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Gromov ground state in phase space engineering for fusion energy
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Phase space engineering by rf waves plays important roles in both thermal D-T fusion and nonthermal ad-
vanced fuel fusion, but not all phase space manipulation is allowed; certain fundamental limits exist. In addition
to Liouville’s theorem, which requires the manipulation to be volume preserving, Gromov’s nonsqueezing
theorem imposes another constraint. The Gardner ground state is defined as the ground state accessible by smooth
volume-preserving maps. However, the extra Gromov constraint should produce a higher-energy ground state.
An example of a Gardner ground state forbidden by Gromov’s nonsqueezing theorem is given. The challenge
question is “What is the Gromov ground state, i.e., the lowest energy state accessible by smooth symplectic
maps?” This is a difficult problem. As a simplification, we conjecture that the linear Gromov ground state
problem is solvable.
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I. PHASE SPACE ENGINEERING FOR FUSION ENERGY
AND GARDNER GROUND STATE

Phase space engineering by rf waves plays important roles
in both thermal D-T fusion and nonthermal advanced fuel
fusion, from plasma heating [1,2] and current drive [3–5]
to instability suppression [6–9] and α-particle energy chan-
neling [10–15]. Particle accelerator technologies frequently
employ phase space engineering to modify the characteristics
of charged particles [16–19]. Notably, methods exchang-
ing the transverse and longitudinal emittance of charged
particle beams have been designed to enhance the beam
quality [20–24].

Advanced fuel fusion using p-B11 or D-He3 must be con-
ducted in a nonthermalized environment and thus requires
significant power circulation within the system to keep par-
ticles in nonequilibrium energy states [25]. While this might
seem inefficient, it was recently illustrated [26] that the energy
does not have to be lost if the power flow is carefully man-
aged. This concept is similar to energy recovery systems used
in energy-recovering particle accelerators [27]. Just as suc-
cessful deuterium-tritium fusion requires near-perfect tritium
recirculation with less than 0.1% loss [26,28,29], making ad-
vanced fuel fusion work depends on maintaining nonthermal
particle distributions through efficient power recirculation in
the system [26].

When using rf electromagnetic fields to manipulate
charged particles, certain fundamental limits exist. One of the
constraints is imposed by Liouville’s theorem, which states
that the volume particles occupy in phase space must remain
constant—you can reshape this volume, but not compress it.
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To highlight the importance of this and other constraints,
we focus on the energy extraction schemes for aneutronic
fusion. While aneutronic fusion has the advantage of releas-
ing energy as charged particles (which can theoretically be
converted directly into electricity), there is a catch. The initial
fusing ions have much less energy than the fusion products,
meaning the released energy spreads out into a larger phase
space volume. This volume must be preserved during any
electromagnetic energy extraction process.

This raises a key question: Given a distribution of fusion
products (like alpha particles in proton-boron fusion), what
is the maximum energy we can extract electromagnetically?
Put another way, what is the lowest energy state we can reach
through electromagnetic interactions? Because of phase space
volume conservation, this “ground state” energy cannot be
zero. As noted above, this defines a limit on the energy that
can be extracted from a plasma using rf waves. It also has
applications for understanding instabilities and turbulence,
where it quantifies the energy that is available to drive a
mode [30–37].

Gardner [38] posed the following problem: for a given
phase space distribution of charged particles and an energy
function, what is the ground state, i.e., minimum energy state,
accessible under volume-preserving maps? He constructed the
ground state by minimizing the system energy under the con-
straint of constant phase space volume. This method became
known as the Gardner restacking algorithm [39,40]. For any
given two compact, connected sets that are diffeomorphic and
of the same volume in phase space, it can be proven (see
the Appendix) using a technique known as Moser’s trick [41]
that there must exist a volume-preserving diffeomorphism
between the two sets. Thus the ground state constructed by the
Gardner restacking algorithm is accessible by smooth volume-
preserving maps.

However, volume preservation is not the only constraint we
need to consider. A more stringent constraint is “nonsqueez-
ability,” which comes from the underlying symplectic nature
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FIG. 1. There exists no smooth symplectic map ϕ in R2n, sending
the ball B2n(r) to a cylinder Z2n

j (R) when r > R. But when r = R, the
ball B2n(R) fits comfortably within the bounds of the cylinder Z2n

j (R)
without any squeezing.

of charged particle dynamics in electromagnetic fields. We
identify here that this means that the Gardner ground state
might not actually be achievable using real electromagnetic
fields, whether externally applied or self-generated by the
system.

II. GROMOV’S NONSQUEEZING THEOREM

For a canonical Hamiltonian system of n degrees of free-
doms in R2n, the dynamics is governed by the familiar
Hamilton’s equation:

q̇i = ∂H
∂ pi

, ṗi = −∂H
∂qi

,

H = H (qi, pi, t ),

i = 1, 2, ..., n. (1)

The solution map of Eq. (1), ϕt : z(0) = [q(0), p(0)] "→
z(t ) = [q(t ), p(t )] is symplectic; i.e.,

(Dϕt )T J (Dϕt ) = J, (2)

Dϕt ≡ ∂ϕt (z)
∂z

, (3)

J =
(

0 In×n
−In×n 0

)
. (4)

Here, Dϕt is the Jacobian matrix of the solution map ϕt , and J
defines an almost complex structure on ; i.e., J : R2n → R2n

and J2 = −1. Symplecticity is the defining characteristic of
Hamiltonian systems, and being symplectic is a much stronger
geometric constraint than being volume preserving.

One way to characterize the symplectic constraint is given
by Gromov’s nonsqueezing theorem [42–50], which states
that there exists no smooth symplectic map ϕ in R2n sending
the ball B2n(r) to a cylinder Z2n

j (R) when r > R; see Fig. 1.

Here, the ball and the cylinder are defined as

B2n(r)

≡
{

(
q1, q2, ..., qn, p1, p2, ..., pn

)
∣∣∣∣∣

n∑

i=1

(
p2

i + qi2) < r2

}

,

(5)

Z2n
j (R) ≡

{
(q1, q2, ..., qn, p1, p2, ..., pn)|p2

j + q j2 < R2}.
(6)

The theorem significantly reduces the space of allowed ma-
nipulations in phase space. Because B2n(R) ⊂ Z2n

j (R), the ball
B2n(R) fits comfortably within the bounds of the cylinder
Z2n

j (R) without any squeezing. However, if we attempt to
expand the ball’s radius by even an infinitesimal increment,
no symplectic map can force this slightly larger ball into the
same cylindrical space. This geometric constraint presents a
fundamental challenge—imagine a carpenter trying to fit an
ever-so-slightly enlarged piece into a predefined space, only
to find it mathematically impossible.

With this constraint in mind, we pose the following prob-
lem of the Gromov ground state [26]: for a given phase
space distribution of charged particles and an energy function,
what is the ground state under all possible smooth symplectic
maps? This Gromov ground state is higher than the Gardner
ground state. It determines the theoretical upper limit of elec-
tromagnetically extractible energy [30,31,51,52] in aneutronic
fusion devices [25,53–60].

Gromov’s nonsqueezing theorem suggests transitioning
from volume-preserving numerical algorithms [61–68] to
symplectic algorithms [69–96] to more accurately simulate
the phase space engineering processes of charged particles.

III. GARDNER GROUND STATE FORBIDDEN
BY GROMOV’S NONSQUEEZING THEOREM

In this section, we demonstrate an example of a Gardner
ground state that is not a Gromov ground state.

Consider a system with two degrees of freedom in R4

with canonical coordinates (x, y, vx, vy). Assume there is an
external potential in the x direction,

φ(x) = 1
2 x2. (7)

A particle’s energy is

ε = 1
2

(
x2 + v2

x + v2
y

)
. (8)

This system is a simplified model for charged particle dynam-
ics in accelerators or quadrupole ion traps [19].

Suppose the initial distribution function f0 is uniform in-
side B4(r); i.e.,

f0(x, y, vx, vy) = &
[
r2 −

(
x2 + y2 + v2

x + v2
y

)]

≡
{

1,
(
x2 + y2 + v2

x + v2
y

)
< r2.

0, otherwise
(9)

Here, &(x) is the Heaviside step function. Such a distribution
function is known as a water-bag distribution. The phase space
volume occupied by f0 is

V ( f0) =
∫

B4(r)
dxdydvxdvy = π2

2
r4. (10)
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The energy of the system is

W ( f0) =
∫

1
2

(
x2 + v2

x + v2
y

)
f0dxdydvxdvy.

=
∫

B4(r)

1
2

(
x2 + v2

x + v2
y

)
dxdydvxdvy

= 2
∫ π/2

0
W3(r cos θ )r cos θdθ

= 2
∫ π/2

0

2π

5
r6 cos6 θdθ = π2

8
r6, (11)

where

W3(r) ≡
∫ r

0

a2

2
4πa2da = 2π

5
r5 (12)

is the energy line density inside the ball B3(r) ≡
{(x, vx, vy)|x2 + v2

x + v2
y < r2}.

The energy of the system can be reduced by pushing parti-
cles to regions in phase space with lower energy density while
preserving the phase space volume, or the volume of the water
bag. In particular, we can squeeze, via a volume-preserving
map, the initial ball B4(r) into the following “cylinder” in R4,

B3(R) × L

=
{
(x, y, vx, vy)|x2 + v2

x + v2
y < R2 and 0 < y < L

}
.

(13)

Our intention is to mold the cylinder into a long noodle along
the y axis by increasing L and decreasing R while maintaining
the same phase space volume.

The distribution function is now

f (x, y, vx, vy) =
{

1, (x, y, vx, vy) ∈ B3(R) × L
0, otherwise . (14)

The phase space volume of the system is

V ( f ) =
∫

B3(R)×L
dxdydvxdvy = 4π

3
R3L. (15)

The energy of the system is

W ( f ) =
∫

1
2

(
x2 + v2

x + v2
y

)
f dxdydvxdvy.

=
∫

B3(R)×L

1
2

(
x2 + v2

x + v2
y

)
dxdydvxdvy

= W3(R)L = 2π

5
R5L = 3

10
R2V.

Volume-preserving requires that V is a constant; i.e.,

V = π2

2
r4 = 4π

3
R3L = const. (16)

Under this constraint of constant volume, we can mold the
cylinder into a long noodle by letting R → 0 and L → 3V

4πR3 ,
which leads to

W ( f ) → 0. (17)

Thus, the ground state energy is 0, which is reachable when
R → 0, if volume preserving is the only constraint. Let us call
this ground state the Gardner ground state.

However, this Gardner ground state is not reachable by
symplectic maps, because this volume-preserving map sends
B4(r) to

B3(R) × L ⊂ Z4
1 (R) ≡

{
(x, y, vx, vy)|x2 + v2

x < R2}. (18)

According to Gromov’s nonsqueezing theorem, this map can-
not be symplectic if R < r.

IV. WHAT IS THE GROMOV GROUND STATE?

The unanswered question is “What is the Gromov
ground state—the lowest energy state accessible by smooth
symplectic maps? Can the energy of the Gromov ground state
be close to the energy of the Gardner ground state?”

Assume there is a symplectic map sending B4(r) to
B3(R) × L (this assumption is very likely to be wrong). Then
the minimum R allowed by Gromov’s theorem for symplectic
maps is r. If we take this B3(r) × L with L = 3V/4πr3 =
3πr/8 to be an “approximate Gromov ground state,” then its
energy would be

W ( f ) = 3
10

r2V = 3π2

20
r6 = 6

5
W ( f0).

Obviously, this approximate Gromov ground state is not a
good approximation at all, because its energy is not reduced
from the initial energy of f0. This demonstrates that Gromov’s
nonsqueezing theorem puts a strong constraint on the ground
state accessible by symplectic maps relative to the volume-
preserving maps. The noodle allowed by Gromov’s theorem
looks more like a ball because L = 3πr/8 ∼ R = r. That is
why the energy of the state is not reduced relative to the
initial ball. In other words, the volume-preserving constraint
allows the ball to be molded into a long noodle. But Gromov’s
theorem says the footprint in the (x, vx ) plane and the (y, vy)
plane cannot be reduced, and if one must mold the ball into a
noodle, then the noodle has to be thick and short.

On the other hand, Gromov’s theorem does not prohibit
molding the ball into a mushroom with a long stem and a
thin cap. This is because this mushroom’s footprint in the
(x, vx ) plane and the (y, vy) plane is not reduced relative to
the initial ball. This mushroom’s energy could be very close
to 0, since the cap can be very thin. However, the issue is
that Gromov’s theorem only says squeezing is not allowed;
it does not say what is accessible via symplectic maps. This
mushroom may still be inaccessible via symplectic maps, even
though it satisfies Gromov’s nonsqueezing constraint.

Another argument against this mushroom being a Gromov
ground state is the nonsqueezing theorem applied to the stem
by itself. The preimage of the stem should be almost the entire
ball, which cannot be squeezed into the stem. In this example,
the preimage of the stem is a neighborhood of the ball.

It was proven [97] that a smooth symplectic map exists to
send a set in phase space to an arbitrarily close neighborhood
of another set of the same phase space volume if the deriva-
tives of the maps are allowed to be arbitrarily large. Therefore,
the Gromov ground state approaches the Gardner ground state
if the symplectic maps are allowed to have arbitrarily large
derivatives. Of course, having arbitrarily large derivatives im-
plies that the map is becoming nonsmooth.
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Interestingly, this suggests connections with the theory
of diffusively accessible free energy, in which Gardner’s
restacking operation (which exchanges the populations of two
elements of phase space) is replaced with a mixing operation
(wherein their populations are averaged) [36,40,51,52,98–
100]. Suppose there existed a symplectic map that produced
very fine-scale structure in some local region in phase space,
such that the map appeared to produce diffusion when viewed
on a coarser scale in phase space (this is essentially the
intuition behind processes like quasilinear diffusion). Sup-
pose, furthermore, that such a map could be applied to
different, perhaps overlapping regions of phase space, again
with the effect of generating fine-scale structures that appear
to produce diffusion on larger scales. Then, in the limit where
these fine-scale structures could be made arbitrarily fine, it
would be possible to construct a symplectic map to a state
arbitrarily close to any state that is accessible through mixing
operations. It has been shown [40] that sequences of mixing
operations can access states that are arbitrarily close to the
Gardner ground state, so this would imply that the free energy
accessible through symplectomorphisms is arbitrarily close to
the free energy accessible through volume-preserving maps.
The interesting point here is that the requirement of arbitrarily
fine-scale structure suggests that such a symplectomorphism
would have very large derivatives, consistent with the result in
Ref. [97].

In any event, the result of Ref. [97] suggests that the free
energy accessible through an arbitrary symplectomorphism is
arbitrarily close to that accessible through volume-preserving
maps, but that the symplectomorphisms needed to accomplish
this may not be smooth and therefore may not be appropriate
in all scenarios. With this consideration, we should specify the
classes of allowed symplectic maps when posing the Gromov
ground state problem. Since real fusion devices are of finite
size, we could also further require the domain and range of
the symplectomorphisms to be bounded.

As an example of practical importance, we can study the
linear Gromov ground state problem. Most, if not all, beam
optical components for controlling charged particles can be
modeled by linear symplectic maps [16–19], even though
linear symplectic maps do not describe the wave-induced
dynamics for current drive [3] and α channeling [10–15] in
tokamaks. It is known [46,50] that linear symplectic maps
define a linear symplectic capacity, and it agrees with the
symplectic capacity [44,101,102] defined by general sym-
plectic maps for phase space ellipsoid in R2n. Here, the
symplectic capacity C(U ) of a set U ⊂ R2n is defined as the
cross section of the largest ball that can be embedded into U
by a symplectomorphism, and the linear symplectic capacity
Clin(U ) is defined similarly except that symplectomorphisms
are constrained to be linear maps in R2n; i.e.,

C(U ) ≡ sup{πr2|∃ ϕ ∈ Sym s.t. ϕ[B2n(r)] ⊂ U }, (19)

Clin(U ) ≡ sup{πr2|∃ ϕ ∈ ISp(2n) s.t. ϕ[B2n(r)] ⊂ U }.
(20)

Intuitively, that C(U ) = Clin(U ) when U is an ellipsoid can
be interpreted as linear symplectic maps being as flexible
as nonlinear symplectic maps. If so, a neighborhood of the

Gromov ground state might be approachable by linear sym-
plectic maps. Let us call the minimum energy state accessible
via linear symplectic maps the linear Gromov ground state.

In particular, for the counterexample given above, we pose
the following problem: for the external potential φ(x) and
f0 defined in Sec. III, what is the linear Gromov ground
state? That is, what is the 4 × 4 symplectic matrix S that
minimizes the energy of S[B4(1)]? We conjecture that this
problem is solvable [103].

V. SUMMARY AND DISCUSSION

What we have identified here is an important constraint
on the ground state energy of collisionless rearrangement
by waves of charged particles in a plasma. Indeed, this
constraint applies to any rearrangement by means of Hamil-
tonian dynamics. In particular, we suggest that applying the
nonsqueezing theorem of Gromov could lead to a higher
ground state energy, at least in practical cases. The point
here that has gone unrecognized in the existing literature
on plasma available energy is that Hamiltonian dynamics is
always phase-space-volume preserving, but that not all phase-
space-volume-preserving transformations are accessible via
Hamiltonian dynamics (or more formally, symplectic maps).

Because of the interest in fusion applications of recover-
ing particle energy (particularly fusion byproduct energy) in
waves, it is of great interest to know the maximum recoverable
amount or the ground state for a given energy distribution.
The first question is what the allowable ground states are
according to the rules of particle motion. For particles obeying
Hamiltonian dynamics, the rules are clear for getting from
configuration A to configuration B in the 6D phase space: One,
there must be phase space conservation, so configuration B
has to have the same phase space densities as configuration A.
This leads to Gardner restacking [38–40], but configuration
A has also to travel an allowable path to configuration B.
That leads to the Gromov nonsqueezing constraint [39,40],
which is much harder to quantify. However, in view of the
last section, if transformations with arbitrarily large gradients
are allowed, then the Gromov ground state approaches the
Gardner ground state.

However, not all allowable transformations are practical. In
controlling charged particles by waves in the most important
fusion applications, it is invariably the case that the waves are
arranged to diffuse particles in velocity space (like in current
drive) or in the combined velocity-configuration space (like in
α channeling). Because wave-particle interactions are a blunt
instrument, it is not practically possible to exert extremely
fine control over the particle rearrangement. This practical
limit is important; in the absence of this limit we might be
allowed transformations that are not smooth and therefore
allow energy recovery approaching the Gardner free energy,
even taking into account the Gromov constraint as indicated in
the last section. But with only blunt transformations possible,
both the Gardner ground state energy and the Gromov ground
state energy must necessarily rise. However, the extent of this
rise may not be the same.

This same notion of “bluntness”—in which the realistically
accessible states are constrained by a lack of perfect control
over which phase space volumes go where—is closely related
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to the idea of the free energy under diffusive operations [98].
Interestingly, even for that problem, arbitrarily fine control
over the regions of phase space undergoing diffusion makes
it possible to replicate the Gardner ground state arbitrarily
closely [52].

If arbitrary symplectomorphisms can replicate the Gard-
ner ground state arbitrarily well, that still leaves open the
problem of finding the accessible energy under the Gromov
constraint when infinitely fine-grained control over the map
is not possible. In the absence of arbitrarily fine control by
the waves, Gardner restacking is also modified; one could call
the resulting free energy the coarse-grained Gardner ground
state energy (one could imagine, for example, the Gardner
problem in which phase space is discretized with some finite
cell size). Of course, that will depend on how coarsely the
plasma is put into bins of constant density in the 6D configu-
ration space. Now adding the Gromov constraint on allowable
particle motion, one can define for such a degree of control
by waves a coarse-grained Gromov ground state energy. The
coarse-grained Gromov ground state energy will necessarily
be higher than the coarse-grained Gardner ground state en-
ergy. However, this is the energy that is hard to compute,
except in the case when infinitely fine-grained discretization
is allowed, in which case both energies approach the same
ground state Gardner energy.

But the practical question—at least for diffusion by waves
for extracting energy—is, in fact, “what is the coarse-grained
Gromov ground state energy?” This energy not only depends
on the coarseness, but also on how coarseness is defined. One
approach to this problem in which we conjecture a solution
may be approachable is by examining the ground state under
linear symplectic mappings, which should be solvable.
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APPENDIX: PROOF OF ACCESSIBILITY OF GARDNER
GROUND STATE VIA VOLUME-PRESERVING MAP

In this Appendix, we show that the Gardner ground state,
constructed by minimizing the system energy under the con-

straint of constant phase space volume, is accessible by
smooth volume-preserving maps. It suffices to prove that
given any two physically well-defined regions of the same vol-
ume in phase space, we can always find a volume-preserving
diffeomorphism connecting the two regions. We formulate
this result as the following proposition.

Proposition A1. Let A and B be two compact, connected
sets of Rm. If A and B are diffeomorphic and have the same
volume as measured by a volume form ) in Rm, then there
exists a volume-preserving diffeomorphism ψ : A → B.

Proof. Let φ : A → B be the diffeomorphism between A
and B. Since φ is not necessarily volume preserving, φ∗)|A ̸=
)|A in general. However, a volume-preserving diffeomor-
phism ψ : A → B, defined by the property ψ∗)|A = )|A, can
be constructed as follows.

Let )1|A = φ∗)|A. Because A and B have the same volume
as measured by a volume form ),

∫

A
) =

∫

B
),

which implies
∫

A
) =

∫

φ(A)
) =

∫

A
φ∗) =

∫

A
)1.

According to Theorem A1, on the compact, connected man-
ifold A, there exists a diffeomorphism τ : A → A such that
) = τ ∗)1. Let

ψ = φ ◦ τ : A → B.

We have

ψ∗)|A = τ ∗ ◦ φ∗) = τ ∗)1 = ).

Thus ψ : A → B is a volume-preserving diffeomorphism be-
tween A and B !.

Here we require the two sets to be diffeomorphic in ad-
dition to having the same phase space volume. This is to
rule out situations where the two sets are topologically dif-
ferent. For phase space engineering in the present context,
the phase space {(q1, q2, ..., qn, p1, p2, ..., pn)} is identified
with Rm (m = 2n), and the volume form is the canonical vol-
ume form ) = d p1 ∧ ... ∧ d pn ∧ dq1 ∧ ... ∧ dqn. The proof
of Proposition A1 uses the following theorem.

Theorem A1 (Moser). Let ) and )1 be two volume forms
on a compact, connected manifold M. There exists a dif-
feomorphism τ : M → M such that ) = τ ∗)1 iff

∫
M ) =∫

M )1.
Moser [41] proved Theorem A1 using a technique that is

now called Moser’s trick.
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