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Massive, long-lived electrostatic potentials
in a rotating mirror plasma

E. J. Kolmes 1 , I. E. Ochs 1, J.-M. Rax 2,3 & N. J. Fisch 1

Hot plasma is highly conductive in the direction parallel to a magnetic field.
This oftenmeans that the electrical potential will be nearly constant along any
given field line. When this is the case, the cross-field voltage drops in open-
field-line magnetic confinement devices are limited by the tolerances of the
solid materials wherever the field lines impinge on the plasma-facing com-
ponents. To circumvent this voltage limitation, it is proposed to arrange large
voltage drops in the interior of a device, but coexist with much smaller drops
on the boundaries. To avoid prohibitively large dissipation requires both
preventing substantial drift-flow shear within flux surfaces and preventing
large parallel electric fields from driving large parallel currents. It is demon-
strated here that both requirements can be met simultaneously, which opens
up the possibility for magnetized plasma tolerating steady-state voltage drops
far larger than what might be tolerated in material media.

The largest steady-state laboratory electrostatic potential in the world
was likely produced by the Van de Graaf-like pelletron generator at the
Holifield facility atOakRidgeNational Laboratory. Housedwithin a 30-
meter-tall, 10-meter-diameter pressure chamber filled with insulating
SF6 gas, the generator was able to maintain electrostatic potentials of
around 25 MV1. The main obstacle limiting the production of even
greater potentials in the laboratory is the breakdown electric field of
the surrounding medium.

A fully ionized plasma is a promising setting in which to pursue
very large voltage drops, in part because it is by definition already
broken down. Moreover, once a magnetic field is added, plasma has a
very attractive property: charged particles cannot move across the
magnetic field lines, as they are confined on helical paths along the
field. As long as a stable plasma equilibrium is identified, the particles
can only move across the field as a result of collisions and cross-field
drifts, and thus are theoretically capable of coexisting with much lar-
ger electric fields than could a gas.

Unfortunately, this nice confinement property only works along
two out of three of the spatial dimensions, with electrons free to
stream along magnetic field lines, shorting out any “parallel” electric
field. For instance, in a cylinder with the magnetic field pointing along
the axis, themedium is highly insulating along the radial and azimuthal
directions, but highly conductive along the axial direction. Thus, one

must either loop the fields around on themselves, which introduces a
variety of instabilities andpractical difficulties, or onemust introduce a
potential drop along the field lines.

This latter approach is closely related to a magnetic confinement
concept known as the centrifugal mirror trap, which has applications
both in nuclear fusion2–9 and mass separation2,10–13. These devices
typically consist of an approximately radial electricfield superimposed
on an approximately axial magnetic field, such that the resulting E ×B
drifts produce azimuthal rotation. By pinching the ends of the device
to a smaller radius, particlesmust climb a centrifugal potential in order
to exit the device and thus can be confined. The conventional strategy
for imposing the desired electricfield is to place nested ring electrodes
at the ends of the device, relying on the high parallel conductivity to
propagate the potential into the core. However, this strategy funda-
mentally limits the achievable core electric field, and thus the achiev-
able centrifugal potential, since one must avoid arcing across the end
electrodes. The question of confining the electric potential to the
center of the device is thus not only of academic interest but also of
significant practical interest in such centrifugal fusion concepts.

In this paper, we propose an alternative arrangement, inwhich the
voltage drop is produced in the interior of the plasma using either
wave-particle interactions or neutral beams14–19. Wave-particle inter-
actions have been proposed to move ions across field lines for the
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purpose of achieving the alpha channeling effect, where the main
purpose is to remove ionswhile extracting their energy. Here the focus
is instead on moving net charge across field lines. Moving charge
across field lines could sustain a potential difference in the interior of
the system that is higher than the potential across the plasma-facing
material components at the ends.

In order for wave-driven electric fields to entirely circumvent the
most important material restrictions on electrode-based systems, it is
necessary that the voltage drop not only be driven in the interior of the
plasma but that it be contained there. Otherwise, the induced voltage
drops will simply incur power dissipation at the plasma boundaries no
matter where along the magnetic surface the voltage drop is induced.
In other words, theremust be steady-state electric fields parallel to the
magnetic field lines.

Relatively small parallel electric fields have long been predicted
(and observed) in mirror-like configurations20–27. Larger fields have
been predicted2,28,29 and observed9 for some systems, but have typi-
cally not been achievable in higher-temperature steady-state labora-
tory systems2, for two very good reasons. First: if the flux surfaces are
not close to being isopotential surfaces, then the rotation may be
strongly sheared along a given flux surface. This would tend to lead to
significant dissipation, and perhaps also to twisting-up of themagnetic
field as the sheared plasma carries the field lines along with it. Second:
large parallel fields typically incur large Joule heating. The resulting
dissipation from either of these effects could be prohibitively large for
many applications.

This paper addresses the following question: is it possible to
eliminate these large dissipation terms while maintaining a large par-
allel component of E? This requires, firstly, revisiting conventional
assumptions about isorotation: the conditions under which the plasma
on each flux surface will rotate with a fixed angular velocity. While the
absence of parallel electric fields is a sufficient condition for isorota-
tion – this is Ferraro’s isorotation law30 – we will show that it is not a
necessary condition. Moreover, there are cases in which large parallel
fields can exist with vanishingly small parallel currents. In principle,
then, it is possible to construct extremely low-dissipation systemswith
both (1) a very large voltage drop across the field lines in the interior of
the plasma and (2) little or no voltage drop across the field lines at the
edges of the plasma. Of course, being possible is not the same as being
easy, andmeeting all of these conditions simultaneously puts stringent
conditions on the system.

However, if a contained voltage drop were attainable and stable,
the resulting possibilities could be striking. Fast rotation is desirable
for fusion technologies andmassfiltration;moreover, thepossibility of
achieving ultra-high DC voltage drops in the laboratory – and, parti-
cularly, of decoupling the achievable voltages from the constraints
associated with the material properties of solids – could be evenmore
broadly useful.

Results
Shear
This section will describe the necessary and sufficient conditions
for isorotation in an axisymmetric plasma. The usual isorotation
picture30,31, inwhich eachflux surface is a surfaceof constant voltage, is
one special case of these conditions.

Consider an axisymmetric plasma – that is, in (r, θ, z) cylindrical
coordinates, suppose that the system is symmetric with respect to θ.
Suppose there is no θ-directed magnetic field. Define the flux ψ by

ψ¼:
Z r

0
r0Bz ðr0,zÞdr0: ð1Þ

This definition, combined with the requirement that∇ ⋅B =0, implies
that

B= � 1
r
∂ψ
∂z

r̂ +
1
r
∂ψ
∂r

ẑ =∇ψ×∇θ: ð2Þ

If the current j satisfies j ⋅ ∇ψ =0, it is possible to find a third coordi-
nate χ and scalar function γ such that32,33

B=∇χ + γ∇ψ: ð3Þ

Eqs. (2) and (3) imply that

∇χ � ð∇ψ×∇θÞ=B2: ð4Þ

In the vacuum-field limit, we can take γ→0 and χ to be the magnetic
scalar potential. This is possible because, in the absence of plasma
currents, the curl ofB vanishes everywhere in the interior of theplasma
and the Helmholtz decomposition can be written in terms of a pure
scalar potential.

Suppose the electric field E is given by E = −∇ϕ. Then the E ×B
drift is given by

vE ×B = � ∇ϕ×B

B2
ð5Þ

= � 1

B2

∂ϕ
∂ψ

� γ
∂ϕ
∂χ

� �
∇ψ×∇χ ð6Þ

and the E ×B rotation frequency is

ΩE =vE ×B � ∇θ=
∂ϕ
∂ψ

� γ
∂ϕ
∂χ

: ð7Þ

Then, assuming a nonvanishing field,

B � ∇ΩE =0 iff.
∂
∂χ

∂ϕ
∂ψ

� γ
∂ϕ
∂χ

� �
=0: ð8Þ

Eq. (8) is satisfied by any potential of the form ϕ =ϕ∣∣ +ϕ⊥, where
B ⋅ ∇ϕ⊥ = 0 and B ×∇ϕ∣∣ = 0. In the vacuum-field case, the situation is
particularly simple: B ⋅ ∇ΩE vanishes if and only if

ϕ=ϕjjðχÞ+ϕ?ðψÞ ð9Þ

for arbitrary functionsϕ∣∣ andϕ⊥. These twopotentials will correspond
to electric fields in the parallel and perpendicular directions, respec-
tively. The entire systemwill rotate as a solid body if, in addition,ϕ⊥ is a
linear function of ψ.

For some systems, the diamagnetic drift velocities may not be
negligible compared with the E ×B velocity. In that case, the viscous
dissipation typically depends on shear in the combined drift
velocity34–37. At least in the isothermal case, the generalization of Eq. (9)
is straightforward. Define the effective (electrochemical) potential φs

for species s is defined by

φs¼: ϕ� Ts

qs
logns , ð10Þ

where ns, Ts, and qs are the density, temperature, and charge of species
s. This object is sometimes known as the “thermal” or “thermalized”
potential in theHall thruster literature38–40. In terms ofφs, the combined
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rotation frequency is

Ωs,tot =
∂φs

∂ψ
� γ

∂φs

∂χ
, ð11Þ

with

B � ∇Ωs,tot = 0 iff.
∂
∂χ

∂φs

∂ψ
� γ

∂φs

∂χ

� �
=0, ð12Þ

reducing to the requirement that

φs =φs,jjðχÞ+φs,?ðψÞ ð13Þ

in the vacuum-field limit.
The classical form of the isorotation theorem takes the electro-

static potential to be a flux function: that is,ϕ =ϕ(ψ). The extension to
a generalized potential – that is,φs =φs(ψ) – has been known for some
time in the literature on plasma propulsion38–40. These previous cases
provide sufficient conditions for isorotation. The more general
expression derived here is the necessary and sufficient condition for
isorotation.

In cases with very fast rotation – that is, with Ωs,tot comparable to
the particle’s gyrofrequency – additional inertial effects can become
relevant. The centrifugal F ×B drift can be incorporated by including
an appropriate term in the electrochemical potential; in cases where
the centrifugal force msrΩ

2
s,tot r̂ is the gradient of a centrifugal poten-

tial, this is as simple as adding that potential to φs. In the vacuum-field
limit, the effective perpendicular potential

φcs,eff = �
Z ψ

0

msΩ
2
s,totðχ,ψ0ÞBz ðχ,ψ0Þdψ0

qsB
2ðχ,ψ0Þ

, ð14Þ

leads to the appropriate drift frequency ∂φcs,eff/∂ψ, whether or not the
centrifugal force has a curl. However, note that once Ωs,tot is compar-
able to the gyrofrequency, excursions of the particle trajectories from
the flux surfaces can also become significant.

An example
Consider a magnetic field given25,31,41 by B =∇ χ, where

χ =B0L
z
L
� α

2π
sin

2πz
L

� �
I0

2πr
L

� �� �
: ð15Þ

Here Iℓ denotes a modified Bessel function of the first kind. This scalar
potential leads to

Bz =B0 1� α cos
2πz
L

� �
I0

2πr
L

� �� �
ð16Þ

and

Br = � B0α sin
2πz
L

� �
I1

2πr
L

� �
: ð17Þ

Then the flux function can be written as

ψ=
B0r

2

2
1� αL

πr
cos

2πz
L

� �
I1

2πr
L

� �� �
: ð18Þ

Having an explicit form for χ and ψ makes it straightforward to
construct an example in which the isopotential surfaces close and

B ⋅ ∇ΩE vanishes. Figure 1 shows one such example, with

ϕ
ϕ0

= � ψðr,zÞ
ψðL=10,0Þ �

χðr,zÞ
χð0,L=2Þ

� �2

: ð19Þ

Parallel currents
The potential structure shown in Fig. 1 avoids parallel shear in ΩE.
However, large parallel electric fields are likely to lead to large par-
allel currents. It might be possible tomaintain such fields withmeans
of a non-inductive current drive42, but for small power dissipation,
the noninductive current drive must be efficient, whereas the return
current must encounter high plasma resistivity, which is unlikely in
the hot plasmas considered here which would have large parallel
conductivity.

In order to understand the behavior of these parallel currents,
consider a simple two-fluid model for steady-state operation of a
single-ion-species plasma,possiblywith someexternal forcingF ine and
inertial forces Fci∣∣:

�niFcijj =ZeniE jj � ∇jjpi +miniνieðvejj � vijjÞ+niF i ð20Þ

and

0= � eneE jj � ∇jjpe +meneνeiðvijj � vejjÞ+neF e: ð21Þ

Here Z is the ion charge state, e is the elementary charge, ps is the
pressure of species s, ms is the mass of species s, and νss0 is the
momentum transfer frequency for species s and s0. The parallel sub-
script denotes the component parallel to B – for example, E∣∣ = E ⋅B/B.
Suppose Ti and Te are constant and ne = Zni.

Define

ξ +¼: niF i +neF e ð22Þ

ξ�¼: niF i � neF e: ð23Þ

Then

∇jjðpi +peÞ=niFcijj + ξ + ð24Þ

and

ηjjj = E jj +
�∇jjðpi � peÞ+niFcijj + ξ�

2Zeni
: ð25Þ

Here η≐meνei/e2ne. Eq. (25) can be rewritten as

ηjjj = E jj +
Te

ZTe +Ti

Fcijj
e

+
1

2ene

ZTe � Ti

ZTe +Ti
ξ + + ξ�

� �
: ð26Þ

In the absence of momentum injection, ξ+ = ξ− =0, and the current is
proportional to the deviation of the electric field from its “natural”
ambipolar value. The same effect appears in the case ofmore than one
ion species. However, it is analytically much more complicated to
describe due to the proliferation of additional simultaneous equations
as more species are included.

Eq. (26) suggests that there are two strategies with which it might
bepossible tomaintain aparallel electricfield. Thefirst is touse external
forcing (noninductive current drive) to maintain some E∣∣, paying
whatever energetic cost is associated with the relaxation of the plasma.
The second is to adjust the ambipolar field to which the parallel con-
ductivity pushes E∣∣. The first allows for a wider range of outcomes, but
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the second avoids the problem of very large energy costs when η is
small. The remainder of this paper will focus on the latter strategy.

There is neither j∣∣E∣∣ Ohmic dissipation nor any need for external
forcing when

ϕðχ,ψÞ � ϕð0,ψÞ= Te

ZTe +Ti

mi

2e
ΩE ðχ,ψÞ2r2 �ΩE ð0,ψÞ2r20
h i

, ð27Þ

where r0 is the value of r when χ =0 for a given flux surface ψ. This
expression follows from integrating Eq. (26), and the E ×B rotation has
been taken to be dominant. Expressions closely related to Eq. (27) have
long been known in the literature; this parallel variation in ϕ is some-
times called the ambipolar potential43–46. Eq. (27) can be written
equivalently as

ϕðχ,ψÞ � ϕð0,ψÞ= Te

ZTe +Ti

mi

2e
∂ϕ
∂ψ

� γ
∂ϕ
∂χ

� �2

∣
ðχ,ψÞ

r2
"

� ∂ϕ
∂ψ

� γ
∂ϕ
∂χ

� �2

∣
ð0,ψÞ

r20

#
:

ð28Þ

There are a few things to point out about Eq. (28). First: this condition
can also be derived by enforcing that the particles are Gibbs-
distributed along field lines (though not necessarily across field lines).
This makes sense; if the distributions are Gibbs-distributed in the
parallel direction, then we should expect parallel currents to vanish.
Second: if species s is Gibbs-distributed along field lines (and if the
plasma is isothermal) then we also have that φs =φs,⊥(ψ); the
electrochemical potential is a flux function, and each flux surface will
isorotate. This means that potentials satisfying Eq. (28) avoid not only
the dissipation associated with parallel currents but also the dissipa-
tion associated with shear along flux surfaces. Note, however, that in
cases where the centrifugal force is not the gradient of a potential, the
ions may not have a well-defined Gibbs distribution. In these cases,
j∣∣ =0 leads to isorotation of the electrons, but the ions may still have
some shear. However, this shear is suppressed when either (1) the
rotation frequency is small compared with the ion gyrofrequency or
(2) the centrifugal force is close to being the gradient of a scalar
function.

Challenges
Solutions to Eq. (28) have desirable properties, but they come
with significant challenges if they are to lead to closed isopotential

surfaces. The first of these has to do with the magnitude of the
variation of ϕ in the parallel and perpendicular directions. It is
clearest to see in the case where ϕ can be decomposed so that
ϕ =ϕ∣∣(χ) +ϕ⊥(ψ) and where B is a vacuum field. In this case, Eq. (28)
becomes

Δϕjj = � Te

ZTe +Ti

mi

2e
Ω2

E ðr20 � r2Þ, ð29Þ

where Δϕ∣∣ ≐ϕ∣∣(χ) −ϕ∣∣(0). If E⊥ = −Δϕ⊥/L⊥ for some perpendicular
length scale L⊥, then this can be rewritten as

Δϕjj
Δϕ?

=
1
2

ZTe

ZTe +Ti

� �
ΩE

Ωci

r20 � r2

rL?
: ð30Þ

HereΩci≐ ZeB/mi and we have takenΩE =Δϕ⊥/rL⊥B. The Brillouin limit
requires thatΩE/Ωci < 1/4; beyond this limit (which depends on the sign
of the electromagnetic fields), the plasma cannot be confined. Then,
assuming E⊥ >0, Δϕ∣∣ =ϕ⊥ is only realizable if

L?<
1
8
r20 � r2

r
: ð31Þ

This suggests that in a cylindrically symmetric system, theplasmamust
occupy only a thin annular region (such that the perpendicular length
scale can be small compared with the radius).

This constraint can be seen from a different perspective by
rewriting Eq. (30) as

Δϕjj
Δϕ?

=
1
2

ZTe

ZTe +Ti

� �
Ma0

ρLi

L?

r20 � r2

rr0
: ð32Þ

HereρLi is the ion Larmor radius andMa0 is the ratio of vE×B and the ion
thermal velocity, evaluated at r0. IfB∝ r−2, then ρLi∝ r2.Moreover, if at a
given z the plasma occupies a thin range of radii,

ψðr + δr,zÞ � ψðr,zÞ=
Z r + δr

0
r0Bz dr

0 �
Z r

0
r0Bzdr ð33Þ

= rBz ðrÞ δr +O
δr2

r2

� �
, ð34Þ

so for a thin annular geometry, we should roughly expect L⊥∝ r. Then
ρLi/L⊥∝ r. Using this,

Δϕjj
Δϕ?

=
1
2

ZTe

ZTe +Ti

� �
Ma0

ρLi

L?

� �
r0

r20 � r2

r20
: ð35Þ

In order for a configuration to have good cross-field particle
confinement times, the width of the plasma likely needs to span
several Larmor radii at least. Eq. (35) suggests that this constraint can
be satisfied only when the Mach number is relatively large.

A related constraint suggests that fully freestanding rotationwould
require not only a large Mach number, but a very large parallel voltage
drop. IfMa is the ratio of vE×B and the ion thermal velocity evaluated at r,
then using the definition of L⊥ from the beginning of this section,

Ma=
ZeΔϕ?

Ti

ρLi

L?
: ð36Þ

That is, the Mach number is approximately the perpendicular drop in
electrostatic potential energy (compared with the ion temperature)
over one ion Larmor radius. For a configuration with supersonic
rotation and a reasonable number of Larmor radii in width, the

Fig. 1 | Example of closed isopotential surfaces. The colored curves show the
isopotential surfaces for the example potential discussed in An example, such that
the E×B rotation frequency does not vary along field lines. The horizontally- and
vertically-orienteddottedcurves traceout the level contours forψand χ, respectively.
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perpendicular drop in electrostatic potential energy must be large
compared with Ti. This means that whenever Δϕ∣∣ ~Δϕ⊥, the parallel
drop must also be large compared with Ti.

In the existing literature on rotating plasmas, it is common to
assume that the parallel variation in ϕ is ordered to be very small
comparedwith the cross-field variation44–48. Oneway of understanding
the challenges described in this section is that closing the isopotential
surfaces requires finding a way to break that ordering. In particular,
note that Δϕ∣∣ ~Δϕ⊥ tends to require very fast (often supersonic) dia-
magnetic flows since the pressure forces cannot be ordered small
compared with eE.

Nonetheless, in principle we can conclude that it is possible to
maintain very high voltage drops across a plasma while incurring little
dissipation. However, it is worthwhile to keep in mind what it would
mean for the particles to be Gibbs-distributed along field lines if the
potential drops were very large. A megavolt-scale potential drop
across a plasma with a temperature on the scale of keV would require
many e-foldings of density dropoff along each field line, and would
lead to equilibria that require densities low enough to be challenging
to realize in a laboratory.

Example solution
Low-dissipation solutions of the kind described by Eq. (28) are not
always straightforward to find. However, it is possible to find solutions
to Eq. (28) that are valid for any choice of (cylindrically symmetric)
field. For example,

ϕðχ,ψÞ= ϕðχ,ψiÞ1=2 ±
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2e
mi

ZTe +Ti

Ti

s Z ψ

ψi

dψ0

rðχ,ψ0Þ

 !2

ð37Þ

solves Eq. (28) for any choice of nonnegative ϕ(χ, ψi). The magnetic
field geometry appears through the coordinate transformation r(χ,ψ)
(the radial coordinate expressed in terms of χ and ψ). Depending on
the prefactor of the integral in Eq. (37), this family of solutions can lead
to closed isopotential surfaces.

A solutionof this form is plotted in Fig. 2. Plotting solutions of this
kind requires choosing which region will be occupied by plasma, with
ϕ governed by Eq. (37), and which will instead be the vacuum solution
determined by Laplace’s equation. The constraints described in
Challenges suggest limiting the plasma to appear only within some
relatively thin range of flux surfaces. For the particular example
plotted in Fig. 2, the plasma is restricted to occupy the region
in which ψi <ψ <ψf, where ψi =0.00237B0L2 and ψf = 0.00284B0L2

(corresponding to 0.1 < r/L < . 11 at the midplane). This example uses
ϕðχ,ψiÞ=ϕ0e

�L2χ2=B2
0 . It uses the negative branch of Eq. (37) and

ðeB2
0L

2=2miϕ0Þ½ðZTe +TiÞ=Ti� set to 104. The underlying field is
described by Eqs. (15) and (18).

These choices are arbitrary, so it is important to understand
Fig. 2 as an illustrative example rather than the definitive embodi-
ment of this class of solutions. It does have the interesting
property that there is a region near the ends of the plasma where the
electric field becomes small. This suggests that an endplate or
plasma-facing component shaped in the right way could experience
a much smaller electric field than the field present in the plasma
interior.

Initializing desired equilibria
What might be needed in order to drive an equilibrium like the one
described above in a practical device? The basic field and device
geometry would not be so different from a conventional rotating-
mirror experiment; with good enough cross-field confinement, one
could imagine initializing an annular density profile in a linear device.
Themore difficult problem is likely how to drive the necessary electric
field structure.

Two promising techniques for driving and controlling electric
fields in the interior of plasma are RF current drive and neutral
beams14–19. In either case, the idea is to impose some torque on the
interior of the plasma; there is a one-to-one mapping between the
local torque and the cross-field current drive. The ability of these
techniques to produce a particular potential profile relies on their
ability to deposit angular momentum precisely in the desired loca-
tions in theplasma. In the caseof RFwaves, for example, this depends
on finding a wave with a spatial damping profile that will put the
angular momentum where it needs to go in order to produce the
desired ϕ(χ, ψ).

Note that even for a particular choice of ϕ(χ,ψ), the wave and
neutral-beam deposition profiles would depend on additional free
parameters such as the plasma density. For any given parameter
regime and choice of equilibrium, attaining a particular equilibrium
will require an array of RF antennas, neutral beam launchers, or some
combination of the two.

Stability of desired equilibria
Virtually all plasma confinement devices are subject to instabilities of
one kind or another. Now, it is important to keep in mind that the
equilibria proposed here constitute a broad class of configurations,
and the instabilities that will be most important for one equilibrium in

Fig. 2 | Low-dissipation example equilibrium. Example solution from Eq. (37),
with total (E ×B and diamagnetic) flux surface isorotation and vanishing parallel
current. The left-hand panel shows the potential ϕ and the right-hand panel shows

∣E∣. This particular solution has the nice property that there are regions near the
edge with very small electric fields, despite supporting (potentially large) fields in
the interior. The scripts used to produce these plots can be found in ref. 64.
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that class may be different from those that are most important for
another. Still, it is worth pointing out which instabilities are likely to be
of greatest concern.

These equilibria fall within the broader category of rotating-
mirror configurations, so many of the instabilities to consider are the
same ones that challenge all devices in this class. These include mag-
netohydrodynamic (MHD) flute modes as well as mirror micro-
instabilities (particularly loss-cone modes)25.

Rotating mirrors generally have stability advantages over their
non-rotating counterparts for two reasons. One of these has to dowith
sheared rotation – that is, not the shear along flux surfaces that the
equilibria in this paper avoid by construction, but the shear between
flux surfaces. There is evidence that shear flow can suppress MHD
modes in rotating mirrors6,49, and more generally that sufficient shear
can suppress turbulent transport50,51. The second reason for their
improved stability is that centrifugal mirror traps tend to have more
isotropic velocity-space distributions than do conventional mirrors,
with sonic or supersonic rotation sufficient to suppress many of the
major loss-cone instabilities52–54. None of this is to say that all equilibria
satisfying Eq. (28) will necessarily avoid these instabilities. Rather, it
suggests that the subset of these solutions with (1) sonic or supersonic
rotation and (2) sufficient shear between flux surfaces may be able to
avoid them. Moreover, there are situations in which rotation canmake
stabilizationmore difficult. For example, even though shear flow tends
to stabilize flutemodes, centrifugal forces tend to destabilize them, so
the net effect of the rotating flow depends on the balance between
these two effects3.

The special properties of these particular rotating-mirror
equilibria may also make some instabilities more challenging. If
the plasma occupies a thin annular volume, then solutions with
higher peak densitiesmust also have large density gradients. This is a
source of free energy that can drive modes like the drift wave
instabilities. There is a large literature on these modes and a variety
of strategies to mitigate them, including cross-field shear and geo-
metric strategies55–57.

Discussion
The conventional picture of an open-field-line E ×B rotating plasma
requires that each flux surface also be a surface of (approximately)
constant voltage. This comes with certain constraints. Indeed, it is
difficult to imagine operating such a device beyond some maximal
voltage drop; even though the plasma itself can tolerate large fields
without problem, the field lines in open configurations intersect with
the solid material of the device, and material components cannot
survive fields beyond some threshold. Van de Graaff-type devices can
sustain voltages in the tens ofmegavolts58; it is very difficult to prevent
material breakdown beyond this level (fully ionized plasma, of course,
does not have this difficulty). If flux surfaces are surfaces of constant
potential, then high voltages across the interior of the plasma neces-
sarily result in high voltages across the material components, and this
limits the interior voltage drop.

Limitations on the achievable electric fields are important in a
variety of applications. In centrifugal traps, any limitation on the
electric field can be understood as a limit on the maximum plasma
temperature. To see this, note that the limit on the temperature that
can be contained is set by the centrifugal potential, which is deter-
mined by the rotation velocity. This, in turn, depends on the electric
and magnetic fields. Some advantages can be had by reducing the
magnetic field strength (since the E ×B velocity goes like E/B), but
perpendicular particle confinement requires that the field not be
reduced too much.

There are some applications for which open E ×B configurations
are feasible only if the voltage drops in the interior of the plasma can
be very high. For example, thermonuclear devices burning aneutronic

fuels are likely to require very high temperatures. Limitations on the
achievable electric fields could determine whether or not centrifugal
traps are viable for such applications. This paper considers whatmight
be required in order to relax these limitations.

First, it is important to avoid shear of the angular velocity along
flux surfaces (that is, to maintain isorotation). It is well known that
isorotation of the E ×B rotation frequency follows any time the flux
surfaces are isopotentials, but we show here that the general condi-
tions for isorotation are much less strict than that.

Second, it is important to avoid excessive Ohmic dissipation from
parallel electric fields. Some plasmas have higher parallel con-
ductivities thanothers, but especially for hot plasmas, the conductivity
(and the associated dissipation) can be very high. Fortunately, in a
rotating plasma, the parallel currents are not proportional to the par-
allel fields. If the parallel fields are close to the “ambipolar” fields, the
Joule heating vanishes. The ambipolar fields have the nice property
that they also produce isorotation of the combined E ×B and
diamagnetic flows.

Eliminating these sources of dissipation would not result in a
perfectly dissipationless system, even if all instabilities can be sup-
pressed. Cross-field transport – at least at the classical level – would
still lead to some losses (as is the case in any magnetic trap), as would
cross-field viscosity. However, these effects are suppressed at high
magnetic fields59–61, so the elimination of these sources could lead to a
configuration that is at least as long-lived as the timescale of Brag-
inskii’s cross-field viscosity34, which is typically many orders of mag-
nitude longer than the parallel Ohmic dissipation time.

In many cases, the parallel ambipolar fields are small compared
with the perpendicular fields driving the rotation. In order for a con-
figuration to have a large voltage drop in the plasma interior and a
small voltage drop at the edges of the device, the parallel and per-
pendicular voltage dropsmust be comparable. We show in Challenges
that this is challenging but possible. It requires supersonic rotation,
and it requires a configuration for which the perpendicular length
scale is small compared with the total radius (e.g., a relatively thin
annulus of plasma in a larger cylindrical device). In principle, this
opens up the possibility of a much wider design space for open-field-
line rotating devices than has previously been considered. Note that
these solutions not only do not require end-electrode biasing but that
they cannot be produced by end-electrodes alone. That is, actually
setting up fields of this kind is likely to require electrodeless techni-
ques for driving voltage drops, whether that be wave-driven, neutral
beams, or something else.

Note that the strategy discussed here results in large rotation in a
simple mirror geometry; there remains the opportunity to sequence
multiple such rotating mirrors much in the same way that has been
approached for simple non-rotating mirrors62. Also, note that the
strategy described in this paper is not the only possible way to reduce
the fields across the material boundary of a plasma device. It is also
possible to reduce these fields geometrically. If the potential is con-
stant along every field line, and if every field line impinges somewhere
on the material components of the device, then the total voltage drop
between the highest and the lowest point is fixed. However, the field
can be reduced by arranging for the field lines to expand over a larger
region before they impinge on the surface so that the local fields are
reduced (not entirely unlike a diverter63). This strategy is shown, in
cartoon form, in Fig. 3. However, it has clear limitations; in a cylin-
drically symmetric system, doubling the radius of the outer vessel
reduces the fields by a factor of two. Similarly, some advantage can be
gained bymanipulating the angle of incidence of themagnetic field on
theplasma-facing components, but this canonlybepushed so far. Very
large field reductions would require correspondingly large geometric
expansions, and may not always be a practical alternative to the solu-
tion discussed here.
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Methods
Vacuum solutions for the potential
If the plasma occupies some region ψi≤ψ≤ψf, and we specify ϕ within
this region, wemay still wish to compute the isopotential contours for
ψ <ψi andψ >ψf. If there is no free charge in the unoccupied regions,ϕ
must satisfy Laplace’s equation in these areas:

∇2ϕ=0: ð38Þ

Assuming cylindrical symmetry, this is

1
r
∂
∂r

r
∂ϕ
∂r

� �
+
∂2ϕ
∂z2

= 0: ð39Þ

For solutions that are periodic in z, with boundary conditions such
that ϕ vanishes at z = ± L/2, ϕ(ψ <ψi) can be written as the series
solution

ϕ=
X1

n=0
An cos

2πnz
L

� �
I0

2πnr
L

� �
ð40Þ

and ϕ(ψ >ψf) can be written as

ϕ=C0 +
X1

n= 1
Cn cos

2πnz
L

� �
K0

2πnr
L

� �
: ð41Þ

Here I0 is a modified Bessel function of the first kind, K0 is a modified
Bessel function of the second kind, and the An and Cn are scalar coef-
ficients. This choice of eigenfunctions imposes the constraint that ϕ
must be well-behaved near r =0 for the inner solution and must
converge to some constant value when r→∞ for the outer solution. In
the context of this problem, the An and Cn are chosen to match the
boundary curves ϕ(χ, ψi) and ϕ(χ,ψf), respectively. For the particular
case shown inFig. 2, thefirst ten terms eachof theAn andCn areused to
fit the boundary.

On twisting fields
We sometimes consider systems in which the E ×B flow is axially
sheared; that is, if vE ×B = rΩE θ̂, ∂ΩE/∂χ ≠0. If E = −∇ϕ, this can result if
∂ϕ/∂χ ≠0.

Our intuition from the idealMHD is that this ought to lead thefield
lines to twist up. The ideal MHD induction equation states that

∂B
∂t

=∇× ðv×BÞ, ð42Þ

so that

∂B
∂t

=∇× r2ΩE∇θ×B
� � ð43Þ

=∇× ðΩE∇ψÞ ð44Þ

=∇ΩE ×∇ψ: ð45Þ

This would imply that

∂Bθ

∂t
=0 iff:

∂ΩE

∂χ
=0: ð46Þ

In other words, the ideal MHD induction equation appears to suggest
that the axial shear of ΩE twists up field lines.

However, this is not the case. To see why, note that this argument
(and all of the intuition behind it) relies on mixing the ideal MHD
induction equation with an E ×B drift that is not consistent with the
ideal MHD. In an ideal MHD,

E= � v×B; ð47Þ

the theory does not permit any component of E in the direction of B.
(In rotating mirrors, we get a parallel component of ϕ by including
electron-pressure corrections in an extended-MHDOhm’s law, but this
is not essential to the argument).

Consider instead the original form of Faraday’s equation:

∂B
∂t

= � ∇×E: ð48Þ

If E = −∇ϕ, we do not get twisting of the field lines, no matter what
kind of dependences ϕ might have. So, in a rotating mirror, it is
incorrect to conclude that non-isorotationmust necessarily lead to Bθ.

If we derive the form of the steady-state ϕ that results from, e.g.,
electron pressure, we find that the corresponding correction term to
the MHD induction equation always cancels any field-line twisting – as
we know that it must, from Faraday’s equation.

Code availability
The plotting scripts used to make the numerical figures can be found
on Zenodo at https://zenodo.org/doi/10.5281/zenodo.10621240, or on
GitHub at https://github.com/ekolmes/voltageDropPlots.
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