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ABSTRACT

Particularly for aneutronic fusion schemes, it is advantageous to manipulate the fuel species differently from one another and to expel ash
promptly. The ponderomotive effect can be used to selectively manipulate particles. It is commonly a result of particle–wave interactions and
has a complex dependence on the particle charge and mass, enabling species selectivity. If the plasma is rotating, e.g., due to E� B motion,
the ponderomotive effect can be generated using static (i.e., time-independent) perturbations to the electric and magnetic fields, which can be
significantly cheaper to produce than time-dependent waves. We propose that this feature can be particularly useful in rotating mirror
machines where mirror confinement can be enhanced by rotation, both through centrifugal confinement and additionally through a ponder-
omotive interaction with a static azimuthal perturbation. We identify specific static perturbations that generate a ponderomotive barrier and
other perturbations that can generate either a repulsive barrier or an attractive ponderomotive well, which can be used to attract particles of a
certain species while repelling another. We identify the regimes in which the ponderomotive potential can enhance net plasma confinement
and the regime in which plasma confinement is not enhanced. The viability of each of these effects is found to be dependent on the specifics
of the rotation profile and the resultant dispersion relation in the rotating plasma.

VC 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivs 4.0 International (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/). https://doi.org/10.1063/5.0263066

I. INTRODUCTION

Nuclear fusion of a proton-boron-11 fuel mixture, if possible, has
a large upside potential. The fuel components are plentiful, easy to
acquire, and require only a relatively simple isotope separation. The
triple a reaction does not produce neutrons, causing no activation of
reactor components. On the downside, the maximal cross section of
this reaction lies at 600 keV, and steady state plasmas at these tempera-
tures can lose significant power in Bremsstrahlung radiation. This was
thought to be an insurmountable roadblock in the path of proton-
boron-11 fusion.1–5

Recent work regarding the reaction cross section6 prompted reex-
amination of proton-boron-11 as a viable reaction for steady state
fusion.7–16 It appears that while power loss through photon radiation
remains a challenge, it is possible to generate more fusion power than
the expected radiation losses. In addition, some clever phase-space
engineering could be used to further mitigate the severity of the radia-
tive losses.17

By “phase-space engineering,” we mean here any of the several
methods of manipulating the particle distribution function either for
the fusion fuel or the fusion ash. For the fuel, creating or maintaining

non-Maxwellian features in the distribution is often advantageous, and
resonant wave-particle interaction can be exploited to heat the
plasma,18–23 drive cross field transport, or generate an electric current
parallel to the field.24 The energetic fusion ash can be used to maintain
non-Maxwellian features in the fuel population and be expelled at the
same time.25–28

The ponderomotive effect is one method of non-resonant or adia-
batic phase-space engineering. It can be used to generate an effective
potential in the plasma and is often the result of non-resonant particle–
wave interaction.29–35 Its magnitude is largest near resonance35 and has
a nonlinear dependence on particle charge and mass, gyroradius, as well
as the field structure and polarization. The ponderomotive potential is
flexible, has been used to manipulate particles for various purposes,36,37

and appears in nature at various scales.38,39 In particular, it can generate
potentials of either sign, i.e., can be repulsive or attractive.40

This effective potential in the particle path is of use not only in
magnetic mirrors41–47 but also in other devices using open magnetic
field line configurations, such as isotope and mass separators,48–61

which selectively confine different ion species based on their charge
and mass.
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Other methods for phase-space engineering applying the ponder-
omotive effect with some resonance crossing have been proposed,62,63

where the sign-change of the ponderomotive interaction is employed
to produce a diode-like potential in the plasma.

The oscillations in the particle dynamics generating the pondero-
motive effect could be generated by plasma flowing through static per-
turbations,64–66 which are time-dependent waves in the moving frame.
In Fig. 1, we present a sketch of rotating magnetic mirror machine
with a sketch of the effective potentials affecting particles that bounce
along the axis of the configuration. The sketch in Fig. 2 illustrates the
field configuration near the ponderomotive barrier electrodes with

plasma flowing parallel to the boundary of a domain, interacting with
static electromagnetic field perturbation. This can be realized in a
cylindrical geometry as illustrated in Fig. 1, or simple slab models
could be used for ease of calculations.66,67 In this scenario, we propose
a positive (repulsive) ponderomotive potential as an end-plug to the
configuration, but an attractive potential could also be applied near the
center of the device as well.

Static perturbations are simpler and cheaper to implement over
radio frequency waves. Plasma rotation in magnetic mirrors and mass
separators is useful on its own, and combining the two is a way to eco-
nomically generate a useful effect.

In this work, we assume that the plasma rotation has been
arranged by separate means. Common methods to induce plasma
rotation include concentric end-electrodes that are biased to produce a
radial potential gradient, which may propagate from the electrodes
into the plasma. The isorotation theorem68 provides for the near uni-
form rotation of the plasma on each drift surface. However, applying a
perturbation at the ends of the device in order to generate a pondero-
motive effect renders this approach more complicated, as drift surfaces
would not remain axisymmetric in the presence of a non-
axisymmetric perturbation. Some form of wave-induced rotation
would be necessary.

In this work, we make the comparison between the adiabatic
phase space engineering mechanisms, which are available to manipu-
late the plasma in linear magnetic confinement devices. The differ-
ences between particle dynamics in a cylindrical geometry and a slab
geometry are pointed out. We find that for a certain type of perturba-
tion, which appears as an X wave in a frame moving with the flow, it is
advantageous for plasma confinement to have the dynamics be near
resonant with the ion 1st cyclotron resonance, rather than with the 0th
harmonic.

This paper is organized as follows: In Sec. II, we discuss adiabatic
processes in open field line configurations. We approach the subject from
a Hamiltonian dynamics perspective and describe the representation of

FIG. 1. A schematic for the application of ponderomotive barriers in rotating mirror devices using static fields. In the bottom figure, a sketch of rotating magnetic mirror machine,
where the plasma rotating around the axis of the configuration. Magnetic flux surfaces are bent in the usual way to produce a magnetic mirror, with larger magnetic field at the
mirror throats, and lower magnetic fields are in the mid-plane. At the mirror throats, we add electrodes and coils to apply a static electromagnetic perturbation to generate a pon-
deromotive end-plug. In the top figure, a schematic of the potential barriers affecting particles bouncing along the axis of the configuration, and the confined particle population.

FIG. 2. Illustration of plasma flow through a static perturbation. The arrow indicates
the flow direction, parallel to the domain boundary, and the wave-vector of the per-
turbation has to have a component in the direction of the flow. The horizontal coordi-
nate in this illustration can be either the radial position for a realistic cylindrical
case, or an equivalent for a slab analog. The vertical coordinate is the azimuthal
coordinate or its analog.
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the Hamiltonian in different coordinates. In Sec. III, we look into the pos-
sible perturbations consistent with plasma flowing over a set of static
boundary conditions at the edge of the plasma. In Sec. IV, we discuss the
ponderomotive potentials generated by these perturbations.

II. ADIABATIC PROCESSES

Non-resonant, or adiabatic, methods to manipulate the particle
distribution function present themselves as “quasipotential” terms in
the oscillation center Hamiltonian.

We use the term “quasipotential” to describe a term in the
Hamiltonian that may seem like a potential energy term, but is a con-
sequence of the particle dynamics instead of a true potential energy.
These terms appear when we use a coordinate transformation to
reduce the dimensionality of a Hamiltonian. In the cases of interest in
this work, we transform a three-dimensional dynamics into an approx-
imate one-dimensional system. These “quasipotentials” depend on the
particle position in phase space, i.e., a particle with a large first adia-
batic invariant would experience a larger potential barrier due to the
magnetic mirror effect than a particle with a small first adiabatic
invariant.

They belong to one of two categories: solvable dynamics gener-
ated by conserved adiabatic invariants and continuously changing fre-
quencies and the ponderomotive effect generated by oscillations
around the solvable trajectory in phase space.

Adiabatic interactions keep the total particle energy, including
potential energy, approximately constant. The particle energy can
remain exactly constant, if there is no explicit time dependence in the
Hamiltonian due to Noether’s theorem,69 because the energy is the
conjugate “momentum” to the time coordinate.

The Hamiltonian for a particle in electromagnetic fields that are
derived from the electric potentialU and the vector potential A is

H ¼ p� eAðx; tÞð Þ2
2m

þ eUðx; tÞ; (1)

with x and p being the Cartesian spatial coordinates and their conju-
gate momentum, respectively, e and m are the particle charge and
mass, respectively, and t is the time. This is equivalent to

H ¼ 1
2
mv2x þ

1
2
mv2y þ

1
2
mv2z þ eUðx; tÞ: (2)

When looking at axisymmetric open magnetic field line configura-
tions, with the vector potential having only a / directed component,
this Hamiltonian could also be written using cylindrical coordinates as

H ¼ 1
2m

p2z þ p2r þ
ðp/ � erA/Þ2

r2

� �
þ eUðr; z; tÞ; (3)

using the r, /, z coordinates. In an axisymmetric system, H does not
depend on /, and p/ is a Noether invariant. Radial particle confine-
ment is achieved due to the conservation of p/, using Hamilton’s
equations

_/ ¼ @H
@p/

¼ p/ � erA/

mr2
: (4)

With A/ � 1
2 rBz to leading order in r, and Bz being the z component

of the magnetic field, for a constant p/, the radial extent of motion is
limited, i.e., particles perform helical motion around field lines and

remain at a gyroradius distance from a field line, particle confinement
in these configurations depends on the presence of a sufficient poten-
tial barrier in the path of the particle, larger than its parallel kinetic
energy. Axial confinement is determined by a reflection along z, or
_z ¼ pz ¼ 0. For a fixed value of H, this means energy moving from
the 1=2mv2z term in Eq. (2) or (3) to any of the other terms.

The Hamiltonian could also be expressed in terms of action-
angle coordinates. For particle motion in axisymmetric electromag-
netic fields, the particle position can be defined by the gyrophase h and
the magnetic moment l ¼ 1

2mXq2 (the first adiabatic invariant), with
q being the gyroradius and X a gyrofrequency, as well as the canonical
angular momentum, and its conjugate phase, as well as the axial coor-
dinate and its conjugate momentum. The Hamiltonian becomes

H ¼ p2z
2m

þ Xlþ xrotp/ þ Uz þ
X

Vm;ne
iðm/þnhÞ; (5)

where xrot is the rotation frequency around the axis of the configura-
tion andUz is an effective potential energy along z. The terms included
in Uz are solvable components of the motion that do not depend on
the phases h and /. An example of such a term could be generated by
an addition of an electric potential term such as x2f ðzÞ to Eq. (8). The
sum in the last terms is taken over all m, n not both equal zero and
describes the non-solvable, as well as the non-axisymmetric terms.
Vm;n could depend on z, pz , l, and p/. Example derivations of this
form are given in Sec. III, for both a slab and a cylindrical geometry.

The solvable part of the Hamiltonian consists of the first 4 terms in
Eq. (5). If the frequencies X and xrot or the potential energy Uz depend
on z, these terms would be expressed as an effective potential due to
Hamilton’s equations. The effective potential barrier, measured from the
point of minimum field, labeled with the index 0, to the point of maxi-
mum fields would be ðXmax � X0Þlþ ðxrot;max � xrot;0Þp/ þ Uz .
Figure 3 illustrates energy transfer from the axial degree of freedom to
the gyromotion degree of freedom (due to the dependence of X on z) or
the rotation degree of freedom (due to the dependence of xrot on z), as
well as the ponderomotive effect (due to the dependence of Vm;n on z).

Particles are axially confined if their z-directed kinetic energy at

minimum field Wz0 ¼ p2z0
2m is smaller than the effective potential barrier.

Often, we call the first term in the Hamiltonian, the perpendicular

kinetic energyW? ¼ Xl. Roughly speaking, the first two terms, Ekin ¼
p2z
2m þ Xl can be thought of as the kinetic energy as these are the terms
contributing to the plasma pressure. The term xrotp/ can be thought of
as composed largely of the potential energy, even though this term
encompass the collective plasma flow. Writing the Hamiltonian in
action-angle form does mixes the potential and kinetic parts of the
energy which are cleanly separated in Eq. (2) into the actions and fre-
quencies in Eq. (5). Wemake this statement apparent in Subsection III B.

Unconfined particles escape the device, leaving a depleted region
of phase space. The depleted region of phase space is determined by the
diamagnetic effective potential34,70 and other effective potential terms
such as the rotating mirror confinement for rotating mirrors.71,72

The phase space of a simple magnetic mirror is presented in
Fig. 4. The loss cone, which is an anisotropic feature, prevents the dis-
tribution function from relaxing to a Maxwellian, when Uz is compa-
rable with the temperature.73 The value of Uz is not necessarily the
same for all species. When it is an electrostatic potential, for example,
it has opposite signs for ions and electrons.
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The ponderomotive effect can be derived from oscillating terms
in the Hamiltonian by applying a coordinate transformation,74–77

which is designed to remove the phase-dependence from the trans-
formed Hamiltonian. This coordinate transformation is useful when
there is a separation of time scales between the envelope Vm;n changing
and the gyromotion and rotation frequencies. In this case, the
average action of the oscillating terms is the ponderomotive effect. The
ponderomotive effect can act as an additional potential term to
Uk ¼ Uz þ Upond.

In magnetic mirror machines, the loss cone can be responsible
for particle and energy loss both on the diffusion timescale and on
faster time scales. On the diffusion timescale, pitch angle scattering of
particles into the loss cone is a particle and energy loss mechanism in
stable regular mirrors. On faster time scales, mirror instabilities can be
triggered in the presence of a loss cone.78,79 The effect of the loss cone
can be mitigated by increasing Uk, preferably for all species.

In order to apply a ponderomotive potential barrier in a rotating
plasma using static fields, we have to apply a static electromagnetic
perturbation to a magnetic mirror configuration.

III. STATIC PERTURBATIONS TO A FLOWING PLASMA

In recent works, we looked into applying perturbation to two dif-
ferent types of plasmas. In Ref. 67, we investigated a simplified slab

model and dense plasmas. In Refs. 64 and 65, the works investigated a
cylindrical geometry and a tenuous plasma.

A. Slab geometry

The slab system we consider has the same geometry described in
Fig. 2, with x being the “radial” direction, y being the “azimuthal”
direction, and z being the “axial” direction. Plasma rotation around the
device axis is analogous to flow in the y direction. The domain of solu-
tion is the half volume x < 0 in which the plasma resides.

The single particle picture in the slab is simple. Particles interact-
ing with uniform crossed electric and magnetic fields perform uniform
drift motion. Using the generating function F ¼ Fðpx; y; PY ; hÞ,

F ¼ p2x
2mX

coth� px
PY
mX

þ y PY �m
E0
B0

� �
; (6)

for the canonical transformation of the ðx; y; px; pyÞ coordinates to the
ðh;Y ; l; PYÞ coordinates such that the gyroradius q ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2l=mX
p

and

x ¼ � @F
@px

¼ � px
mX

cot hþ PY
mX

¼ q cos hþ PY
mX

;

Y ¼ @F
@PY

¼ y � px
mX

; ) y ¼ Y � q sin h;

l ¼ � @F
@h

¼ p2x
2mX sin 2h

) px ¼ �mXq sin h;

py ¼ @F
@y

¼ PY �m
E0
B0

¼ PY þmv:

(7)

FIG. 3. Illustration of the energy transfer from the axial ballistic motion into the other
components of the Hamiltonian due to various processes.

FIG. 4. Phase space of particles in a magnetic mirror. Trapped particles satisfy
Wk0 < ðR � 1ÞW?0 þ Uk, with Wk0 being the parallel kinetic energy at the
minimum field, W?0 being the perpendicular kinetic energy at the minimum field,
R ¼ Xmax=X0 being the mirror ratio, and Uk being an effective potential barrier.
The effective potential can be any combination of electric potential, centrifugal
potential, and ponderomotive potential. The the untrapped region, “loss cone”, is a
nonisotropic feature preventing the distribution from relaxing to a Maxwellian, for Uk
comparable with the temperature.
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The variables of this transformation are understood as Y denoting
the y coordinate of the gyrocenter, and l being a measure of the
gyroradius and the action conjugate to h, the gyrophase. The x posi-
tion of the gyrocenter is PY=mX, with PY being the conjugate
momentum to Y.

The Hamiltonian in Eq. (1), with A0 ¼ xB0ey and U0 ¼ �xE0,
i.e., with the fields B0 ¼ B0ez and E0 ¼ E0ex is transformed into

H ¼ p2z
2m

þ Xlþ PYvþ 1
2
mv2; v ¼ � E0

B0
: (8)

With X being the cyclotron frequency, with opposite signs for ions
and electrons, and the flow velocity v being species-independent. The
result here is that all plasma species flow together in these fields.

We interpret plasma pressure to be related to the energy held by

the first two terms in the Hamiltonian,80 p ¼ n
3 h p

2
z

2m þ Xli. Here, p is
the pressure, n is the density, and the brackets are averaging over the
distribution function.

Because the plasma flows together, the question of which pertur-
bations are consistent with flowing plasma can be answered by a frame
transformation, as done in Refs. 66 and 67. The procedure undertaken
in these papers is to start with the dispersion relation of a stationary
(not flowing) plasma. This is a moving frame moving with the plasma.
We find the solutions to this dispersion, and the polarization of the
electromagnetic fields in this frame, and perform a Lorentz boost into
the lab frame, which is a frame moving with velocity �vey compared
to the moving frame.

The class of perturbations, which interact with a flowing
plasma in a way consistent with the ideas described above, is one
with k � v 6¼ 0, i.e., a wave with some ky 6¼ 0, with k being the
wave vector.

The Lorentz transformation in a flat spacetime of signature
�;þ;þ;þ of a wave vector k and frequency x to a frame moving
with the plasma k0; x0 is

k0 ¼ kx cðky � bx=cÞ kz
� �

; (9)

x0 ¼ cðx� vkyÞ; (10)

with b ¼ v=c and c ¼ ð1� b2Þ�1=2. That is, if the perturbation is
time-independent in the lab (not primed) frame,

x ¼ 0; (11)

k0 ¼ kx cky kz
� �

; (12)

x0 ¼ �cvky: (13)

A perturbation applied at the x ¼ 0 plane would have the ky and
kz components of the wave vector dictated by the boundary condi-
tions, and the dispersion relation would determine the permissible val-
ues of kx0 ¼ kx and the polarization. Even though it is tractable to
consider any kz , we elect to restrict ourselves to the case of kz ¼ 0 for
simplicity.

The dispersion relation for a simple uniform cold fluid plasma is
given by18

S� N2
y0 � N2

z0 �iDþ Nx0Ny0 Nx0Nz0

iDþ Nx0Ny0 S� N2
x0 � N2

z0 Ny0Nz0

Nx0Nz0 Ny0Nz0 P � N2
x0 � N2

y0

0
BB@

1
CCAh0 ¼ 0; (14)

with

S ¼ 1
2
ðRþ LÞ; D ¼ 1

2
ðR� LÞ; (15)

R; L ¼ 1�
X
s

x02
ps

x0ðx0 6X0
sÞ
; P ¼ 1�

X
s

x02
ps

x02 ; (16)

where N0 ¼ k0c=x0 is the refractive index in the primed frame, h0 is
the electric field (complex) polarization vector, x02

ps ¼ Z2
s e

2n0s=�0ms is

the plasma frequency of species s, n0s is its number density in the
primed frame, and X0

s ¼ ZseB0
0=ms is its cyclotron frequency in the

primed frame.
The solutions to this dispersion with Nz0 ¼ 0 are the O wave and

the X wave.

1. O wave

Writing ky ¼ k, the dispersion of the O wave in the frame mov-
ing with the flow

N2
x0 ¼ P � b�2; (17)

kx0 ¼ �i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ

X
s

x02
ps

c2

s
¼ �ikjO; (18)

jO ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

X
s

x02
ps

c2k2

s
: (19)

The wave vector component in the x0 direction being imaginary ren-
ders this evanescent in this direction. The wave electric field polariza-
tion for the O wave is

E0
1=jE0

1j ¼ ez0 : (20)

The magnetic field B0 is seen in the moving frame as

B0
0 ¼

B0

c
ez0 : (21)

The wave vector component in the x direction is dominated by the
electron response, and by the triangle inequality,

jkx0 j >
ffiffiffiffiffiffiffi
x02

pe

c2

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2ne

c�0mec2

s
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ne

c 1014cm�3

r
18:8 cm�1: (22)

From Eq. (22), we see that the perturbation is evanescent on a short
length scale, which is called the electron skin depth. This perturbation
can be of relevance in the lab using tenuous plasma regimes, where
electron density is a few orders of magnitude smaller than 1014cm�3,
or using relativistic flow rates such that c � 1.

The electromagnetic potential of this perturbation in the moving
frame is, up to a phase

A0
O ¼ � E0

1ðzÞ
ckv

ekjOx
0
sinðckðy0 þ vt0ÞÞez0 : (23)

We point that we consider the x0 < 0 region, with k; jO > 0, i.e.,

ekjOx
0
< 1. The electromagnetic fields in the limit of @E

0
1

@z ¼ 0 are

E0
O ¼ E0

1e
kjOx0 cosðckðy0 þ vt0ÞÞez0 ; (24)
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B0
O ¼�E0

1

cv
ekjOx

0 � c sinðckðy0 þ vt0ÞÞex0 þ jO cosðckðy0 þ vt0ÞÞey0
� �

:

(25)

A Lorentz boost of the wave electromagnetic fields back to the lab
frame yields of the time-independent perturbation is

EO ¼ 0; (26)

BO ¼ B1e
kjOx sin kyex þ jO cos kyey

� �
; (27)

with B1 ¼ �E0
1=cv. This perturbation has no electric field component,

rendering it magnetostatic.

2. X wave

The second solution to the dispersion relation is the X wave. The
dispersion of the X wave in the frame moving with the flow is

N2
x0 ¼ S� D2

S
� 1

b2
; (28)

which can be positive, negative, or zero.
When N2

x0 < 0, the X wave is evanescent in x0, and

kx0 ¼ �ik
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2c2jN2

x0 j
q

¼ �ikjX ; (29)

jX ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2c2ðS� 1Þ þ b2c2

D2

S

r
: (30)

Even for in the evanescent regime, the penetration length is generally
much longer than for the O wave. The electric field is oriented in the
x � y plane, and its polarization now depends on the value of b, as
well as S and D. It is purely imaginary, shifting continuously from cir-
cular to elliptic, with

p ¼ hx0

hy0
¼ i

cb2Dþ jX
cb2S� c

; hz0 ¼ 0: (31)

In the low-flow and low density limits, p ! �i, which is a left-handed
circular polarization.

When N2
x0 > 0, the X wave can propagate in the slab. The polari-

zation becomes complex with both real and imaginary components.
This is a regime of lesser interest due to limited application in a cylin-
drical device. Additionally, for a finite plasma, the penetration length
of the evanescent regime is sufficient.

The electromagnetic potential of this perturbation in the moving
frame is, up to a phase

A0
X ¼ R �E1ðzÞ

kcv

pex0 þ ey0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jpj2 þ 1

q ekjXx
0þikcðy0þvt0Þ

2
4

3
5; (32)

and the electromagnetic fields in the limit of @E
0
1

@z ¼ 0 are

E0
X ¼ R iE1

pex0 þ ey0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jpj2 þ 1

q ekjXx
0þikcðy0þvt0Þ

2
4

3
5; (33)

B0
X ¼ � E1

cv

jX þ cI p½ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jpj2 þ 1

q ekjXx
0
cosðkcðy0 þ vt0ÞÞez0 ; (34)

with R½f � being the real part of f and I½f � being the imaginary part
of f.

We can decompose E0
X to the left eL0 ¼ ðex0 þ iey0 Þ=

ffiffiffi
2

p
, right

eR0 ¼ ðex0 � iey0 Þ=
ffiffiffi
2

p
and linear polarizations by

EL0 ¼ 1ffiffiffi
2

p I p½ � � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jpj2 þ 1

q ; ER0 ¼ 1ffiffiffi
2

p I p½ � þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jpj2 þ 1

q ; (35)

Ex0 ¼
R p½ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jpj2 þ 1

q ; (36)

with the linear polarization appearing only in the propagating regime.
An example to the dispersion of an electron-proton quasi-neutral

plasma, of fusion-relevant density (if not composition) is plotted
in Fig. 5, with the blue curve representing the evanescent regime, and
the orange curve representing the propagating regime, from Eq. (28).
The polarization is represented by the squares of the coefficients in
Eqs. (35) and (36) in Fig. 6. This is a simple plasma without any reso-
nant interactions in the plotted parameter range. The wave polariza-
tion switches from left to right in the case of flow in the positive y
direction.

In contrast, a second example—the dispersion of an electron-pro-
ton-boron11 quasi-neutral plasma of the same electron density is plot-
ted in Fig. 7, and the polarization in Fig. 8. In this case, the boron
cyclotron resonance is visible as near vertical features in Fig. 7. The
wave polarization varies much more rapidly in this case.

The Lorentz transform of these fields to the lab frame gives

EX ¼ E1ekjXxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jpj2 þ 1

q jX sin kyex þ cos kyey
� �

; (37)

BX ¼ � E1
v

jX þ I p½ �=cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jpj2 þ 1

q ekjXx sin kyez: (38)

FIG. 5. The exact dispersion relation, kx0 as a function of b ¼ v=c, for a quasi-
neutral electron-proton plasma, with ne ¼ np ¼ 1020½m�3�, B0 ¼ 10½T�, and
k ¼ 40½m�1�. The cutoffs appears in b ¼ 60:07, and between them the wave is
evanescent. Away from the cutoffs, the wave is propagating.
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In the low-flow rate or low density limits, this perturbation is
dominated by its electric component in Eq. (37) over its magnetic
component. While the magnetic component in Eq. (38) is never
exactly zero, this is nearly an electrostatic perturbation.

In the low density limit, the dispersion relation has S ! 1 and
D ! 0. In this limit, jX ! 1 from Eq. (30) and I½p�=c ! �1 for all
b from Eq. (31). The pre-factor jX þ I½p�=c in Eq. (38) therefore goes
to 0 for any v 6¼ 0.

The low flow limit is the limit in which the wave frequency in the
frame moving with the flow is smaller than the smallest cyclotron
frequency of any species in the plasma. For simplicity, we also take

c ’ 1. In this case, the dispersion terms are near constant S ! 1þ cA

¼ 1þP
x02

ps=X
2
s and D ! 0. In this limit, jX !

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2cA

q
from

Eq. (30) and I½p�=c ! �
ffiffiffiffiffiffiffiffiffiffiffi
1�b2cA

p
1�b2S

from Eq. (31). The pre-factor

jX þ I p½ �=c
v

� � b2

v
jXS

1� b2S
¼ � v

c2
jXS

1� b2S

in Eq. (38) is linear in v and therefore goes to 0 as v tends toward 0.

B. Cylindrical geometry

The situation in the cylinder can be more involved than in the
slab. We start again from the Hamiltonian given in Eq. (1), this time
with potentials is given by

U ¼ 1
2
r2B0xE�B ¼ 1

2
B0xE�Bðx2 þ y2Þ; (39)

A ¼ 1
2
rB0e/ ¼ 1

2
ðxey � yexÞB0; (40)

which generate the electric and magnetic fields E ¼ �rB0xE�Ber and
B ¼ B0ez . The frequency xE�B is a parameter defining the strength of
the electric field which generate the rotation.

Using the cyclotron frequencyX, we define the effective cyclotron
frequency in this geometry81,82

XB ¼ signðXÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ 4xE�BX

q
: (41)

Particles are confined in these fields as long as XB 2 R, or
xE�B=X > �1=4.

Using the generating function F2 ¼ F2ðpx; y; h1; h2Þ,
F2 ¼ 1

8mXB
ð2px �mXByÞ2cotðh1Þ þ 1

8mXB
ð2px þmXByÞ2cotðh2Þ;

(42)

FIG. 7. The exact dispersion relation, kx0 as a function of b ¼ v=c, for a quasi-
neutral electron-proton-boron11 plasma, with np ¼ 0:5� 1020½m�3�, nb11 ¼ 0:1
�1020½m�3�, and B0 ¼ 10½T�, and k ¼ 100½m�1�, plotted in solid lines. The wave
is evanescent in the regions plotted in blue, and is propagating in the regions plot-
ted in orange. In here, a pair of a new cutoff and a resonance appear around
b ¼ 60:0215. The low-frequency approximation is plotted in dashed lines.

FIG. 8. Wave polarization squared in the moving frame, as a function of b, for the
same parameters defined in Fig. 7. Plotted are the squares of the coefficients of the
unit vector in the electric field direction. In the evanescent regime, the wave is com-
posed of only right and left polarization, without a phase shift. In the propagating
regime, the wave acquires a phase-shift, essentially splitting into three components.
See Fig. 10 for the ponderomotive potentials.

FIG. 6. Wave polarization squared in the moving frame, as a function of b, for the
same parameters defined in Fig. 5. Plotted are the squares of the coefficients of the
unit vector in the electric field direction. In the evanescent regime, the wave is com-
posed of only right and left polarization, without a phase shift. In the propagating
regime, the wave acquires a phase-shift, essentially splitting into three components.
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for the canonical transformation of the ðx; y; px; pyÞ coordinates to
the ðh1; h2; I1; I2Þ coordinates such that the gyrocenter radius is RG

¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2I1=mXB

p
and the gyroradius is q ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2I2=mXB

p
, and

x ¼ RG cos h1 � q cos h2; y ¼ RG sin h1 þ q sin h2;

px ¼ �RG sin h1 þ q sin h2; py ¼ RG cos h1 þ q cos h2:
(43)

A second canonical transformation step using F3 ¼ F3ðI1; I2;/; hÞ
transforms I1 and I2 into the first adiabatic invariant l and the canoni-
cal angular momentum p/,

F3 ¼ �ðI1 � I2Þ/� I2h; (44)

p/ ¼ I1 � I2; / ¼ h1

l0 ¼ I2; h ¼ h1 þ h2:
(45)

At the end of these transformations, the Hamiltonian becomes

H ¼ p2z
2m

þ XBlþ xrotp/; (46)

with the rotation frequency around the device being

xrot ¼ 1
2
ðXB � XÞ ¼ xE�B þ 1

2
XB �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2

B þ 4x2
E�B

q� �
: (47)

In the event where xE�B is a constant, but B0 is a function of z, the
rotation frequency xrot is not a constant. This effect generates the cen-
trifugal potential in the presence of isorotating drift surfaces.

In the limits of xE�B < X and q < RG, we can look at the origin
of the xrotp/ term. Evidently, xrot ¼ xE�B � ðx2

E�B=XÞ
þOðx4

E�B=X
3Þ, and p/ ¼ 1=2mXBðR2

G � q2Þ � 1=2mðXþ 2xE�BÞ
R2
G. Together, the largest contribution to xrotp/ is given by

1=2mXxE�BR2
G, which is equal to the potential energy in Eq. (39), for

the radial position of the gyrocenter coordinate RG. The subsequent
term in the expression for xrotp/ gives the kinetic energy in the rota-
tion at the gyrocenter position 1=2mx2

E�BR
2
G.

The centrifugal potential which assists in the axial confinement of
particles can be written as mxrotðzÞXBðR2

G � q2Þ=2. It has a small
effect on particles with small azimuthal canonical angular momentum,
e.g., particles with small gyroradius near the axis of the configuration.
The largest effect would be on particles with small gyroradius that
rotate around the machine on the drift surface with the largest radius.
It is fortunate that rotating plasma systems tend to push the plasma
into these outer drift surfaces by the action of the centrifugal force,
generating an annular plasma density profile.83,84

We expect to be in the limit ofxE�B � XB;X.
The main consequence of the solution to the motion in crossed

fields in the cylinder is that the flow velocity around the device rxrot , is
no longer the same for all species as the flow velocity was in the slab.
As such, the same trick of using a frame transformation would not
work in the cylinder, for the reason that there is no frame in which the
plasma is stationary. In addition, the motion around a cylinder would
generate a non-inertial frame transformation.

Additionally, this difference in flow velocities between species can
be observed as an azimuthal current in the plasma. This current would
render the magnetic field non uniform, B0 ¼ B0ðrÞ, which complicates
the solution further. This would also be the effect of plasma pressure of
different species that cannot balanced by a radial electric field. We shall
investigate such effects in a future publication.

However, we did take a useful piece of information from the
slab—in the tenuous plasma limit and in the low flow limit, a perturba-
tion to the plasma is close to vacuum fields.

In the vacuum limit, we can apply either an electric or magnetic
multipole fields, which are analogous to the O wave and the X wave in
the slab

AO ¼ �B1
R
n

r
R

� �n

cos n/ez; r < R; (48)

BO ¼ B1
r
R

� �n�1

sin n/ð Þer þ cos n/ð Þe/
� �

; r < R; (49)

or

UX ¼ E1
R
n

r
R

� �n

sin n/ð Þ; r < R; (50)

EX ¼ E1
r
R

� �n�1

sin n/ð Þer þ cos n/ð Þe/
� �

; r < R: (51)

In the cylinder, the wave vector component ky becomes n=R when
n 2 N.

IV. PONDEROMOTIVE POTENTIALS

In order to derive the ponderomotive potential for a perturbation,
we look at the contribution of the perturbation to the Hamiltonian in
action-angle coordinates. This can be achieved by taking the perturba-
tion Hamiltonian to be

H1 ¼ � p � eA1

m
þ e2A2

1

2m
þ eU1 (52)

with the appropriate A1 andU1 for the perturbation.
For a ponderomotive potential, we require a separation of time

scales. In the slab, this is ���� @H1

@z
vz

���� �
���� @H1

@Y
v

����; (53)

and in the cylinder, ���� @H1

@z
vz

���� �
���� @H1

@/
xrot

����: (54)

Another requirement is for the beat period between the gyro
motion harmonics and the interaction with the perturbations to be
smooth. In the slab,

8‘ 2 N0 :

���� vz
‘X� vk

1
L

���� � 1; (55)

and in the cylinder,

8 ‘ 2 N0; 0 	 ‘ 	 n :

���� vz
‘XB � nxrot

1
L

���� � 1; (56)

8‘ 2 N0; 0 	 ‘ 	 n :

���� vz
‘XB � 2nxrot

1
L

���� � 1; (57)

with L being the ramp-up length scale of the perturbation.
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The velocity vz is the z-directed velocity of particles interacting
with the perturbation, which is reduced from the velocity in the mini-
mum field region of the magnetic mirror by the interaction of the par-
ticle with the mirror potential and centrifugal potential. We can
estimate confinement of all particles with up to three ion temperatures
on the midplane, with zero gyroradius, 12mv2z;midplane ¼ 3Ti. Near the

end plug, the velocity is 1
2mv2z ¼ 3Ti � Dxrotp/ 	 Upond, where

Dxrot ¼ xrot;max � xrot;0 along a drift surface as a function of z. The
ponderomotive potential barrier itself is proportional to the perturba-
tion amplitude squared (i.e., Upond / E2

1 or Upond / B2
1). Then selec-

tion of the lengthscale of ramp up L determines the distance from the
resonance that can be achieved in a particular implementation.

A. Magnetostatic perturbation

For a magnetostatic perturbation with AO k ez , the perturbation
Hamiltonian consists of a term �pzeAO=m which does not contribute
to the ponderomotive potential but generates a mass modification
term in the dynamics, and a term A2

O=2m. This second term generates
a ponderomotive potential term that is to leading order in the pertur-
bation amplitude simply hA2

O=2mi with the triangular brackets denot-
ing an average over the oscillations.

In order to take into account the leading order effects for small
but nonzero gyroradius, the term A2

O=2m in the Hamiltonian has to be
Fourier expanded into a series in h after transformation to the action-
angle variables using Eqs. (7) and (43) and (45). The ponderomotive
potential for the magnetostatic perturbation in the slab is

Upond;O ¼ B2
1e

2kjOX

4mk2
I0ð2kjOqÞ; (58)

with I0 being the modified Bessel function of the first kind of order 0
and X ¼ PY=mX. For the cylinder, the expression is possibly simpler,

Upond;O ¼ B2
1

4m
R2

n2
R2
G þ q2

R2

� �n

: (59)

This ponderomotive potential is always positive, i.e., repulsive,
and repels particles from regions of high B1.

The ponderomotive potential described in Eq. (59) is small for
particles near the axis of the machine and largest for particles near the

edge, in a similar manner to the centrifugal potential, albeit more pro-
nounced. As mentioned in the discussion for the centrifugal potential,
the plasma tends to form an annular shape and be concentrated where
the perturbation would have the largest amplitude. In practice, one
would select a drift surface RG and a desired potential barrier height,
such that particles that drift along all surfaces with larger radius are
confined.

Comparison of the added axial confinement due to the applica-
tion of this type of magnetostatic ponderomotive potential and the
added axial confinement due to increased magnetic field strength
depend on the particle position in phase space. The ratio between the
expression in Eq. (59) and the magnetic mirror and centrifugal con-
finement effects is

Upond;O

lDXB þ Dxrotp/
¼ B2

1

4m
R2

n2
2

mXBR2

� �n p/ þ 2lð Þn
DXBlþ Dxrotp/

;

where DXB ¼ XB;max � XB;0 along a drift surface as a function of z.
For an increase in the mirror magnetic field by B0 ! B0 þ B1, the
change in XB can be approximated as DXB � eB1=m if the rotation
speed is small, and Dxrot � 0 in this limit. We end up with an
expression

Upond;O

lDXB þ Dxrotp/
/ B1

p/ þ 2lð Þn
l

;

that strongly depends on the azimuthal angular momentum and has
an outstanding effect on particles with small gyroradius.

It is interesting to note that the Fourier expansion of the
Hamiltonian in the slab case is a sum with infinite terms, while in the
cylinder the sum ends up having finitely many terms.

The ponderomotive potential is generated in this case by oscilla-
tions along the z direction. This is due to the unbalanced force gener-
ated by vyey � Bxex ¼ �vyB1 cosðkvytÞez . This can be observed in
Fig. 9, where the kinetic energy in the z degree of freedom rises as the
particle interacts with the perturbation potential, while the energy in
the ballistic degree of freedom decreases in approximately the same
amount as the ponderomotive potential. This figure was obtained by a
full-orbit numerical simulation using a second-order generalization of
Boris’ method,85–87 using the LOOPP code which was used in several
of our previous publications.64,65,67,88,89

FIG. 9. Particle trajectory interacting with a magnetostatic ponderomotive barrier. In the left figure: energies as a function of axial position. In blue, the kinetic energy in the z
direction. In orange, the initial kinetic energy in the z direction. In green, the energy in the ballistic motion in the z direction. In red, the ponderomotive barrier. In the middle fig-
ure: In red, a projection of the particle trajectory on the x-y plane. In green, the perturbation magnetic field. In the right figure: a 3D render of the particle trajectory.
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B. Electrostatic perturbation

For an electrostatic perturbation with E0
X?ez0 , the perturbation

Hamiltonian consists of a term�p � AX=m and A2
X=2m, both of which

contribute to the ponderomotive potential. At leading order in the per-
turbation amplitude, the ponderomotive potential is still the average
over the oscillations of the two terms.

The ponderomotive potential in the small gyroradius limit for a
perturbation with a polarization in the x-y plane is given by

Upond;X ¼ e2

4mxwave

E2
L

xwave þ X
þ E2

R

xwave � X

� �
; (60)

with the coefficients determined by the polarization as in the slab in
the evanescent regime, and

xwave ¼ kE0
B0

: (61)

This potential can be used to attract the plasma to a specific axial
region, or repel the plasma from it such as in an end plug. In order to
do so effectively, we must utilize the cyclotron resonance, in order to
attract or repel at least one species of ions, while not affecting the elec-
trons as strongly. Trying to use the xwave � 0 pole yields for all species

Upond;X � e
4xwave

E2
L � E2

R

B0
; (62)

which is proportional to the particle charge and has opposite signs for
electrons and ions. It has the same magnitude for electrons and singly
ionized ions. In an electron-proton plasma, use of this pole would gen-
erate no net confinement or deconfinement.

If instead we would attempt to use the first cyclotron resonance,
xwave � X, such as xwave ¼ aXi with a � �1, with ER ¼ 0,

Upond;X;ions � mi

4aB2
0

E2
L

aþ 1
; (63)

Upond;X;electrons � �mi

Zi

E2
L

4aB2
0
: (64)

Here, Zi is the ion charge number. The sign of Eq. (63) depends
on the sign of aþ 1, and the ratio of the ponderomotive potentials for
the different species is

Upond;X;ions

Upond;X;electrons
� � Zi

aþ 1
; (65)

which can be quite large for a close enough to�1.
Due to the dependence of the polarization on the flow velocity,

i.e., the wave frequency, the ponderomotive potential can have com-
plex features if the polarization has these complex features, as can be
seen in Fig. 10. In this figure, we plot the dimensionless ponderomotive
potential for the X wave like perturbation, where the energy is mea-
sured in units of mpX

2=k2, and the wave electric field is taken as
B0X=k, i.e., using unit dimensionless wave electric field. In this figure,
we use the same electron-proton-boron11 plasma as in Figs. 7 and 8,
and a perturbation with k ¼ 100½m�1�. The relativistic b ¼ v=c is plot-
ted on top horizontal axis, while the dimensionless velocity vk=X is
plotted on the bottom axis. The red and green dots are the result of the
numerical simulation, whereas the solid blue and orange lines are the
result of the analytic expression. It is evident that the ponderomotive

potential generated by this perturbation can be positive or negative
even taking the changing polarization into account.

The magnitude of the ponderomotive effect near the first cyclo-
tron resonance is limited by two effects. The amplitude plotted in
Fig. 10 has an attenuated potential near that resonance. The attenu-
ated ponderomotive potential near the cyclotron resonance90,91 is
caused by the change in polarization due to absorption of the reso-
nant wave.

The second effect limiting the ponderomotive effect is the nonlin-
ear effect of large wave amplitude. For large amplitudes, the particle
dynamics become stochastic, and the perturbation theory used to
derive the ponderomotive potentials fails. Karney92,93 found that the
stochasticity threshold for an electrostatic wave is reached when the
dimensionless electric field amplitude reaches

E1;crit
B0

¼ 1
4

X
kv

� �1=3

v:

The exact expression for the electromagnetic Hamiltonian we use here,
which has additional terms may be somewhat different.

The polarization of the perturbation is changing from left to right
exactly when the at the proton cyclotron resonance at v ¼ 1, making
the pole less pronounced than the v ¼ 0 pole. This limits the amplifi-
cation of the ponderomotive effect for being close to resonance.

V. CONCLUSION

The ponderomotive effect can be used to generate effective poten-
tial barriers which are particularly useful in linear plasma confinement
devices and mass separators. We have shown this effect can be gener-
ated using static electromagnetic fields that generate a flow through a
perturbation. This is done through a Doppler shift (or Lorentz boost)

FIG. 10. Numerical evaluation of the ponderomotive potential (sans the E2
1 ampli-

tude) for protons in a proton-boron11 plasma, with np ¼ 0:5� 1020½m�3� and
nB11 ¼ 0:1� 1020½m�3�, k ¼ 100½m�1�, B0 ¼ 10½T� and kq ¼ 0:3. Notice we
see here the 2nd resonances at v ¼ 1;62, and no resonance at v ¼ �1. The
green markers indicate a regime where the perturbation is evanescent, and the red
markers indicate a propagating perturbation. Most of the ponderomotive potential
profile can be explained by the variations in the wave polarization, which is repre-
sented in the simplified expression. Reproduced from Rubin et al., Phys. Plasmas
31, 082109 (2024), with the permission of AIP Publishing.
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of the static perturbation into a time dependent wave in the frame
moving with the flow.

For particles in the non-relativistic limit in both flowing and
lab systems, the ponderomotive effect due to interaction with a static
perturbation depends on the polarization of electric field compo-
nent of the perturbation in the system moving with the flow. Flute
like kk ¼ 0 perturbations in the fluid limit can exist in two modes,
corresponding to the O wave and the X wave. In the moving frame,
the electric field of the O wave is polarized in the direction of the
static magnetic field, while the electric field of the X wave is polar-
ized perpendicular to it.

The Lorentz boost of the O wave to the lab frame yields a pure
magnetic field perturbation perpendicular to the static magnetic field
of the magnetic mirror machine. This perturbation penetrates the
plasma only in regions of low density, which may occur inside the mir-
ror throats. The ponderomotive effect of this configuration is a posi-
tive, i.e., repulsive potential barrier regardless of the sign of the particle
charge. It could be used as an end plug, to confine the tail end of the
particle population that would have otherwise escape the mirror, after
overcoming the magnetic mirror and centrifugal potentials.

The Lorentz boost of the X wave to the lab frame yields a near
electrostatic perturbation in the low flow regime. Low flow requires
less recirculating power and lower static electric fields to generate this
flow. This perturbation penetrates the plasma well, and can generate
either a positive or negative potentials. In the low flow regime, the X
wave polarization is not affected by the flow, and the ponderomotive
potential appears as in Eq. (60).

Utilization of the X wave-like perturbation to attract or repel the
plasma must utilize a Doppler-shifted frequency close to a cyclotron
resonance, the ion one being more convenient. Using a frequency near
zero causes a potential with opposite signs for electrons and ions, sepa-
rating the electrons from the rest of the plasma.

Considering the change in polarization from left to right, using a
Doppler-shifted frequency close to the ion cyclotron frequency yields a
reduced effect, as is visible in Fig. 10, where the pole near v ¼ 1 is less
significant than the pole around v ¼ 0. This limits the magnitude of
the ponderomotive interaction but allows for the repulsion or attrac-
tion of the plasma as a whole, depending on whether or not v is smaller
or larger than 1.
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