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Evolution of radiative thermal instability in a confined medium
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Thermally bistable fluid tends to self-organize into clouds of hot and cold material, which are internally
uniform and separated by thin conduction fronts. The evolution of these clouds has been studied for isobaric
systems, but when pressure is instead treated as a dynamical quantity and allowed to evolve self-consistently,
fundamentally different dynamics appear. Such a treatment is necessary in some laboratory plasmas, whose
volume is constrained but whose pressure can vary. Solutions are derived for the evolution of clouds, accounting
for pressure variation and interactions between conduction fronts. Additional stable configurations and secondary
instabilities are derived, which may be relevant to fusion plasmas and to the study of photoionized plasma in the
laboratory.

DOI: 10.1103/PhysRevE.110.065201

I. INTRODUCTION

A thermally unstable system is one in which a positive
(negative) temperature perturbation leads to further heating
(cooling). The radiative thermal instability, produced by a
balance between absorbed and emitted radiation, appears in
a diverse array of plasma systems. In astrophysical and solar
plasmas, thermal instabilities contribute to structure formation
in the interstellar and intercluster medium [1–3] and in the
dynamics of solar prominences [1,4–6]. Thermal instabilities
can degrade–or in some cases improve–the confinement of
laboratory fusion plasma, appearing notably as “MARFES”
in tokamak edge regions [7–10] and as strongly radiating
filaments in z-pinches [11], and play a role in a variety of other
laboratory experiments [12,13].

If a thermally unstable fluid is initially in equilibrium,
then a spatially nonuniform perturbation will evolve into a
patchwork of hot and cold regions [1,14,15]. A thermally
bistable fluid admits two stable temperatures, one hotter and
one colder than the unstable initial state. As the linear in-
stability saturates, most fluid elements reach stable equilibria
locally, excepting narrow transition layers between hot and
cold regions.

On larger scales, such a system can be viewed as a two-
phase medium with a hot phase at temperature Th and a
cold phase at temperature Tc. In the boundary layers be-
tween phases, termed conduction fronts, thermal conduction
becomes important. For isolated planar fronts, the propagation
speed, either into the hot phase (condensation) or into the cold
phase (evaporation), depends only on the system pressure.
There exists a critical pressure p∗ at which a conduction
front is stationary, assuming that it separates semi-infinite
regions at temperatures Th and Tc [16,17]. For systems con-
sisting of multiple fronts, the dynamics are more complicated.
The nonlinear nature of the governing equations leads to
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interactions between nearby fronts; at critical pressure, this
generally causes the collapse of small-scale features and the
generation of large-scale structure [18,19].

Although further complications are introduced by the cur-
vature of fronts, we isolate the effects of pressure variations by
considering one-dimensional systems in this work. Consider-
able complexity and interesting phenomena are retained even
under this simplification [16,18,20]. In magnetized plasma,
dynamics in the parallel direction often dominate, naturally
prompting a one-dimensional approximation [1].

Analytical treatments of conduction fronts in thermally
bistable fluid have typically treated pressure as a fixed quan-
tity, meaning that the whole system must expand or contract
when the average temperature changes. In systems at fixed
volume, as is the case in some experiments, a different (iso-
choric) constraint should be applied. Pressure must then be
treated as a dynamical quantity. Few past studies have taken
this step. A notable outlier is the work of Aranson, Meer-
son, and Sasorov (AMS) [20], who considered a thermally
bistable system in a fixed volume. They derived a relation
[corresponding to Eq. (44) in this work] showing how the
motion of conduction fronts causes system pressure to change.
Illarionov and Igumenshchev (II98) [21] constructed a statisti-
cal description of a two-phase medium with spatially uniform
but time-varying pressure and showed that expansion helps
to maintain a two-phase structure; however, this work did
not consider thermal conductivity. Our work generalizes the
results of AMS and II98 in several ways, providing an analysis
that applies at later times and to more general classes of
cooling functions. The question considered here is how such
systems evolve at late times, when hot and cold regions have
fully developed and form, in essence, a cloudy mixture.

The classical theory of thermal instability deals with the
short-timescale linear response to temperature perturbations;
if the initial state is unstable, then perturbations grow. Growth
of the primary instability saturates when each region arrives at
the stable cold (Tc) or hot (Th) phase. At this point, the system
is generally not in a true steady state, but instead exhibits
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a slow evolution mode driven by conduction. If pressure is
constant, then few steady states are possible and the system
becomes homogeneous at late times. If pressure is dynamical,
then it can be viewed as an additional degree of freedom; this
work explores the consequences of this degree of freedom.
For parameters of interest, pressure remains spatially uniform
but evolves over time. For some cooling curves, pressure
variation can drive a secondary instability, rapidly reshaping
the hot and cold regions. Since more of configuration space
is available, a new space of steady states becomes available.
On long timescales, interfront interactions become important
and lead to steady states different from those found by AMS.
In contrast to the constant-pressure case, this allows a stable,
nonhomogeneous steady state, which may be observable in
astrophysical systems and in experiments.

As an intermediate step, we derive formulas [Eqs. (19),
(23), and (47)] for the evolution of conduction fronts due to
deviations from critical pressure, interactions between fronts,
and time-varying pressure. The latter two are more general
than those previously published; they involve only explicit
functionals of the cooling curve and thermal conductivity,
and do not require computing the profiles of the fronts. Our
results therefore apply to any cooling curve, provided that a
few reasonable conditions are met, rather than a specific curve
with a simple form. This generality reveals nuances of front
dynamics that were obfuscated by the symmetry of the cooling
curves used in previous treatments.

This paper is organized as follows. In Sec. II, we outline
the system under consideration and our assumptions, and in
Sec. III we review the basic physics of the relevant thermal
instability. Establishing common ground with previous works,
we derive in Sec. IV the evolution equations for conduction
fronts in a system at fixed pressure. In Sec. V, we examine
the dynamics of fronts in systems whose volume, rather than
pressure, is constrained. In Sec. VI, we expand this treatment
to ensembles of fronts constituting a ‘cloudy’ medium with
complex spatial structure. These evolution equations become
analytically intractable, so in Sec. VII we present numerical
solutions. Finally, in Sec. VIII we discuss the implications
of these results for laboratory and astrophysical systems. Our
demonstration that isochoric conditions promote the forma-
tion of long-lived structures in photoionized may be relevant
to opacity measurements relying on assumptions of spatial
uniformity.

II. DEFINITIONS AND ASSUMPTIONS

A. Heating and cooling

We consider a fluid that is absorbing energy from some
external source, and also radiating energy away, at a rate
dependent on its number density n and temperature T . Tem-
perature has units of energy in this work. The fluid is assumed
to be optically thin to both the external source and its own
emission such that radiation transport can be neglected. The
power flow due to absorption and radiation is described by the
cooling function L such that the heating and cooling of a fluid
element is described by

nT
dS
dt

= −L + ∇ · (κ∇T ), (1)

where S is the entropy per particle, d/dt is the convective
derivative, and κ is the thermal conductivity.

Assuming an ideal gas equation of state, the pressure p is
given by p = nT . The entropy per particle, up to an irrelevant
additive constant, is S = ln(T cp p−1), where cp

.= γ /(γ − 1)
and γ is the adiabatic index. We assume that fluid properties
only vary in the x direction. Combining these assumptions,
Eq. (1) becomes

cpn
dT

dt
− d p

dt
= −L(p, T ) + ∂

∂x

(
κ

∂T

∂x

)
, (2)

where we have changed variables to work with pressure in-
stead of density, and accordingly we now evaluate L as a
function of p and T .

B. Lagrangian coordinates

We assume that there is no background flow, so the fluid
velocity u will only be nonzero if the movement of con-
duction fronts drives flows. The effect of temperature on
ionization state is neglected so that the system contains no par-
ticle sources or sinks.1 Conservation of particle number then
requires

∂n

∂t
= − ∂

∂x
(nu). (3)

It will be convenient to adopt a coordinate system that
moves with the fluid. Taking an approach that has been applied
to this problem previously [14,19,22], we define a Lagrangian
variable σ representing the areal number density in the region
between some reference position x0 and the Eulerian position
of interest x, viz.

σ (x, t ) =
∫ x

x0

n(x′, t )dx′. (4)

To convert Eq. (2) to Lagrangian coordinates, derivatives
transform as (d/dt ) → ∂t and ∂x → n(σ, t )∂σ , and so we have

cpn
∂T

∂t
− ∂ p

∂t
= −L(p, t ) + n

∂

∂σ

(
nκ

∂T

∂σ

)
, (5)

where the pressure and temperature fields are now p(σ, t ) and
T (σ, t ).

C. Characteristic scales

We denote characteristic system parameters by a subscript
0, e.g., the characteristic temperature T0, density n0, cooling
rate L0, and thermal conductivity κ0. The sound speed is cs

and the length scale L0 represents the system size. Character-
istic timescales include the cooling time tcl

.= n0T0/L0 and the
system sound crossing time tsys

.= L0/cs. Conduction fronts
have a characteristic width l0 ∼ √

κ0tcl/n0 and the time for
sound to cross a conduction front is tfr

.= l0/cs. We define

1There are regimes in which this assumption is well justified [1];
in systems where recombination and molecule formation become
important, an ionization-related term would need to be added to the
equations in this work, but in general the results will hold qualita-
tively.
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a dimensionless parameter δ
.= l0/L0. Throughout this work,

we assume the following ordering:

tfr � tsys � tcl. (6)

Physically, this ordering means that conduction fronts are
much smaller than the outer length scales of the system
(δ � 1) and establishment of pressure equilibrium across a
front is the fastest timescale under consideration. Globally,
sound waves establish pressure equilibrium throughout the
system faster than external processes can significantly change
the temperature of a fluid element. As a result, we may treat
the pressure as spatially uniform; this is a common assumption
in studies of thermal instability [18,20,23]. We will allow
pressure to vary in time as the average temperature of the
system changes; as long as this change is caused by inter-
nal processes, as opposed to arbitrary external forcing, the
timescale of pressure variation will be much longer than tsys.

III. THERMAL INSTABILITY

A. Linear stability

To describe the conduction fronts separating hot and cold
phases of a thermally bistable medium requires understanding
the saturated nonlinear stages of the thermal instability. We
begin with a description of its linear behavior, following the
seminal work of Field [1], though different notation is used.

Let us consider a general system with temperature T whose
evolution is governed by the function H(T ) such that

∂t T = H(T,Y ), (7)

where Y represents the other independent variables on which
H depends and the subscript indicates the quantity to be held
constant when evaluating the derivative. The system is in
thermal equilibrium when H = 0. Let T0 be an equilibrium
temperature. The stability of the equilibrium is determined
by perturbing such that T = T0 + T̃ . To linear order, the time
evolution of the perturbation is determined by

∂t T̃ =
(

∂H
∂T

)
Y

T̃
.= H′(T0)T̃ . (8)

If H′(T0) > 0, then the equilibrium is thermally unstable.
To connect the general Eq. (7) to Eq. (5) describing our system
of interest, we need an appropriate relationship between H
and L. Earlier work by Parker [24] suggested an isochoric
model represented as H ∝ −L(n, T ), with H′ ∝ (∂L/∂T )n

evaluated at constant n (the proportionality elides positive
constant factors that are unimportant for this summary).

It was subsequently shown, initially by Zanstra [25] and
then in detail by Field [1], that attention must be paid to the
adiabatic expansion and compression resulting from temper-
ature perturbations. As a result, the heating function is best
represented as H ∝ −L(p, T ) such that

H′ ∝ −
(

∂L
∂T

)
p

= −
(

∂L
∂T

)
n

+ n

T

(
∂L
∂n

)
T

. (9)

FIG. 1. Cooling rate L(T ) for a bistable cooling curve at fixed p.

For future reference, we define

LT
.=

(
∂L
∂T

)
p

,

Lp
.=

(
∂L
∂ p

)
T

.

(10)

A model corresponding to Eq. (9) is termed isobaric. For
long-wavelength perturbations, an isochoric model becomes
more accurate as the time for sound waves to establish pres-
sure equilibrium becomes longer than the instability growth
rate. For short-wavelength perturbations, thermal conduction
has a stabilizing effect. These effects have been examined
in detail by Field and by many others [1,2,14,15,21,22,26].
Since we are not concerned in this work with the details of
linear growth, we can ignore these subtleties; the ordering in
Eq. (6) guarantees that Eq. (9) is the appropriate quantity for
determining stability.

B. Cooling curves

Thermal instability occurs when the graph of L versus T
(at constant p) crosses the abscissa with negative slope; posi-
tive slope yields a stable equilibrium. For fixed pressure, let
Tw be the temperature of an unstable "warm" equilibrium
such that L(Tw ) = 0 and LT (Tw ) < 0. Thermodynamic con-
sistency requires that L < 0 as T → 0 and L > 0 as T → ∞.
The curve must therefore cross the abscissa in at least two
other places. If there are only two other crossings, then LT

must be positive at both.
We consider bistable cooling curves, which have a single

unstable equilibrium at temperature Tw and two stable equilib-
ria at temperatures Tc and Th. These equilibria are termed the
"cold" and "hot" phases, respectively. A schematic bistable L
is shown in Fig. 1.

The appropriate model for a cooling curve depends
strongly on the medium being described and the regime
of interest. For instance, in a photoionized plasma,
the relative importance of bound-bound (excitation/de-
excitation), bound-free (ionization/recombination) and free-
free (bremsstrahlung, etc.) processes changes with tempera-
ture and with density. Typically, cooling terms go as larger
powers of n than heating terms because emission processes
usually involve more particles than absorption processes (dis-
counting photons because they do not contribute to n).

For reasons described above, we choose to work with pres-
sure rather than density, assuming as everywhere else in this
work that p = nT (recall that temperature is given in units
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FIG. 2. Zeros of the function L(p, T ). The characteristic S shape
yields bistability.

of energy in this work). At high pressure, cooling dominates
and only a single cold equilibrium is possible; at low pressure,
heating dominates and we have only a single hot equilibrium;
both equilibria must therefore be stable. In an intermediate
regime, bistability is possible. For an example cooling curve,
Fig. 2 shows the zeros of L as a function of p and T (Fig. 1
is a vertical slice from the bistable region of Fig. 2). The solid
curve represents the zero locus of L; every point on this curve
is an equilibrium. Between the two turning points, the cooling
curve is bistable.

C. Conduction fronts

Analysis of cooling curves yields conditions for local
thermal equilibrium, but heat conduction can destroy this
equilibrium. Suppose that we set up as the initial state an arbi-
trary (inhomogeneous) temperature profile. Over the first few
tcl, linear instability drives temperature everywhere toward
Tc or Th, while heat conduction rapidly smooths temperature
gradients; we make no attempt here to follow this transient
process. As the transients die down, the system becomes a
patchwork of hot and cold regions; deep inside each region,
temperature is nearly uniform. We suppose that thermal insta-
bility is triggered everywhere such that no regions of unstable
"warm" phase persist. Separating adjacent regions are narrow
boundary layers, with size of order l0, where conduction is
important; sensibly, these layers are termed conduction fronts.

Zooming out, the details of heating and cooling in each
fluid element can be abstracted away. Instead, the system can
be viewed as a two-phase medium with some rule describing
how the phase boundaries (conduction fronts) evolve in time.
In the next sections, we will derive this rule.

In the microscopic picture the temperature profile is not
perfectly flat, but in the macroscopic picture each region
simply consists of either hot or cold phase. The only other
relevant property of each region is its size. Since we work
in Lagrangian coordinates, the "size" of a region of Eulerian
width L is the areal density ξ = ngL where ng is the density in
the region. Motion of a front depends on the size of adjacent
regions and on the system pressure.

We label fronts as h − c when they connect a hot region
on the left to a cold region on the right, and c − h when they
connect a cold region on the left to a hot region on the right.
For these types of fronts, the temperature profile is monotonic
in space, which will be important for variable transformations
that we will perform. For fronts connecting to warm regions,

the temperature profile can be oscillatory [19], but we do not
consider this type of front because we are interested in long-
timescale behavior. To measure the location of and distance
between fronts, we define the location of a front to be the point
σ (in Lagrangian coordinates) such that T (σ ) = Tw.

IV. ISOBARIC DYNAMICS

We study here the motion of conduction fronts in isobaric
media. Early analyses of this motion were done by Zel’dovich
and Pickel’ner (ZP) [16] and by Penston and Brown [17]. Both
pairs of authors derive a condition on the "critical pressure" at
which conduction fronts are stationary. In addition, both pre-
sented approximation schemes for front motion at noncritical
pressures. However, the former treatment was quite ad hoc and
vague as to the fidelity of the approximation, while the latter
was primarily numerical. AMS [20] derived a closed-form
perturbative expression for the rate of front motion. A later
analysis by Elphick, Regev, and Spiegel (ERS) [18] calculated
the interactions between neighboring conduction fronts, yield-
ing fundamental insights into the inverse cascade that appears
in bistable fluid. This analysis was, however, dependent on
a particular cooling function carefully chosen for analytical
treatment, and so cannot be quantitatively transferred to other
systems. In this section, we apply a systematic asymptotic
analysis to derive expressions for the motions of fronts.

A. Isolated fronts

Throughout this section, we enforce that ∂t p = 0. Physi-
cally, this corresponds to a wide variety of systems whose
container (or surrounding fluid) applies constant pressure.
The timescale order in Eq. (6) is still used, so ∂x p = 0, and
pressure is therefore entirely constant. We derive the condi-
tions under which a conduction front is stationary and, under
nonstationary conditions, find a perturbative solution for its
motion.

We consider a system consisting of one conduction front
separating a semi-infinite cold region from a hot one. We use
Tc and Th to denote the equilibrium temperature in the cold
and hot regions, respectively. When there is no ambiguity,
Tc/h serves as shorthand for Tc or Th to leave some statements
general.

Following the treatment of [18], we transform to a moving
coordinate system by defining z

.= σ − J (t ), where J is a
function of time only and j

.= dJ/dt is a particle flux that we
seek to calculate. We seek traveling-wave solutions, for which
T is a function of z only. In these coordinates, Eq. (5) becomes

− jcpn
dT

dz
= −L + n

d

dz

(
nκ

dT

dz

)
, (11)

and, by defining q
.= nκ (dT/dz), we can write this as

nκ
dq

dz
+ jcpq = κL. (12)

We will sometimes refer to q as "heat flux" for brevity, even
though it differs from the physical heat flux by a (negative)
factor.

Assuming that the temperature profile is monotonic, we
follow ZP [16] and transform so that the dependent variable
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is T , noting ∂zq = (q/nκ )(dq/dT ), and arrive at

1

2

d

dT
(q2) + jcpq = κL. (13)

Finally, we integrate both sides to obtain

1

2
q2

∣∣∣∣Th (p)

Tc (p)

+ jcp

∫ Th (p)

Tc (p)
dT q(T ) = �(p), (14)

where we have defined the "net cooling" function � as

�(p)
.=

∫ Th (p)

Tc (p)
dT κ (p, T )L(p, T ). (15)

We start by considering a stationary front, where ∂t T = 0
and therefore j = 0. Far from the front, in the bulk of each
phase where the temperature takes one of its equilibrium val-
ues, there should be no heat flux.2 Therefore, the boundary
terms on the left-hand side (LHS) of Eq. (14) vanish and
consistency requires �(p) = 0. This is the condition derived
by ZP [16], which they term a "phase condition" by analogy
to Maxwell’s area rule in equilibrium thermodynamics.

Let P be the set of "critical pressures" such that the con-
dition �(p∗) = 0 is satisfied for all p∗ ∈ P . For noncritical
pressures, which yield nonzero �, Eq. (13) can only be satis-
fied by nonzero j. In other words fronts must move.

In general, there is no closed-form expression for the front
velocity at noncritical pressures. In this work, we consider
small deviations from critical pressure and use a perturbative
procedure to generate asymptotic solutions.

Introducing a small parameter ε � 1, let p = p∗ + p̃,
where p∗ ∈ P and p̃ ∼ εp∗. Similarly, we expand the
particle and heat fluxes as j = j (0) + j (1) + ... and
q = q(0) + q(1) + ... where larger superscripts denote higher
orders in ε. Finally, we expand � about p∗ as �(p) ≈ �p p̃
where �p

.= d�/d p. Although the change in p causes the
equilibrium temperatures Tc/h to shift, we assume that this
shift is of order ε or smaller (this assumption is valid in all
cases that we will consider).

In the case above where the pressure was critical, i.e.,
ε = 0, we were able obtain an integral condition Eq. (13)
without actually calculating q(T ). In this case, we will need
to calculate its lowest-order term q(0)(T ). We know that the
particle flux vanishes at lowest order, so j (0) = 0. Integrating
Eq. (13) and keeping only leading-order terms in ε, we have

1

2
[q(0)(T )]2 =

∫ T

Tc (p∗ )
dT ′κ (p∗, T ′)L(p∗, T ′). (16)

Noting that q should vanish infinitely far from the front to
all orders in ε, we expand the two remaining terms of Eq. (14)
to find

1

2
q2

∣∣∣∣Th (p)

Tc (p)

+ j1cp

∫ Th (p∗ )

Tc (p∗ )
q(0)(T )dT ∼ �p(p∗)p̃, (17)

2This is true only if the boundaries can be taken to be arbitrarily
deep in the bulk of each phase. If the system size is finite, then the q
at the boundaries may not be exactly zero, or the temperatures there
may not be exactly Th, Tc. This point is discussed further in IV C; in
general, the corrections are exponentially small in δ.

and for convenience we define the integral over the zeroth-
order heat flux as

Q(p)
.= cp

∫ Th (p)

Tc (p)
dT

√
2

∫ T

Tc (p)
dT ′κ (p, T ′)L(p, T ′). (18)

Now, using Eq. (16), we can solve for j (1) to obtain

j (1) = p̃
�p(p∗)

Q(p∗)
q̂, (19)

where q̂ = ±1 indicates the direction of the temperature gra-
dient (q̂ = 1 for a c − h front, while q̂ = −1 for a h − c front).
If the pressure is perturbed such that �p p̃ > 1, then hot ma-
terial will "condense" into cold material across the front as it
propagates into the hot region; if �p p̃ < 1, then cold material
evaporates into hot. Since � is just a weighted integral of
the cooling function, this behavior is expected; positive �

indicates that cooling processes dominate over heating ones.
Typically, �p > 0 because the cooling rate tends to increase
with density more quickly than the heating rate does.

B. Interacting fronts

A realistic system is likely to contain many regions of hot
and cold fluid, rather than the pair of semi-infinite regions
considered in the previous section. Each of these regions can
be viewed as a pair of fronts. In this section, we consider the
interaction between these fronts. To see how this interaction
arises, consider the boundary conditions of Eq. (14), which as-
sume that the temperature profile comes arbitrarily close to the
equilibrium temperatures Tc/h in the cold and hot regions. Far
from the front, as we will demonstrate shortly, the approach
to equilibrium temperature is exponential. Therefore, at any
finite distance σ from the front, a finite difference will remain
between T (σ ) and Tc/h. If at least one of the regions bordering
a front is of finite size, then Eq. (14) no longer holds exactly.

For concreteness, we consider a hot "bubble" embedded
in cold fluid, or, equivalently, a pair of fronts arranged as
c − h on the left and h − c on the right. The results of this
section will also apply to the opposite situation, a cold cloud
in a hot background. In Lagrangian coordinates, the distance
between the front cores is ξ at t = 0, and we require the
bubble to be large compared to the fronts (ξ � n0l0). The
cold regions to the left and right of the bubble can be taken to
be semi-infinite. We center the coordinate system so that the
point σ = 0 lies at the midpoint of the hot region. The core
of the c − h front is therefore given by T (σ = − 1

2ξ ) = Tw.
Throughout this section, all functions will be evaluated at
t = 0, and so the t argument is dropped for concision.

We define a temperature h such that the temperature at
the middle of the hot region is T (0) = Th − h. Importantly,
h � Th because the midpoint is far from both fronts. Putting
aside for a moment the problem of calculating h, we compute
the motion of each front in terms of h. We seek a traveling-
wave solution for the c − h front; since the front motion
depends on the size of the bubble, j will no longer be constant.
Symmetry allows us to consider just the left-hand front; the
other front moves with the same speed in the opposite direc-
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tion. Starting from Eq. (13) and integrating, we have

1

2
q2

∣∣∣∣Th−h

Tc

+ jcp

∫ Th−h

Tc

dT q(T ) =
∫ Th−h

Tc

dT κ (T )L(T ),

(20)

where notation of the pressure dependence is dropped for
concision.

For simplicity, we take the pressure to be equal to some
critical pressure p∗ ∈ P , meaning that �(p∗) = 0. All front
motion, therefore, results from interactions between fronts.
To write an analog to Eq. (17), we need to apply appropriate
boundary conditions. Far to the left, in the cold phase, q → 0
at all orders. At the middle of the bubble, we know by symme-
try that q(σ = 0) = 0 ∀t , or equivalently q(T = Th − h) = 0,
where q is the exact heat flux. Solving Eq. (20) for j, we find

j = − ∫ h
0 dθκ (Th − θ )L(Th − θ )

cp
∫ Th−h

Tc
dT q(T )

. (21)

Let us define a small parameter η
.= exp{−mξ/l0}, where

m is an unknown positive constant, such that h ∼ O(η)
(which will be validated later). Now we expand in η, writing
q = q(0) + q(1) + ... and j = j (0) + j (1) + ...; at first order,
this is equivalent to expanding in h. We also expand h as a
series in η as h = h(0) + h(1) + ... . The unperturbed heat flux
q(0) is the same as in the previous case and so can still be found
by solving Eq. (16). "Unperturbed" quantities mean those that
would apply if we did not impose the q(0) = 0 boundary
condition but rather allowed the solution to extend to infinity
in both directions as in Sec. IV A.

To expand the numerator in h, we define

λh
.=

(
∂

∂T
κL

)∣∣∣
Th

(22)

and, since L(Th) = 0 by definition, we arrive at a leading-
order expression for j:

j (1) = (h(0) )2λh

2Q
. (23)

The task is now to calculate h in terms of known quantities.
Let T (0)(z) be the temperature profile corresponding to q(0)

and j (0). Then the leading-order term in h is given by h(0) =
T (0)(0).

To calculate h(0), we need to find information about the
temperature profile T (0)(z). We will accomplish this through
asymptotic matching. The structure of the problem suggests
slowly varying ‘outer’ regions in the bulk of the cold and
hot phases and a rapidly varying "inner" region near the core
of the front. We will first solve for the leading-order outer
solution in the hot phase, up to an unknown constant. Next, we
will solve for the leading-order inner solution. Identifying an
intermediate region in which both solutions can be expanded,
we will match the solutions in this region to determine the
unknown constant. Finally, since the outer solution’s region
of validity contains σ = 0, we can determine h(0).

Let τ
.= Th − T . In the hot outer region, τ ∼ O(η). To

leading order, Eq. (13) becomes

1

2

d

dτ
(q(0) )2 = λhτ, (24)

which we can solve to find

q(0)(τ ) =
√

λhτ 2 + a. (25)

Noting that the unperturbed solution should satisfy
limτ→0 q(0)(τ ) = 0, we see that a = 0. Now we solve for T (0).
In the outer region, q(0) = −nhκ (Th)∂zτ (note nh = p/Th).
The leading-order solution for τ (z) is therefore

τ (z) ∼ τ0 exp

{
−

√
λh

nhκ (Th)
z

}
, (26)

where τ0 is an unknown constant. We define
kh

.= √
λh/nhκ (Th) for convenience.3 Inverting Eq. (26),

we find

z(τ ) ∼ − 1

kh
ln(τ ) + 1

kh
ln(τ0). (27)

We proceed to the inner region, which contains the front
core and the rapidly varying part of the solution. Here, we find
an integral equation, which applies even in the outer region
but is intractable. The final task is then to match the inner
solution to the closed-form outer solution in Eq. (26). Keeping
leading-order terms in Eq. (13) and rearranging gives

dz ∼ dT
n(T )κ (T )√

2
∫ T

Tc
dT ′κ (T ′)L(T ′)

. (28)

Using the condition z(Tw ) = − 1
2ξ , we find that z(τ ) is, to

leading order,

z(τ ) ∼ −1

2
ξ +

∫ Th−Tw

τ

n(Th − τ ′)κ (Th − τ ′)dτ ′√
−2

∫ τ ′
0 dθκ (Th − θ )L(Th − θ )

.

(29)

Note that z has a logarithmic divergence as τ → 0 because
the denominator is approximately linear in τ ′ in this limit.
Physically this is appropriate because, in order for T to be
close to Th, we must be very far from the front, meaning z is
large. Beyond the logarithmic term, the expansion of z in τ

consists of a constant term followed by positive powers of τ .
To determine τ0, we now match Eq. (29) and Eq. (27)

to leading order in η, which entails matching the constant
(with respect to τ ) terms and discarding the terms in Eq. (29)
that vanish as τ → 0. The logarithmically divergent part of
Eq. (29) should equal the logarithmic term of Eq. (27). Equat-
ing the remaining terms in both equations to leading order, we
arrive at

ln(τ0) = − 1
2 khξ + ln(Th − Tw ) + �h, (30)

where

�h
.=

∫ Th−Tw

0
dτ ′

⎡⎢⎣ khn(Th − τ ′)κ (Th − τ ′)√
−2

∫ τ ′
0 dθκ (Th − θ )L(Th − θ )

− 1

τ ′

⎤⎥⎦.

(31)

3Note this is equivalent to kh = (Th/p)
√

(∂L/∂T )|Th/κ (Th ). There-
fore, khξ ∼ O(L/l0) where L is the size of the cloud in ordinary
spatial (Eulerian) coordinates.
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In Eq. (31), the lower bound of the integral is taken to zero
because we are only interested in leading-order behavior and
so can ignore all higher powers in τ . It is straightforward to
show that � is finite when L has the properties described in
Sec. III B. Using Eq. (26) to determine h to leading order, we
find

h(0) = (Th − Tw )e�h− 1
2 khξ , (32)

validating the form that we assumed for η. Combining
Eqs. (32) and (23), we have an explicit expression for j (1).
It is straightforward to generalize to a cold cloud embedded in
a hot background. We can define quantities λc, kc,�c analo-
gously to their hot counterparts; explicit definitions are given
in the Appendix.

For generality, let the subscript g (= h or c) denote either
the hot or the cold phase. We consider a cloud of phase g and
size ξ immersed in much larger regions of the other phase.
The fronts surrounding the cloud will move toward each other
with a flux described by

j (1) = �ge−kgξ q̂, (33)

where q̂ now points toward the interior of the cloud (q̂ = 1 for
the left-hand front and q̂ = −1 for the other) and

�g
.= λg|Tg − Tw|2e2�g

2Q
. (34)

Assuming all other conditions remain unchanged, this
motion causes the cloud size to decrease at the rate
dξ/dt = −2| j|. The cloud size over time is described by

ξ (t ) = 1

kg
ln(ekgξ (0) − 2�gkgt ). (35)

C. Boundary effects

The focus of this work is systems in a finite "box." When
front interactions are included, boundary conditions imposed
at the ends of the box can affect front motion. To avoid intro-
ducing new parameters to the problem, we impose Neumann
boundary conditions. For a system of length L0, we require
that ∂xT = 0 at x = 0 and x = L0. This is equivalent to requir-
ing q = 0 at both points. Note that this precisely the condition
that we imposed at the midpoint of each region in Sec. IV B.
Therefore, a region of size ξ abutting one of the boundaries
interacts with its one neighbor as if it were an ordinary region
of size 2ξ generated by "reflecting" the real region across the
boundary.

For the rest of this work, unless stated otherwise, state-
ments about the size of each region should be taken as
applying to this fictitious doubled region when referring to
the regions on the boundaries. Indeed, the entire system can
be reflected across each boundary and so viewed as periodic
with period 2L0.

A real system will generally not satisfy this boundary
condition exactly; any realistic container can be expected to
admit some heat flux through the wall and so fail to satisfy
∂xT = 0. However, for most systems that we will consider, the
boundary will not play a major role and so this approximate
boundary condition is a reasonable one.

D. Cloudy medium

With Eq. (33), we are equipped to describe the evolution of
a system containing many hot and cold regions. The lifetime

tlife = (ekgi ξ (0) − 1)/2�gi kgi (36)

of a single cloud increases exponentially with the cloud size
for large clouds. However, any cloud of finite size will even-
tually contract. This means that a two-phase system of this
type will typically not be in a true steady state, even at crit-
ical pressure. This fact was explored by ERS [18] (see also
Ref. [19]). A true steady state can exist when the medium is
uniform (all hot or cold phase). If the system is large enough
that the boundary can be ignored, then a configuration with
one front separating two semi-infinite regions is also a steady
state.

As a more general scenario, let us consider a "cloudy"
medium consisting of N alternating hot and cold regions
indexed as i = 1, 2, ... N and let ξi be the size of front i.
Hereafter, we denote by gi the phase of region i and by g′

i
the other phase. For each front, the finite-size effects from the
cloud on each side simply add (at the order to which we are
working), so the velocity ji of the front on the left side of
cloud i (where i > 0) is, to leading order,

j (1)
i = −�g′

i
e
−kg′i

ξi−1 + �gi e
−kgi ξi . (37)

The time evolution of region i (where i ∈ (1, N )) is then
described by

dξi

dt
= −2�gi e

−kgi ξi + �g′
i

[
e

kg′i
ξi−1 + e

kg′i
ξi+1

]
. (38)

Heuristically, smaller regions shrink more quickly. The
calculation here provides additional nuance that does not
appear in the model of ERS; the most rapidly shrinking
region is not necessarily the one with the least material (min-
imal ξi) but rather the one for which the weighted quantity
ξ̂i

.= kgiξi − ln �gi is minimal.4

Over time, this cloudy medium evolves as described by
ERS, except for the above caveat that ‘cloud size’ should
be evaluated using ξ̂ . The smallest clouds evaporate first,
donating their material to their neighbors. When a cloud evap-
orates completely, its neighbors merge, becoming more robust
against shrinking due to their larger size. As the surviving
clouds become larger, the process slows exponentially, but
still completes in finite time. Steady state is reached when only
one uniform region remains (or, discounting system bound-
aries, two regions and one front).

This evolution leads to an inverse cascade, destroying
small-scale structure and creating large-scale coherent struc-
ture in a process similar to Ostwald ripening. Several works
have indicated that large clouds tend to "shatter" due to vari-
ous instabilities, providing a limitation on the inverse cascade
[27]. This shattering typically appears in multidimensional

4Even this statement can be further qualified. For a complex cloudy
medium where many clouds are of comparable size, the evaporation
rate of each cloud is influenced by its neighbors, so statements about
which clouds shrink most quickly and vanish first depend on detailed
knowledge of the system configuration.
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simulations with self gravity, so it is no surprise that our
results in this reduced model do not include such a process.

A complex steady state is possible. This requires a periodic
arrangement of hot and cold regions such that ξ̂i is equal for all
i, as seen in Eq. (38). However, this arrangement is unstable.
Perturbing the location of a front to make one region slightly
smaller and one slightly larger will cause collapse of the small
region and subsequently of the whole arrangement.

V. ISOCHORIC DYNAMICS

Up to this point, we have considered isobaric systems,
in which the surroundings apply constant pressure to the
system. The use of Lagrangian coordinates permitted us to
ignore many details of the fluid flow; however, we know
that the system must expand and contract to maintain hydro-
static equilibrium between hot regions, cold regions, and the
surroundings. We now consider an isochoric system, whose
volume is fixed but whose pressure is allowed to vary. Because
of the ordering in Eq. (6), pressure remains uniform through-
out the system; p is a function of t only. Individual regions
continue to expand and contract in response to temperature
variations but if, for example, evaporation causes the fraction
of fluid in the hot phase to increase, pressure must increase
everywhere.

A. Evolution of an isolated front

We begin by considering a system of two regions separated
by a conduction front. Boundary effects are ignored for the
moment. One region is in the hot phase and the other is
in the cold phase. The condition under which this front is
stationary [Eq. (13)] is the same as in the isobaric case. When
this condition is not satisfied, the front will move, but now,
crucially, this motion will cause p to change. We denote the
temperature and density in the region on the left by T1, n1 and
in the region on the right by T2, n2. The time evolution of the
pressure can be written as follows:

d p

dt
= ni

dTi

dt
+ Ti

dni

dt
(39)

for i = 1, 2. This relation applies in both regions.
As the conduction front propagates, the fractional expan-

sion of the bulk fluid on each side in one cooling time tcl is on
the order of δ. Therefore, the timescale on which adiabatic
expansion heats and cools bulk fluid by the same amount
as external processes is ta = tcl/δ. Then as a consequence
of Eq. (6), ta � tcl, meaning that external processes are fast
enough to keep the bulk of each phase close to its equilib-
rium temperature during front motion. Denoting by T (eq)

i the
equilibrium temperature5 in the region under consideration,

5There is a notational subtlety here: Ti is the fluid temperature in
regions i = 1, 2, while T (eq)

i (p) is the function describing the locus
of zeros of the cooling curve L(p, T ) = 0. The subscript indicates
(in the bistable region) which of the solutions the fluid temperature
matches; in practice, this distinction is unimportant and Ti = T (eq)

i .

the time evolution of Ti is determined to leading order in δ by

dTi

dt
= dT (eq)

i

dt
= dT (eq)

i

d p

d p

dt
. (40)

We define for future use

ρi
.= p

Ti

Lp

LT
= p

Ti

dT (eq)
i

d p
, (41)

where again T (eq)
i represents the equilibrium temperature in

region i.
To use Eq. (39), we need to know how the density evolves.

This happens in two ways: expansion or contraction of each
region; and evaporation (or condensation) of material from
one phase into the other across the conduction front. Let
r1(t ) ∈ [0, L0] denote the location (in real space) of the con-
duction front at time t , and r2 = L0 − r1. As before, j(p)
denotes the particle flux across the front. The density then
evolves according to

dn1

dt
= −n1

r1

dr1

dt
+ j

r1
,

dn2

dt
= −n2

r2

dr2

dt
− j

r2
.

(42)

It is more convenient to keep track of the region sizes using
areal densities ξ1 and ξ2, defined as ξi

.= niri. Substituting
Eqs. (42) and (40) into Eq. (39), we obtain

d p

dt
= jχ1;2(p), (43)

where

χi; j (p)
.=

(
T (eq)

i − T (eq)
j

)
p

(1 − ρi )T
(eq)

i ξi + (1 − ρ j )T
(eq)
j ξ j

. (44)

Explicit models for the cooling function will be discussed
in Sec. VII A. In brief, we note here that, for a typical cooling
curve, ρ < 0 for the stable phases.6 For such curves, the
denominator remains positive for all values of p.

If we now wish to calculate the motion of the front, then
the ∂t p term in Eq. (5) is no longer identically zero. In the
next section, we show that this effect can safely be neglected.

Suppose that the pressure is near a critical pressure so that
p = p∗ + p̃ and p̃ ∼ εp∗. Naturally, p∗ is a constant. Using
Eq. (19), the rate of change of pressure, to first order in ε and
zeroth order in δ, is

d p̃

dt
∼ −p̃

�p(p∗)χh;c(p∗)

Q(p∗)
(45)

(the choice to write χh;c rather than χc;h accounts for the sign
of q̂ and makes the result insensitive to the placement of hot
and cold regions).

6Furthermore, it is generally the case that ρ is of order unity. This
validates the assumption, made in deriving Eq. (19), that the variation
in Tc/h due to small deviations from critical pressure is small. Such
variations in equilibrium temperatures are of order ερ, and since they
would only appear multiplied by the �p p̃ ∼ O(ε) term, they do not
contribute at leading order in Eq. (19).
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So far, we have adopted a maximal ordering of ε and δ.
One might then wonder whether Eq. (45) fails to capture the
dominant behavior when δ � ε (a condition that is guaranteed
to be met eventually as L0 is held constant while p → p∗.
Note, however, that j(p∗) = 0 is an exact result. Nonzero j
only appears when ε �= 0, so there are no O(ε0δk ) terms (for
any k) missing from Eq. (45).

In the vicinity of a critical pressure, p̃(t ) is exponential in
time. The terms multiplying p̃ on the right-hand side (RHS)
of Eq. (45) give the growth rate. Assuming that ρc/h < 1, the
sign of the growth rate is determined by �p. For �p > 0,
the pressure decays toward its critical value; for �p < 0, the
pressure perturbation grows exponentially. This represents a
secondary instability—the primary being the classical thermal
instability—that appears for class of cooling functions whose
P contains a pressure p∗ ∈ P : �p(p∗) < 0. This instability
has not previously been discussed in literature on the isochoric
thermal instability, and it may be of physical significance in
experiments because it drives a sudden change in pressure.
It is, however, not clear that the primary thermal instability
will cause a general initial perturbation to evolve into a state
susceptible to the secondary instability; this question requires
further study.

B. Pressure variation

In the last section, we saw that the motion of a single front
in an isochoric system causes the pressure to change, though
this change does not feed back to influence the front speed
at leading order. Here, we show that pressure variation, when
driven by some external source, causes conduction fronts to
move.

We consider a system initially at critical pressure p∗ whose
pressure is varying at a rate ν such that ∂t p = νp∗. This varia-
tion could be accomplished by uniform, slow compression of
the system, for example. Starting with Eq. (5) and changing
variables to work with q(T ), we have

1

2

d

dT
(q2) + jq = −κνp∗. (46)

If we are considering a single isolated front, with boundary
effects unimportant, then analysis proceeds as in Sec. IV A,
the only difference being that the inhomogeneous driving
term on the RHS corresponds to pressure variation instead
of external heating and cooling. Much as the earlier anal-
ysis relied on ε � 1, applying the same treatment here
requires νtcl � 1. Assuming this holds, the analogous result to
Eq. (19) is

j (1) = −νp∗K (p∗)

Q(p∗)
q̂, (47)

where we have defined

K (p) =
∫ Th

Tc

dT κ (p, T ), (48)

and as a reminder, q̂ = ±1, with its sign positive for a c − h
front and negative for a h − c front. Eq. (47) therefore has
a surprising consequence: if pressure is increasing (ν > 0),

then conduction fronts move from hot to cold. This further
increases the pressure.

VI. EVOLUTION AND EQUILIBRIUM

A. Consistency of assumptions

We are now able to describe the evolution of an ensemble
of fronts (i.e., a cloudy medium) in a fixed volume with
pressure treated as a dynamical variable. Three processes can
drive front motion:

(1) Noncritical pressure (� �= 0),
(2) Finite cloud size (kgiξi < ∞),
(3) Time-varying pressure (∂t p �= 0).
For the asymptotic analysis in this work, several param-

eters must be small. The condition that δ � 1 (conduction
fronts are much smaller than the full system) is satisfied by
an appropriate choice of fixed parameters. The following con-
ditions, which depend on dynamical quantities, must be met
at all times:

(1) Small pressure perturbations (ε � 1),
(2) Large clouds (kgiξi � 1 and thus η � 1),
(3) Slow pressure variation (νtcl � 1).
As an initial condition, we assume that the pressure is in

the vicinity of p∗ so that Condition 1 holds, at least initially.
At future times, pressure evolves self-consistently but without
external forcing (unlike in Sec. V B). If �p < 0, then, as found
in Sec. V A, pressure perturbations are unstable and Condition
1 will rapidly be violated. In that case, the system will quickly
evolve toward the neighborhood of a stable critical pressure
p∗∗ ∈ P and analysis can proceed from there. From now on,
we suppose that �p(p∗) > 0. In this case, perturbations from
critical pressure are suppressed and so we can expect ε to
remain small.

Because no external forces are driving pressure variation,
the only contribution to ∂t p comes from the combined motion
of all fronts. We now show that this permits us to neglect ∂t p
in analyzing the system dynamics.

The leading-order contribution to j for each front scales as
the larger of ε and η2. Furthermore, ∂t p is suppressed relative
to j by an O(δ) factor. Thus, νtcl � O(max(Nδε, Nδη2)),
where N is the number of fronts. We suppose that N is
not asymptotically large, i.e., Nδ � 1. In this case, not only
is Condition 3 satisfied, but νtcl is of subleading order,
meaning that the rate of pressure variation due to front mo-
tion can be neglected in determining the motion of other
fronts.

The final assumption, Condition 2, is guaranteed to be vio-
lated eventually for nearly all initial conditions. Suppose that,
initially, all clouds are large enough that Condition 2 holds.
As we saw in Sec. IV D, the smallest clouds tend to shrink
and eventually to disappear. As a cloud becomes small, the
shrinking process accelerates. At some point in this process,
when the size of some cloud comes to be on the order of the
front width, Condition 2 will be violated. Although Eq. (38)
ceases to apply at that point, the analysis in Sec. IV B makes
clear qualitatively that the small cloud will rapidly finish evap-
orating. Note, however, that the cloud mass is still less than the
total system mass by an O(δ) factor, so the resulting pressure
change will not violate Condition 3.
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B. Evolution of a cloudy medium

Combining the above results, we can write a complete
system of equations describing the evolution of a "cloudy"
system consisting of many hot and cold regions. The setup
and labeling convention are as described in Sec. IV D. Trans-
planting results is straightforward, excepting the breakdown
of our assumptions when any cloud becomes too small. To
isolate this case, we define a cutoff cloud size ξ̂crit and treat as
a special case the state where any cloud has size ξ̂i < ξ̂crit .

Separate treatment of this special case is unnecessary if
the scale separation between the system size L0 and the front
width l0 is large enough that δ � ε, η2. However, much of the
interesting physics resulting from the interplay of pressure-
driven and front interaction-driven motion is most relevant
when δ is not too small.

The following equations apply when ξ̂i � ξ̂crit ∀i:

dξi

dt
= −2�gi e

−kgi ξi + �g′
i
[e−kg′i

ξi−1 + e−kg′i
ξi+1 ], (49)

d p

dt
= χh;c

∑
i

δg,h
dξi

dt
, (50)

with the caveat that both dξi/dt = 0 and d p/dt = 0 if there
is only one remaining region.

The symbol δg,h is a Kronecker δ selecting only hot regions.
Since the total particle number is conserved, the increase in
areal density in the hot regions is equal and opposite to that in
the cold regions. The first line is identical to Eq. (38) and the
second line is an extension of Eq. (43).

If for any region i, ξ̂i < ξ̂crit , then we treat the final evapora-
tion of this region by the following prescription. First, define

�p
.= −ξiχgi;g′

i
(p). (51)

Region i should now be removed from consideration and (if
it was not on one end of the system) the two regions bordering
it should be combined. All regions should be relabeled such
that indices are sequential and N represents the new number of
regions—generally there are two fewer than previously. Next,
we update the size of all other regions in the following way:

ξ� → ξ� + (2δg�,h − 1)K (p)

Q(p)
�p, (52)

where the first factor in the numerator ensures that the sign is
correct for hot and cold regions.

Finally, the pressure is updated:

p → p + �p. (53)

This procedure is approximate; we resorted to it because
the final evaporation of region i was no longer described by
our asymptotic procedure. Physically, we have approximated
the sudden vanishing of region i by an instantaneous jump in
pressure.

In Sec. VII, we examine numerically the behavior of so-
lutions to this system of equations. However, for a simplified
set of initial conditions, an analytical treatment is possible; we
present this in the following section.

C. Equilibrium of an isolated cloud

We now consider a cloud of cold fluid, embedded a box of
hot fluid of finite size, at a critical pressure p∗ that is stable
against pressure perturbations (�p > 0). In the isobaric case,
we saw in Sec. IV B that this cloud will eventually evapo-
rate. In the isochoric case, Eq. (45) provides a mechanism
to stop this evaporation. As the cloud shrinks [Eq. (38)], the
system pressure will rise. As � > 0, the cold phase becomes
favored according to Eq. (19). At some equilibrium pressure
p′ and equilibrium cloud size ξ ′, these effects will balance and
contraction will stop, unless the cloud has already evaporated
completely.

Equilibrium is reached when the fronts delimiting the
cloud are stationary. Motion of these fronts is driven by non-
critical pressure and by interfront interactions. Let ξ0 be the
size of the full system and let the cloud be centered such that
the hot regions on either side have size (ξ0 − ξ ′)/2. The cloud
must be in steady state, meaning that the LHS of Eq. (49) is
zero. This condition reads

�(p′)
Q(p′)

= �ce−kcξ
′ − �he−kh (ξ0−ξ ′ ). (54)

Of course, a similar expression could be written for a hot cloud
embedded in cold background by replacing the appropriate
subscripts.

As long as the cloud is not so small that η ∼ O(1), the
perturbation introduced by interfront interactions is small, so
the equilibrium pressure should be close to the critical pres-
sure: p′ − p∗ ∼ O(η2). Then each function of pressure can be
expanded about p∗ and we find that, to leading order, Eq. (54)
reduces to

p′(ξ ′) ∼ p∗ + λc(Tw − Tc)2e2�c e−kcξ
′ − λh(Th − Tw )2e2�h e−kh (ξ0−ξ ′ )

2�p(p∗)
. (55)

If the cloud is much smaller than the full system, then the
second term in the numerator is generally very small (by a
factor of O(exp{−khξ0 + (kh + kc)ξ ′}) compared to the first
and could be dropped to yield an even simpler expression.

This extends the results of AMS [20], who assert that
pressure approaches p∗ and remains at that value for long
times. They insightfully note that interfront interactions will

eventually cause clouds to collapse on long timescales and
predict that this will typically produce a state with one front.
In this section, we have provided a quantitative description
of this intuition. We have further shown that the pressure
does not strictly speaking approach p∗, but rather approaches
the value in Eq. (55) that establishes equilibrium between
pressure-driven and interfront interaction-driven motion.
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FIG. 3. The heating rate, equal to −L, given by Eq. (56) as a
function of pressure and temperature. The bottom panel shows the
net cooling function �(p).

VII. NUMERICAL SOLUTIONS

The evolution equations derived in Sec. IV D contain rich
structure but are relatively opaque to analytical treatment. In
this section, we explore their consequences numerically. First,
we discuss explicit models for L. Next, we consider the evolu-
tion of an isolated cloud and compare to the analytical theory
developed in Sec. VI C. Finally, we simulate the evolution
of a cloudy medium using the results derived earlier, namely
Eq. (49) coupled with Eq. (50).

A. Cooling models

As a model for the cooling function, we adopt the for-
mula7 used by Inoue et al. [2] to describe the interstellar
medium, viz.

L(p, T ) = −1.2 × 10−14 p

T
+ 4.6 × 10−9 p2

T 2

× exp

{ −10.2

T + 0.129

}
+ 4.9 × 10−15 p2

T 2
exp

{−7.93 × 10−3

T

}
, (56)

where T and p are measured in eV and eV cm−3, respectively,
and L is measured in eV cm−3 s−1.

As a model for thermal conductivity, we take
κ (p, T ) = κ0T 1/2 where T is measured in eV. This model
is appropriate for a partially ionized plasma, or a neutral
gas, in which heat conduction is dominated by neutral
particles rather than free electrons. For the equilibrium
temperatures visible in Fig. 3, this is a reasonable model.
Following Ref. [24], we adopt for the constant prefactor
a value of κ0 = 1.7 × 1017s−1cm−1, corresponding to the
thermal conductivity of atomic hydrogen. The characteristic
system parameters defined in Sec. II C take the values given
in Table I.

7We have converted the units and notation to match those used
elsewhere in this work.

TABLE I. Characteristic values for pressure, temperature, cool-
ing function, cooling time, and system size.

p∗ 0.23 eVcm−3

T0 0.08 eV
L0 5.1 × 10−15 eV s−1cm−3

tcl 1.6 × 1013 s
L0 1 × 1015 cm

The cooling curve described Eq. (56) is shown in Fig. 3
as a function of both pressure and temperature. In the top
panel, the blue regions correspond to cooling (L > 0) and
the red regions correspond to heating. The contour of L = 0
is shown in black; the bistable region is the set of pressures
that are crossed three times by this curve. The bottom panel
shows the net cooling function �(p). The critical pressure p∗,
the location where the graph of �(p) crosses zero, is shown
by the dashed line. For this cooling curve, there is only one
critical pressure. The presence of only one critical pressure
guarantees that �p(p∗) > 0 and so the secondary instability
triggered when �p(p∗) < 0 will not appear.

In its bistable region, this cooling curve satisfies all of the
properties assumed by our analysis thus far. Note that ρc/h <

0 for both stable phases and for all pressures. This property,
which is quite general, prevents divergences in Eq. (45).

B. Isolated cloud

Using the cooling curve defined in Eq. (56), we investigate
here the evolution of an isolated cloud and compare to the
predictions in Sec. VI C. At each time step, we evolve the
size of every region according to the procedure described in
Sec. VII C.

For a single cloud of cold material in hot background,
under isochoric constraints, Fig. 4 shows a "space-time di-
agram" of the evolution of the system. In the right panel,
each horizontal slice shows the spatial configuration of the
system in Lagrangian coordintaes at a fixed time. The vertical
axis represents time, with later times placed higher. The left
panel shows the pressure as a function of time and the dashed
line shows p∗ for reference. In the case shown, the cloud

FIG. 4. Evolution of a single cold cloud embedded in hot back-
ground. In the right panel, each horizontal slice shows the state of the
system in Lagrangian coordinates, and the forward time direction is
upward.
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FIG. 5. Trajectories of cold clouds. The vertical axis is the sys-
tem pressure and the horizontal axis is the fraction of total system
mass in the cold cloud.

eventually shrinks as interfront interactions overcome the su-
percritical pressure.

To study the predictions in Sec. VI C about equilibrium of
isolated clouds, we initialized clouds at a variety of starting
conditions and tracked their trajectories over time. The results
are shown in Fig. 5. The horizontal axis is the fraction of
system mass contained in the cold cloud and the vertical axis
is the pressure. The hollow circles show starting conditions
and the filled black circles show the cloud state at the end
of the run. Trajectories for which clouds shrank are shown in
red, and those for which clouds grew are shown in purple. The
critical pressure is shown by the dotted line and the prediction
of Eq. (55) is shown by the dashed line.

C. Cloudy medium

Finally, we study the evolution of a cloudy medium with
complex spatial structure. We initialize a system with twenty
regions of alternating phases and random sizes (but fixed total
size). The system is then allowed to evolve isochorically by
the method described above. The resulting evolution is shown
in Fig. 6.

At early times, small clouds rapidly wink out of existence
due to interfront interactions (some too quickly to be captured
on the plot at all). In the particular case shown, the cold phase
initially dominates, with hot regions tending either to merge
or to evaporate; of the ten hot regions that were initialized,
only two survive beyond about twenty cooling times tcl. In
this process, the pressure rapidly drops. This is consistent with
Eq. (36), which describes the lifetime of an isolated cloud: of
ten initial hot regions of random size, the exponential depen-
dence of tlife on ξ means that most hot cloud mass quickly
comes to reside in the handful of outliers (clouds that either
started large or formed from the merger of two nearby clouds).
Note that this picture is approximate as it ignores the effects
of other clouds and of noncritical pressure.

When the second-largest hot cloud vanishes, system evo-
lution depends exclusively on the final hot cloud. The
evaporation of the second-largest cloud drives the pressure
briefly away from critical, but the system rapidly returns to
equilibrium by rapid expansion of the remaining cloud. At

FIG. 6. Evolution of a random cloudy system shown at multiple
zoom levels to highlight various timescales. The vertical axis is time.
In the right panel of each subfigure, the horizontal axis represents
position in Lagrangian coordinates normalized to the total areal
density. In the left panel, the horizontal axis is pressure in units of
eV/cm3.

late times, the system approaches a steady state in which p is
close to p∗. The dynamics discussed in Sec. VI C and shown in
Fig. 4 only apply exactly if the cloud is centered in the region
under consideration; if the cloud is closer to one wall, then it
will tend to migrate toward that wall. However, this process is
exponentially slow in the distance to the wall, and is disrupted
if the boundary condition that we have assumed at the wall
(q = 0) is violated, i.e., if the wall is not perfectly insulating
but instead is allowed to conduct a small amount of heat. For
practical purposes, then, even an off-center cloud satisfying
Eq. (54) can be considered to be in steady state.

VIII. DISCUSSION

A. Big picture: Isobaric and isochoric evolution

Having described in detail the evolution of a bistable fluid
under a variety of conditions, we can now compare the evo-
lution of isobaric and isochoric systems. For both systems,
we take as initial conditions a uniform fluid of volume V at
pressure p0 and temperature Tw(p0), the temperature of the
unstable ("warm") equilibrium. To this equilibrium, we apply
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a small, spatially random temperature perturbation. The iso-
baric system remains at pressure p0 throughout its evolution.
The isochoric system remains at volume V and so its pres-
sure varies. For both systems, the pressure remains spatially
uniform.

The isobaric system evolves as follows:
(1) On the cooling timescale tcl, the temperature perturba-

tions grow rapidly.
(2) After a few cooling times, growth saturates at the

steady-state temperatures Th(p0) and Tc(p0). The system then
consists of a patchwork of hot and cold regions.

(3) System composition evolves via the propagation of
conduction fronts, which depends on �(p0) and on the size
of each region.

(4) Eventually, the system reaches a homogeneous steady
state (all hot or all cold).

The evolution in step 3 is governed by Eq. (49). In cases
where pressure, rather than interfront interactions, dominates
(�/Q � �), cold regions grow if �(p0) > 0 (ending in a
uniform cold state), whereas hot regions grow if �(p0) < 0
(ending in a uniform hot state).

The opposite limit, �/Q � �, is most easily analyzed
when p0 ∈ P , in which case �(p0) is identically zero. In
this limit, front motion is driven exclusively by interaction
with other fronts. This is the case treated by ERS [18,19].
As discussed in Sec. IV D, this system evolves toward a uni-
formly hot or uniformly cold state. Heuristically, the winning
phase is determined by the larger of ξ̂h and ξ̂c (calculated by
summing over all hot and cold regions, respectively). This
is only generally true; the nonlinearity of Eq. (38) renders
analysis very difficult and so there are some initial conditions
for which the heuristic breaks down. A steady state can be
obtained by arranging hot and cold regions periodically, but
this state is unstable to most perturbations and can only be
reached by meticulously contrived initially conditions; uni-
form hot and cold states effectively remain, then, the only
late-time behaviors worth considering.

When pressure is a dynamical quantity, the system dynam-
ics become considerably richer. Prepared from the same initial
conditions, the isochoric system evolves as follows:

(1) On the cooling timescale tcl, the temperature pertur-
bations grow rapidly. The resultant change in the system’s
internal energy drives a rapid variation in the pressure.

(2) After a few cooling times, growth saturates at steady-
state temperatures Th(p) and Tc(p), where p is the pressure
attained by simultaneous and self-consistent evolution of tem-
peratures and pressure in step 1. The system then consists of
a patchwork of hot and cold regions.

(3) System composition evolves via the propagation of
conduction fronts, which depends on �(p), the size of each
region, and in some cases ∂t p.

(4) Concomitantly, pressure evolves as given in Eq. (43).
If p is near a critical pressure p∗ ∈ P and motion due to
interfront interactions is negligible, then the following may
happen:

(a) If �p(p∗) < 0, then p is rapidly driven away from
p∗. This can be viewed as a secondary instability, the pri-
mary being the classical thermal instability. In this case, p
will approach a different (stable) critical pressure.

(b) If �p(p∗) > 0, then p is drawn toward p∗.

(c) If interfront interactions are not negligible, then the
situation is more complicated and depends on details of the
system configuration. Pressure may approach some p �= p∗
at which pressure-driven and interfront contributions to the
motion cancel.
(5) Eventually, the system reaches a steady state, which

may be homogeneous or complex in structure, at some pres-
sure p. In some cases, p /∈ P and instead pressure takes some
value determinable only by detailed knowledge of the initial
conditions.

The final steady state is determined by the condition that
the LHS of Eq. (49) is zero. Homogeneous configurations are,
of course, steady states. Nontrivial steady states are discussed
in Secs. VI C and VII C. The simplest such state is a single
cloud of either hot or cold phase surrounded by a large region
of the other phase. In contrast to the nontrivial steady states in
isobaric systems, which require fine tuning and are unstable
to perturbations, these isochoric steady states are often stable
and accessible through the system’s time evolution.

B. Intermediate results

Though the primary result of this work is the description of
isochoric evolution outlined above, we highlight here a few of
the intermediate results obtained in this work that may be of
particular interest.

The derivations in Sec. IV extend previous work on the
motion of conduction fronts (ZP [16], ERS [18], and AMS
[20], inter alia). The asymptotic approach used here has the
advantage of providing a clear dimensionless small parame-
ter to estimate the degree of approximation. To the order of
approximation used in this work, the contributions to front
motion from different sources add linearly, allowing simul-
taneous consideration of motion driving by pressure variation
and interfront interactions.

Our results, namely Eq. (19), Eq. (23), and the definitions
of quantities that appear in these equations, depend only on
explicit functionals of the cooling function. These functionals
can immediately be applied to any cooling function, provided
that a few general properties are satisfied. This has advantages
over results given in terms of the conduction front’s spatial
profile T (x); in general, such a profile must be calculated iter-
atively (the asymptotic results in this work could, of course,
be carried out to higher order through an iterative process,
but even in that case, the result would be a general functional
applicable to any L with the right properties).

C. Implications for experiments

The results in this work are particularly relevant to systems
with fixed volume where the width of a conduction front is
not too much less than the system size (δ is small but not
negligibly so). Our results are quantitatively applicable only
when the system is effectively one dimensional; in higher
dimensions, the curvature of fronts introduces a variety of new
effects that complicate the picture [28,29]. Curvature effects
tend to shrink smaller (higher-curvature) regions in a manner
analagous to interfront interactions; in most cases, the likely
effect is to increase the stable size of clouds and to increase
the likelyhood of the system evolving to a uniform state.
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However, several systems of interest can be approximated
as one-dimensional, including magnetically confined fusion
plasmas. In both tokamaks and z-pinches, thermal conden-
sates commonly develop, grow, and propagate. Because the
plasma in these systems is magnetized, a one-dimensional
treatment becomes a reasonable first approximation, at least
when magnetic field lines remain nearly straight. The fact that
laboratory fusion plasmas are limited in volume, but typically
not constrained by some externally fixed pressure, means that
the isochoric case considered in this work is often applicable.
Understanding of thermal instabilities, which can provide ad-
ditional loss channels and degrade confinement, is important
for controlled fusion.

Throughout this work, we have assumed that the fluid is
everywhere in local thermal equilibrium, but some regimes of
interest challenge this assumption. While a major departure
from thermal equilibrium would necessitate an entirely dif-
ferent analysis, many relevant systems exist in some kind of
quasiequilibrium and so could be accommodated with minor
adaptations. For instance, laboratory plasmas often exhibit
thermal decoupling between ions and electrons and so require
treatment with a two-fluid model. If both species are important
for heat conduction, then the coupled dynamics of the ion
and electron fluids can lead to surprising behavior [30]. If the
cold phase is dense and cool enough, then nonideal effects,
such as Coulomb coupling in plasma, can become significant.
This regime opens new channels for energy exchange between
ions and electrons [31], which may affect cloud evolution.
While accounting for these effects demands a more compli-
cated analysis, thermally bistable plasma could prove to be an
advantageous platform for studying such fundamental effects.

The secondary instability found in Sec. V A can drive a
rapid change in pressure and a rearrangement of hot and cold
regions. This has the potential to yield a detectable signal in
an experiment probing thermally bistable fluid.

Some astrophysical and space plasmas, such as solar
prominences, are relevant to the cases considered in this work
for reasons similar to those given above. A topic of intense
interest in astrophysics is the study of matter at extreme pres-
sures and densities [32–34]. Though such materials may or

may not be photoionized in nature, a leading technique for
probing opacity in these regimes is the photoionization of a
sample using an intense burst of radiation, often generated
by a z-pinch or laser-driven implosion [35–38]. If spatial
inhomogeneities develop in the photoionized plasma and have
lifetimes comparable to the timescale of the experiment, then
opacity measurements can be drastically affected. In this
work, we have shown that spatial inhomogeneities survive in
thermally bistable plasma even at late times. For photoionized
plasma experiments in a bistable regime, the persistence of
these spatial structures may be an important consideration.
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APPENDIX: SUPPLEMENTAL NOTATION

In Sec. IV B we considered a hot cloud of finite size, and in
the course of the derivation we defined λh, kh, and �h. Their
counterparts for cold regions are straightforward to derive by
the same process, but care needs to be taken with signs and so
we omitted the definitions from the main text. The definitions
are as follows:

λc
.=

(
∂

∂T
κL

)∣∣∣
Tc

,

kc
.=

√
λc

ncκ (Tc)
,

�c
.=

∫ Tw−Tc

0
dτ ′

[
kcn(Tc + τ ′)κ (Tc + τ ′)√

2
∫ τ ′

0 dθκ (Tc + θ )L(Tc + θ )
− 1

τ ′

]
.

(A1)

[1] G. B. Field, Thermal instability, Astrophys. J. 142, 531
(1965).

[2] T. Inoue, S.-i. Inutsuka, and H. Koyama, Structure and stability
of phase transition layers in the interstellar medium, Astrophys.
J. 652, 1331 (2006).

[3] J. A. ZuHone and E. Roediger, Cold fronts: probes of plasma
astrophysics in galaxy clusters, J. Plasma Phys. 82, 535820301
(2016).

[4] R. Soler, J. L. Ballester, and M. Goossens, The thermal in-
stability of solar prominence threads, Astrophys. J. 731, 39
(2011).

[5] B. V. Somov and S. I. Syrovatskii, Thermal trigger for solar
flares and coronal loops formation, Sol. Phys. 75, 237 (1982).

[6] Y. Nakagawa, Thermal and dynamical stability of prominences,
Sol. Phys. 12, 419 (1970).

[7] the ASDEX Upgrade team, T. Lunt, M. Bernert, D. Brida, P.
David, M. Faitsch, O. Pan, D. Stieglitz, U. Stroth, and A. Redl,

Compact radiative divertor experiments at ASDEX upgrade and
their consequences for a reactor, Phys. Rev. Lett. 130, 145102
(2023).

[8] M. Z. Tokar, Consideration of multifaceted asymmetric radia-
tion from the edge (MARFE) as a dissipative structure, Phys.
Plasmas 9, 1646 (2002).

[9] U. Stroth, M. Bernert, D. Brida, M. Cavedon, R. Dux, E. Huett,
T. Lunt, O. Pan, M. Wischmeier, and ASDEX Upgrade Team,
Model for access and stability of the X-point radiator and the
threshold for marfes in tokamak plasmas, Nucl. Fusion 62,
076008 (2022).

[10] M. Bernert, S. Wiesen, O. Février, A. Kallenbach, J. T. W.
Koenders, B. Sieglin, U. Stroth, T. O. S. J. Bosman, D. Brida,
M. Cavedon, P. David, M. G. Dunne, S. Henderson, B. Kool,
T. Lunt, R. M. McDermott, O. Pan, A. Perek, H. Reimerdes, U.
Sheikh et al., The X-point radiating regime at ASDEX upgrade
and TCV, Nucl. Mater. Energy 34, 101376 (2023).

065201-14

https://doi.org/10.1086/148317
https://doi.org/10.1086/508334
https://doi.org/10.1017/S0022377816000544
https://doi.org/10.1088/0004-637X/731/1/39
https://doi.org/10.1007/BF00153474
https://doi.org/10.1007/BF00148025
https://doi.org/10.1103/PhysRevLett.130.145102
https://doi.org/10.1063/1.1468233
https://doi.org/10.1088/1741-4326/ac613a
https://doi.org/10.1016/j.nme.2023.101376


EVOLUTION OF RADIATIVE THERMAL INSTABILITY … PHYSICAL REVIEW E 110, 065201 (2024)

[11] M. G. Haines, An analytic model of radiative collapse of a Z-
pinch, Plasma Phys. Control. Fusion 31, 759 (1989).

[12] A. S. Moore, E. T. Gumbrell, J. Lazarus, M. Hohenberger,
J. S. Robinson, R. A. Smith, T. J. A. Plant, D. R. Symes, and
M. Dunne, Full-trajectory diagnosis of laser-driven radiative
blast waves in search of thermal plasma instabilities, Phys. Rev.
Lett. 100, 055001 (2008).

[13] F. Suzuki-Vidal, S. V. Lebedev, A. Ciardi, L. A. Pickworth, R.
Rodriguez, J. M. Gil, G. Espinosa, P. Hartigan, G. F. Swadling,
J. Skidmore, G. N. Hall, M. Bennett, S. N. Bland, G. Burdiak,
P. d. Grouchy, J. Music, L. Suttle, E. Hansen, and A. Frank,
Bow shock fragmentation driven by a thermal instability in lab-
oratory astrophysics experiments, Astrophys. J. 815, 96 (2015).

[14] B. Meerson, The nonlinear theory of thermal instability: The
intermediate- and short-wavelength limits, Astrophys. J. 347,
1012 (1989).

[15] S. Inutsuka, H. Koyama, and T. Inoue, The role of thermal
instability in interstellar medium, AIP Conf. Proc. 784, 318
(2005).

[16] Y. B. Zel’Dovich and S. B. Pikel’Ner, The phase equilibrium
and dynamics of a gas volume that is heated and cooled, Zh.
Eksp. Teor. Fiz. 56, 310 (1969).

[17] M. V. Penston and F. E. Brown, The cloud–intercloud phase-
change in the interstellar medium, Mon. Not. R. Astron. Soc.
150, 373 (1970).

[18] C. Elphick, O. Regev, and E. A. Spiegel, Complexity from
thermal instability, Mon. Not. R. Astron. Soc. 250, 617 (1991).

[19] C. Elphick, O. Regev, and N. Shaviv, Dynamics of fronts in
thermally bistable fluids, Astrophys. J. 392, 106 (1992).

[20] I. Aranson, B. Meerson, and P. V. Sasorov, Nonlinear
radiative-condensation instability and pattern formation: One-
dimensional dynamics, Phys. Rev. E 47, 4337 (1993).

[21] A. F. Illarionov and I. V. Igumenshchev, Statistical theory
of thermal instability, Mon. Not. R. Astron. Soc. 298, 909
(1998).

[22] S. A. Balbus and N. Soker, Theory of local thermal instability
in spherical systems, Astrophys. J. 341, 611 (1989).

[23] V. Aharonson, O. Regev, and N. Shaviv, Pattern evolution in
thermally bistable media, Astrophys. J. 426, 621 (1994).

[24] E. N. Parker, Instability of thermal fields, Astrophys. J. 117, 431
(1953).

[25] H. Zanstra, On the formation of condensations in a gaseous
nebula, Vistas Astron. 1, 256 (1955).

[26] H. Koyama and S.-i. Inutsuka, The field condition: A new
constraint on spatial resolution in simulations of the nonlin-
ear development of thermal instability, Astrophys. J. 602, L25
(2004).

[27] R. M. Jennings and Y. Li, Thermal instability and multiphase
gas in the simulated interstellar medium with conduction, vis-
cosity, and magnetic fields, Mon. Not. R. Astron. Soc. 505,
5238 (2021).

[28] N. J. Shaviv and O. Regev, Interface dynamics and domain
growth in thermally bistable fluids, Phys. Rev. E 50, 2048
(1994).

[29] B. Meerson and P. V. Sasorov, Domain stability, competition,
growth, and selection in globally constrained bistable systems,
Phys. Rev. E 53, 3491 (1996).

[30] S. Jin, A. H. Reiman, and N. J. Fisch, Coupled heat pulse
propagation in two-fluid plasmas, Phys. Rev. E 103, 053201
(2021).

[31] H. Fetsch, T. E. Foster, and N. J. Fisch, Temperature separation
under compression of moderately coupled plasma, J. Plasma
Phys. 89, 905890510 (2023).

[32] J. E. Bailey, T. Nagayama, G. P. Loisel, G. A. Rochau, C.
Blancard, J. Colgan, P. Cosse, G. Faussurier, C. J. Fontes,
F. Gilleron, I. Golovkin, S. B. Hansen, C. A. Iglesias, D. P.
Kilcrease, J. J. MacFarlane, R. C. Mancini, S. N. Nahar, C.
Orban, J.-C. Pain, A. K. Pradhan et al., A higher-than-predicted
measurement of iron opacity at solar interior temperatures,
Nature (London) 517, 56 (2015).

[33] J. A. García, A. C. Fabian, T. R. Kallman, T. Dauser, M. L.
Parker, J. E. McClintock, J. F. Steiner, and J. Wilms, The effects
of high density on the x-ray spectrum reflected from accretion
discs around black holes, Mon. Not. R. Astron. Soc. 462, 751
(2016).

[34] J. Deprince, M. A. Bautista, S. Fritzsche, J. A. García, T. R.
Kallman, C. Mendoza, P. Palmeri, and P. Quinet, Plasma envi-
ronment effects on K lines of astrophysical interest - I. Atomic
structure, radiative rates, and Auger widths of oxygen ions,
A&A 624, A74 (2019).

[35] G. A. Rochau, J. E. Bailey, R. E. Falcon, G. P. Loisel, T.
Nagayama, R. C. Mancini, I. Hall, D. E. Winget, M. H.
Montgomery, and D. A. Liedahl, ZAPP: The Z astrophysi-
cal plasma properties collaboration, Phys. Plasmas 21, 056308
(2014).

[36] R. C. Mancini, T. E. Lockard, D. C. Mayes, I. M. Hall, G. P.
Loisel, J. E. Bailey, G. A. Rochau, J. Abdallah, I. E. Golovkin,
and D. Liedahl, X-ray heating and electron temperature of
laboratory photoionized plasmas, Phys. Rev. E 101, 051201(R)
(2020).

[37] R. Heeter, T. Perry, H. Johns, K. Opachich, M. Ahmed, J. Emig,
J. Holder, C. Iglesias, D. Liedahl, R. London, M. Martin, N.
Thompson, B. Wilson, T. Archuleta, T. Cardenas, E. Dodd,
M. Douglas, K. Flippo, C. Fontes, J. Kline et al., Iron X-ray
transmission at temperature near 150 eV using the national
ignition facility: First measurements and paths to uncertainty
reduction, Atoms 6, 57 (2018).

[38] Y. P. Opachich, R. F. Heeter, H. M. Johns, E. S. Dodd,
J. L. Kline, N. S. Krasheninnikova, D. C. Mayes, M. H.
Montgomery, D. E. Winget, T. J. Urbatsch, and T. S. Perry,
Density measurements for the national ignition facility (NIF)
opacity platform, Rev. Sci. Instrum. 93, 113515 (2022).

065201-15

https://doi.org/10.1088/0741-3335/31/5/005
https://doi.org/10.1103/PhysRevLett.100.055001
https://doi.org/10.1088/0004-637X/815/2/96
https://doi.org/10.1086/168191
https://doi.org/10.1063/1.2077195
http://www.jetp.ras.ru/cgi-bin/dn/e_029_01_0170.pdf
https://doi.org/10.1093/mnras/150.4.373
https://doi.org/10.1093/mnras/250.3.617
https://doi.org/10.1086/171410
https://doi.org/10.1103/PhysRevE.47.4337
https://doi.org/10.1046/j.1365-8711.1998.01716.x
https://doi.org/10.1086/167521
https://doi.org/10.1086/174099
https://doi.org/10.1086/145707
https://doi.org/10.1016/0083-6656(55)90034-9
https://doi.org/10.1086/382478
https://doi.org/10.1093/mnras/stab1607
https://doi.org/10.1103/PhysRevE.50.2048
https://doi.org/10.1103/PhysRevE.53.3491
https://doi.org/10.1103/PhysRevE.103.053201
https://doi.org/10.1017/S0022377823000776
https://doi.org/10.1038/nature14048
https://doi.org/10.1093/mnras/stw1696
https://doi.org/10.1051/0004-6361/201935075
https://doi.org/10.1063/1.4875330
https://doi.org/10.1103/PhysRevE.101.051201
https://doi.org/10.3390/atoms6040057
https://doi.org/10.1063/5.0099764

