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ABSTRACT

By exploiting the nonlinear amplification of the power deposition of RF waves, current condensation promises new pathways to the
stabilization of magnetic islands. We present a numerical analysis of current condensation, coupling a geometrical optics treatment of wave
propagation and damping to a thermal diffusion equation solver in the island. Taking into account the island geometry and relativistic
damping, previous analytical theory can be made more precise and specific scenarios can be realistically predicted. With this more precise
description, bifurcations and associated hysteresis effects could be obtained in an ITER-like scenario at realistic parameter values. Moreover,
it is shown that dynamically varying the RF wave launching angles can lead to hysteresis and help to avoid the nonlinear shadowing effect.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0013573

I. INTRODUCTION

Reliable mitigation and avoidance of disruptions are critical to
the success of ITER and potential future tokamak power plants.
Sudden loss of plasma confinement poses a serious threat to machine
components through high heat loads, electromagnetic forces, and run-
away electrons.1–3 In the JET tokamak equipped with an ITER-like
wall, 95% of natural disruptions are preceded by magnetic islands,4

making their stabilization an essential task.
Magnetic islands can be suppressed by using an RF driven cur-

rent in the island to generate a stabilizing resonant component of the
magnetic field. Current is generally driven directly by RF waves,5–16

such as electron-cyclotron (EC) and lower-hybrid (LH) waves.
Additionally, by depositing power and thereby heating the plasma, RF
waves can also modify the Ohmic current profile by decreasing the
local resistivity. Thus, both RF heating and current drive can be used
to stabilize magnetic islands, as has been investigated theoretically17–23

and experimentally.24–35 For instance, the stabilization of magnetic
islands with EC current drive (ECCD) is planned in ITER.36–38

To obtain a high current drive efficiency through the Fisch–Boozer
effect,6 it is advantageous if RF waves damp on fast superthermal elec-
trons. In this case, the damping rate strongly depends on temperature

through the electron population in the tail of the distribution function.
This high sensitivity of power deposition to temperature can result in a
positive feedback loop, where the magnetic island is heated by the RF
wave, the elevated temperature leads to an increased power deposition,
and so forth. This nonlinear effect, called current condensation,39,40 can
lend further help in stabilizing islands, as narrower power deposition
and current profiles centered on the island’s O-point can be
achieved.39,40 Furthermore, current condensation can lead to bifurca-
tions (see Arnol’d and Gamkrelidze41 for a mathematical treatise on the
bifurcation theory), where the island temperature would increase with-
out bound, if not for other limiting effects such as depletion of the wave
power40 or stiff temperature gradients.42

The present work extends previous analytical studies39,40,42

with a numerical approach of current condensation. A geometrical
optics treatment of wave propagation and damping is coupled with
a solver of the thermal diffusion equation in the island geometry,
as presented in Sec. II. The calculation iterates between solution of
the thermal diffusion equation and calculation of the power depo-
sition along the ray trajectories in the presence of the perturbed
temperature to obtain a self-consistent solution of the nonlinear
coupled system.
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The geometrical optics approach allows for the inclusion of rela-
tivistic effects in the damping. We show in Sec. III that the previously
developed theory of current condensation39,40 can be generalized to
account for these relativistic effects, as well as the island geometry. In
Sec. IV, we obtain values and trends in the bifurcation threshold con-
sistent with previous work. Furthermore, the same calculations show
that a bifurcation and associated hysteresis in the island temperature
could be obtained in ITER-like H-mode and L-mode scenarios, at real-
istic values of input power, diffusion coefficient, and island tempera-
ture perturbation. A constant diffusion coefficient was, however, used,
an approximation that holds for low temperature perturbations, below
the ion temperature gradient (ITG) instability threshold. An estimate
suggests that this is indeed justified for the lowest temperature pertur-
bations we observed at a bifurcation, although more detailed calcula-
tions will need to be performed in the future.

Finally, we show in Sec. V that a bifurcation and hysteresis can
be obtained by varying the RF wave launching angles, which could be
a pathway for future experimental verification of current condensa-
tion. Additionally, the launching angles can be adjusted to circumvent
the nonlinear shadowing effect.40,43

II. COUPLING OF RAY-TRACING AND MAGNETIC
ISLAND MODEL

The numerical approach presented below aims to simulate the
nonlinear dynamics of current condensation, yielding self-consistent
temperature and power depositions. The newly developed code
OCCAMI (Of Current Condensation Amid Magnetic Islands) couples
the ray-tracing code GENRAY44 with a driven heat diffusion equation
solver for the magnetic island. The ray-tracing computes the RF wave
propagation and damping. The ensuing power deposition is used to
solve the steady-state diffusion equation to obtain the temperature
profile in the island. The temperature is then given back as an input to
the ray-tracing code. This process is repeated until convergence in the
island temperature is attained.

The temperature and power deposition thus obtained are self-
consistent and allow us to investigate current condensation. This
numerical treatment expands on previous analytical work where the
initial power deposition was assumed to be constant39 or exponentially
decreasing around a peak,40 although the latter also incorporated self-
consistent depletion of the wave energy. Furthermore, geometric
effects inherent to magnetic islands are now included in the heat diffu-
sion equation solver, whereas a slab model had previously been used
to keep the problem analytically tractable.40

We now present in more detail the coupling of the ray-tracing
for wave propagation and absorption with the heat diffusion equation
solver.

A. Ray-tracing for wave propagation and power
deposition

The code GENRAY44 simulates the propagation and absorption
of electromagnetic waves in the geometrical optics approximation.
The coupling of the island model with the ray-tracing calculations
occurs through the temperature profile. We are therefore assuming
that the perturbation in the magnetic field Br associated with a mag-
netic island is small, with a negligible impact on ray propagation and
absorption. Indeed, in previous work studying EC wave propagation
and power deposition in an equilibrium perturbed with magnetic

islands,45 it was shown that the propagation is mostly affected by den-
sity and temperature flattening, with the magnetic field perturbation
playing a negligible role. Moreover, the same work demonstrated the
importance of computing the deposited power and driven current on
the island flux surfaces, as their volumes vastly differ from those of the
equilibrium flux surfaces. The main effects of the magnetic island on
the wave propagation and absorption—the modification of the kinetic
profiles, as well as the power and current having to be calculated on
the island flux surfaces—are therefore included in our model. Another
study by Ayten and Westerhof46 investigated EC wave propagation
and absorption in the presence of magnetic islands and focused, in
particular, on nonlinear effects in the damping due to increased power
densities on the island flux surfaces, complementing a previous investi-
gation of this effect for unperturbed equilibria.47 In contrast to Isliker
et al.45 and Ayten and Westerhof,46 we assume radially symmetric
islands, for the sake of simplicity in the diffusion equation [Eq. (1)]
that allows us to consistently obtain the island temperature from the
deposited EC power, an effect that was not included in the two afore-
mentioned studies. Furthermore, radial asymmetry was found to have
a negligible effect on magnetic island suppression.48

Axisymmetry of the plasma is lost in the presence of magnetic
islands, whence the island temperature profile becomes a function of
not only a radial coordinate but also the helical angle f ¼ h� N=Mu,
with the poloidal (toroidal) angles h (u) and poloidal (toroidal) mode
numbers M (N). However, the code GENRAY assumes axisymmetry,
by requiring a one-dimensional temperature profile as input. We
incorporate the island-linked asymmetry through an effective temper-
ature profile for each ray. This effective profile corresponds to the tem-
perature profile that the ray experiences as it propagates through the
plasma, as illustrated in Fig. 1. This assumes that the ray trajectory is
not significantly altered by the change in temperature between
iterations.

The solution for the temperature shown in Fig. 1 corresponds
to a case where there is a single ray propagating through a locked
island. For a rotating island, it is necessary to calculate the total
power deposited in the island through one rotation. This has been
implemented for a fast rotating island, where the diffusion time is
much longer than the island rotation time. Then, the total power
deposition can be approximated by averaging the power deposition
along multiple ray trajectories sampling the island at different
phases.

B. Heat diffusion equation solver in island geometry

The power deposition obtained from the ray-tracing calculation
is used to update the island temperature. Integrating the steady-state
diffusion equation once (a detailed derivation can be found in
Appendix A), we obtain

@u
@r
¼ � PdepðrÞ

nv?Ts

r

EðrÞ � 1� r2ð ÞKðrÞ
WM

32p rrR0
: (1)

Here, u ¼ ðT � TsÞ=Ts is the normalized island temperature, with the
temperature at the separatrix Ts, PdepðrÞ is the power deposited within
the island flux surface r (r ¼ 0; 1 at the O-point and separatrix,
respectively), EðrÞ and KðrÞ are, respectively, the complete elliptical
integrals of the first and second kinds, W is the island width, rr is the
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minor radius at the resonant surface, R0 is the tokamak major radius,
andM is the island’s poloidal mode number.

The temperature at the separatrix Ts is assumed to be constant in
our simulations. This corresponds to the case where, for example, the
EC power is initially deposited radially inward from the island, at radii
r < rr �W=2, and then redirected outward to r � rr . As the total
power deposited within the flux surface at r ¼ rr þW=2 remains
identical, the temperature gradient at radii r � rr þW=2 is
unchanged, and so the separatrix temperature is constant.40 More gen-
erally, the temperature perturbation at the separatrix may be negligibly
small, but this is not always the case.

Furthermore, the perpendicular heat diffusion coefficient v? is
taken to be constant in this study. The interplay between current con-
densation effects and a variable heat diffusion coefficient in the form
of stiff gradients was investigated analytically in Rodr�ıguez et al.42 A
corresponding numerical treatment with OCCAMI is left for future
work.

The once integrated diffusion equation [Eq. (1)] can be readily
solved for the island temperature profile, given the power deposited
from GENRAY and the boundary condition uðr ¼ 1Þ ¼ 0. This is
done numerically with a fourth order Runge–Kutta integrator. Note
that the boundary condition {@u=@rðr ¼ 0Þ ¼ 0} was used when
integrating the originally second order diffusion equation, and is
required for regularity.

The obtained temperature is then fed back to GENRAY through
an updated effective temperature profile and the ray propagation and
power deposition are calculated anew. This cycle is repeated until con-
vergence in the island temperature is reached, i.e., when the relative
change in the normalized temperature perturbation between iterations
is below a given threshold e (in this study, e ¼ 5� 10�4 was chosen).

III. EFFECTS OF RELATIVISTIC DAMPING

In this section, we show how the sensitivity of damping to tem-
perature in the classical case, w0, can be generalized to account for rela-
tivistic damping effects, leading to the definition of an effective weff .
Approximate formulas for the O1 and X2 modes are presented.
Spatial variation of the damping within the island must also be taken
into account, leading to the introduction of an average �weff . To keep
this study self-consistent and motivate our analysis of weff , we first pre-
sent a brief summary of the theory of electron cyclotron resonant
wave damping.

A. Relativistic resonance and damping

The classical (nonrelativistic) resonance condition between an
EC wave and electrons is kkvk ¼ x� nX, with n the harmonic num-
ber of the resonance, kk the wavenumber parallel to the magnetic field,
x the wave frequency,X ¼ eB=me the cyclotron frequency, and vk the
parallel velocity of resonant electrons. The classical resonance condi-
tion is therefore independent of v?. The spatial damping rate is
obtained by integrating over the distribution function of resonant elec-
trons in velocity space and will thus be proportional to the population
of electrons with parallel velocity satisfying the resonance condition.
For a Maxwellian distribution function in the parallel velocity, the spa-
tial damping rate of EC waves thus obeys a / e�w

2
0 , with the thermal

velocity vT, and w0 ¼ ðx� nXÞ=ðkkvTÞ (e.g., Swanson49).
However, relativistic effects on the damping cannot be neglected

in realistic scenarios. Indeed, the classical resonance condition needs
to be modified to take into account the relativistic mass increase (e.g.,
Fidone et al.50),

x� n
X
c
¼ kkvk: (2)

In the relativistic case, the resonance follows an ellipse in ðvk; v?Þ
space, due to the factor c ¼ ð1� ðv2k þ v2?Þ=c2Þ

�1=2, according to Eq.
(2). In particular, this sets an important constraint for resonance on
the low-field side (nX < x),

nX
x
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� N2

k

q
; (3)

where Nk ¼ kkc=x is the parallel refractive index. As X / B � 1=R,
Eq. (3) leads to a relativistic boundary, rendering part of the tokamak’s
low-field side inaccessible to heating and current drive with EC waves.
This is most apparent for low values of the parallel refractive index, for
which the relativistic boundary is close to the resonance X=x ¼ 1,
and the wave typically damps very strongly in a narrow spatial region.

In the following, we present an approximate form of the damping
coefficient a for the O1 mode, as is appropriate for ITER. The corre-
sponding formulas for the X2 mode can be found in Appendix D. For
the O1 mode, we assume the absorption of the wave’s L-polarization
to be negligible and the wave’s R-polarization to be generally small.

FIG. 1. Effective temperature profile input to GENRAY, as a function of normalized
radius qN ¼

ffiffiffiffiffi
wt

p
, with the toroidal flux wt. The upper plot shows the two-

dimensional temperature profile with a ðM ¼ 2;N ¼ 1Þ magnetic island. The dot-
ted lines are temperature contours, while the solid line represents the ray trajectory.
The lower plot shows different cuts in the upper plot: at f ¼ 0;p (O-point),
f ¼ p=2; 3p=2 (X-point) and the effective temperature profile for the shown ray tra-
jectory. Note that the flat temperature profile through the O-point in the lower plot
arises from the fact that there is no power deposited in the central flux surfaces in
the island in this case.
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Then, the damping is due mainly to the electric field component along
the background magnetic field. In that case, we can approximate the
damping coefficient as

a � jEz=Ej2
x
cN

e0033; (4)

with the longitudinal polarization jEz=Ej, the refractive index

N �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p=x
2

q
, the electron plasma frequency xp

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nee2=ðe0meÞ

p
, and electron density ne. The anti-hermitian compo-

nent e0033 of the dielectric tensor, derived by Fidone et al.50 by integrat-
ing over the resonant ellipse in velocity space, is reproduced here,

e0033 �
px2

p

2X2

R7=2

N3=2
k

N2
?lS

1� N2
k

� �5=2
"
I3=2ðnÞ 1þ

N2
kX

2

R2x2

 !

� 2I5=2ðnÞ
2
n
þ
NkX

Rx

� �#
e
l 1� X=x

1�N2
k

� �
; (5)

where I�ðnÞ are the �-th order modified Bessel functions of the first
kind,

l ¼ mec2

T
; (6)

R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X
x

� �2

� 1þ N2
k

s
; (7)

n ¼
NkRl

1� N2
k
; and (8)

S ¼ H
X
x

� �2

� 1þ N2
k

 !
(9)

is a Heaviside function enforcing the relativistic constraint of Eq. (3).

B. Sensitivity of relativistic damping to temperature

As seen above, the linear damping rate of EC waves satisfies
a / e�w

2
0 in the classical limit, with w2

0 / 1=T . This strong sensitivity
of damping to temperature is essential for the current condensation
effect, with nonlinear effects becoming potentially relevant for
w2
0DT=T � 0:5.39 The quantity w2

0 therefore provides a direct indica-
tor of the sensitivity of damping to temperature in the classical limit.

We are interested in obtaining the sensitivity of damping to tem-
perature taking into account relativistic effects in the damping. We
define an effective weff as

w2
eff ¼ T@Tðln aÞ; (10)

such that weff measures the sensitivity of damping to temperature, in
analogy to the classical case. Indeed, Eq. (10) can be viewed as a first
order correction term in a Taylor expansion of ln ðaÞ. Therefore, for
small temperature perturbations, w2

effDT=T indicates the strength of
nonlinear effects, as the damping is approximately amplified by a fac-
tor exp ðw2

effDT=TÞ. Finite temperature perturbations are treated in
Sec. III C in the regime w2

eff / 1=T .
Note that the damping satisfies a / e�w

2
eff only in the case where

w2
eff / 1=T , i.e., when weff possesses the same temperature

dependency as w0, as can be shown by integrating Eq. (10). However,
w2
eff / 1=T does not necessarily imply weff ¼ w0.

Using the definition of weff in Eq. (10), the approximate form of
the damping in Eq. (4) and assuming the longitudinal polarization
jEz=Ej to be independent of temperature (cold plasma approxima-
tion), we obtain w2

eff � T@Tðln ðe0033ÞÞ ¼ �n@nðln ðe0033ÞÞ. Combined
with Eq. (5), this yields

�w2
eff ¼ 1þ l 1� X=x

1� N2
k

 !
þ Fðn; aÞ; (11)

where

a ¼
NkX

Rx
; (12)

Fðn;aÞ¼ n

I3=2ðnÞ �
5
2n
þ3a2

2n
�2a

� �
þ I5=2ðnÞ 1þa2þ14

n2
þ5a

n

� �

I3=2ðnÞ 1þa2ð Þ�2I5=2ðnÞ
2
n
þa

� � :

(13)

The weff of Eq. (11) reduces tow0 ¼ ðx� XÞ=ðkkvTÞ in the clas-
sical limit, consisting of N2

k � T=ðmec2Þ and N2
k � j1� ðX=xÞ

2j;50
as well as lj1� ðX=xÞj � 1, as the damping coefficient a also
reduces to the classical formula in the same limit (see Appendix C).

Our ray-tracing calculations employ the more general approxi-
mation of the dielectric tensor for a relativistic electron plasma from
Mazzucato et al.,51 which adds higher harmonic corrections to the
treatment of Fidone et al.50 However, it is found that Eq. (11) agrees
well with a numerical evaluation of Eq. (10) in situations of interest for
ITER, as shown in Appendix B.

The temperature dependence of weff defined in Eq. (11) is non-
trivial, in contrast to the classical case where w2

0 / 1=T . It is, however,
shown in Appendix C that w2

eff / 1=T is a suitable approximation in
the limit n� 1, and N2

k � j1� ðX=xÞ
2j. If N2

k � j1� ðX=xÞ
2j,

however, w2
eff / 1=T can still hold when lð1� ðX=xÞÞ � 1. The

first set of conditions are typically satisfied for reasonably high Nk
and not too high temperatures (see Fig. 8), as the condition
N2
k � j1� ðX=xÞ

2j is very restrictive. Therefore, multiple insights
from the theory developed in the case of classical damping remain
valid in the relativistic case, e.g., the temperature perturbations neces-
sary to obtain a bifurcation, as shown in Sec. IV.

C. Relativistic damping and current condensation

The weff derived above is now connected to the current conden-
sation effect. We define the nonlinear amplification parameter HNL as
the logarithmic change in the damping rate a due to a change in tem-
perature DT from an unperturbed temperature T0,

HNL � ln
aðT ¼ T0 þ DTÞ

aðT ¼ T0Þ

� �
: (14)

For small temperature perturbations, using Eq. (10), we obtain
HNL ¼ w2

effDT=T , a result valid for arbitrary forms of weff . The case
of finite temperature perturbations can be treated by assuming that
w2
eff / 1=T is valid (see Appendix C). Then, Eq. (10) can be integrated
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to obtain a ¼ a0e�w
2
eff . Further, defining u � DT=T0, Eq. (14) reduces

to

HNL ¼ �w2
eff T ¼ T0ð1þ uÞð Þ þ w2

eff T ¼ T0ð Þ

¼ w2
eff T ¼ T0ð Þ u

1þ u
: (15)

As expected, this quantity reduces to HNL ¼ w2
effu for small tempera-

ture perturbations u	 1, as was assumed in previous work.39,40

The nonlinear amplification parameter HNL proves useful to
ascertain whether nonlinear effects like current condensation can
become relevant in a given scenario. Indeed, HNL � 0:5 is a necessary,
but not sufficient, condition for nonlinear effects to become significant,
while the limit HNL ! 0 corresponds to linear behavior. Then, as
weff ðT ¼ T0Þ can be obtained from the wave damping in the unper-
turbed temperature profile, an approximate lower bound on the tem-
perature perturbation u necessary to observe nonlinear effects can be
obtained from inverting Eq. (15) without performing the full nonlinear
calculation. This motivates the use of the approximated form in Eq.
(15) instead of inserting the full damping coefficient into Eq. (14),
which could not be readily solved for the temperature perturbation.
Henceforth in this study, we will consider weff to be evaluated at the
initial unperturbed temperature T0.

Although weff and HNL are useful local quantities, the damping
rate can vary significantly within a given magnetic island, especially
for large island widths. Indeed, while we generally assume the initial
island temperature to be flat, the quantities X=x; Nk and thus also
weff will in general be functions of position within the island. Thus, a
suitable island average of weff must be found. We define

�w2
eff � �ln h exp �w2

eff

� �
ir
1

� �
; (16)

where hf ir
1 is the mean value of f within the magnetic island
(r 
 1), evaluated along the ray. This averaging is motivated by the
damping having the form a ¼ a0 exp ð�w2

eff Þ when w2
eff / 1=T (see

Appendix C for the region of validity).

IV. BIFURCATIONS AND HYSTERESIS IN ITER

Current condensation can lead to bifurcations, where the nonlin-
ear amplification of temperature leads to a runaway effect for the tem-
perature and power deposited in the island. The temperature
continues increasing,39 until another limiting physical mechanism
comes into play, leading to saturation. For example, the wave may
have deposited all of its power40 or the temperature increase might be
limited by stiff temperature gradients.42

Depending on the case, the limiting effects might lead the tem-
perature to either smoothly transition to higher values or experience a
discontinuous jump at the bifurcation.40 In the latter case, hysteresis
phenomena can be observed, as the jump from low to high tempera-
ture will not occur at the same parameter values as that from high to
low temperature. Hysteresis curves can be traced out, e.g., by varying
the RF input power39,40 (as considered in this section), the island
width,39,40 or the RF wave launching angles, as shown in Sec. V.

It is shown in this section that bifurcations can be obtained in
ITER-like scenarios at realistic parameter values of temperature per-
turbation, diffusion coefficient, and input power. Furthermore, values
of the bifurcation threshold are shown to be consistent with previous
work.

A. Simulation setup

The following simulations are based on ITER-like H- and L-
mode scenarios, with temperature profiles shown in Fig. 2. A large
island of width WN ¼ 0:2 (in units of the normalized radius
qN ¼

ffiffiffiffiffi
wt

p
, with the toroidal flux wt) is introduced at the q¼ 2 sur-

face (qN ¼ 0:805), leading to a flattening of the temperature, as is also
shown in Fig. 2. As the plasma is expected to fall back into L-mode for
large island sizes due to deteriorated confinement, a pseudo L-mode
scenario is also considered here, which was obtained by substracting
the pedestal temperature from the H-mode profile (Fig. 2). A real L-
mode profile would involve more substantial changes, e.g., to the mag-
netic equilibrium and density profiles. However, we will refer to our
pseudo L-mode scenario simply as the L-mode scenario in the remain-
der of this study, a more detailed optimization study for ITER being
left for future work.

The diffusion coefficient in the island is assumed constant at
v? ¼ 0:1 m2 s�1. Such small values are justified as turbulent transport
is reduced due to the flattened temperature in the island region.53,54

This approximation will thus break down when the ion temperature
gradient (ITG) threshold is exceeded, i.e., when

jc 
 �
R
T
@T
@r
� R

a
u0

WN=2
; (17)

with the major radius R ¼ R0 þ rr , major radius at the magnetic axis
R0 ¼ 6:2 m, minor radius a¼ 2.0 m, normalized temperature pertur-
bation at the island center u0 ¼ DTðr ¼ 0Þ=Ts, and ITG threshold
jc � 5 for ITER.55 Then, effects of turbulent transport can be
neglected when the temperature perturbations remain below
u0=WN � 1, in which case the use of a low constant diffusion coeffi-
cient is justified. The maximally allowed temperature perturbation can
also be estimated from the temperature profile without island flatten-
ing. Assuming the temperature gradients to be limited by ITG in this
case, we can estimate the ITG threshold to be exceeded when the

FIG. 2. Temperature profiles for H and L-mode scenarios, before and after local flat-
tening due to the magnetic island (W ¼ 0:2; rr ¼ 0:805). The flattened profiles are
used as the initial unperturbed temperature profiles in our simulations. The L-mode
temperature profile was obtained by substracting the pedestal height from the
H-mode temperature profile. The temperature at the island separatrix is Ts ¼ 4:2
and 2.0 keV for the H-mode and L-mode, respectively. The H-mode profile closely
resembles that of the ITER 15 MA baseline scenario (e.g., Snicker et al.52).
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island temperature reaches the temperature of the profile without
island. For the H-mode profiles in Fig. 2, this would allow temperature
perturbations up to u0 � 0:25, which is consistent with the previous
estimate u0 �WN ¼ 0:2.

For higher temperature perturbations, turbulent transport typi-
cally leads to stiff gradients, i.e., the power required to increase the
temperature beyond a certain point becomes impossibly high.
Turbulent transport can thereby have significant effects on current
condensation.42 Furthermore, turbulence was found to enhance the
transport of fast electrons accelerated by EC waves in regimes where it
would not greatly impact that of bulk electrons.56 Thus, one aim of
this section is to obtain bifurcations and hysteresis behavior at low
temperature perturbations, below the ITG threshold.

The simulations shown below were obtained by a coarse scan in
the parameter space of launcher position (from an upper launcher
case to halfway between the upper and equatorial launchers) and
launching angles (poloidal launching angle 112� 
 a 
 154�, mea-
sured from positive Ẑ , and toroidal launching angle 34� 
 b 
 90�,
measured from negative R̂ through the launcher, in steps of size 1�).
Those simulations not displaying a bifurcation were discarded. To
trace the hysteresis curve, the power was gradually increased up to
20MW, the maximal EC power available in ITER, and decreased back
to low powers. Close to the bifurcation, the island temperature is very
sensitive to the power deposited, whence a small step size of �20W
was used. The relative error in the island temperature at the bifurca-
tion can be estimated as being of the same order as the relative change
in u in the last step before the bifurcation, which is maximally 0.4% in
the simulations shown here.

Furthermore, the cases where the relativistic boundary [Eq. (3)]
is located within the island were excluded. In such cases, the region
where power can be deposited in the island is shrunk, such that higher
temperature perturbations are necessary to observe a bifurcation for a
given value of �weff . In previous work, the cases of deposition starting
at the island center and at the island edge were considered.40

The island’s phase is locked such that the ray goes through its
O-point. Adjustment of a locked island’s phase to deposit power at the
island’s O-point has been achieved in DIII-D with external magnetic
perturbations.57

The EC wave propagation and damping were obtained from
GENRAY,44 using a cold dispersion relation for the wave propagation
and Mazzucato et al.51 approximation of the dielectric tensor for a rel-
ativistic electron plasma for the wave damping.

B. Bifurcation threshold in ITER

The observed values of �w2
eff [as defined in Eq. (16)] and of the

normalized temperature perturbation in the island center at the bifur-
cation, uB0 , are shown in Fig. 3. In the limit of very small �w2

eff , the
damping is already strong in the linear regime, such that nonlinear
effects cannot help to focus or draw in the power deposition; hence, no
bifurcation is observed. When going to very large �w2

eff , too little power
is deposited in the island for nonlinear effects to be relevant. Thus, an
intermediate region where bifurcations can be observed is found, e.g.,
5:5��w2

eff�8:5 in the H-mode scenario (Fig. 3). Bifurcations at higher
�w2
eff can be obtained in the L-mode scenario (up to �w2

eff � 10), as the
temperature at the island separatrix Ts is lower (Fig. 2), yielding higher
effective powers in the RHS of the diffusion equation [Eq. (1)].
Analogously to Rodr�ıguez et al.,40 we define a normalized power

density as P0 � PW2�w2
eff=ð4VislandnTsv?Þ, with the input wave power

P, average density n, separatrix temperature Ts, and island volume
Visland ¼ 8pWrrR0=M. Higher effective powers can thus be achieved,
e.g., by reducing the island temperature and density.

As can be readily seen in Fig. 3, there is a strong correlation
between the temperature perturbation at the bifurcation uB0 and the
�w2
eff value. The nonlinear amplification parameter at the bifurcation,

HB
NL � �w2

eff u
B
0=ð1þ uB0 Þ; (18)

is shown in Fig. 4 as a function of the normalized power P0. Most of
the data points are in the region HB

NL � 1:6–2:0, with a trend of a
small decrease with increasing input power P0 at the bifurcation. Due
to the near constancy of HB

NL, it can be effectively used as a threshold
parameter, below which no bifurcation can be obtained. It is especially
useful as �w2

eff is obtained from a simple ray-tracing calculation in the

FIG. 3. Observed values of �w 2
eff and of the normalized temperature perturbation in

the island center at the bifurcation uB0 for ITER-like H-mode and L-mode scenarios.
Increasing �w 2

eff helps to obtain bifurcations at lower temperature perturbations.

FIG. 4. Nonlinear amplification parameter at the bifurcation HB
NL ¼ �w 2

effu
B
0=ð1þ uB0 Þ

as a function of the normalized wave input power density P0 at the bifurcation. The
values of HB

NL � 1:6–2:0 are approximately constant, with a trend of slightly
decreasing values for increasing P0.
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unperturbed temperature profile. Therefore, a lower bound on the
temperature perturbation necessary to observe a potential bifurcation
can be obtained from solving Eq. (18) for uB0 , without solving the full
nonlinear problem.

A small amount of spread in the value of HB
NL at a given P0 can

be observed. Some deviation is not surprising, as the behavior for
strong variations of weff within the island may not be fully captured by
the averaged �weff [Eq. (16)], and the temperature dependence of
w2
eff / 1=T assumed in the definition of HNL [Eq. (14)] is only

approximate.
The values of HB

NL agree well with previous results. Using a con-
stant power deposition and no wave depletion, Reiman and Fisch39

find that a bifurcation occurs when HB
NL ¼ w2

0u
B
0 � 1:2 for a slab

model and HB
NL ¼ w2

0u
B
0 � 1:4 for a realistic island geometry.

Incorporating depletion of the wave, using a slab model and assuming
an exponentially decreasing power deposition, Rodr�ıguez et al.40 find a
bifurcation when HB

NL ¼ w2
0u

B
0 � 1:2–1:5, for deposition starting at

the island edge. In comparison, the values of HB
NL � 1:6–2:0 from Fig.

4 tend to be higher. This can be explained by our use of a realistic
island geometry instead of a slab model, as a similar increase was
observed in Reiman and Fisch.39 Moreover, the tendency of HB

NL to
slowly decrease with increasing input power P0 observed in Fig. 4 is
also consistent with previous analysis.40

Even though no detailed optimization was performed in the simu-
lations shown in this study, it can be seen from Fig. 3 that bifurcations
were obtained at temperature perturbations down to u0 ¼ 0:24 and
0.19 for the H-mode and L-mode temperature profiles, respectively.
This suggests that bifurcations could be obtained before the ITG
threshold is exceeded at u0 � 0:2–0:25 [Eq. (17)] for realistic parame-
ter values. The ITG threshold criterion was only roughly estimated,
however, and more realistic calculations that include stiff-gradient
effects self-consistently will thus need to be undertaken in the future.

The lowest u0 values at bifurcation were obtained for upper
launcher cases, close to the ITER’s planned upper launcher position.
In these cases, weff tends to be approximately flat inside the island as
the ray propagation in the poloidal plane occurs mostly in the Ẑ-direc-
tion, and the resonance is thus approached slowly. To put the neces-
sary temperature perturbations into perspective, values of u0 � 0:2 for
island widthsW=a � 0:2 have been observed in TEXTOR.31,32

Large toroidal launching angles (b � 34�) were chosen in this
study to obtain higher weff , yielding stronger nonlinear effects,
although the ITER’s upper launcher is planned to operate at a smaller
toroidal launching angle of b ¼ 20�. This angle was chosen to opti-
mize the stabilization of narrow islands produced by neoclassical tear-
ing modes (NTMs),22,58 where a compromise must be found between
a narrow deposition width but a low current drive efficiency at small b
and a high current drive efficiency but broad deposition width at large
b. At the small b ¼ 20�, current condensation is weak and no bifurca-
tions were obtained. However, if stabilization of large islands is desired
in ITER, larger values of b could prove more efficient, as the higher
parallel refractive index leads to a higher current drive efficiency and
to a stronger current condensation effect, and broader depositions can
be tolerated for large islands. Current condensation could also help
counteract the large broadening due to edge density fluctuations pre-
dicted for ITER.52 In practice, having multiple sets of mirrors with
varying toroidal launching angles might allow to optimize for and
accomplish both small and large magnetic island stabilization.

A detailed investigation of current condensation effects for the
planned ITER upper launcher steering mirrors, also incorporating
Gaussian beams represented by multiple rays, as well as stiff gradient
effects instead of the single ray considered here, is left for future work.

V. DYNAMIC VARIATION OF RF WAVE LAUNCHING
ANGLES

Current condensation can lead to hysteresis as elevated island
temperatures can draw in and maintain the power deposition close to
the island center, instead of having it be deposited closer to the island
edge or even outside of the island. A hysteresis curve can be traced by,
e.g., varying the wave power or island width.39,40 Another way to
obtain hysteresis is to dynamically vary the toroidal or poloidal
launching angle, the second of which will be demonstrated in this
section.

Furthermore, we will show that the dynamic variation of the
poloidal launching angle can help to circumvent the shadowing effect,
a nonlinear inhibition effect.40,43 At high island temperatures, a signifi-
cant fraction of the wave power may be damped at the island edge
before the wave reaches the island center. This not only leads to
reduced island temperatures but also to possibly destabilizing currents
driven close to the island separatrix. One way to bring the power depo-
sition toward the island O-point despite the shadowing effect involves
pulsing the input wave power.43 We will show in this section that the
shadowing effect can also be avoided by varying the poloidal launching
angle, such that damping at the island edge is reduced. Note that simi-
lar results can be achieved by varying the toroidal launching angle.

We again investigate the ITER-like H-mode case of Sec. IV, with
a launcher situated close to ITER’s planned upper launcher position,37

R¼ 7 m, Z¼ 4.3 m. Again, a 2/1 locked island of widthWN ¼ 0:2 (in
units of the normalized radius qN), a constant diffusion coefficient
v? ¼ 0:1 m2 s�1, and 20MW of EC wave power are considered. The
toroidal launching angle is held fixed at b ¼ 50�, while the poloidal
launching angle is varied from a ¼ 140:5� down to 138�, and back up,
in small steps of 0:025� to accurately trace the hysteresis curve. The
resulting hysteresis curve for the island temperature is shown in Fig. 5.

The power deposition at several points along the hysteresis curve
is shown in Fig. 6. Initially, at high poloidal launching angles, little to
no power is deposited inside the island (e.g., a ¼ 139:625� in Fig. 6).
The poloidal launching angle is decreased, moving the power deposi-
tion into the island, until a bifurcation is reached at a � 138:675�.
Increasing the poloidal launching angle back to a ¼ 139:625�, the
power is still deposited in the island, i.e., the system remains on the
upper solution branch and displays hysteresis behavior.

The power deposition after the transition to the upper branch at
a ¼ 138:675� is not centered on the island’s O-point (qN � 0:8), due
to the aforementioned shadowing effect. Reducing the poloidal
launching angle beyond the bifurcation further increases the shadow-
ing effect, as can be seen from the decrease in the temperature on the
upper branch of Fig. 5. However, by increasing the poloidal launching
angle on the upper branch, the damping can be reduced at the island
edge, moving the peak of the power deposition profile toward the
island’s O-point, as shown in Fig. 6 (dotted curve, a ¼ 139:625�). This
results in a higher central island temperature, as can be seen in Fig. 5.

The hysteresis in the poloidal launching angle shown
above could be preferable to that in the EC wave power for an
experimental investigation of current condensation. Compared to
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the hysteresis in power, it allows operation at the maximum EC
power, which is shown in Fig. 4 to lead to bifurcations at lower val-
ues of HB

NL � �w2
effu

B
0=ð1þ uB0 Þ, i.e., bifurcations could be obtained

at lower temperatures. In the case shown here, the temperature at
the bifurcation is small for the H-mode case, uB0 ¼ 0:26, although no
significant optimization or large parameter scans were performed.
The capabilities of the steering system on ITER are compatible with
a tolerance of less than 0:7�,37 which is sufficient to target a region
of minimal shadowing. In practice, avoiding the shadowing effect
might thus be realizable with real-time steering of the mirrors (as
done, e.g., with DIII-D’s “catch and subdue” algorithm35 for NTM
stabilization) actuated by island temperature measurements.

Note that the upper branch solution of Fig. 5 will undoubtedly be
modified by stiff gradient effects, due to the large temperature pertur-
bations (u0 > 4) that will trigger ITG instabilities. However, the mech-
anism to circumvent shadowing presented here is more generally
valid. Current condensation, including stiff gradient effects, has been
investigated analytically,42 with a corresponding numerical treatment
left for future work.

VI. CONCLUSION

In this study, we presented a numerical treatment of current con-
densation effects, coupling a ray-tracing code for the wave propagation
and damping, with a heat diffusion equation solver to obtain the tem-
perature in the magnetic island. This allows us to investigate current
condensation in realistic scenarios, in particular, including the island
geometry and relativistic effects in the damping. These were shown to
lead to a generalization of the bifurcation threshold identified in previ-
ous analytical work.39,40 Furthermore, bifurcations were obtained for
realistic parameter values (P¼ 20MW, v? ¼ 0:1 m2 s�1) in ITER-like
H- and L-mode scenarios, at low temperature perturbations u0 � 0:2.
Stiff gradient effects could be negligible at such low temperature per-
turbations; more detailed calculations, which self-consistently include
stiff gradient effects, are, however, needed to demonstrate this. Finally,
we showed that dynamically varying the poloidal launching angle can
lead to a current condensation induced hysteresis and can remedy to
the nonlinear inhibition brought about by the shadowing effect.
Current condensation could enable the stabilization of large magnetic
islands, leading to improved disruption avoidance. Therefore, an opti-
mization study for ITER, including stiff gradient effects, the planned
ITER launcher position, and the use of multiple rays to represent
Gaussian beams, is in preparation.
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APPENDIX A: DERIVATION OF DIFFUSION
EQUATION IN ISLAND GEOMETRY

We assume the magnetic island to be symmetric in the radial
coordinate r, an approximation for narrow islands in a large aspect
ratio tokamak of circular cross section. We define the island flux
coordinate r, ranging from 0 in the center to 1 at the separatrix, as

r � rr ¼ 6
W
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � sin2 Mf=2ð Þ

q
; (A1)

with the normalized radius at the resonant surface rr, the helical
angle f ¼ h� Nu=M 2 ½�2p=M; 2p=MÞ, the poloidal (toroidal)
angles h (u) and poloidal (toroidal) mode numbers M (N). A new
angular coordinate g 2 ½�p=; pÞ is defined as

sin ðMf=2Þ ¼ r sin ðgÞ: (A2)

Using the definition of g, Eq. (A1) can be rewritten as

FIG. 5. Hysteresis in the normalized temperature at island center u0 from variation
of the poloidal launching angle a, for a locked island of width WN ¼ 0:2. Circle
data points show the ascending part of the hysteresis curve, going from the lower
to the upper branch (decreasing a), while crosses show the descending part, going
from the upper branch to the lower branch (increasing a).

FIG. 6. Evolution of the power deposition during hysteresis from variation of the
poloidal launching angle. Vertical gray lines indicate the magnetic island edges. At
first, almost all power is deposited outside of the island (solid curve,
a ¼ 139:625�). The power deposition is then moved into the island by decreasing
the poloidal launching angle, until enough power is deposited for a bifurcation to
occur at a � 138:675� (dashed to dashdotted curves). Increasing the poloidal
launching angle back to a ¼ 139:625� (dotted curve), hysteresis behavior is dis-
played, as most of the power is still deposited within the island.
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r � rr ¼
W
2

r cos g: (A3)

We now investigate the steady-state diffusion equation in the
island

r � nvrTð Þ ¼ �p; (A4)

with v the heat diffusion coefficient, n the plasma density, and p the
power density. Integrating over the island volume up to the flux
surface r,ðp

�p
dg
ð2p
0
du
ðr

0
dr0 Jr � nvrTð Þ ¼ �

ðp

�p
dg
ð2p
0
du
ðr

0
dr0 J p;

(A5)

where, in a large aspect ratio approximation, the Jacobian J is given by

J�1 ¼ rr � rg�ru � M
WrrR0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2 sin2g

p
r

: (A6)

Then, assuming parallel diffusion to be significantly stronger than
perpendicular diffusion, v? 	 vk, the temperature can be assumed
to be equilibrated on flux surfaces and thus becomes a function of r
only, T ¼ TðrÞ. Defining PdepðrÞ as the triple integral on the right-
hand side, which represents the total power deposited inside the
flux surface r, and taking the density n and cross field thermal dif-
fusivity v? to be constant, we obtain

@T
@r
� 2p

ðp

�p
dg J jrrj2 ¼ �PdepðrÞ

nv?
: (A7)

Evaluating the integral on the left-hand side for large aspect ratios,
we obtainðp

�p
dg Jjrrj2 � 4R0rrW

M
1

ðW=2Þ2
EðrÞ � 1� r2ð ÞKðrÞ

r
: (A8)

Combining Eqs. (A7) and (A8) results in the diffusion equation in
the island geometry,

@u
@r
¼ � PdepðrÞ

nv?Ts

r

EðrÞ � 1� r2ð ÞKðrÞ
ðW=2Þ2

Visland
; (A9)

where Visland ¼ 8pR0rrW=M is the island volume. The expression
in Eq. (A9) is equivalent to Eq. (1), presented in the main text. The
term containing elliptic integrals in Eq. (A9) is an island geometric
term. Previous studies of current condensation39,40,42 used a slab
model of the island, for which the diffusion equation reduces to

@u
@r
¼ � PdepðrÞ

nv?Ts

ðW=2Þ2

Visland
: (A10)

Eqs. (A9) and (A10) are very similar, but for the added island geo-
metric term in the former.

APPENDIX B: VALIDITY OF weff FORMULA

We compare the formula for weff in Eq. (11) with a numerical
finite difference evaluation of Eq. (10) using the damping coefficient
from the ray-tracing code GENRAY. The damping formula by
Mazzucato et al.51 is used in the ray-tracing calculations.

The ITER-like H-mode profile of Sec. IV is used, and two cases
with differing launching angles are considered, to obtain the case of
low Nk � 0:3 and that of medium Nk � 0:5. The temperature in the
damping regions is in the range of T � 4–6 keV. The resulting curves
are shown in Fig. 7, where the w2

eff values have been normalized by fac-
tors 15.62 and 2.94 for b ¼ 20� and b ¼ 35�, respectively. The agree-
ment is excellent, with Eq. (11) only slightly overestimating the value
of weff . Note that the relativistic constraint [Eq. (3)] is very prominent
for the low Nk � 0:3 case, where the wave strongly damps in a narrow
spatial region, at low values of weff .

APPENDIX C: TEMPERATURE DEPENDENCE AND
CLASSICAL LIMIT OF weff

The temperature dependence of weff in Eq. (11) is complicated
due to the modified Bessel functions in the Fðn; aÞ term [Eq. (13)].
In the remainder of this Appendix, we will show that w2

eff / 1=T , as
was assumed, e.g., in Eq. (15), is a valid approximation in the limit
of n� 1 and when j1� ðX=xÞ2j � N2

k . If j1� ðX=xÞ
2j 	 N2

k , the
1=T proportionality can still hold provided that lj1� ðX=xÞj � 1.

The modified Bessel functions can be expanded in the limit
n� 1, which is sensible as l� 1, even for thermonuclear temper-
atures. However, reasonably large Nk and R also have to be assumed
for n� 1 to hold, the latter of which also translates to a require-
ment of large Nk. Indeed, low Nk values will generally display signif-
icant damping close to the relativistic boundary [Eq. (3)], where
R! 0.

In the limit n� 1, the modified Bessel functions can be
approximated as59

I�ðn� 1Þ � enffiffiffiffiffiffiffiffi
2pn
p

X1
k¼0
�1ð Þk bkð�Þ

nk
;

bkð�Þ ¼
ð4�2 � 1Þð4�2 � 3Þ…ð4�2 � ð2k� 1Þ2Þ

k!8k
:

(C1)

FIG. 7. Comparison of weff obtained from Eq. (11) (analytical) and from the numeri-
cal evaluation of GENRAY damping coefficient (numerical). Two cases are consid-
ered, at low toroidal launching angles (b ¼ 20�), with Nk � 0:3, and higher
toroidal launching angles (b ¼ 35�), with Nk � 0:5. The w2

eff values are normalized
by factors 15.62 and 2.94 for b ¼ 20� and b ¼ 35�, respectively.
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Then, Eq. (13) reduces to

Fðn� 1;aÞ

� n
ða� 1Þ2 � ða� 1Þð3a� 11Þ

2n
þ 3
2
a2 � 10aþ 13

n2
þ 15a� 42

n3

ða� 1Þ2 � 1
n
ða� 5Þða� 1Þ þ 6

n2
ð2� aÞ

:

(C2)

Consider the parameter e ¼ ða� 1Þ. The limit e! 0 is equivalent
to approaching the resonance Y ! 1, where Y � X=x. From
Eq. (12),

e ¼ Yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Y2 � 1

N2
k

s � 1; (C3)

such that e	 1 only for jY2 � 1j 	 N2
k . This condition is part

of the classical limit. Note that although the relativistic boundary
[Eq. (3)] constrains the damping to occur for Y2 � 1� N2

k on the
tokamak low field side, the condition jY2 � 1j 	 N2

k is a much
stronger constraint.

First, consider the case where jY2 � 1j � N2
k . Then, Fðn; aÞ

� n and, from Eq. (11)

�w2
eff � 1þ l 1� Y

1� N2
k
þ

NkR

1� N2
k

 !
: (C4)

In the regime where jY2 � 1j � N2
k and l� 1, the first term is neg-

ligible, such that w2
eff / l / 1=T , as desired.

We now separately treat the regime jY2 � 1j 	 N2
k . First,

rewrite Eq. (11) as a function of n and a

�w2
eff ¼ 1þ an

N2
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� N2

k

� �
1� N2

k=a
2

� �r
� 1

 !
þ Fðn; aÞ:

(C5)

Furthermore, Eq. (C2) can be rewritten as

Fðn; a ¼ 1þ eÞ � n� 1
2

neð Þ2 þ 12 neð Þ þ 30

neð Þ2 þ 4 neð Þ þ 6
: (C6)

Inserting this expression into Eq. (C5), we obtain

�w2
eff �

ne2

2 N2
k � 1

� �þ 1
2

neð Þ2 � 4 neð Þ � 18

neð Þ2 þ 4 neð Þ þ 6
: (C7)

Using j1� Y2j 	 N2
k and defining d ¼ 1� Y , Eq. (C3) yields ne �

ld and e � dð1� N2
kÞ=N2

k . Then, Eq. (C7) reduces to

w2
eff �

ld2

2N2
k
� 1
2

ldð Þ2 � 4 ldð Þ � 18

ldð Þ2 þ 4 ldð Þ þ 6
: (C8)

The classical limit can then be obtained in the ordering ld� 1,
such that

w2
eff �

ld2

2N2
k
� 1
2
¼ w2

0: (C9)

This indeed corresponds to the exact classical limit, obtained by
inserting a / l�1=2 exp ðld2=ð2N2

k ÞÞ into Eq. (10). Note that we
previously omitted the weak l�1=2 dependence of the classical
damping, assuming that the exponential term would dominate, an
invalid assumption when the resonance is approached, d! 0. In
this limit, ðx� XÞ=ðkkvTÞ ! 0, and the strong sensitivity of damp-
ing to temperature is lost as damping occurs on the bulk thermal
electrons. From Eq. (C9), the w2

eff / 1=T proportionality holds
strictly in the classical limit when the first term dominates, i.e.,
ld2=N2

k � 1.
Note that the condition ld� 1 was required to obtain the

classical limit, which was not mentioned in the original study by
Fidone et al.50 There, only the e0011 component of the dielectric ten-
sor was considered, which reduces to the classical damping with
only the limits l� 1 and N2

k � j1� Y2j. We are, however, inter-
ested in the e0033 component, for which lj1� Yj � 1 is also
required, as can also be obtained by considering the square bracket
term in Eq. (5) directly.

It is instructive to consider the quantity w2
effT , as shown in

Fig. 8 as a function of temperature, for different values of Nk
and Y ¼ X=x ¼ 1� d. Constancy of w2

effT indicates that the
w2
eff / 1=T proportionality holds.

First, consider the diamonds in Fig. 8, representing the tem-
perature values for which n¼ 5. It can be seen that for larger tem-
peratures, the n� 1 approximation and thus also w2

eff / 1=T will
break down, with w2

eff even going to negative values. Away from the
resonance, more specifically when j1� Y2j � N2

k , we should expect
n� 1 to be the only relevant criterion, according to Eq. (C4).
Indeed, looking at, e.g., Nk ¼ 0:3 and Y¼ 0.96, for which
j1�Y2j=N2

k ¼0:87, or Nk ¼0:6 and Y¼0.85, for which j1�Y2j=N2
k

¼0:77;w2
effT is roughly constant to the left of the diamonds, where

n�1 is satisfied. Note that the condition n�1 is more restrictive
for lower Nk values.

Second, consider the circles in Fig. 8, representing the point on
each curve for which ld ¼ 5. For those cases where n� 1 and

FIG. 8. Change of w2
effT as a function of temperature, for two values Nk ¼ 0:3; 0:6

and several values of Y ¼ X=x. Circles indicate temperatures for which
lð1� YÞ ¼ 5, while diamonds correspond to temperatures for which n¼ 5.
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j1� Y2j 	 N2
k , a further requirement ld� 1 is needed to reduce

weff to the classical limit. If ld� 1 is not fulfilled, the weff of
Eq. (C8) will have a more complicated temperature dependence.
Indeed, for small d ¼ 1� Y (e.g., Nk ¼ 0:6 and Y¼ 0.99, for which
j1� Y2j=N2

k ¼ 0:06), the circles in Fig. 8 prove to be good indica-
tors of a change from a regime where w2

effT is constant, to one
where the behavior is more complicated.

Summarizing, the assumption w2
eff / 1=T thus strictly holds

for n� 1, and when simultaneously j1� Y2j � N2
k . If j1� Y2j

	 N2
k , however, w

2
eff / 1=T can still hold for lj1� Y j � 1 (and

more strictly also lð1� YÞ2 � N2
k ). In the simulations shown in

Sec. IV, typical values are l � 102; Nk � 0:5; d � 0:1. Then,
n � 80 and j1� Y2j=N2

k � 0:75, and we can assume w2
eff / 1=T to

be valid, according to Eq. (C4).

APPENDIX D: FORMULAS FOR weff IN THE X2 MODE

Whereas the O1 mode considered in Sec. III is most relevant
for ITER, the X2-mode is more relevant for several existing toka-
maks, like DIII-D or AUG. Therefore, we repeat here the procedure
in Sec. III and derive a formula for weff for the X2-mode.

Just like for the O1 mode, the components of the dielectric ten-
sor for a relativistic electron plasma can be obtained from Fidone
et al.50 The first diagonal component is reproduced here,

e0011 ¼
px2

p

2X2

R2

Nk

� �5=2 N2
?S2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� N2
k

q I5=2ðn2Þe
l 1�2 X=x

1�N2
k

� �
; (D1)

with

R2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2X
x

� �2

� 1þ N2
k

s
; (D2)

n2 ¼
NkR2l

1� N2
k
; (D3)

S2 ¼ H
2X
x

� �2

� 1þ N2
k ;

 !
(D4)

and the other symbols previously defined for Eq. (5). The damping
coefficient can be approximated as

a � x
cN

e0011: (D5)

Then, using Eq. (10), w2
eff � T@Tðln ðe0011ÞÞ in conjunction with Eq.

(D1), we obtain

�w2
eff ¼ l 1� 2

X=x
1� N2

k

 !
þ n2

I3=2 n2ð Þ
I5=2 n2ð Þ

� 5
2
: (D6)
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The data that support the findings of this study are available
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