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ABSTRACT

Rearranging the six-dimensional phase space of particles in plasma can release energy. The rearrangement may happen through the applica-
tion of electric and magnetic fields, subject to various constraints. The maximum energy that can be released through a rearrangement of a
distribution of particles can be called its available or free energy. Rearrangement subject to phase space volume conservation leads to the
classic Gardner free energy. Less free energy is available when constraints are applied, such as respecting conserved quantities. Also, less
energy is available if particles can only be diffused in phase-space from regions of high phase-space density to regions of lower phase-space
density. The least amount of free energy is available if particles can only be diffused in phase space, while conserved quantities still need to be
respected.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0009760

I. INTRODUCTION
Waves injected into plasma can be amplified, extracting energy

from the plasma. Similarly, internal modes within the plasma can
grow by extracting energy from the plasma. There are multiple and
distinct ways in which this energy can be accessed, and the open ques-
tion is how much energy can possibly be accessed. The ground state of
the system can be defined as the state of least energy accessible respect-
ing any constraints. The free energy or the accessible energy can then
be defined as the difference between the initial state energy and the
ground state energy.

In his classic work,1 Gardner calculated the free energy when
plasma could be rearranged while preserving the six-dimensional
phase space densities or volumes. If the distribution is divided into
separate phase space volumes, the volume preservation constraint
means that it is not possible to rearrange the system to any lower-
energy state than the one in which the lowest-energy regions of phase
space are occupied by the most-populated available phase space ele-
ments. Each volume carries with it its initial number of particles, so
putting that volume in a six-dimensional location of lower energy pre-
serves that volume phase space density as well. This is known as
Gardner restacking, representing a particular phase space rearrange-
ment. The fully restacked phase space is the ground state subject to
phase space conservation; the releasable energy is known as the
Gardner free energy.

This problem was approached using variational techniques by
Dodin and Fisch.2 Dodin and Fisch also calculated the free energy,
including the additional constraint that the total current be preserved.
The free energy respecting current conservation, of course, would be
less than the Gardner free energy. Recently, Helander calculated the
free energy, conserving like Gardner the six-dimensional phase space
densities, but conserving as well other quantities, particularly those
quantities that affect the motion of individual particles in phase
space.3,4 For example, in a magnetized system, quantities like the first
or second adiabatic invariants l and J might be conserved. The free
energy constrained by conservation of the adiabatic invariants of the
motion, of course, would similarly be less than the Gardner free
energy.

However, even under Hamiltonian dynamics, rearrangements of
plasma can appear not to conserve phase space volume when the dis-
tribution functions are viewed with finite granularity. Viewed at finite
granularity, waves can diffuse particles.5 Importantly, these diffusive
wave-particle interactions can release particle energy to the waves.6

The energy accessible via diffusive operations in phase space is less
than that accessible via restacking. The property of free energy con-
strained by phase space diffusion was first posed by Fisch and Rax.7

The operation of diffusing particles between volumes in phase
space, rather than interchanging these volumes, has actually had appli-
cability to a rather wide range of problems. Mathematical treatments
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of rearrangement by diffusion describe theories of income inequality,8

altruism,9 and physical chemistry.10,11 The maximal extractable energy
under diffusive phase space rearrangements in plasma was addressed
by Hay et al.12,13

Helander’s recent calculation of the plasma free energy obeying
phase space conservation, with the motion of individual particles con-
strained by adiabatic invariants, now points to a natural generalization:
the free energy under diffusion in phase space, but with the motion of
individual particles similarly constrained by adiabatic invariants. This
paper will discuss that generalization. Lest this be thought to be an aca-
demic exercise, we note that it is realized, for instance, in the quasilin-
ear theory of plasma waves and instabilities with frequencies below the
cyclotron frequency. The available energies subject to both diffusion
and adiabatic motion constraints should be more limited than the
available energy subject only to either constraint.

The paper is organized as follows: Sec. II describes these different
available energies. Section III introduces a simple, discrete model
which illustrates the different ways in which these energies can be
extracted. Section IV shows how that simple model can be modified to
describe a more concrete plasma system. Finally, Sec. V discusses the
context and implications of these ideas.

II. THE FOUR CLASSES OF AVAILABLE ENERGY
Let DWG denote the accessible energy in Gardner’s restacking

problem, in which phase space volume conservation is the only restric-
tion. Let DWGjl denote Helander’s available energy for the version of
this problem in which one or more conservation law constraints are
included. Let DWD denote the maximum extractable energy in the
variant of Gardner’s problem in which phase space elements must be
diffusively averaged rather than being exchanged (“restacked”).
Finally, let DWDjl denote the maximum extractable energy for the dif-
fusive problem with conservation laws.

Here, a “diffusive exchange” refers to an operation in which the
populations fa and fb of two equal-volume regions of phase space are
mixed so that both populations are ðfa þ fbÞ=2 after the exchange.
There is no requirement that these two elements be adjacent in phase
space; in fact, microscopically local flows can give rise to apparently
non-local diffusive processes.7 This kind of exchange can describe any
process that tends to equalize the populations of different regions of
phase space, regardless of the details of the microscopic dynamics.
This equalization could, for instance, be the result of quasilinear diffu-
sion but could equally well result from more complicated transport
processes in phase space involving finite-Kubo-number effects, L"evy
flights, etc.

This leaves us with four distinct available energies. The condition
for the plasma to be in a ground state is the same in the restacking and
diffusion problems: for any pair of equal-volume phase space elements
with different populations, the higher-population element must
occupy a region of phase space with no more energy than the lower-
population element. If there is a conserved quantity l (or, in general, a
vector of conserved quantities l), then the condition is identical except
that it is only necessary to consider pairs of phase space elements with
the same values of l (or l).

Although Gardner restacking, even with constraints, leads to a
unique ground state, that is not the case with diffusive exchange. It is
possible through diffusive exchange to reach more than one possible
ground state from the same initial configuration. These ground states

will often have different energies. Note that DWD and DWDjl are
defined as the maximum possible extractable energy, which is the dif-
ference between the initial energy and the energy of the lowest-energy
accessible ground state.

Given the same initial phase space configuration, diffusive
exchange and restacking will typically not lead to the same ground
state. The extractable energy will differ too. It is clear that the available
energies without additional conservation-law restrictions will always
be at least as large as their restricted counterparts. That is,

DWGjl $ DWG; (1)

DWDjl $ DWD: (2)

Moreover, phase space restacking can always access at least as much
energy as diffusive exchanges can (strictly more, if they are nonzero).
To see this, note that both kinds of exchange move the system toward
the same ground state condition, where the most highly populated
phase space volumes are at the lowest energies, but diffusive exchanges
reduce the difference between the more- and less-highly populated
phase space volumes. This reasoning is equally applicable with and
without conservation laws, so it follows that

DWD $ DWG; (3)

DWDjl $ DWGjl; (4)

with equality holding only when both sides vanish.

III. SIMPLE DISCRETE MODEL
In order to get an intuitive sense for the four available energies—

that is, the restacking energy with and without a conservation law and
the diffusive-exchange energy with and without a conservation law—it
is helpful to construct a simple model that shows concretely how the
different energies can play out.

To that end, consider a collection of discrete states, indexed by
their energies and by some coordinate l, as shown schematically in
Fig. 1. Associate the states in the nth column with energy !n, with
!i $ !j 8i < j. One could construct a grid of this kind with any

FIG. 1. Schematic of a simple discrete system with varying energy and some addi-
tional coordinate l.
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number of columns and rows. Physically, previous work presents the
discrete version of these problems in two ways.7,12,13 First, it can model
an intrinsically discrete physical system, like transitions between
atomic energy levels stimulated by lasers. Second, it can model a sys-
tem with continuous phase space (e.g., a plasma) being mixed with
some finite granularity.

In this scenario, it is straightforward to understand the four avail-
able energies described in Sec. II. If l is conserved, different rows are
not allowed to interact, and the total available energy (either DWGjl or
DWDjl) is the sum of the available energies of the individual rows,
considered independently. If l is not conserved, then either the diffu-
sive or the Gardner energy minimization problem must consider the
system as a whole.

When constructing examples of this kind, it quickly becomes
apparent that conservation laws affect the outcome of diffusive and
Gardner relaxation in qualitatively different ways. Consider the follow-
ing phase-space configuration, with two energy levels (with the
left-hand column corresponding to a lower energy) and two different
values of l:

Suppose the separation between the two energy levels is e. Then
DWGjl ¼ DWG ¼ e andDWDjl ¼ e=2. If l is not conserved, the low-
est diffusively accessible energy can be reached by the sequence

(5)

so that DWG ¼ ð3=4Þe. At this point, we note that there is a qualita-
tive difference between discrete and continuous systems. In the exam-
ple just given, the ground state contradicts a theorem by Gardner that
the distribution function can only depend on energy alone. This con-
tradiction is a consequence of the fact that energetically neutral
exchanges are possible between the two low-energy boxes in the dia-
gram. It disappears if the distribution function is required to be a
smooth function of a continuous energy variable.

This example worked because, in the absence of any l constraint,
diffusive processes can take advantage of the additional phase space to
more efficiently transfer material (or quanta, etc., depending on how
this model is interpreted physically), more efficiently from high-
energy to low-energy states. One might imagine that this is a special
property of phase space that is initially unoccupied. However, similar
behavior appears when the initial population configurations for each l
are the same. Consider, for example, the following 2 & 2 system:

Suppose, as before, that the rows correspond to different values of l
and that the columns correspond to energy states that are separated by
some energy e. Three of the four measures of available energy are
immediately clear: DWGjl ¼ DWG ¼ 2e and DWDjl ¼ e.

Hay et al. showed12 that there are only a finite number of candi-
dates for the optimal sequence of diffusive steps to relax a system to
equilibrium. After enumerating all possible candidates, it is possible to
show that the lowest possible energy state accessible through diffusive
steps can be reached by the sequence

so DWD ¼ ð5=4Þe.
It seems that there is some qualitative way in which increasing

the number of accessible states improves the diffusive available energy
without necessarily improving the Gardner available energy. However,
it is nontrivial to write down a strong condition relating DWGjl;
DWG; DWDjl, and DWD that captures this intuition.

One might expect, after looking at a number of examples involving
small systems, that DWDjl=DWD would always be less than or equal to
DWGjl=DWG (in other words, that restricting the size of accessible
phase space would always have a fractionally more severe impact on the
energy accessible via diffusive exchange). In fact, this inequality holds
for any system with two energy levels (a 2 & N grid of states).

To see this, first note that in a 2 & N system, DWDjl ¼ ð1=2Þ
DWGjl. If only two cells can be exchanged, then it is either favorable
to exchange them (in which case the Gardner exchange moves the dif-
ference between the cells’ populations from one to the other and the
diffusive exchange accomplishes half that) or it is not (in which case
neither does anything).

Now consider the same system without any l constraints. It is
possible to divide the initial population values ffijg into the N largest
and N smallest values—or, more precisely, into equally large sets A
and B such that for any a 2 A and b 2 B; fa ' fb. These sets can then
be subdivided into the elements starting in the lower-energy state (A0

and B0) and those starting in the higher-energy state (A1 and B1). A1

and B0 will have the same number of elements, so every element of A1

can be paired with one unique element of B0. If each of these pairs is
exchanged, then all members of A will be in the lower-energy state,
and the system will be in a ground state, having released energy
DWG ¼ jjA1jje.

If those same pairs of cells are diffusively averaged rather than
being exchanged, the released energy will be ð1=2ÞDWG. This will
often not be the optimal diffusive strategy, but it demonstrates that
DWD ' ð1=2ÞDWG, which is enough to show (for the 2 & N case)
that DWDjl=DWD $ DWGjl=DWG.

However, this inequality does not always hold for systems with
more than two allowed energy levels. Proving for a particular case that
DWDjl=DWD > DWGjl=DWG is often somewhat involved; given the
other three available energies, it requires establishing an upper bound
for DWD. Consider the following configuration, with three energy lev-
els and two allowed values for l:

Suppose the three columns correspond to energies 0, e, and 2e, and
consider the limit where X !1.

When l conservation is enforced, the upper row is in its ground
state, which does not contribute to DWGjl or DWDjl. The contribu-
tion from the lower row gives DWGjl ¼ 3e. Applying the criteria for
extremal sequences from Hay et al.12 for a three-level system, and
checking all possible candidates, it is possible to show that the optimal
sequence respecting l conservation is
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so that DWDjl ¼ ð7=4Þe.
In the absence of l conservation, the Gardner available energy is

DWG ¼ ðX þ 1Þe. In the limit where X is very large, the only thing
that will determine DWD will be the fraction of X that can be moved
from the second column to the first. There is no strategy that can
move more than half of the content of one cell to another using diffu-
sive exchanges; in other words, limX!1DWD ¼ ðX=2Þe. Then, for
this example, DWDjl=DWD > DWGjl=DWG.

IV. EXAMPLE: INHOMOGENEOUS MAGNETIC FIELD
In many scenarios, the kind of simple phase-space grid consid-

ered in Sec. III may need to be modified. However, much of the intui-
tion remains the same. One case that was discussed by Helander3 for
the continuous restacking problem was a plasma in an inhomoge-
neous magnetic field, with conservation of the first adiabatic invariant
l ¼ mv2? =2B. To illustrate the four free energies, consider for simplic-
ity the case where the physical volume is divided into two halves: one
in which B ¼ B0 ¼ const, and another in which B ¼ B1 ¼ const,
with B1 > B0. Suppose the field is straight and its direction does not
vary, and suppose the energy in the direction parallel to the field can
be ignored. For simplicity, we consider a discrete version of this sys-
tem. The discrete version can be constructed by averaging the plasma
distribution function over finite regions of phase space and then
restricting the Gardner and diffusive exchange operations to act on
these macroscopic regions.

There are two major ways in which this scenario differs from
those discussed in Sec. III. First, for any given l, the volume of accessi-
ble phase space is now proportional to B. This can be shown by calcu-
lating the appropriate Jacobian determinant. Intuitively, it can be
understood in terms of the geometry of phase space when l is con-
served. For a given B and a given l (or a given small range in l), the
allowed region in phase space traces out a circle (or thin ring) in the
v? ¼ vx & vy plane. If l is held fixed and B is changed from B0 to B1,
then the region transforms to become a ring with a larger radius, with
a correspondingly larger phase-space volume. The discrete system is
composed of a series of boxes with equal phase-space volumes.
Therefore, for any given l, there will be a larger number of phase-
space boxes on the higher-field, higher-energy side of the system than
on the lower-field, lower-energy side.

In addition, there is now a coupling between the invariant l and
the energy e. For any given value of B, e / l. Moreover, if a particle
has energy e0 on the lower-field side, and if it is then moved to the
higher-field side without changing l, then it must have energy
e1 ¼ lðB1=B0Þe0. When l is conserved this is a two-energy-level sys-
tem, but for different values of l, the difference between the two
energy levels will be different. As a result, for this scenario, analogous
to Fig. 1, Fig. 2 represents the magnetic field constraint.

This picture can be used to illustrate the behavior discussed by
Helander. For example, if l is conserved, then any distribution that is
a function of l alone is a ground state, and such states will have spatial
densities that are proportional to B. This is in some sense counterintui-
tive since for any given l a higher field means a higher energy.
However, the intuition can be restored with reference to Fig. 2. If f is a
function of l alone, then each of the boxes in a given row must have
the same population. It is then clear that distributions of this kind will
give up no energy not only under l-conserving exchanges, but also
under l-conserving diffusive exchanges.

Moreover, it is clear why the total spatial density variations in such
a state must be proportional to B: there are proportionally more boxes
on the higher-field side than on the lower-field side for each choice of l;
therefore, there must be a proportionally higher total population (in
other words, the sum of the population over all l for a given side of the
system will be proportional to B). Helander also showed that f ¼ f ðlÞ
ground states will have temperatures proportional to BðxÞ. This can be
understood in terms of Fig. 2 in a similar way. Suppose f ¼ f ðlÞ. Then
if the distribution function has some structure at an energy e on the
low-field side, it must have the same structure at energy ðB1=B0Þe on
the high-field side since for a given l the low-field and high-field regions
of phase space have energies proportional to their local values of B.
Given that the density of volumes is higher in the high field region pro-
portionately to ðB1=B0Þ, it follows that the pressure in high field regions
is then ðB1=B0Þ2 the pressure of the low field region.

This is, of course, only one particular ground state, which occurs
when all accessible states have equal occupation for each l. It is also
possible to release free energy when the initial states are populated dif-
ferently in such a way that there is population inversion,
ð@f =@!Þl ' 0. In that case, for example, with the higher B states pop-
ulated equally but not the lower B state, representable by (0, 1, 1), the
restacking solutions give one e free energy, whereas the diffusive solu-
tion allows only ð3=4Þe free energy (where e is the energy gap between
the states). More generally, the difference between the diffusive and
restacking solutions is similar to what was discussed in Sec. III.
However, the details do turn out somewhat differently. For instance,
recall the first example from Sec. III,

It is possible to construct a six-cell analog of this, with one populated cell
on the high-field side and two possible choices of l, with a structure along
the lines of the first two rows of Fig. 2. It might look something like this

or this

FIG. 2. Schematic of the discrete restacking problem for a spatial region divided
between an area with constant field B0 and an area with constant field B1 ¼ 2B0.
Dashed lines separate different values of l. For each value of l, the single box
occupies the phase space on the low-field side and the pair of boxes occupies the
phase space on the high-field side.
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But now the solutions will be different. For instance, it now makes a
difference to all four available energies whether the populated cell was
for the larger or smaller value of l since these now have different ener-
gies and different gaps between their energies and the low-field states
at the same l.

Now consider an example in which, for the second-lowest choice
of l, the high-field states (marked red in Fig. 3) are occupied with pop-
ulations normalized to 1 each, and the rest of phase space is unoccu-
pied. This is analogous to the second example in Sec. III. In this
example, if each discrete box has a width Dl in l space, the bright
green box has energy ð1=2ÞB0Dl, the yellow box has energy
ð3=2ÞB0Dl, and each red box has energy 3B0Dl.

If l conservation is enforced, then the populations in the red
boxes can only exchange with the box marked yellow in Fig. 3. The
resulting diffusive free energy is DWDjl ¼ ð9=8ÞB0Dl. In the absence
of a l constraint, computing DWD involves the red, yellow, green, and
teal boxes. It is straightforward to find a bound on DWD by consider-
ing only exchanges between the red, yellow, and bright green boxes:
DWD ' ð21=8ÞB0Dl. Thus, the release of the constraint on the l
invariance makes substantially more energy available. This case pro-
vides some practical insight into a-channeling; this will be discussed in
Sec. V.

The system in this section has included only the component of
the kinetic energy from motion perpendicular to the field. The qualita-
tive behavior would be much the same if the parallel component were
included. The phase space structure for any given vjj would be identi-
cal to the one shown in Fig. 2, but with an offset in energy depending
on the value of vjj. However, there would be significant differences: the
energy of a state would no longer be a function of l and B alone, so
for any given l a range of energies would be accessible on both the
low- and high-field sides.

V. SUMMARY AND DISCUSSION
The key point of this paper is primarily one of classification.

There are in fact four free energies that are of interest in plasma: the
unconstrained restacking energy (DWG), the restacking energy with

conservation laws (DWGjl), the diffusive-exchange energy (DWD),
and the diffusive-exchange energy with conservation laws (DWDjl).
The first three of these had been discussed previously in the literature.
The last is first described here.

This classification is primarily of academic interest, at least inso-
far as any detailed calculation of the energy is concerned. In practice,
because accessing the full range of excitations is impractical, the full
free energy will not be made available in any of these categories. Thus,
for example, the precise Gardner restacking energy is not important as
a quantity so much as it is important as a concept. As a concept, it
exposes the fundamental physics of free energy under phase space
conservation. As a quantity, it does gives a useful measure of how
much energy is in principle extractable, thus constructing a measure of
success in extracting energy or a measure of concern if the energy
were lost to instabilities. Similar arguments can be made for the worth
of classifying the other free energies.

However, it is worth pointing out that in recognizing the fourth
free energy here, namely, the diffusive-exchange energy with conserva-
tion laws (DWDjl), certain subtleties required quite careful attention in
applying constraints to diffusive processes, as highlighted by the exam-
ples given. For example, in the case of applying the l-conservation
constraint in an inhomogeneous magnetic field B, the density of states
needed to be recognized as proportional to B. This led to a very differ-
ent, and somewhat non-intuitive, calculation for the free energy under
diffusion but respecting l-conservation.

In fact, apart from its academic interest, this example may have
an important application in a-channeling. In the case of a-channeling,
a-particles are diffused from the hot tokamak center by waves, which
in doing so extract the a-particle energy.6 However, generally one
wave does not have all the necessary wave characteristics to accom-
plish this on its own. It turns out that two waves, even if each is with-
out necessary wave characteristics, together might be able to
accomplish efficient energy extraction.14 In this regard, waves, such as
the ion Bernstein wave, that break l invariance15 were proposed in
combination with low-frequency waves that respect l invariance to
extract a substantial fraction of the a-particle energy.16

The strategy that achieved the most energy extraction (of about
61%) featured diffusion by the ion Bernstein wave confined to an outer
region, in keeping with a realistic spatial deployment of this wave. In
other regions, the low frequency waves dominated the diffusion. This
strategy, while giving quite favorable results, was by nomeans necessarily
optimal since the space of wave parameters to search is extremely large.

Note that waves that do not break the l invariant can diffuse a-
particles from the tokamak center, where they are born energetic, to
the low-field side of the tokamak. Thus, in conserving l, the a-par-
ticles advantageously lose perpendicular energy. However, as discussed
in Sec. IV, the density of states at any given l is higher in the tokamak
center where the magnetic field is larger than on the periphery where
the magnetic field is smaller. This statement pertains even though the
phase space on tokamaks is six-dimensional (since it includes the par-
allel velocity) rather than the four-dimensional phase space considered
for simplicity in Sec. IV. In either case, the diffusion to lower magnetic
fields, when respecting the l invariance, whether in four or six dimen-
sions, will be to states less dense; therefore, the energy extraction will
be less efficient than when diffusion occurs to states equally dense. In
the last example considered in the previous section, where the mag-
netic fields on either side of the system differed by a factor of two and

FIG. 3. This version of Fig. 2 has cells marked with different colors in order to
make the last example in Sec. IV clearer.
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the system began with a population of particles on the high-field side,
the extractable energy under diffusion and respecting l invariance was
less than half of the extractable energy when l invariance was not
respected.

Much of the previous work on two-wave a-channeling has rested
on the intuition that a high-frequency, non-l-conserving wave could
help to extract the energy from a-particles while a low-frequency, l-
conserving wave could accomplish spatial diffusion. The work pre-
sented here suggests a second motivation for combining such waves:
that breaking l conservation may also allow diffusive processes to more
efficiently extract energy. In other words, there emerges the interesting
suggestion that a greater amount of energy may become available by
arranging for breaking the l invariance even in regions where the low-
frequency waves dominate the diffusion. Since the parameter space of
wave possibilities is quite large, such an intuition may prove valuable in
optimizing the a-channeling effect. At present, this is a speculation, not
a proved result. A rigorous proof would require a much more special-
ized analysis of the initial conditions and phase-space geometry associ-
ated with a-channeling, which goes beyond the intended scope of this
paper. In addition, of course, it would be important to show that such a
scheme can work for specific wave implementations.

The above example shows how consideration of the new, fourth
free energy identified here leads to useful, possibly practical, physical
intuitions regarding extractable energy under wave diffusion by differ-
ent waves. However, in the end, the major interest of this classification
remains an academic understanding for the fundamental ways in
which energy may be released in different plasma systems.
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