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ABSTRACT

Sharp temperature gradients in a magnetically confined plasma can lead to turbulent motion of the plasma. This turbulence in turn enhances
the transport of heat across magnetic field lines. The enhanced transport impacts the temperature differential that can be sustained in
magnetic islands between the island center and its periphery. It is shown here that, by limiting this temperature differential, this enhanced
transport can have a profound influence on the extent to which the RF current condensation effect stabilizes the island growth. Interestingly,
because the heat transport is no longer simply linear in the temperature gradient, the RF current condensation effect also exhibits entirely

new hysteresis phenomena.
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. INTRODUCTION

A key issue confronted by tokamak reactors is the control of
magnetic islands. These islands, driven unstable by neoclassical tearing
modes (NTMs), deteriorate confinement and trigger catastrophic dis-
ruptions.” * Tearing modes were theoretically predicted to be stabi-
lized by RF currents driven near the island center.” ° This stabilization
through noninductive RF current drive techniques has been experi-
mentally demonstrated,” ' with continued attention paid to optimiz-
ing stabilization.""

A variety of RF waves can be used to drive noninductive current
in tokamaks,”* but, for stabilizing the NTM, the most studied methods
are electron cyclotron current drive (ECCD)” and lower hybrid cur-
rent drive (LHCD).” These methods use waves that incur power
deposition on the tail of the electron distribution function, drawing
out a current of superthermal electrons, and thus leading to high cur-
rent drive efficiency. The power deposition is also extremely sensitive
to the electron temperature,””* which can result at high enough
power in the RF current condensation effect.”” The condensation of
current occurs because of a nonlinear feedback mechanism: the depo-
sition of energy in a magnetic island raises its temperature, so that, for
waves sensitive to the temperature, there is an increased power deposi-
tion. The temperature increase is largest at the island center, so that
the power deposition and current tend to be maximized also in the

island center, possibly leading to a more stabilizing use of the RF
current.

However, if the electron temperature is raised throughout the
island, then significant extra wave damping may be incurred near the
island periphery. The damping near the island periphery leads to
increased temperature and damping there, leading to a feedback effect
that can effectively shadow the island center, preventing the wave
energy from penetrating deep inside the island.”’ This shadowing
effect can be overcome by taking into account the nonlinearity of the
power deposition in aiming the ray trajectories, but it can place a pre-
mium on accurate aiming of the ray trajectories.

When the temperature enhancement in the island becomes very
large, then so will temperature gradients particularly near the periphery.
With these large temperature gradients, the perpendicular heat flux may
increase and no longer be simply proportional to the gradient. In fact,
large temperature gradients are a source of free energy that can trigger
various instabilities, which then increase heat transport, leading to what
are called stiff temperature profiles."'** Thus, it can be expected that
the increase in heat transport can limit the temperature gradient near an
island periphery, thereby also reducing the temperature. This change
might in certain cases set a limitation on current condensation but also
reduce the shadowing when relevant (increasing the stabilizing effect as
RF current drive can condense nearer the center).
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It is the objective of this work to examine these effects resulting
from stiffness. The paper is organized as follows: In Sec. 11, we briefly
introduce a first form of the model and show that stiffness leads to
multiple steady state solutions and a new hysteresis effect, alternative
to the hysteresis effect due to the finite available power that was previ-
ously explored."’ In Sec. 111, we consider a more general model for the
temperature stiffness, which exhibits a double bifurcation solution,
with increased possibilities for hysteresis. The exploration of more
general models suggests also the possibility of using experimentally
observed temperature perturbations to infer the proper stiffness
model. In Sec. IV, we show how the stiffness affects the wave damp-
ing—and how it might hamper the condensation effect or minimize
shadowing. In Sec. V, we summarize our conclusions. Certain addi-
tional details are reserved for the Appendixes.

1. HYSTERESIS WITH STRONG TURBULENCE

The basic model constructed to explain the effects of current con-
densation in magnetic islands consists of an energy balance. RF wave
power deposition plays the role of the driver, while diffusive losses
through the island edge regulate the temperature of the island as it is
heated. The model is only concerned with the steady state of such a
balance, faster, however, than the resistive growth time of the island.
This allows taking the island width, W}, and thus the boundaries of the
problem to be fixed.

We assume the island width to be small relative to the minor
radius of the plasma. The island is then extremely elongated in the
poloidal direction relative to its radial width. This suggests the use of a
1D slab model of the island interior. The island center (O-point) is
represented by the surface at x=0, and surfaces at *x are taken to
correspond to the same flux surface within the island. The heat con-
duction along the field lines is assumed to be sufficiently fast that the
temperature is constant on the flux surfaces within the island, so that
the temperature is symmetric about x = 0. This implies that the tem-
perature is constant on the separatrix, which is represented by the sur-
faces at x = = W,;/2, where W; is the island width.

This then preserves the basic effects of the change in topology
introduced by the island. A solution of the nonlinear thermal diffusion
equation in this simplified model was compared with that in magnetic
island geometry in Ref. 39 and was found to reproduce the qualitative
features of the solution in the more realistic island geometry, as well as
to give a rough approximation to the threshold for the nonlinear
effects in the more realistic solution.

For modeling power deposition, it is paramount to note that the
damping in velocity space occurs on the tail of the Maxwellian electron
distribution function. The energy transfer from the wave to the plasma
is proportional to the size of the resonant superthermal population
exp [7(1}“/1}1')2] ~ exp (—w?) exp (u), where w = v /vro ~ 10 rep-
resents a normalized resonant wave velocity, vry is the background
electron thermal velocity,”” and u = w?T /T, with T  representing
the temperature perturbation and T, the background temperature. For
this section in particular, and for simplicity, we will take the power in
the wave, unlike the deposition, not to change within the island, as
introduced in Ref. 39. For more details on the implicit assumptions
and a detailed discussion, we refer the reader to Refs. 39 and 40.

The energy balance equation may thus be written in the form
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% (fc %) = —Pye", (1)
where X = 2x/W; is the normalized space coordinate and & is the
thermal conductivity normalized to the non-turbulent background. P,
is a measure of wave power; in fact, the deposition when the non-
linear temperature feedback is not considered. Since u measures the
temperature differential of the island compared to the separatrix
(whose temperature is taken to be fixed), Eq. (1) is to be solved with
homogeneous boundary conditions ¥ = +1."

It is assumed that electrons and ions are both characterized by
the same temperature, which will describe the case when the tempera-
ture equilibration time between electrons and ions is fast compared to
the diffusion time."’

The model, as described, does not include a description of the
turbulent enhancement of heat transport, but it might be accommo-
dated through the heat conductivity k. Let K be generalized from &
= 1 into a function of temperature gradient. In its simplest functional
form, and taking " to denote spatial derivatives

- {1
K=
o9

Below some temperature gradient threshold, uj,, heat transport is
non-turbulent. This threshold represents a sufficient condition for an
instability to occur. The value of the threshold depends on the nature
of the instability and thus the species it belongs to. We make the sim-
plifying assumption T, = T}, and take a “single fluid” stiffness model,
leaving the species dependence for later work.

When an instability takes place beyond the threshold, the model
allows turbulent transport to conduct any amount of heat. This
divergent K is of particular mathematical convenience, as it keeps all
temperature gradients below uy. This is what the solution for a
finite F > uy to ku' = F(%) [from Eq. (1)] yields, where F(%)
= |3 Pyexp [u(x')]dx’. As a result, temperature profiles will have an
increased triangular shape.

Taking these results into account, Eq. (1) may be cast in the form
of an eigenvalue equation

7= cosh? (V/iPo/2) (< 7°), (3a)
= cosh? (xiy/7Po/2) (2 — 4+ 1) (> 1), (3b)

where xp = In (2 — 2"+ 1)/uj, — 1 and 2* = 1+ (uty,)* /2P, is the
eigenvalue corresponding to the non-stiff solution with max|u'| = u};
i.e., the coldest solution for which stiffness is relevant. By construction,
) < 2* — 1+ e“s; more details may be seen in Appendix A.

This eigenvalue problem may be analyzed using a graphical inter-
pretation (see Fig. 1). Doing so naturally leads to separating solutions
as a function of the gradient threshold into two groups.

For uy, > 2, the solutions for the island temperature show hys-
teresis behavior as power is changed. This can be deduced from Fig. 1,
where a graphical representation of the eigenvalue problem for three
different powers is shown. Each intersection point represents a tem-
perature profile solution. Thus, from the three points in the central
panel, only one at a time could truly describe the island. It will depend
on whether the steady state is reached starting from the left (lower
power) or right (larger power) panels. This is the way hysteresis

H ! !
if u/ < u}}17
if o' > uy.

(2
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FIG. 1. RHS and LHS of the eigenvalue equation (3) for uj, = 3 and three different powers Po, showing hysteresis. The discontinuity in the derivative occurs at 2 = 4* (shown
as a dashed black line). In this context, the threshold for hysteresis at uf, = 2 corresponds to the condition for which the LHS is tangent to the RHS at 2 = 4*. In that case, it

is not possible to have three solutions.

manifests itself, and is perhaps more clearly seen represented as the
central temperature curve labeled “strong stiffness” in Fig. 2. The hys-
teresis curve is formally very similar to that observed in Ref. 40, though
the temperature saturating mechanism that makes the problem glob-
ally stable (i.e., an odd number of solutions for all Py) is different. Let
us describe this in some more detail.

The region with three solutions may be defined as P < Py < Py,
where the boundary values P, and P, label bifurcations. The one
occurring at P, = 0.88 is consistent with that shown in Ref. 39. This
bifurcation results from the exponential increase with temperature of
the power deposition overcoming the increase in diffusion losses. The
apparent irrelevance of stiffness for P, is a consequence of all tempera-
ture gradients for solutions colder than the bifurcation being below the
turbulent threshold. Indeed, the bifurcation point itself corresponds to
an edge gradient (the largest across the island) of v’ = 2, consistent

5E% Z
° <]
=
E{:
4t :E‘
[
%
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FIG. 2. Central island temperature as a function of power for different models,
including no stiffness, strong stiffness at uj, =3, moderate stiffness
(ufy, = 3,7%s = 5), and weak stiffness (uj, = 3, 7 = 1). These show the main
solution features.

with the statement of uy; = 2 being the threshold for the appearance
of this Py, bifurcation.

The upper branch, which exists for Py > P, physically repre-
sents a balance between the enhancement of edge transport losses and
the gains from the additional exponential deposition. Any hotter
temperature would lead to an imbalance favoring the loss of energy,
placing an obvious upper bound to #(0) < uj, (see strong stiffness in
Fig. 2). This hotter branch could be accessed starting from a cold
island, and increasing P, gradually to exceed P,. If the power was
diminished below Py, the island would remain hot down to P, due to
the enhanced deposition scenario from which we start.

When u, < 2, the saddle-node bifurcation at P, disappears. It
may be shown that, in this case, a single stable solution exists for all
values of Py, with no trace of hysteresis. This loss of hysteresis solu-
tions underlines the relevance of the gradient threshold on the struc-
ture of the final solution and ultimately on the possibility of the
condensation effect.

11l. CONDENSATION WITH RELAXED STIFFNESS: ROAD
TO DOUBLE BIFURCATION

The transport model assumed so far has been of mathematical
convenience, but of limited physical relevance. It only represents an
extreme case, namely, that of limitless heat transport due to turbu-
lence. A more relevant model would instead accommodate a finite
level of transport in the turbulent regime. There exist a number of
models that do so;"' ™" but, here we will consider the so-called critical
gradient transport model."’

The critical gradient model writes the increase in heat conductiv-
ity as follows:

Ro=1+ 7, — up ) HW' — uy), )

where H represents the Heaviside function. Though the critical gradi-
ent ), has the same meaning as previously, it is usually defined in
terms of a dimensionless parameter «,, such that uj = Y. where
Y = W;w?/2R and R is the major radius (see Appendix B for more
details).

The other new parameter introduced in Eq. (4), which constitutes
an additional degree of freedom, is },. This parameter describes the
stiffness of the system; i.e., it regulates by how much turbulence
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enhances transport. Again, it is customary to define it in terms of
%/ 70 a8 Xs = xs/ %0 Y (see Appendix B). Our previous strong stiffness
model corresponds to the limit y,/y, — oo, while non turbulent
transport (such as Ref. 39) corresponds to x,/y, — 0.

With this generalized form of x, Eq. (1) may be solved for
numerically. A fundamental distinction between the solution to this
model and the previous strong turbulence solution is that the solution
space is no longer globally stable. In other words, beyond some critical
value of P, [or for islands hotter than the hottest steady state 4(0) solu-
tions], the temperature of the island would grow indefinitely, without
converging to any steady state (see “moderate stiffness” curve in Fig. 2).
The lack of such a steady state is, again, the result of the exponential ¢*
power deposition dominating, this time over the linear increase in the
transport losses via i as the temperature in the island rises. This might
be seen formally from the solution to Ku' = F, which yields, as
F — 00, u' — co. The boundless growing temperature is nonphysi-
cal,” and it would eventually meet some additional physics or the
break-down of assumptions such as the smallness of T /T.

Even though the solution space is globally unstable in this model,
it is evidently different from the non-stiff case. In fact, the finite stiff-
ness softens the effects of the non-linear feedback (one may compare
curves labeled moderate stiffness and “no stiffness” in Fig. 2), increas-
ing the region of stability.

In addition to this fundamental global change, the new degree of
freedom J, is capable of shaping the structure of the solution. In par-
ticular, the system may be forced to exhibit either one or two bifurca-
tions (see Fig. 2).

In the case of a stringent critical temperature gradient threshold,
in the same fashion as for the prior very stiff case, the bifurcation at
P, = 0.88 would be affected. Because stiffness is however weaker,
thresholds lower than u}; < 2 are needed for the bifurcation to vanish.
Even when the solution might not bifurcate at Py, it will exhibit a new
bifurcation at larger power (see Fig. 2). This is explained by the same
mechanism that prevented the solution space from being globally sta-
ble, and thus, its location depends on the strength .

The possibility of a double bifurcation such as the one shown in
Fig. 2 is then contingent not only on a large enough gradient threshold
so that the P, bifurcation exists, but also on the magnitude of ..
Weak stiffness (see Fig. 2) would not introduce such drastic changes
but could instead lead merely to a displacement of the solutions into
larger P, by an amount regulated by .

In summary, this freedom to shape the solutions suggests that
some active or passive manipulation of transport properties could be
exploited to change the response of condensation. In addition, one
could perhaps exploit this intricate form of the solution to experimen-
tally measure stiff properties of the plasma. To do so, one might
launch RF waves at different powers and observe the resulting temper-
ature variations in the island, from which, a priori, a particular stiffness
model could be fitted.

IV. INTERPLAY BETWEEN ENHANCED TRANSPORT
AND WAVE DAMPING IN CONDENSATION

So far, stiffness has been shown to act as an energy loss mecha-
nism, which limits more or less effectively the action of nonlinear
effects. The limitless accessibility to energy from the wave led however
to globally unstable solution spaces for finite stiffness. Thus, we
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introduce here a more physical finite energy wave damping model, to
study its interaction with stiffness and condensation.

The wave damping model used is inherited from previous
work,"’ to which the reader is referred for further details.
Fundamentally, the model describes the RF wave energy density, V, as
it travels left to right (increasing x) through the island and becomes
damped. This damped energy is what drives the temperature diffusion
equation (symmetrized to account for the fast flux surface heat conduc-
tion). The corresponding ray and diffusion equations are, respectively

V(%) = —ape"V(x), (5a)
§ (s v Vs o

Define the initial value of the wave energy V(x = —1) = V; with typ-
ical values Vj ~ 1—10, and oy to represent the linear damping
strength of the wave normalized to the island width, typically
g ~ 0.1 — 3." Note that the definition ¥ = 2x/W; is kept for these
equations unlike in Ref. 40. We again adopt the critical gradient form
of k to introduce the effects of stiffness into the problem.

In the line of Secs. I-11I, the non-linear effects in the solutions to
Egs. (5a) and (5b) are found to be moderated by stiffness. Generally,
the island becomes colder. The qualitative changes in the u(0) — Vo
solution space and the bifurcations are similar, especially for oy < 1,
to the changes observed in Secs. I-11I [see Figs. 2 and 3(a)]. The exact
response of the system is controlled by both the strength of stiffness
and the gradient threshold for a given damping strength. Let us dedi-
cate a more detailed look to this.

The threshold u}; roughly delimits the subspace of solutions in
V space affected by stiffness. That subset roughly includes all those
cases for which the RF power exceeds the value V, = 2 Yk, (as the cut-
off gradient u}, = Yx., while the non-linear non-stiff edge slope
u' ~ Vy/2). Within this set, the larger Vj, the more significant the
effects of stiffness. The characteristic scale is set by the magnitude
of 7.

Ke=5 (a)

ive = 0=1] ay=0.05
X! X0 &
T=01 X XefXo =5

) 0.027 T=1"" |,
Bl bl

0.05
4 4
q . 4

Ke=5 (b)

u(0)
u(0)

3 0. 3
0.5=—""
2 2
0.3 =
1 02—1
5 0.1

0 20 40 60 0 20 40 60

- r
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FIG. 3. (a) Island center temperature for different stiffness ys values, showing its
influence on the resulting solution structure (r, =5, op = 0.05, Y = 0.1).
Hysteresis disappears at values of 7/, > 0.05. (b) Island center temperature for
different Y values, showing the reduced effects of stiffness for larger islands
(ke = 5, 09 = 0.05, /%0 = 5).
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Therefore, the smaller the value of 1, and the larger ¥, the more
noticeable the effects are. Both these parameters scale with Y o« W;/R
as seen in Appendix B. This means that smaller islands at larger radii
are likely to be more affected [see Fig. 3(b)]. This suggests that the
effects of finite stiffness will be most relevant for situations with
smaller islands. If very small, enough for stiffness to dominate the
non-linear condensation effects, the latter will not be observable, as
may be seen in Fig. 3.

Another important aspect of the solution that should be studied
is the self-consistent power deposition profile, in particular for the
location of its peak. In fact, power profiles are more directly related to
stabilization of the island than u(0), as we take current drive to be
approximately proportional to the deposited power.

We introduce an additional measure of RF stabilization in addi-
tion to the location of the deposition peak. Actually, the position of the
deposition peak is only a partial account, as its magnitude and the
amount of energy that leaks the island also play a role. Hence, we
introduce parameter ¢ as the figure of merit describing the stabiliza-
tion power of a given power deposition profile (see Appendix C). ¢
will be normalized to the reference non-stiff case for each power and
damping (Vj, o), so that ¢ > 1 means improved stability by stiffness
[e.g., Fig. 4(b)].

To fully understand the effects of stiffness, let us first describe the
main features of the deposition in the absence of stiffness, as was
shown in Ref. 40. Let us classify the main changes that deposition suf-
fers into three different stages for a prototypical hysteresis (low o)
solution (a similar division may be suited in cases where no hysteresis
exists). The reader might look at the curve labeled oo in Fig. 4(a).

The first stage (Stage I) occurs for the lower V; values, and corre-
sponds to the situation before any plasma heating becomes significant.
In such a stage, deposition is exponential and thus tends to be larger
close to the edge of the island. As damping is weak, significant energy

@ 0
 p——
-0.2
04}
¥ 0.6}
-0.8 ap = 0.3
Xs/xo = 10
-1
0 10 20

Vo
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leaks out of the island [1 — V(1)/V(—1) ~ 0]. This stage may be
related to the lower branch of the hysteresis.

As power increases and the island heats up, preferentially in its
center, the wave starts to self-focus. This moves deposition closer to
the center and diminishes the power leakage out of the island (Stage
I0). This corresponds roughly to the transition region between bifurca-
tions [or the large change in Fig. 4(a)].

Finally, if the wave power is even larger, then the damping
becomes so large that the wave starts to become damped closer to the
edge, i.e., shadowing (Stage III). This would correspond to the hotter
branch in the hysteresis beyond the bifurcations [and the decreasing
part of the co curve in Fig. 4(a)]. In practice, the shadowing can at
least be partially compensated by adjusting the aiming of the ray tra-
jectories to force the peak of the nonlinear damping closer to the island
center.

Because stiffness behaves as a moderator of the non-linear
response, it will also moderate the wave self-focusing effect. The effects
of stiffness will then be different depending on which of the three
stages a given value of i affects most, providing a natural grouping.
For simplicity of the argument, we will assume that the system is stiff
enough so that the effects of enhanced transport are significant for all
cases beyond the power value associated with a given temperature gra-
dient threshold. A lower stiffness 7, would make the distinction in the
grouping of the effects less clear.

Consider then a first group of stiffness effects to correspond to
those cases for which the cutoff «, is low enough so as to affect all solu-
tions beyond Stage I. Keeping in mind the relation between i and V;,
the bound of this group would be that of Stage I, roughly where the
non-stiff deposition starts to get closer to the center of the island [see
Fig. 4(a)]. In this situation, stiffness will freeze the non-linear response
of the system before any beneficial condensation effect has taken place.
Thus, the centering of the deposition or reduction of power leakage is

b) 0.5 1 1.5

20 40 60 80 100

FIG. 4. (a) Normalized position of the peak of the deposition with input RF power, for a number of stiffness thresholds. These correspond to parameters og = 0.3, /%0
=10and Y = 0.1. (b) Changes in stabilization ¢ as a function of «, and V. Normalization is done with respect to the non-stiff solution for each respective V; value. The bro-
ken line represents the approximate boundary between affected and unaffected solutions by stiffness. The three dotted lines (from left to right) represent roughly the separation

of the three groups presented in the main text.
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relegated to larger Vj, [e.g., compare |xyi| for . = 1 in Fig. 4(a) to the
Kk — oo case]. However, and as shown in Fig. 4(b), stability is wors-
ened for the more relevant lower V, regime; thus, the effects in this
group are overall deleterious.

The next group is formed by the set of . values that affect Stage
IT (but not I). Physically, this amounts to stiffness becoming relevant
before wave power leakage is reduced completely, but after some sig-
nificant amount of focusing has occurred. Hence, it is clear that
depending on how early stiffness freezes the non-linear behavior, sta-
bility will improve or worsen [see Fig. 4(b)]. The detrimental contribu-
tion is minimal for the larger power situations (as in the previous
group), but within this group stability is maximized for larger K.

Finally, the larger K. cases solely affect those corresponding to
Stage III. Naturally, stabilization is always improved, because at this
point stiffness exclusively alleviates the shadowing effect, all other ben-
eficial focusing effects having already taken place. However, if «, is too
large, then only for extremely large powers (relative to ) will any
improvement be tangible.

The balance between the advantageous and detrimental contribu-
tions of the non-linear effects that we have gone through may be seen
as an optimization problem. This optimization has been presented in a
simplified form, keeping parameters such as o, or y, fixed. The more
general multivariate optimization problem is left for future work and
should be taken into account in designing island stabilization schemes.

Before concluding, brief contact is made with experimentally rel-
evant values. Typical parameters for stiffness are x, ~ 5(2) and
%s/ 70 ~ 0.01 — 6, with Y ~ 0.1, as may be seen in Appendix B.
These suggest that, generally, turbulent transport will be a relevant
process in real devices. We recall here that smaller islands are more
susceptible than larger ones, and this will ultimately control when the
various effects are relevant. It is left for future work a more complete,
fundamental exploration of «, and ¥/, especially distinguishing the
different species in the plasma. In particular, the instability threshold
is expected to be less constraining for electrons than for ions. Thus, for
slow temperature equilibration times compared to diffusion,” one
could expect to mainly heat electrons, and thus alleviate stiffness con-
straints. A full description including these species effects, full 3D toroi-
dal geometry, and realistic ray tracing is left for future studies.

V. CONCLUSION

The influence of turbulent enhancement of heat transport on the
non-linear condensation effect is explored in this paper. The enhance-
ment occurs when the temperature gradient exceeds a certain thresh-
old, and it is shown to act as an additional island edge localized energy
loss mechanism. This way, a very strong stiffness may constrain tem-
perature, giving rise to phenomena similar formally to that in Ref. 40,
even without the need to limit the wave energy.

As stiffness is moderated, and using the critical gradient model,"'
important changes occur to the non-linear condensation effects.
Specifically, bifurcations appear to be modified or destroyed, and gen-
erally, the response of the system becomes less sensitive to RF power
as a result of the stiff moderation. Naturally, islands of a smaller size
and at larger radius are more likely to exhibit turbulent transport
effects.

The location of the RF deposition peak and, more importantly,
the stabilization power are both affected by stiffness. The inhibition of
the wave damping can prevent the edge shadowing effect when it
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occurs, not necessarily compromising the beneficial effects of
condensation.

Stiffness should therefore be taken into consideration alongside
RF condensation in search of optimal island stabilization schemes.
While the model offered here uncovers the key effects, any detailed
prediction would require a more complete description, including the
species dependence of stiffness, 3D geometry, and full ray tracing.
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APPENDIX A: EIGENVALUE EQUATION
Consider equation
u’ = —Pye" (A1)
for constant heat conductivity. Upon integration, the equation
becomes
12

%:Pg(/l—e"), (A2)

where / is some integration constant which will be later interpreted
as 2 = exp [u(0)]. Solving this latter equation exactly, and requiring

even symmetry
u=IniA—2In {cosh <\ / %}?)} . (A3)

The eigenvalue equation simply arises from the boundary condition

u=0atx =1
J. = cosh? & . (A4)
2

This will hold true everywhere within the island so long as the tem-
perature gradient at the edge of the island does not exceed the
threshold gradient. When this is not the case, the eigenvalue equa-
tion needs to be modified to accommodate k — oo when the
threshold u}, is overcome.

The first thing to solve for is the point xi at which the gradient
as a solution to Eq. (A1) is equal to u}; . From Eq. (A2),

7 \2
1+ xg :ui,ln (A(”‘h)> (A5)

th 2P,

where /> 4, =14 (4,)*/2Py but In[A — (u})/2P)/ul, < L
With this at hand, and noting that the solution (A3) still holds
for the central part (xg,—xg) of the island and outside v’ = uj,
the eigenvalue equation may be obtained by setting wu(xg)

= uy (1 + xx)
7 \2
2 = cosh? (xm /;‘P‘)> (), - (“‘h)> . (A6)
2 2P,
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Putting all together
L= cosh2< JVPO/Z)

se/IRf2) (= h 1) (> 1) (a8)

(<), (A7)

= cosh?

TN

APPENDIX B: EXPERIMENTAL PARAMETER
VALUES

The critical gradient semi-empirical model for the heat trans-
port is customarily written in the form"'

Zs (—ROT ) <—R8,T7‘>
1+X0( T K. |H T Ke )|, (B1)

where K is the non-stiff heat conductivity, y,/y, is the strength of
the stiffness, R is the major radius, T is the temperature, «, is the
temperature gradient threshold for stiffness, and H is the Heaviside
function.

To adequately incorporate this temperature gradient depen-
dent conductivity into the governing magnetic island equation, a
common set of non-dimensional variables needs to be used. Using
the definitions of X = 2x/W,; and u = w?*T /T,, one may define a
new K

K = Ky

R= 14 7,0 — ) H(W — ), (B2)

where 7, =1,/ Y with Y= Ww?/2R and u}, = Yx.. Typical
tokamak values for ECCD schemes will have Y ~ 5 x 10cm/5m
~ 107! and will be assumed throughout the text unless otherwise
stated.

In Table I, empirical values for the threshold gradient and stiff-
ness strength from a number of tokamak experiments are collected.
It is to be noted that electron stiffness is better documented than
ion stiffness, as the temperature of ions is difficult to measure with
the needed accuracy. Nevertheless, the quoted values are taken as
representative and used in our species-independent picture, which
would have to be refined in future work.

For guidance on the experimentally relevant values of Vj and
0 in the wave-damping model, we refer the reader to Ref. 40, where
an extensive discussion may be found. Here, we limit ourselves to
quoting typical values that may be expected to be oy ~ 0.1 —3
while Vy ~ 1 — 10.

TABLE I. Experimental values of critical gradient electron stiffness model parameters
for various shots at Joint European Torus (JET), ASDEX-Upgrade (AUG), Frascati
Tokamak Upgrade (FTU), and TORE-SUPRA (TS). The number in brackets repre-
sents variation between different shots. See Ref. 41 for more details on the data.

XS/XU K¢
JET 6(4) 5.0(1)
AUG 6(6) 6(2)
FTU 0.7 8
TS 28 3

scitation.org/journal/php

APPENDIX C: STABILIZATION POWER ¢

In this brief Appendix, a description of the parameter ¢ suited
to describe the stabilization capability of a given power deposition
is given. The formalism used here is heavily based on that used in
works such as Ref. 19.

Consider a given 1D power deposition solution to understand
its stabilization capability. We would have to compute its contribu-
tion to A’ in the Modified Rutherford equation. As stability calcula-
tions are inherently 2D in the poloidal plane, one needs to interpret
the given 1D profile as embedded in the higher dimension. A natu-
ral interpretation is to take the deposition as a narrow, O-point cen-
tered RF beam, which crosses the elongated island perpendicular to
its longer axis. Formally, in the limit of infinitely narrow, let the
power be P(x, &) = P(x)d(&), where x is the island width coordi-
nate and ¢ corresponds to the helical coordinate (along the longer
axis).

Given this set-up, the contribution to A’ from inside the island
is, ignoring the variation of the current drive efficiency within the
island, as well as overall factors

Koo [ ) J ag— <<
o — —,

-1 ¢ /Y +cosé
where t is the flux coordinate, with a particular geometry described
by = 2x* — cos¢ for m=1 and & = acos(—y). Here, x is nor-
malized to the island half width. The flux surface average power
function P is defined as

(C1)

— (P
P(y) = w’ (C2)
< P(x)+P(—x) ... P(x)+P(—x)
(P) o Jfg d 24/ + cos 8(e) ox ZW ' ©

<1>o<f B
e/ FcosE

Therefore, we may re-express the integral in Eq. (C1) to define a
stability parameter &

(C4)

wlz)

0 0.2 0.4 0.6 0.8 1
T
FIG. 5. Weight function w(x) for the definition of the stabilization parameter &. This

shows the destabilizing nature of areas close to the island edge (roughly a 10% of
the half width).
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- J ay PO+ P(x) (cos )

7= /14y (1) 7
[, -

where w(x = /(Y +1)/2) = —4(cos &)/(1)y/2 may be inter-
preted as a sort of weight function (see Fig. 5). The weight function
makes it clear that driving current in the island center is stabilizing,
unlike doing it close to the edge.

Parameter ¢ represents stabilization strength, with a larger
negative value representing a more stable power deposition. In gen-
eral, this metric will be used in relative terms, with a specified nor-
malization, for which the symbol o is reserved.
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