have his-
torically played an important role in the theoretical understanding 
of plasma relaxation processes [71–77].
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