
Physics Letters A 384 (2020) 126700

Contents lists available at ScienceDirect

Physics Letters A

www.elsevier.com/locate/pla

Fluid model for the piezothermal effect

E.J. Kolmes a,∗, V.I. Geyko b, N.J. Fisch a

a Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544, USA
b Lawrence Livermore National Laboratory, Livermore, CA 94550, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 10 March 2020
Received in revised form 22 June 2020
Accepted 24 June 2020
Available online 1 July 2020
Communicated by F. Porcelli

Keywords:
Rotating fluid
Piezothermal effect
Compression
Brunt-Väisälä oscillations

When a gas in an externally imposed potential field is compressed, temperature gradients appear. This 
has been called the piezothermal effect. It is possible to analytically calculate the time-dependent 
behavior of the piezothermal effect using a linearized fluid model. Quantitative differences between the 
fluid-model results and previous numerical calculations can be explained by the effects of viscosity and 
heat conductivity. The fluid model casts the piezothermal effect as a spectrum of buoyancy oscillations, 
which yields new physical insights into the effect.
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1. Introduction

Consider a gas at rest in a potential field. If the gas is com-
pressed, it will be heated. Moreover – contrary to the usual intu-
ition about compressional heating – the resulting temperature will 
be spatially nonuniform, such that regions that are higher in the 
potential well are hotter. This effect was described by Geyko and 
Fisch [1] and called the piezothermal effect. Intuitively, it results 
from the fact that particles starting in equilibrium move toward 
(and further compress) regions of higher potential as they are 
heated.

In the original paper on the piezothermal effect, Geyko and 
Fisch observed the phenomenon in particle simulations. Analyti-
cally, they used a toy model to explain the scalings and some of 
the quantitative behavior of the simulations. Their model described 
the gas as two homogeneous regions separated by a massive mov-
able membrane, so that the two sides of the system could have 
different temperatures and densities and could exert pressure on 
one another. For the simulation tools, they used a one-dimensional 
Monte Carlo code with exact energy and momentum conservation 
properties and a hard-sphere binary-collision operator. While their 
models correctly described the essential characteristics of the ef-
fect, they left room for discussion and future improvement in a 
number of respects.
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This paper analyzes the piezothermal effect by instead using a 
fluid model. The fluid approach to the piezothermal effect makes it 
possible to analytically calculate the behavior of the piezothermal 
effect in a wider range of scenarios, in greater detail, and using 
fewer simplifying assumptions than was done previously. Numeri-
cal fluid simulations confirm the validity of the analytic model and 
– when compared in detail to the results of the Monte Carlo code 
used in the original paper – help to explain quantitative discrep-
ancies between the fluid-model results and the previous numerical 
results.

The piezothermal effect is closely related to the physics to the 
rotation-dependent heat capacity effect also studied by Geyko and 
Fisch, in which the energy required to compress a rotating cylinder 
changes when the gas is spinning [2,3]. That effect has applications 
in engine design, where it could be used to improve the effi-
ciency of Otto and Diesel cycles [4]. In addition, the piezothermal 
effect is phenomenologically similar to the behavior observed in 
Ranque-Hilsch vortex tubes, which also produce radial temperature 
gradients in a rotating gas [5–12]. Vortex tubes are used for spot 
cooling in a variety of industrial applications. In general, the abil-
ity to move energy in rotating and compressing systems – either 
spatially or between degrees of freedom – can be of great practical 
utility [4,13]. These effects can also be useful for understanding the 
natural world. In particular, the fluid treatment of the piezothermal 
effect makes it clear that there is a strong connection between the 
piezothermal effect and Brunt-Väisälä oscillations, which are ob-
served in a variety of naturally stratified media [14–17].
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Fig. 1. This schematic shows a simple setup that demonstrates the piezothermal 
effect. Compression transverse to the direction of gravity produces temperature gra-
dients parallel with gravity and in the opposite direction.

2. Linearized fluid model for fast compression

For simplicity, we consider the potential field to be gravita-
tional, although practical applications are more likely in spinning 
systems, where centrifugal forces take the role of gravitational 
forces. Thus, to describe the key effects most simply, consider a gas 
in a gravitational field, such that all quantities vary only in the di-
rection of the field. Suppose the fluid is compressed in a direction 
perpendicular to the gravitational field. The behavior of the system 
depends on four timescales: the collisional timescale τc , the com-
pression timescale τE , the sound timescale τs , and the timescale 
τH associated with spatial heat conduction. Geyko and Fisch stud-
ied the piezothermal effect in a fast-compression scenario and 
in a slow-compression scenario. In the fast-compression scenario, 
τc � τE � τs � τH . The first part of this inequality implies that 
the gas is always in local equilibrium. The second inequality means 
that the input of energy due to compression happens much more 
quickly than the system can react spatially. The last part of the 
inequality states that spatial heat conductivity can be neglected.

Because of the very fast collisional timescale, it is appropriate 
to describe the system with a fluid model (a system with less 
frequent collisions could behave very differently [18]). Using an 
adiabatic equation of state, the fluid density n, velocity v , and tem-
perature T can be modeled by

∂n

∂t
+ ∂

∂x

(
nv

) = 0 (1)

mn

(
∂v

∂t
+ v

∂v

∂x

)
= −∂(nT )

∂x
− mng (2)(

∂

∂t
+ v

∂

∂x

)(
T

nγ −1

)
= 0, (3)

where m is the mass of a particle, g is the gravitational accelera-
tion, and γ is the adiabatic index. Suppose the system is bounded 
between x = 0 and x = L. Define equilibrium profiles

n0(x)
.=

(
mg/T0

1 − e−mgL/T0

)
e−mgx/T0 (4)

T0(x)
.= T0 = const (5)

v0(x)
.= 0. (6)

Now suppose the system is perturbed so that at t = 0, the tem-
perature is (uniformly) changed from T0 to Ti . This can occur, for 
example, by lateral compression as shown in Fig. 1. Define

δ
.= Ti − T0

T0
(7)
and suppose δ � 1. n, T , and v can be expanded about equilibrium 
so that

n = n0 + n1 +O(δ2) (8)

T = T0 + T1 +O(δ2) (9)

v = v1 +O(δ2). (10)

The initial conditions for n1, T1, and v1 are

n1
∣∣
t=0 = 0 (11)

T1
∣∣
t=0 = T0δ (12)

v1
∣∣
t=0 = 0. (13)

The initial conditions for their time derivatives can be derived by 
combining these with the equations of motion. Define the equilib-
rium scale height z0 by

z0
.= T0

mg
. (14)

To first order in δ, the equations of motion can be written as

∂n1

∂t
= 1

z0
n0 v1 − n0

∂v1

∂x
(15)

∂v1

∂t
= 1

mz0
T1 − 1

m

∂T1
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mn0

∂n1
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mz0n0
n1 (16)

∂T1

∂t
= (γ − 1)

T0

n0

(
∂n1

∂t
− 1

z0
v1n0

)
. (17)

Taking an additional time derivative of Eq. (16) and plugging in 
Eqs. (15) and (17),

∂2 v1

∂t2
= γ T0

m

(
∂2 v1

∂x2
− 1

z0

∂v1

∂x

)
. (18)

Define c2
s

.= γ T0/m and f
.= v1e−x/2z0 . Then

∂2 f

∂t2
= c2

s

(
∂2 f

∂x2
− 1

4z2
0

f

)
. (19)

Applying the boundary conditions at x = 0 and x = L, f can be 
written as

f (t, x) =
∞∑

n=1

�n(t) sin

(
πnx

L

)
(20)

for some functions �n(t). Then Eq. (19) implies

�̈n(t) = −c2
s

(
π2n2

L2
+ 1

4z2
0

)
�n. (21)

The time-dependent coefficients are linear combinations of sines 
and cosines in time. In order to get v1 = 0 at t = 0, only the sine 
terms can survive. As such,

f (t, x) =
∞∑

n=1

αn sin(knx) sin(ωnt) (22)

for some constants αn , with kn and ωn defined by

kn
.= πn

L
(23)

ωn
.= cs

√
π2n2

L2
+ 1

4z2
0

= ω0

√
1 + 4z2

0k2
n . (24)
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Here ω0 = cs/2z0. In order to determine the constants αn , consider 
the initial condition on ∂v1/∂t . Combining Eq. (16) with Eqs. (11), 
(12), and (13),

∂v1

∂t

∣∣∣∣
t=0

= gδ, (25)

so

∂ f

∂t
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t=0

= gδe−x/2z0 . (26)

The sine series for e−x/λ is
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2nπλ2
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[
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]
sin(knx). (27)

Using this,
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Eq. (22) implies that

∂ f

∂t
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t=0

=
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n=1

ωnαn sin(knx). (29)

This determines the αn parameters.
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]
sin(knx) sin(ωnt)

]
. (30)

The governing equation for T1 can be written as

∂T1

∂t
= −(γ − 1)T0

(
∂ f

∂x
+ f

2z0

)
ex/2z0 , (31)

which is
∂T1

∂t
= − γ − 1

γ
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×
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]
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)
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]
. (32)

Integrating and applying the initial condition on T1,

T1

T0
= δ − γ − 1

γ
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L
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×
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]
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Define the field-strength parameter G as

G
.= L

z0
= mgL

T0
. (34)

In terms of G ,
T1(t, x)

T0
= δ − γ − 1

γ

(
8Gδ

)
e(x/L)(G/2)

×
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n=1

[
4πn

(G2 + 4π2n2)2

[
1 + (−1)n+1e−G/2]

×
(

G sin(knx) + 2πn cos(knx)

)
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(
ωnt

2

)]
. (35)

Qualitatively, it is clear from Eq. (35) that the shape of T1(t, x)
will depend strongly on G . Modes other than n = 1 will contribute 
significantly when n � G/2π . When the n = 1 mode is dominant, 
the spatial and temporal structure are simple, with a well-defined 
wavelength and oscillation frequency. As G increases, the spatial 
structure becomes progressively more complicated.

In the weak-field G � 1 limit, Eq. (35) becomes

lim
G→0

T1(t, x)

T0
= δ − γ − 1

γ

(
4Gδ

)

×
∞∑

n=1

1 + (−1)n+1

π2n2
cos(knx) sin2

(
ωnt

2

)
. (36)

When G � 1 and t = L/cs , sin2(ωnt/2) → 1 + O(G2) ∀n ∈ Z. 
Therefore, the maximal temperature difference between x = 0 and 
x = L is

lim
G→0

T1(L/cs, L) − T1(L/cs,0)

T0
= γ − 1

γ
(2Gδ). (37)

When γ = 5/3, this is 0.8Gδ. This is precisely the analytic result 
found by Geyko and Fisch in this limit. However, it disagrees with 
the results of their simulations, in which �T1/T0 ≈ 0.64Gδ.

Simulations of the full nonlinear fluid equations given by 
Eqs. (1), (2), and (3) were performed using the 1D fluid code 
SNeuT, which uses components of the SUNDIALS suite [19,20]. 
Fig. 2 shows these simulations alongside the analytically pre-
dicted results from the fluid model; when δ is small, they are 
in close agreement, including the coefficient of 0.8. The origin of 
the discrepancy between these and the original paper’s results is 
discussed in Section 4.

Now consider the opposite limit, where G 	 1:

lim
G→∞
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γ

(
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)
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)
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2

)]
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This can be converted to an integral:

lim
G→∞

T1(t, x)

T0
= δ − γ − 1

γ

8δ

π
e(x/L)(G/2)

×
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0

[
4y dy

(1 + 4y2)2

(
sin

(
G yx

L

)
+ 2y cos

(
G yx

L

))

× sin2
(

Gcst

L

√
y2 + 1

4

)]
. (39)

When G becomes very large, the fluid becomes strongly rarefied 
and heated near x = L. When calculating the size of the tempera-
ture separation across the system, it makes more sense to compare 
the temperature at x = 0 with that at a scaled height x = z0 log 10. 
The integral in Eq. (39) can be evaluated numerically, and the 
maximal difference between T1(t, z0 log 10)/T0 and T1(t, 0)/T0 is 
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Fig. 2. This figure shows analytic and numerical results for the temperature oscillations associated with the piezothermal effect. Each row corresponds to a different choice 
of G . The left column is the analytic result from Eq. (35). The plots in the center and on the right are numerical solutions to the full nonlinear fluid equations described by 
Eqs. (1), (2), and (3) with δ = 10−2 and δ = 0.5, respectively. Times are normalized to ω−1

0 , which depends on G and T0. (For interpretation of the colors in the figure(s), the 
reader is referred to the web version of this article.)
about 0.49δ when γ = 5/3 (the minimum is about −0.53δ). Geyko 
and Fisch did not make an analytic prediction of this dependence, 
but they did investigate it numerically, and their simulations found 
0.47δ for the maximum.

Formally, the analytic calculations in this section are done in 
the limit of small δ. It is natural to wonder how small δ has to 
be in order for the calculations to be accurate. The nonlinear fluid 
simulations shown in Fig. 2 shed some light on this point. When 
δ = 0.01, the fluid simulations are almost indistinguishable from 
the analytic results. When δ is increased to 0.5, the accuracy of 
the analytic results depends strongly on G .

For G = 0.1 and G = 1, the δ = 0.5 simulations are qualita-
tively very similar to the small-δ analytic results, except that the 
oscillations appear to take place at a higher frequency. This re-
sults from the temperature dependence of the system frequen-
cies ωn . In Eq. (24), these frequencies are written as functions 
of the pre-compression temperature T0. However, physically, the 
system’s frequency response after compression should scale with 
Ti = (1 + δ)T0 rather than T0 (though the value of T0 will deter-
mine which modes are excited). This distinction is not important 
when δ is small, but as δ grows larger it begins to matter. The 
simulations with G = 0.1 and G = 1 are dominated by the n = 1
mode. If the frequency ω1 is evaluated at Ti rather than T0, ω1 in-
creases by about 22% when G = 0.1 or 1. This is consistent with 
the higher-frequency n = 1 modes observed in the simulations.

However, when δ = 0.5 and G = 8, the fluid simulations no 
longer resemble the small-δ calculations. This can be explained by 
the dependence of T1 on G . T1 depends nonlinearly on G , but in 
general T1 grows larger as G increases. As such, the δ that is re-
quired to keep T1 � T0 is smaller for larger values of G . For the 
simulations in Fig. 2, T − T0 < T0 when G = 0.1 and G = 1, but 
when G = 8 and δ = 0.5, there are regions with T − T0 > T0 and 
the perturbative model is no longer valid.

3. Arbitrary compression profiles

The analysis in Section 2 describes fast compression, so that the 
system starts out of equilibrium at t = 0 and is not driven after 
t = 0. It is possible to approach the case of more general heating 
profiles by instead allowing the system to start at equilibrium and 
imposing a time-dependent heat source. Suppose, to leading order, 
the heat source produces a spatially constant change in tempera-
ture. Then Eq. (17) becomes

∂T1

∂t
= (γ − 1)

T0

n0

(
∂n1

∂t
− 1

z0
v1n0

)
+ χ(t) (40)
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for some heating function χ(t). f = v1e−x/2z0 can be defined the 
same way, but its governing equation now depends on χ :

∂2 f

∂t2
= c2

s

(
∂2 f

∂x2
− 1

4z2
0

f

)
+ χ(t)

mz0
ex/2z0 . (41)

Define n(t) by

n(t)
.= ωn

T0

t∫
0

dt′ sin(ωnt′)
t′∫

0

dt′′ χ(t′′) cos(ωnt′′)

− ωn

T0

t∫
0

dt′ cos(ωnt′)
t′∫

0

dt′′ χ(t′′) sin(ωnt′′) . (42)

In terms of n(t), the solution for T1 is

T1

T0
=

t∫
0

χ(t′)dt′

T0
− γ − 1

γ

(
4G

)
e(x/L)(G/2)

×
∞∑

n=1

[
4πn

(G2 + 4π2n2)2
[1 + (−1)n+1e−G/2]

×
(

G sin(knx) + 2πn cos(knx)

)
n(t)

]
. (43)

Consider the case of steady heating for an interval τ . Set

χ(t) =
{

δT0/τ 0 ≤ t ≤ τ

0 t < 0, t > τ.
(44)

Here, the parameter δ is analogous to the corresponding parameter 
in the fast-compression case. Using this choice of χ(t),

n(0 ≤ t ≤ τ ) =
(

t

τ
− sin(ωnt)

ωnτ

)
δ (45)

and

(t > τ) =
(

1 + sin(ωn(t − τ ))

ωnτ
− sin(ωnt)

ωnτ

)
δ. (46)

In the fast-compression limit where τ → 0, Eqs. (43) and (46) re-
duce to Eq. (35). On the other hand, in the limit of very slow 
compression,

lim
ωnτ→∞

T1(t > τ)

T0
= δ − γ − 1

γ

(
4Gδ

)
e(x/L)(G/2)

×
∞∑

n=1

[
4πn

(G2 + 4π2n2)2
[1 + (−1)n+1e−G/2]

×
(

G sin(knx) + 2πn cos(knx)

)]
. (47)

When ωnτ is large, the temperature gradient is not oscillatory. This 
is consistent with the intuition that a slowly driven system will re-
main close to force equilibrium. The temperature difference across 
the system can be written in closed form as

lim
ωnτ→∞

T1(t > τ, L) − T1(t > τ,0)

T0
= γ − 1

γ

(
Gδ

)
. (48)

In the limit where G � 1, the temperature difference across the 
system for slow compression will be half of the maximal temper-
ature difference for fast compression. This agrees exactly with the 
analytic result of Geyko and Fisch in that limit, though their simu-
lations yielded a somewhat smaller coefficient.
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Of course, Eqs. (42) and (43) make it clear that things can turn 
t quite differently if χ has a more complicated time dependence. 
was already true in the simple case described by Eq. (44) that 
careful choice of τ could either suppress or enhance the oscil-
tions associated with a particular mode number. If, for instance, 
itself were oscillatory, then particular modes could be driven or 
ppressed even more dramatically. Consider the oscillatory heat-
g function

(t) = δ � T0 sin(�t) (49)

here � is some positive frequency. Heating of precisely this form 
ay not necessarily be practically realizable, but it is an informa-
e formal example. For this choice of χ ,

n(t) = [ω2
n − �2 − ω2

n cos(�t) + �2 cos(ωnt)]δ
ω2

n − �2
. (50)

hen the driving frequency is close to ωn , there is a secular term. 
 leading order in � − ωn ,

n(t) →
(

1 − cos(ωnt) − ωnt

2
sin(ωnt)

)
δ. (51)

is holds even for higher-frequency oscillations whose role in the 
lk behavior of the system would normally be small. Driving at 
e of the system’s natural frequencies can produce temperature 
cillations that (at least as far as the linear theory is concerned) 
n grow without bound. If the system is driven at ωn , the reso-
nt oscillations will be associated with the corresponding spatial 

avenumber kn . All of this behavior is intuitive, if the system’s re-
onse to χ(t) is understood in terms of the mode decomposition 
at comes naturally from the fluid picture.

 Comparison of the fluid and Monte Carlo simulations

As pointed out, the numerical results from the original paper on 
e piezothermal effect [4], obtained via Monte Carlo simulations, 
e qualitatively similar to the ones obtained in the present work, 
t deviate quantitatively in many cases. The main reason for this 
the fact that the Monte Carlo code has intrinsic physical and 
merical damping built in due to the finite mean free paths of 
e particles. To get a better understanding of this phenomenon, 
e briefly review the Monte Carlo code from the original paper.

The object of the simulations is a set of ideal particles that 
ove in a one-dimensional box in a constant gravitational field 
= −gx̂. The box is considered infinite or periodic in the perpen-
cular directions ŷ and ẑ, and of the length L in the x̂ direction. 
rticle velocities, however, have all three components (vx , v y , and 
) for the sake of preserving the proper value of the adiabatic gas 
nstant γ = 5/3. A particle’s motion is exactly integrated for ev-
y time step δt , and takes into account the possibility of multiple 
rticle-wall collisions on the box floor.
A non-interacting ensemble of particles does not represent a 

id-like motion. Instead, it will produce complex but uncorre-
ted behavior, like the density waves described in [18]. In order to 
ake the system behave like a fluid, particle collisions are added. 
 the code, only binary elastic collisions are considered, such that 
ergy, momentum, and angular momentum are conserved up to 
achine precision for each individual collision and, as a result, for 
e whole system. The main problem of such a collision operator 
that any two particles are never located at the same point in 
ace. In principle, a given pair of particles can be tracked and the 

e of the true collision can be found, yet this is too complicated 
all the particles are required to collide every time step. Thus, 
me nearly located particles are picked for each collision. The do-
ain is divided in the x̂ direction into a number of cells, each of 
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the same length Lc for simplicity. Since the particles are not at 
exactly the same point, the collision should be acting along the 
direction �̂ connecting the centers of the two particles, otherwise 
the angular momentum will not be conserved. One can think about 
this type of collision as an instantaneous force acting between the 
two particles, like gravitational attraction. This force should change 
somehow the projections of particle velocities v1� and v2� in such 
a way that the total kinetic energy and momentum are conserved. 
For identical particles, it is done by exchanging their velocity pro-
jections: v1� → v2� and v2� → v1� . Since the two particles are 
picked at random inside a cell, the distance d between them is 
of the order of Lc . The angle between the direction �̂ and x̂ is θ , 
and it is picked at random but is typically about θ ≈ π/3 or simi-
lar, because the perpendicular displacement is picked uniformly in 
both directions from −Lc to Lc .

This collision operator exactly conserves energy, momentum 
and angular momentum, but suffers from numerical heat and mo-
mentum transfer due to finite cell size effects. This can be under-
stood in the following way: imagine the cell size is equal to the 
box height, and a hot population of the particles is sitting at the 
bottom. In this case, the numerical thermalization would occur in-
stantly, and the particles on the top would get hot even faster than 
a sound wave can travel across the domain.

To be more specific, consider two particles inside a cell located 
at coordinates x1 and x2, respectively. For highly collisional gas, 
which is of interest here, a Maxwellian distribution can be as-
sumed, with temperature T (x), mean velocity u(x)x̂, and density 
n(x). As a collision occurs, an instantaneous transfer of the mo-
mentum from the second particle to the first one can be written 
as

�p

m
=

∫
d3 v1 f1(v1, x1)

∫
d3 v2 f2(v2, x2)[ṽ2 − ṽ1], (52)

where ṽ is a projection of the velocity to the �̂ direction ṽ = �̂(�̂ ·v). 
Integrals with respect to v y and vz vanish, because the integrated 
function is antisymmetric, and the integral with respect to vx

yields

�p = m�̂�x (u(x2) − u(x1)) , (53)

where only �px is of interest since the other two components van-
ish, as an averaging over �̂ is performed, thus,

�p = �px = m cos2(θ) (u(x2) − u(x1)) . (54)

For a particle at a given position x̄ inside the cell (x̄ = 0 at the 
center of the cell), the total momentum transfer from all the par-
ticles around is found as a mass weighted integral over all the cell 
of Eq. (54), where density and velocity are Taylor expanded around 
the cell-center point xc . This integral should be also multiplied by 
a collision rate parameter Rc , which is proportional to the number 
of collisions occurred in the given cell each time step.

�ptot = mRc

Lc/2∫
−Lc/2

cos2 θ

[(
nc + n′ξ + n′′

2
ξ2

)

·
(

u′(ξ − x̄) + u′′

2
(ξ2 − x̄2)

)]
dξ. (55)

The result of expression (55) depends on the value of x̄, however 
for any x̄ there always present a term proportional to mRcncu′′L3

c . 
Notice that nc Lc ≈ Np , where Np is the number of particles in the 
cell, and the momentum transfer found in Eq. (55) happens in a 
time step δt . Therefore, there is a momentum transfer term with
∂ p

∂t
∝ mRc Np L2

c

δt

∂2u

∂x2
, (56)

and Eq. (2) then reads as

mn

(
∂v

∂t
+ v

∂v

∂x

)
= −∂(nT )

∂x
− mng + νmn

∂2u

∂x2
, (57)

where ν is the derived numerical viscosity with ν ∝ Rc L2
c /δt . The 

derivation of numerical heat conductivity is very similar to the one 
for viscosity, and therefore is omitted here.

Apart from numerical viscosity and heat conductivity, driven 
mainly by a finite cell size, there is a physical mechanism of heat 
conductivity due to finite particle mean free path. The last is de-
termined be the collision rate Rc , the time step δt , and the mean 
particle velocity vt and does not depend on the cell size. Indeed, 
consider a generalized version of Eq. (3) with heat transfer term 
included in it

n

γ − 1

(
∂T

∂t
+ v

∂T

∂x

)
+ nT

∂v

∂x
= ∂

∂x

(
�

∂T

∂x

)
. (58)

Here, � is the heat conductivity coefficient, given in terms of 
the mean free path λmfp as � ≈ nλmfp vtcv/3. Eq. (58) reduces to 
Eq. (3) if � = 0. When � > 0, heat diffusion leads to wave dissipa-
tion and system equilibration.

Notice that the aforementioned arguments are not a rigor-
ous derivation of the numerical viscosity and heat conductivity 
in the Monte Carlo code. They can only provide some insights on 
why Monte Carlo simulations sometimes produce different results. 
However, even such a simplified picture is enough to explain, for 
example, why the piezothermal coefficient

κ
.= T1(L/cs, L) − T1(L/cs,0)

GδT0
(59)

was 0.64 instead of 0.8 (see Eq. (37)) in the numerical results from 
the original paper. In particular, we are interested in how κ de-
pends on the length Lc , which was described by a parameter Nc in 
the code, where Nc Lc = 1.

Fig. 3 shows how the piezothermal temperature difference 
evolves as a function of time in a series of simulations using two 
different codes: one performing Monte Carlo simulations and the 
other performing fluid simulations. The Monte Carlo simulations, 
denoted by plus marks, show the temperature difference for four 
different values of Nc , while all other parameters of the code were 
fixed, namely, δt = 0.001, T0 = 0.3698, Rc = 10 (collisions per par-
ticle per cell), G = 1.352, δT0 = 0.0518. Only for Nc = 240 the first 
peak of the oscillations is sufficiently close to the predicted value 
0.8, yet the oscillations nevertheless slowly damp in time. For low 
values of Nc fluid oscillations are very quickly damped, and the 
system decays to a new equilibrium.

The solid lines in Fig. 3 show a corresponding series of fluid 
simulations. In these simulations, the field strength parameter G
and the heating parameter δ are chosen to match the values in the 
Monte Carlo simulations. Each of these fluid simulations includes 
a spatially constant viscosity η and heat conductivity �. Of course, 
discretization error is not a phenomenon unique to Monte Carlo 
algorithms. Fluid simulations also have finite-grid-size effects. The 
fluid simulations shown here use sufficiently fine-grained grids 
that these errors are negligible compared to the corresponding 
effects in the Monte Carlo code (in this example, the fluid sim-
ulations used 128 cells).

Both the Monte Carlo simulations and the fluid simulations 
show oscillations that are “lopsided,” in the sense that they are 
asymmetric about their extrema. The asymmetry is most apparent 
in the Nc = 240 case. This results from the same nonlinearity dis-
cussed at the end of Section 2, in which δ and G are large enough 
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Fig. 3. Evolution of the temperature difference T (L) − T (0) normalized to GδT0 in a series of Monte Carlo and fluid simulations. The grid parameter Nc is varied for the 
Monte Carlo simulations. The viscosity η and heat conductivity � are varied for the fluid simulations. All other code parameters are fixed. The listed values of η and � are 
normalized to the product of the system height and the sound speed.
for the oscillations not to be small perturbations. It is worth noting 
that these asymmetric oscillations still appear even in fluid simu-
lations without any viscosity or heat conductivity (not shown in 
Fig. 3).

In any case, there are two major conclusions to be drawn from 
the comparison in Fig. 3. First, the finite-cell-size effects seen in 
the Monte Carlo simulations appear to be equivalent to an effective 
viscosity and heat conductivity. Second, the effective viscosity and 
heat conductivity become small when Nc is large.

5. Discussion and conclusions

Using a fluid model, we have derived analytic expressions for 
the temperature gradients of the piezothermal effect as they evolve 
in time. The fluid solutions recover the original analytic model’s 
predictions for G � 1 and they make it possible to make pre-
dictions when G is not small. Similarly, they recover the original 
model’s qualitative predictions for very slow and very fast com-
pression while also handling more general compression profiles, 
including compression that is not constant in time and compres-
sion that is neither very fast nor very slow. The analytic solutions 
to the fluid equations are in very good agreement with fluid sim-
ulations performed using the SNeuT fluid code.

There are places where the results from fluid models disagree 
quantitatively with some of the numerical results from the original 
paper. The comparison between the present fluid and the original 
Monte Carlo simulations provides some explanation for why the 
previous results were different, and what can be done in order 
to improve them in the Monte Carlo model. In general, a small 
time step and a very large number of cells are required in order 
to sufficiently suppress numerical and physical heat diffusion and 
viscosity in the Monte Carlo simulations. That brings extra com-
plication for the total number of particles in the system, as the 
number of particles in a cell should be large enough to mitigate 
statistical noise. However, there is evidence that (in the appro-
priate limit) the Monte Carlo simulations converge to results that 
agree with the fluid model.

The fluid model used in this paper makes assumptions. The 
strict timescale ordering means that viscosity and heat conduc-
tivity are neglected (with the exception of the simulations used 
to produce Fig. 3, which included both), though the calculation 
in Section 3 makes it possible to relax the requirement for an 
ordering between the compression timescale τE and the sound 
timescale τs . The analytic calculations presented here use lin-
earized fluid equations; they become invalid when the compres-
sion parameter δ is large. However, these assumptions were also 
necessary for the model used in the original paper.

The mode structure of the analytic solutions helps to provide 
intuition for the behavior of the piezothermal effect. The criti-
cal dependence of the effect on the field-strength parameter G
can be explained by the mode structure: as G increases, modes 
other than n = 1 become important when n � G/2π . When G is 
small, the piezothermal effect is dominated by a single frequency 
and a single wavenumber; when G is large, many frequencies and 
wavenumbers contribute, and the oscillations can become much 
more complicated.

The characteristic frequencies ωn are closely related to the 
Brunt-Väisälä frequency, which is important in a variety of geo-
physical, astrophysical, oceanographic, and atmospheric contexts 
[14–17]. Brunt-Väisälä oscillations occur when a fluid element is 
displaced within a stratified background. For a parcel of air dis-
placed in a dry, isothermal atmosphere, the Brunt-Väisälä fre-
quency can be written as [14]

ωBV =
√

g�d

T
=

√
g2

cp T
= 2ω0√

γ mcp
, (60)

where �d is the dry adiabatic lapse rate and cp is the specific heat 
capacity.

The scenario being considered here is not quite identical to 
the prototypical Brunt-Väisälä buoyancy oscillation; for one thing, 
the entire system is displaced, rather than a small fluid element 
within the system. However, the oscillations associated with the 
piezothermal effect can be understood as a spectrum of buoyancy 
oscillations which are closely related to Brunt-Väisälä oscillations.
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