
PRX ENERGY 4, 013007 (2025)

Efficiency and Physical Limitations of Adiabatic Direct Energy Conversion in
Axisymmetric Fields

J.-M. Rax *

Andlinger Center for Energy and Environment, Princeton University, Princeton, New Jersey 08544, USA
and IJCLab, Université de Paris-Saclay, 91405 Orsay, France

E.J. Kolmes † and N.J. Fisch
Department of Astrophysical Sciences, Princeton University, Princeton, New Jersey 08544, USA

 (Received 20 October 2024; revised 22 January 2025; accepted 29 January 2025; published 20 February 2025)

We describe and analyze a new class of direct energy conversion schemes based on the adiabatic mag-
netic drift of charged particles in axisymmetric magnetic fields. The efficiency of conversion as well
as the geometrical and dynamical limitations of the recoverable power are calculated. The geometries
of these axisymmetric field configurations are suited for direct energy conversion in radiating advanced
aneutronic reactors and in advanced divertors of deuterium-tritium tokamak reactors. The E × B config-
urations considered here do not suffer from the classical drawbacks and limitations of thermionic and
magnetohydrodynamic high-temperature direct energy conversion devices.
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I. INTRODUCTION

Part of the internal energy content of a thermodynam-
ical system can be extracted to produce useful work.
Under reversible extraction conditions, the allowed maxi-
mum extracted work is given by the free energy difference
between the initial and final states [1,2]. The free energy
content of a system is always lower than its total inter-
nal energy content. Their difference is proportional to the
temperature and the entropy, which are always positive.
Moreover, entropy production due to irreversible opera-
tions decreases the fraction of the internal energy that can
be converted into useful work.

Energy conversion underlies many of the technologies
that have been proposed to decarbonize the world’s energy
infrastructure. In addition to economic and environmental
considerations, the efficiency of free energy extraction is
one of the most important factors determining the relative
merits of different technologies [3].

Thermodynamical energy conversion systems are usu-
ally based on simple nonequilibrium states displaying gra-
dients of intensive variables. The most common thermody-
mamical nonequilibrium states used as free energy sources
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in classical conversion devices involve (1) pressure, (2)
temperature, and (3) chemical potential gradients [4].
Pressure gradients can be relaxed in turbines to pro-
duce mechanical work with a high conversion efficiency.
Steady-state free energy extraction associated with a
simple temperature differential is limited by the Carnot
reversible efficiency at zero power and by the Curzon-
Alborn-Novikov-Chambadal endoreversible efficiency at
maximum power [5–7]. This type of endoreversible model
takes into account the entropy production associated with
(1) the heat flux from the hot source (temperature Th) to
the engine and (2) the heat flux from the engine to the cold
source (temperature Tc). This lowers the efficiency from
the classical Carnot value 1 − Tc/Th down to 1 −

√
Tc/Th.

Chemical potential differences can be efficiently converted
in electrochemical devices but are, unfortunately, usu-
ally relaxed through open air combustion to sustain a
temperature gradient in combustion-driven systems.

Besides classical thermal conversion schemes, direct
energy conversion (DEC) schemes such as magnetohy-
drodynamic (MHD) generators, thermionic (TI) diodes,
photovoltaic (PV) cells, and redox (RX) cells of the hydro-
gen type have been recognized to offer the potential of
significant conversion efficiency as they avoid the ineffi-
cient steps requiring the cooling or heating of a compressed
or expanded gas [8–10]. The basic principles of a dc elec-
tric power DEC generator are illustrated in Fig. 1(a). Two
steps are required: free charge generation at a rate dN/dt
followed by charge separation with a force ±F on positive
and negative particles. The resulting flow of current must
be oriented such that it provides power to an electric field E
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(a) (b)

FIG. 1. (a) Basic layout of a dc electric power DEC genera-
tor. (b) Ideal and nonideal current-voltage characteristics (rep-
resented by the solid and dashed curves, respectively). In the
ideal case, the generator can run at the same maximum current
I0 for any voltage up to V0. In the nonideal case, that current
performance tends to drop off as the voltage increases.

sustained between two electrodes separated by a gap width
h.

A device’s current-voltage (I -U) characteristic describes
how its efficiency changes as its power throughput
increases. Two conventions are sometimes used when
currents and voltages are illustrated: (1) the receptor con-
vention and (2) the generator convention. The choice of
convention determines whether the current is drawn from
high voltage to low voltage or vice versa. The latter con-
vention is used in the figures in this paper. Under ideal
operations, the current-voltage “square” characteristic of
this ideal DEC generator is illustrated in Fig. 1(b). The
short-circuit current I0 is given by

I0 = 2q
dN
dt

, (1)

where q is the single-particle charge. The open-circuit
voltage

V0 = Fh
q

(2)

is reached when the electric force ±qE = ±qU/h balances
the separating force ±F .

When nonideal processes are taken into account the
“square” ideal characteristic becomes either a curve of the
concave (TI) or convex (PV and RX) type, or simply a
resistive straight line (MHD), depicted by the three dotted
curves in Fig. 1(b) [8]. The maximum power Wmax that can
be delivered to the external load from an ideal generator is
given by

Wmax = I0U0/2 = Fh (dN/dt) . (3)

The force F used in DEC devices is typically of a statis-
tical nature: thermodynamical forces associated with the
gradient of an intensive variable such as pressure, tempera-
ture, or chemical potential. In the new class of plasma DEC

presented and analyzed here, the force F is the centrifu-
gal force due to the curvature of the magnetic field lines
and the diamagnetic force due to the gradient of the mag-
netic field strength. These are thermal forces because their
effects are proportional to the kinetic/thermal energy of the
particles. This kinetic/thermal energy can be transformed
into dc electric power through the design of a dedicated
field configuration.

One of the main problems of plasma-based DEC gen-
erators is the ultimate collection of the free charges. The
heating of the anode in TI diodes and the erosion of the
electrodes in MHD devices have been widely studied [9],
and tungsten plates provide the optimal choice. The prin-
ciple of plasma DEC described here offers the advantage
that the configuration can be designed to slow down the
charged particles to a very low energy so that secondary
emission on the anode (collecting electrons) and sputter-
ing on the cathode (collecting ions) can be minimized, as
can heating. Nevertheless, even with this advantage the
use of tungsten plates remains the best choice. We will
not address the engineering issue of the optimal electrode
material in greater detail, as this paper is devoted to the
presentation of the basic principles.

We now briefly review the principles of the classical
plasma-based DEC generators. In TI diodes, F is asso-
ciated with the pressure/temperature gradient of the free
electrons emitted by the hot cathode. Ions remain bound in
the cathode lattice and sustain a phonon gas rather than
flowing. In MHD generators, F is the friction force of
the flowing neutral part of the weakly ionized plasma. In
PV generators, F is a chemical potential gradient result-
ing from the chemical potential difference between the two
sides of the PV junction.

The type of DEC generator illustrated in Fig. 1(a) is
well suited when the separating force F acts in opposite
directions on electrons and ions. If the force F is insensi-
tive to the sign of the charges, we can either immobilize
one type of particle or use an E × B configuration where
the F × B/qB2 drift velocity separates the charges. An
ideal E × B configuration is illustrated in Fig. 2. For a

FIG. 2. An illustration of an (E × B)-type configuration. A
force F acts similarly on both positive and negative charged
particles, so the resulting F × B drifts separate the charges.
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small voltage drop U and a steady-state population of 2N
charged particles in the electrode gap, the ideal power W0
of the generator is the product of the drift velocity F/qB
and the electric force qE:

W0 = 2NFE/B. (4)

The past decades witnessed the massive development
of PV and RX cell DEC generators, which are now pro-
duced on a fully developed industrial scale. The perfor-
mances of high-temperature TI and MHD DEC generators
remain below the requirement to envision an industrial-
scale development. Despite the lack of industrial-scale
achievements, the continuous interest in TI and MHD sys-
tems stems from the fact that they operate at high temper-
atures: (1) for a given amount of energy, high-temperature
heat offers the potential of a far better conversion than low-
temperature heat; (2) for the same power, high-temperature
MHD and TI systems occupy a smaller footprint than
classical systems.

Very high temperature heat is produced in thermonu-
clear reactors, (1) in the form of a high-temperature plasma
flow at the level of the divertor in 2H-3H tokamak reactors
or (2) in the form of high-intensity short-wavelength radi-
ation in advanced neutronless p-11B reactors. An efficient
high-temperature DEC scheme would be very beneficial
for 2H-3H and p-11B fusion schemes. Several processes
have been proposed to achieve direct conversion of ther-
monuclear energy [11], such as cusp configurations [12],
traveling waves [13], and advanced electrostatic configu-
rations [14,15] or electrostatic and magnetostatic configu-
rations of the E × B type [16]. In this work we analyze a
class of high-temperature DEC schemes of the E × B type
free from the usual drawbacks of MHD and TI devices.
The drawbacks of high-temperature TI and MHD DEC
devices have been known for a long time; for instance,
the occurrence of space charge-limited flow in vacuum
TI diodes and the erosion of the edge electrodes in MHD
generators put severe restrictions on the efficiency of such
generators.

For example, we consider the thermionic diode illus-
trated in Fig. 3(a). A high-temperature source sustains a
temperature difference between a hot cathode (Tc) and a
cold anode (Ta ≪ Tc). Thermionic emission, described by
the Richardson-Dushman law [17], occurs at the inner sur-
face of the cathode, and electrons, with mass m, work
against an electric field E during their transit from the
cathode toward the anode.

Under optimal conditions, the voltage U of such an elec-
tric generator is given by the relation mv2 = 2qU, where
v ∼

√
kBTc/m is the average emission velocity. However,

the heat-driven current I is limited by the Child-Langmuir
law, limiting the current density JCL (amperes per square
meter) to a value given by

JCL = 2ε0mv3/9qh2, (5)

(a) (b)

FIG. 3. Two thermionic diode configurations: (a) the basic
configuration, in which thermionic emission ejects electrons par-
allel to an electric field, and (b) a modified configuration, in
which a magnetic field is used to avoid the Child-Langmuir and
blackbody limitations on the attainable current.

where h is the anode-cathode gap width. Thus, to extract
significant power, an impractically tiny gap is needed.
Moreover, besides the electron flux described by JCL, the
blackbody flux of photons JBB (watts per square meter)
provides a thermal short circuit dramatically lowering the
conversion efficiency when h is small,

JBB = π2k4
BT4

c/15!3c2, (6)

where ! is Planck’s constant. To avoid these drawbacks,
an E × B configuration, illustrated in Fig. 3(b), has been
proposed [18]. The current across the magnetic field B is
no longer limited to JCL, and JBB no longer heats up the
cold anode, but the ballistic coupling between the cathode
and the anode is inefficient because of the dispersion in
the velocities of the electrons. Other mitigations of the TI
drawbacks, such as the use of plasma TI diodes rather than
vacuum TI diodes [19], have been considered, but none of
them have made it possible to achieve the expected high
conversion efficiency.

Nevertheless, E × B configurations have proven their
usefulness in MHD generator designs used to convert the
free enthalpy of a hot weakly ionized plasma flow into
dc electric power. This E × B configuration is illustrated
in Fig. 4(a). A weakly ionized plasma flows, with veloc-
ity v along the x axis, across a magnetic field B directed

(a) (b)

FIG. 4. Two MHD generator configurations: (a) the Faraday
configuration and (b) the Hall configuration. In both cases, the
system generates an electric field (and current) by directing a
flow perpendicular to a magnetic field. Note the appearance of
Hall currents as a result.
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along the z axis [20]. Electrons and ions set up a current
j under the influence of the v × B force. This current pro-
vides power to the electric field E along the y axis. Energy
conservation is ensured as the j × B force slows down
the flow along the x axis. The short-circuiting of the y
currents provides another E × B configuration besides the
segmented Faraday configuration illustrated in Fig. 4(a):
the Hall configuration illustrated in Fig. 4(b). The basic
physical principles and main limitations of Faraday and
Hall MHD DEC generators can be found in textbooks
[21,22]. Despite the simplicity and effectiveness of the
physical principles put to work in Faraday and Hall gener-
ators, the management of a hot weakly ionized collisional
plasma flow has proven to be difficult, and MHD genera-
tors have not found their way to industrial development up
to now.

The use of E × B configurations aimed at DEC is not
restricted to the advanced TI and classical MHD genera-
tors illustrated in Figs. 3 and 4. We describe and analyze in
this paper another E × B configuration, where the thermal
energy of charged particles is converted to a dc electro-
motive force in very particular types of inhomogeneous
magnetic and electric fields.

This configuration does not suffer from the major draw-
backs of the TI scheme and the MHD scheme. The Child-
Langmuir law limitation does not apply, and electrode
erosion is minimized as the charged particles strike the
electrodes at low energy. This configuration also has its
own advantages: (1) the energy extraction rate is expo-
nential with respect to time and (2) the closed field line
topology minimizes plasma losses. Besides the topology,
the geometry is particularly pertinent for high-temperature
conversion in fusion reactors. The proposed configura-
tion can be understood as a way of converting plasma
kinetic energy into electricity. It can also be understood
as a technique for capturing radiation, if that radiation is
used to ionize neutrals and the energy is captured from the
resulting charged particles.

This paper is organized as follows. In the next section
we describe the way to arrange coils and electrode plates
in poloidal and toroidal axisymmetric configurations to
extract the thermal energy of a plasma. We analyze the
energy exchange between charged particles and the electric
field that provides the electromotive force of the genera-
tor in these E × B configurations in Secs. III and IV. We
calculate the efficiency and the irreducible physical limita-
tions on the power delivered by toroidal DEC generator
in Secs. V and VI. We do not consider the limitations
associated with the stress on the material in a high-
temperature environment. This paper is instead devoted
to an analysis of the physical principles. The adaptation
of these DEC scheme to 2H-3H tokamak reactors and p-
11B advanced reactors is briefly considered in Sec. VII.
The last section summarizes our new results and gives our
conclusions.

II. E × B COOLING IN POLOIDAL AND
TOROIDAL CONFIGURATIONS

The design of a hot plasma DEC device requires the
identification of a structure such that the motion of the
charged particles is slowed down by an electric field sus-
tained between two electrodes. As a result of global energy
conservation, this E × B electric cooling of a hot plasma
results in the sustainment of an electromotive force when
the electrode circuit is closed on an external load.

The magnetic drift velocity is proportional to B × ∇B
and to the thermal energy content of the plasma particles.
The sign of the resulting power transfer between the hot
plasma and the electric field is controlled by the sign of the
dot product of the drift velocity and the electric field. The
condition for plasma cooling and dc power generation is

E · B × ∇B < 0. (7)

This can be adjusted in axisymmetric magnetic field
configurations through the electrode plates’ P positions,
shapes, and polarizations, so plasma cooling and electric
power generation can be envisioned and are studied in the
next sections. In the axisymmetric magnetic field configu-
rations depicted in Figs. 5(a) and 6(a), the charged particle
motion is the drift motion in an inhomogeneous magnetic
field and the electric field is sustained between electrode
plates P collecting the drift current J. The azimuthal angle
around the Cartesian axis z is denoted by θ (0 ≤ θ <
2π ), and the unit vector eθ corresponds to this azimuthal
direction. Any axisymmetric magnetic field B can be rep-
resented as the sum of a poloidal field and a toroidal field:
B = BTeθ + ∇ × (APeθ ), where the first term on the right-
hand side is the toroidal component and the second is the
poloidal component. Thus, we consider two types of struc-
ture aimed at extracting the free energy of a hot plasma and
converting it into dc electric power: toroidal and poloidal
configurations illustrated, respectively, in Figs. 5 and 6.
For toroidal generators, the electric field is axial, and for
poloidal generators, the electric field is azimuthal.

In Fig. 5(b), the z = const ring-shaped conducting elec-
trodes P are used to collect the drift current J in the axial
direction. In Fig. 6(b), the θ = const plane electrodes P are
used to collect the drift current J in the azimuthal direction.
With these orientations of the electric and magnetic fields,
the adiabatic magnetic drift velocity of the hot charged par-
ticles can be directed against the electric field’s force to
extract thermal energy and cool down the plasma. In both
cases, this drift current J provides dc power J · E to the
external load.

A complete analysis must also take into account the
electric E × B/B2 drift. We will see that the impact of this
drift is to facilitate energy conversion at low values of E
and inhibit it at larger values.

An axisymmetric vacuum magnetic field, ∇ × B =
0, ∇ · B = 0, ∂B/∂θ = 0, either poloidal or toroidal, is
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(a) (b)

FIG. 5. A toroidal field configuration for DEC. (a) The positioning of the coils (bold external loops) used to generate the magnetic
field BT. (b) The current-collecting electrode plates P that generate the electric field E. vD is the drift velocity, which is the source of
the drift current J.

locally represented on the Frenet-Serret basis associated
with the magnetic field line as B = Bb. The gradient ∇B
includes two terms

∇B = ∂B
∂s

b + B
R

n, (8)

where R is the curvature radius of the field line, s is the
curvilinear abscissa along the field line, and b = B/B and
n = ∂b/∂s are the unit tangent and normal vectors to the
field line: the Frenet-Serret moving frame without torsion.
The b component in Eq. (8) generates the diamagnetic
force along the field lines, and the n component generates
the drift velocity.

In Sec. III, toroidal magnetic fields are conveniently
described with a cylindrical set of coordinates [r, θ , z]
rather than with the Cartesian one [x, y, z] (x = r cos θ , y =
r sin θ ). The toroidal magnetic field, displayed in Fig. 5(b),

is assumed to be without ripple despite the finite number
of coils C,

B = Beθ = B0
r0

r
eθ , (9)

E = −∇φ = −Eez, (10)

where r0, E, and B0 are positive constants. Here we have
used Ampère’s theorem, Br = B0r0, and introduced the
electric potential φ. The gradient of the magnetic field
strength is directed along the radial direction:

∇B = −B
r

er. (11)

For a purely toroidal field n = −er, ∂B/∂s = 0, and R = r.
The poloidal magnetic field configuration illustrated in

(a) (b)

FIG. 6. A poloidal field configuration for DEC. (a) The positioning of the magnetic field coils (bold internal loops) used to generate
the magnetic field BP. (b) The electrode plates P that generate the electric field E. vD is the drift velocity, which is the source of the
drift current J.
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Fig. 6 and analyzed in Sec. IV is usually described with
spherical coordinates [ρ, ϕ, θ ] rather than cylindrical coor-
dinates [r, θ , z] (r = ρ sin ϕ, z = ρ cos ϕ). The azimuthal
electric field depicted in Fig. 6(b) can be approximated by

E = −Eeθ = −∇φ. (12)

The full expression for the field from the electrodes in
Fig. 6(b) would include some additional terms, but the
simple form given in Eq. (12) is sufficient to show the
essential behavior of the energy transfer mechanism. For
the poloidal case, we assume (1) that the source of the
thermal plasma is restricted to the region near the equa-
torial plane ϕ ≈ π/2 in between each pair of plates and
(2) that the field geometry and the conducting electrode
plates P are designed such that the capture of the posi-
tive and negative charges, above and below this equatorial
plane, occurs at a small angle ϕ. It is convenient to con-
sider the Frenet-Serret representation [Eq. (8)], in which
the radius of curvature of the field lines is denoted by R and
the gradient scale length L along the field line is defined as
B/L = ∂B/∂s. Along a given field line, both the radius R
and the length L are functions of s, and we describe the
gradient of the magnetic field in the drift region, above and
below the equatorial plane, along and across the field lines
between the electrodes, with the model

∇B = B
L

b + B
R

n, (13)

where rather than the exact functions L(s) and R(s), we
consider the average over s of L(s) and R(s) in the region
explored by the charged particles in between the equato-
rial plane and the ultimate capture by the electrodes P at
a small angle ϕ. This approximation makes it simpler to
show the dependence of the conversion process on R and
L in cases where both are important.

III. ADIABATIC THERMAL ENERGY
CONVERSION IN TOROIDAL FIELDS

Consider a cylindrical set of coordinates [R, θ , z] associ-
ated with the cylindrical basis [er, eθ , ez]. The position of a
particle with charge q and mass m is given by Rer(θ) + zez.
The field geometry between two electrodes is illustrated in
Fig. 7. We calculate the thermal energy extraction resulting
from the drift-driven electric cooling. The E × B configu-
ration (Fig. 7) is described by Eqs. (9) and (10), where we
take r = R.

The gradient of the azimuthal magnetic field strength is
radial and is described by Eq. (11):

∇B = −B0
R0

R2 er = −B
R

er. (14)

The motion of a charged particle in such a toroidal field
configuration is a combination of a translation v∥ along the

FIG. 7. The fields associated with a toroidal field, including
the magnetic field strength gradient and the positions of the
current-collecting electrodes.

magnetic field lines, cyclotron rotation v⊥ around the field
lines, and drift vD across the magnetic field lines. The total
velocity v is thus given by

v = v∥
B
B

+ vD + v⊥ cos (ωct) er + v⊥ sin (ωct) ez, (15)

where ωc = qB/m is the cyclotron frequency. The drift
velocity vD is a combination of the magnetic and electric
drifts:

vD = 2ε∥ + ε⊥

qB3 B × ∇B + E × B
B2 , (16)

where we have introduced ε∥ = mv2
∥/2, the kinetic energy

along the field lines, and ε⊥ = mv2
⊥/2, the cyclotron

kinetic energy around the field lines. The axial and radial
drift equations are given by

dz
dt

= 2ε∥ + ε⊥

qB3 B × ∇B · ez, (17)

dR
dt

= E × B
B2 · er. (18)

The power transfer between the thermal energy and the
electric energy is given by the dot product

qE · vD = 2ε∥ + ε⊥

B3 B × ∇B · E = −2ε∥ + ε⊥

τ
, (19)

where we have introduced the secular timescale τ > 0
defined as

τ
.=

∣∣∣∣
B3

E × B · ∇B

∣∣∣∣ = B0R0

E
. (20)
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The potential energy qφ = qEz increases in time at the
expense of the thermal energy ε∥ + ε⊥, so the sum of the
kinetic energy and the potential energy ε remains constant.
Two invariants can be identified: the magnetic moment
µ is an adiabatic invariant and the energy ε is a Noether
invariant. The cyclotron and total energies can be written
as

ε⊥ (R) = µB (R) , (21)

ε (z, R) = ε∥ + ε⊥ + qφ (z) . (22)

We have used the adiabatic ordering and ignored the small
drift kinetic energy. The case of a strong electric field,
where we take this drift energy into account, is consid-
ered in Sec. VI. Thus, as dµ/dt = 0 and dε/dt = 0, the
adiabatic evolution of the energy is described by

dε⊥

dt
=

[(
vD + v∥

B
B

)
· ∇

]
µB, (23)

dε∥

dt
= −

[(
vD + v∥

B
B

)
· ∇

]
(qφ + µB) . (24)

We consider here the slow evolution averaged over the
fast cyclotron motion and we have eliminated ε⊥ to set
up Eq. (24) as dε/dt = 0. The secular velocity operator
involved in Eqs. (23) and (24) is given by

(
vD + v∥

B
B

)
· ∇ = 2ε∥ + ε⊥

qRB
∂

∂z
+ E

B
∂

∂R
, (25)

where we note that the v∥ term drops out due to axisym-
metry. We substitute this secular velocity given in Eq. (25)
into Eqs. (23) and (24) to get the thermal energy extraction
dynamical equations

dε∥

dt
= −2

ε∥

τ
, (26)

dε⊥

dt
= −ε⊥

τ
. (27)

We recover the energy balance from Eq. (19).
During the transit of one charged particle toward the

electrode, its thermal energy decreases at an exponen-
tial rate with respect to time. This behavior provides an
efficient way to directly extract the thermal energy. The
physics behind this exponential extraction of the thermal
energy

ε∥ + ε⊥ = ε∥0 exp
(

−2t
τ

)
+ ε⊥0 exp

(
− t

τ

)
(28)

can be described as follows.

The electric drift E/B is radial and pushes particles
toward the lower-B region, where ε⊥ = µB is converted
into ε∥ to ensure the adiabatic invariance of µ. At the very
same time, the magnetic drift is axial along the z axis and
pushes particles toward high-potential qφ regions, where
ε∥ + ε⊥ decreases to ensure the invariance of ε = ε∥ + ε⊥
+ qφ. This thermal energy extraction is illustrated in Fig. 8.

The drift equations given by Eqs. (17) and (18) can be
integrated to give

z = z0 + ε∥0

qE

[
1 − exp

(
−2t

τ

)]
+ ε⊥0

qE

[
1 − exp

(
− t

τ

)]

(29)

and

R = R0 exp
(

t
τ

)
. (30)

These two expressions determine the dimensions of a
device needed to access a given extraction efficiency.
These relations describe an expansion of the hot plasma
and they set limitations on the full thermal energy extrac-
tion as the device must display a finite size and footprint.
These geometrical limitations are analyzed in Sec. V.

IV. ADIABATIC THERMAL ENERGY
CONVERSION IN POLOIDAL FIELDS

Before addressing the geometrical and dynamical lim-
itations of the conversion efficiency of the process
described by Eq. (28), we explore in this section the main
difference between plasma cooling in a toroidal field and
plasma cooling in a poloidal field. With the use of the
model poloidal field described by Eqs. (12) and (13),
Eqs. (26) and (27) describing adiabatic slowing down
become

dε∥

dt
= −2

ε∥

τ
− v∥

ε⊥

L
, (31)

dε⊥

dt
= −ε⊥

τ
+ v∥

ε⊥

L
. (32)

We recover the general energy balance from Eq. (19),
which is independent of the configuration, poloidal,
toroidal, or mixed, although, in general, τ may become a
function of s. Compared with Eqs. (26) and (27), there is an
additional term due to the diamagnetic mirror force redis-
tributing the energy between the parallel degree of freedom
and cyclotron degree of freedom to ensure adiabatic invari-
ance of µ. As opposed to the previous toroidal case, where
the energy relations given by Eqs. (26) and (27) are exact
in a perfect toroidal field, the poloidal case here is analyzed
only on the basis of the approximate model poloidal field
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FIG. 8. The trajectory of a particle as it moves between the electrodes includes both magnetic and electric drift motion.

[Eq. (13)]. The aim of this section is to identify the impact
of a gradient along the field lines.

The additional term L is treated as a small perturbation
so that the zero-order solutions are just the solutions of
Eqs. (26) and (27), which fulfills the conservation relation

ε⊥/
√

ε∥ = ε⊥0/
√

ε∥0. (33)

We introduce the characteristic time

τ0 = L
ε⊥0

√
2mε∥0

and assume that τ < τ0. Within the framework of this
perturbative expansion, the cooling of the parallel energy
[Eq. (31)] becomes

dε∥

dt
= −2

ε∥

τ
± 2

ε∥

τ0
. (34)

The analysis of the cooling/conversion process occurs in
the (ε∥, ε⊥) energy space. In the toroidal case, the cool-
ing trajectories in energy space, Eqs. (26) and (27), are all
restricted to parabolic curves in this space:

dε∥

ε∥
= 2

dε⊥

ε⊥
. (35)

The interesting new phenomenon associated with the
occurrence of a gradient of the field strength along the
field line (L) is the possibility to shape different cooling
trajectories according to

dε∥

ε∥ (1/τ ∓ 1/τ0)
= 2

dε⊥

ε⊥
(
1/τ ± 2ε⊥ε∥0/ε

2
⊥0τ0

) . (36)

This new freedom opens the way to an optimization of the
final stage of the free energy extraction. The necessity of
such an optimization is clearly displayed by the analysis
of the evolution of the anisotropy of the particle energy

distribution function. Consider a particle with initial par-
allel, perpendicular, and total energies ε∥0, ε⊥0, and ε0,
respectively. Define the initial pitch angle ϑ by

ε∥0 = ε0 cos2 ϑ , (37)

ε⊥0 = ε0 sin2 ϑ . (38)

This gives ε∥0 + ε⊥0 = ε0 by construction. Equipartition of
energy between the three directions of motion corresponds
to ϑEP = arccos(

√
1/3). For the previous toroidal case, we

found

ε⊥

ε∥
= tan2 ϑ exp

(
t
τ

)
. (39)

This increase of the cyclotron energy at the expense of the
parallel energy can be controlled if we modulate the purely
toroidal field and introduce a new structural freedom with
L(s) continuously redistributing the cyclotron energy into
the parallel energy during the slowing down process. This
study of the optimization of the configuration of the mag-
netic and electric fields is left for future work as it must
be addressed after a careful assessment of the limitations
of the purely toroidal configuration. Sections V and VI are
devoted to the analysis of these limitations, which are of
dynamical and geometrical nature.

V. EFFICIENCY: GEOMETRICAL LIMITATIONS

We can define the efficiency of free energy extraction as
the fraction η ≤ 1 of extracted initial thermal energy

η = 1 − ε∥ (t) + ε⊥ (t)
ε0

(40)

= 1 − cos2 ϑ exp
(

−2t
τ

)
− sin2 ϑ exp

(
− t

τ

)
. (41)

This relation clearly displays the advantage of the possibil-
ity to control, independently of the energy dynamics, the

013007-8



EFFICIENCY AND PHYSICAL LIMITATIONS OF ADIABATIC. . . PRX ENERGY 4, 013007 (2025)

dynamics of the pitch angle ϑ . Such a possibility is offered
by a gradient of the field strength along the field line (L)
analyzed in Sec. IV. One major limit on the achievable
efficiency η is the time available before a particle strikes
a boundary of the device. Following Fig. 8, let h be the
width of the gap between the two electrodes and ℓ be the
radial extent of the circular electrodes.

The transit from the inner edge R = R0 to the outer edge
R = R0 + ℓ takes time tr given by

tr
τ

= ln
(

1 + ℓ

R0

)
. (42)

A particle could also strike the axial boundary first. The
time to transit from z = z0 to z = z0 + h is given by

tz
τ

= ln
sin2 ϑ +

√
sin4 ϑ + 4 cos2 ϑ(1 − qEh/ε0)

2 (1 − qEh/ε0)
, (43)

where Eh is the full voltage drop between the electrodes
and qEh/ε0 is the ratio of that potential energy to the initial
kinetic energy of the particle. Note that the square root is
real when ε0 > qEh. Then this first limit is determined by
the efficiency η that can be achieved in the lesser of tr and tz
(or, in the case where tz /∈ R, it is determined by tr alone).

This can also be understood as a constraint on the system
size required to achieve a particular efficiency η. Consider,
for example, the case in which the radial size ℓ is limiting
(rather than the axial size h). If ϑ = ϑEP, ℓ and η are related
by

ℓ

R0
=

(√
4 − 3η − 1

)−1
− 1. (44)

Near-perfect efficiencies would require ℓ ≫ R0. The axial
gap h must also be large enough to ensure a significant con-
version efficiency η, and our taking h = z − z0 in Eq. (29)
and a thermal distribution with equipartition gives the
relation

qEh
kBT

= 3/2 −
(√

4 − 3η − 1
)2

/2 −
(√

4 − 3η − 1
)

.

(45)

Apart from the geometrical scaling, the other main con-
straint on this DEC scheme concerns the validity of the
first-order adiabatic drift theory, which is analyzed in the
next section.

VI. EFFICIENCY: DYNAMICAL LIMITATIONS

To identify the dynamical limit, we consider the next-
order drift within the framework of adiabatic theory: the

second-order inertial drift vDI, which can be written as
follows:

vDI = B
qB2 × m

d
dt

(
E × B

B2

)
= m

qBτ

E
B

. (46)

Here τ is the same timescale as introduced in Eq. (20). We
recognize here the usual polarization drift associated with
the time variation τ . We see that this inertial drift is always
along qE in the direction opposite the magnetic drift and
provides a limiting effect on the previous first-order con-
version process. This second-order drift does not affect the
secular radial dynamics given in Eq. (18), but the secular
axial dynamics in Eq. (17) becomes

dz
dt

= (vD + vDI) · ez = 2ε∥ + ε⊥

qEτ
− mE

qB2τ
. (47)

For any given particle, the transfer of energy from kinetic
energy to the electric field will reverse when dz/dt = 0,
at which point (z − z0 = h∗, R = R0 + l∗) the device will
operate no longer as a DEC generator but as an accelerator
for that particle. In the following we define and calculate t∗
as the time needed to reach this reversal point (h∗, l∗). An
estimate of (h∗, l∗) can be obtained from Eqs. (29) and (30)
evaluated at t = t∗. A more precise value can be obtained
from the integration of the dynamical equations to be stud-
ied in this section. However, it turns out that the discussion
of the efficiency limitation requires only the evaluation
of t∗. This reversal of the energy transfer is illustrated in
Fig. 9.

The power transfer between the thermal energy and the
electric energy is given by the dot product qE · (vD + vDI):

qE
dz
dt

= 2ε∥ + ε⊥

τ
− mE2/B2

τ
. (48)

We define the drift energy as

εE/B = m
2

E2

B2 . (49)

To study the limitation associated with this reversal of
the energy transfer, we now consider the case in which
the E × B drift may contain a significant fraction of the
kinetic energy, in which case the leading-order expression
for energy becomes

ε (z, R) = ε∥ + ε⊥ + εE/B + qφ (50)

rather than Eq. (22). The leading-order expression for
energy conservation ought to be

d
dt

(
ε∥ + µB + qφ + εE/B

)
= 0. (51)
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FIG. 9. A dynamical limitation of this DEC scheme: if a particle is allowed to move too far without striking an electrode, the energy
transfer will reverse and the particle will start to take energy from the fields rather than transferring energy to the fields. Reversal of
the energy transfer, resulting from the inertial/polarization drift, occurs at a point (z − z0 = h∗, R = R0 + l∗).

Thus, Eqs. (23) and (24) are replaced by

dε∥

dt
= −

[(
vD + vDI + v∥

B
B

)
· ∇

](
qφ + µB + m

2
E2

B2

)

(52)

and

dε⊥

dt
=

[(
vD + vDI + v∥

B
B

)
· ∇

]
µB (53)

completed by the inertial/polarization drift effect

dεE/B

dt
=

[(
vD + vDI + v∥

B
B

)
· ∇

](
m
2

E2

B2

)
, (54)

where
(

vD + vDI + v∥
B
B

)
· ∇ =

(
2ε∥ + ε⊥

qEτ
− mE

qB2τ

)
∂

∂z

+ E
B

∂

∂R
, (55)

rather than Eq. (25).
The evolution of the thermal parallel and perpendicular

cyclotron energies fulfills

dε∥

dt
= −2ε∥

τ
, (56)

dε⊥

dt
= −ε⊥

τ
. (57)

Note that this ε⊥ is the part of the kinetic energy in
the Larmor gyration, not the total kinetic energy in the
perpendicular direction (which also includes drift motion

contribution εE/B). The evolution of εE/B [Eq. (54)] is
given by

dεE/B

dt
= 2εE/B

τ
. (58)

It can be checked that Eqs. (51) and (48) are consistent
with Eqs. (56)–(58) as Ez = φ. Equations (56)–(58) can
be integrated directly. The three components of the kinetic
energy evolve, respectively, according to

ε∥ = ε∥0 exp
(

−2t
τ

)
, (59)

ε⊥ = ε⊥0 exp
(

− t
τ

)
, (60)

εE/B = ε0

2C
exp

(
2t
τ

)
, (61)

where we have defined the constant

C .=
ε0B2

0

mE2 . (62)

The physical meaning of this important control parameter
can be understood in more than one way. We can recast its
definition as (ε0/mc2)× (magnetic energy density divided
by electric energy density). For example, given a typical
ratio ε0/mc2 ≈ 0.02 and our targeting the value C ≈ 10
requires a magnetic density of energy 500 times larger
than the electric energy density. Alternatively, C can be
understood in terms of the speed of a particle with kinetic
energy ε0 and the E × B velocity. If the speed of a particle
with energy ε0 is much faster than the drift velocity, then
C ≫ 1; if the drift is much faster, then C ≪ 1.
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FIG. 10. Critical time t∗ after which the energy transfer
reverses as a function of the dimensionless parameter C. The
curves shown here take ϑ = 0, ϑ = ϑEP, and ϑ = π/2, respec-
tively.

The transfer of kinetic energy to potential energy is
expressed as

qE(z − z0) = ε∥0

[
1 − exp

(
−2t

τ

)]

+ ε⊥0

[
1 − exp

(
− t

τ

)]

+ mE2

2B2
0

[
1 − exp

(
2t
τ

)]
. (63)

The key effect captured by the inclusion of vDI is that the
increase in E × B flow energy, as the particle moves out-
wards, tends to slow and eventually reverse the transfer
from kinetic energy to potential energy.

The time t∗ at which this reversal occurs is given by
dz/dt = 0 in Eq. (48),

2ε∥
(
t∗

)
+ ε⊥

(
t∗

)
= mE2

B2 = mE2

B2
0

exp
(

2t∗

τ

)
, (64)

so we have to solve

2C cos2 ϑ + C sin2 ϑ exp
(

t∗

τ

)
= exp

(
4t∗

τ

)
(65)

to find t∗. Numerical solutions of Eq. (65) for the cases of
ϑ = 0, ϑ = ϑEP, and ϑ = π/2 are shown in Fig. 10.

The logarithmic behavior of this numerical solution
describing the initial equipartition case reflects the behav-
ior of the particular solutions associated, respectively, with
ϑ = 0 and ϑ = π/2:

t∗

τ

∣∣∣∣
ϑ=0

= ln (2C) /4, (66)

FIG. 11. Maximum free energy extraction efficiency as a func-
tion of the dimensionless parameter C for selected values of ϑ .
This maximum takes into account dynamical but not geometrical
constraints (i.e., it assumes there is an optimally large device).

t∗

τ

∣∣∣∣
ϑ=π/2

= ln (C) /3. (67)

The maximum free energy extraction efficiency in a large
device, free of the geometrical limitations analyzed in the
previous section, is given by

η∗ (E, B0, ε0, ϑ) = 1 − cos2 ϑ exp
(

−2t∗

τ

)

− sin2 ϑ exp
(

− t∗

τ

)
. (68)

Numerical solutions for this maximum efficiency η∗(C)
for a large device are shown in Fig. 11 for the cases
of ϑ = 0, ϑ = ϑEP, and ϑ = π/2. Figure 11 provides a
description of the efficiency η∗ as a function of the prin-
cipal control parameter. On the basis of Fig. 11, we can
conclude that the choice C ∼ 10 is sufficient to reach a
conversion efficiency on the order of 2/3, and a value on
the order of approximately 50 makes it possible to con-
vert about three quarters of the thermal energy into electric
energy.

The algebraic behavior of the type 1 − αC−β of this
numerical solution describing the initial equipartition case
reflects the behavior of the particular solutions associated,
respectively, with ϑ = 0 and ϑ = π/2:

η∗ (ϑ = 0) = 1 − C−1/2/
√

2, (69)

η∗ (ϑ = π/2) = 1 − C−1/3. (70)

The efficiency of a real device will depend on the birth
distribution of charged particles both in (ε0, ϑ) space and
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FIG. 12. The current-voltage characteristic for a DEC gener-
ator of this type is initially flat, with little dependence of the
current on the voltage. At higher voltages, the output current
drops as a function of the voltage.

in spatial position (z0, R0). For any birth distribution, it is
clear that this effect will reduce the realizable efficiency.
This can be understood as a limitation on the I -U curve
describing the operation of an adiabatic DEC generator.
The total voltage drop of the configuration can be increased
by one either increasing E or increasing h. For any given
starting condition (ε0, ϑ), if either E or h is increased
beyond some threshold, the particle will not reach the col-
lection plate before its trajectory reverses. Note, however,
that although increasing either E or h will increase the total
voltage drop, and either will eventually cause electrons to
turn before they reach the negative electrode, these two
parameters influence the dynamics in different ways. E and
h both change the total energy that must be extracted before
a particle can traverse a given axial distance, but changing
E also modifies the feedback from the inertial drift.

If all electrons reach the negatively charged electrode,
then the total device current I is set by the rate of ionization
events or the rate of incoming flow of charged particles,
and I is independent of U. However, as U increases, there
is a threshold (which will depend on the birth distribution
of the charged particles and on the size, field strength, and
shape of the configuration) where I will quickly drop off
as a result of electrons turning before they can reach the
negative electrode. Qualitatively, this will produce an I -
U characteristic like the one pictured in Fig. 12, although
one should keep in mind that the details of this curve
will depend not only on the details of the birth distribu-
tion but also on what is held fixed when the voltage is
increased. For any particular case, this curve makes it pos-
sible to determine the highest-power operating point; one
can draw the set of isopower hyperbolae IU = const and
select the one that is tangent to the convex I -U generator
characteristic.

Perpendicular KE model
Parallel KE model

FIG. 13. Numerical validation of the analytic model using a
single-particle simulation. This case had C = 50, from which we
would expect a turning point at t ≈ 1.253τ . The region colored
in by the perpendicular kinetic energy (KE) curve is the result of
fast oscillations due to the gyrophase-dependent orientations of
the Larmor motion and the drift motion.

In the most idealized case, in which the birth distribu-
tion is monoenergetic and all particles are born at the same
spot and with the same ϑ , the I -U curve is a step function
with constant I = I0 for all U < V0, and then I = 0 for all
U ≥ V0 (with V0 corresponding to the threshold at which
the particles turn before reaching the boundary dz/dt = 0).
In this case, the highest-power operating point corresponds
to the corner of the I -U curve, with P = I0 V0. For the case
of a radiation-driven plasma generation, this power would
be a linear function of the absorbed radiation (since this
would determine the total number of ionization events).
From Eq. (47), dz/dt = 0 implies that mE2/B2 = O(kBT),
so V0 = Eh = O(B0vthh), where vth is the thermal velocity.

The previous analytic calculations can be validated
numerically by means of single-particle simulations.
Figure 13 shows one such example.

The simulation shown in Fig. 13 used a single-particle
Boris pusher and had C = 50 and ϑ = ϑEP. Note that for
these parameters, Eq. (65) can be solved numerically to
yield t∗ ≈ 1.253τ . This is consistent with the turning point
seen in the simulation. The fluctuations in the numerically
observed perpendicular kinetic energy for the model are
the result of the gyrations of the particle. Depending on the
gyrophase, the Larmor motion can have either positive or
negative radial components.

The energy in the perpendicular motion can be decom-
posed into gyration energy and drift-motion energy on
average. The kinetic energy used for the model in Fig. 13
includes both ε⊥ and mE2/2B2.

These simulations confirm the validity of the previous
analytic model and point toward the necessity to consider
an additional possibility to convert the cyclotron energy
into the parallel energy. We saw in Sec. IV that a gradient
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FIG. 14. Magnetic flux surfaces in a tokamak, with the last closed flux surface (LCFS) marked.

of the field strength along the field line offers such a possi-
bility, and this optimization strategy will be explored in a
forthcoming study.

VII. RADIATION FLUX AND PLASMA FLOW
HEAT CONVERSION

In this section we briefly describe two types of adiabatic
DEC implementation in 2H-3H tokamak reactors and in
aneutronic p-11B reactors.

In a tokamak reactor, the hot thermonuclear plasma dif-
fuses from the confining closed field line to the open field
lines of the divertor. The last closed flux surface defines the
boundary of the confining toroidal configuration. The set
of diverted field lines defines the open magnetic surfaces
illustrated in Fig. 14.

Far from the X -point line, the magnetic field in the outer
part of the divertor, illustrated in Fig. 14, is toroidal, and
a dedicated set of upper and lower electrodes can polar-
ize these magnetic surfaces such that they become also
equipotential surfaces /1, /2, /3. The (Bi, /j ) coordi-
nates in Fig. 14 become similar to the (µBi, qφj ) energy
coordinates in Fig. 8. The collecting plate can be matched
to the upper and lower / surfaces. In doing so, we have
realized the geometry of a toroidal generator and we can
envision extracting part of the free enthalpy of the divertor
plasma flow in such a configuration. Lowering the tem-
perature in the divertor before the ultimate plasma-solid
material interaction is one of the main problems of toka-
mak physics; here this is achieved along with free enthalpy
extraction. This geometry of an advanced divertor requires
a far more detailed analysis, which is left to future work.
This controlled cooling of the divertor plasma may also be
beneficial to the core plasma inside the last closed flux sur-
face as the control of the temperature gradient might help
to make improved-confinement modes more accessible.

We now consider the case of rotating-mirror p-11B reac-
tors. Because of the high temperature, the thermonuclear

plasma column is strongly radiating both in the microwave
range, as a result of electron cyclotron/synchrotron emis-
sion, and in the UV-X range, as a result of elec-
tron bremsstrahlung. Keeping the axisymmetric geometry
[Fig. 6(b)], we can design a conversion blanket all around
this magnetized radiating plasma column, where the escap-
ing intense radiation will ionize a vapor (e.g., cesium
vapor) and heat the associated plasma. The escaping radi-
ation can also be absorbed by metal target plates (e.g.,
tungsten plates), and the resulting hot metal plate can act
as a hot electron source, whose energy is converted by the
E × B poloidal configuration of the conversion blanket.

Various toroidal, poloidal, and mixed declinations of the
E × B configurations can be adapted to both 2H/3H toka-
mak reactors and in aneutronic p-11B reactors. The identi-
fication of the most relevant designs cannot be addressed
on the basis of the simple discussion of this section, and is
left for a future study.

VIII. CONCLUSION

We suggest a technique for converting power from
plasma and radiation to electricity. A technology that could
efficiently capture and convert power from plasma and
radiation to electricity could be useful in a wide vari-
ety of applications. For example, magnetic confinement
fusion typically involves heating plasmas to temperatures
at which radiative losses can be significant. The ability
to recapture this energy could be most critically impor-
tant for reactors burning aneutronic fuels, which often
require higher temperatures with correspondingly higher
radiative losses. For instance, bremsstrahlung and syn-
chrotron losses are a major hurdle for economical p-11B
fusion [23–26]. In very hot fusion plasmas, measures
have been proposed to suppress this radiation primar-
ily through plasma absorption and redirection to kinetic
energy, as well as through suppression of the population of
high-energy electrons [27–30]. However, the direct energy
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conversion schemes here could, in principle, act synergisti-
cally with these other techniques. The manipulation of the
plasma six-dimensional phase space has been recognized
as necessary for making economical fusion through high-
temperature aneutronic fusion approaches in general [31],
and the techniques proposed here can be imagined work-
ing either separately or in concert with these phase space
techniques.

For a hot plasma such that kBT ∼ ε0, the design of
a generator implies the choice of the geometrical char-
acteristics (R0, l, h) and of the field strengths (E, B0).
We have found that the various physical and geometri-
cal constraints are functions of the two control param-
eters τ = B0R0/E and C = ε0B2

0/mE2. The description
of the poloidal-geometry dynamics requires a third con-
trol parameter, τ0 = L

√
2mε∥0/ε⊥0. The poloidal geometry

displays an additional advantage over the toroidal geome-
try as the cyclotron energy can be continuously converted
into parallel energy. Such a possibility is advantageous
because E × B configurations convert the parallel energy
to dc electric power at a far faster rate than the cyclotron
(perpendicular) energy. The design of an optimal field is
clearly the next question to be addressed to identify effi-
cient E × B conversion schemes for both 2H-3H tokamak
and p-11B advanced reactors.

The idea of poloidal and toroidal DEC rests on the
tendency of the ∇B drift to carry particles in differ-
ent directions depending on the sign of their charge. Its
implementation in p-11B advanced reactors relies on radia-
tive ionization and heating. Radiation can deposit signif-
icant energy, after ionization, in the resulting ions and
electrons.

Note that the transfers of energy considered here—for
example, between kinetic energy and electric fields—are
all adiabatic. This can be contrasted with work (such as the
α-channeling concept [32]) that instead accomplishes this
transfer using resonant interactions.

This adiabatic transfer process—like all energy con-
version processes—will not be perfectly efficient. In this
paper, we have considered two constraints on the perfor-
mance of an adiabatic DEC device. The first is a matter
of geometry: the charged particles need enough space to
give up as much kinetic energy as possible before hit-
ting a boundary of the device. Even in the absence of any
other constraints, this is enough to prevent any realistic
device from attaining perfect efficiency, since progres-
sively greater efficiencies require exponentially increasing
device sizes.

We also considered a dynamical constraint, wherein
inertial drifts eventually slow (and subsequently reverse)
the energy extraction process. The characteristic timescale
involved depends on the parameter C. The highest efficien-
cies require higher values of C.

There are a variety of additional constraints and engi-
neering challenges not considered here. For example, this

kind of device relies on the presence of a large-enough
population of neutral particles to absorb and be ionized by
the incoming radiation. However, if that population were
too large, collisions between charged and neutral particles
would degrade the efficiency of the device.

In addition, a birth distribution of charged particles that
is anything other than a δ function in r, z, ε0, and ϑ
will make it more difficult to efficiently tune the device
parameters. For example, this would mean that differ-
ent particles’ trajectories would turn at different axial and
radial positions.

However, these engineering challenges can likely be
mitigated by careful control over the device geometry and
the composition of the neutral population. The refinement
and optimization of these ideas are planned for future
work. Moreover, even relatively modest efficiencies could
be an exciting development, particularly for applications in
which the relevant radiation has wavelengths not amenable
to other conversion techniques.
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