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A primary technical challenge for harnessing fusion energy is to control and extract energy from a nonthermal
distribution of charged particles. The fact that phase space evolves by symplectomorphisms fundamentally
limits how a distribution may be manipulated. While the constraint of phase-space volume preservation is well
understood, other constraints remain to be fully appreciated. To better understand these constraints, we study
the problem of extracting energy from a distribution of particles using area-preserving and symplectic linear
maps. When a quadratic potential is imposed, we find that the maximal extractable energy can be computed
as trace minimization problems. We solve these problems and show that the extractable energy under linear
symplectomorphisms may be much smaller than the extractable energy under special linear maps. The method
introduced in the present study enables an energy-based proof of the linear Gromov nonsqueezing theorem.
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I. INTRODUCTION

As the deployment of commercial fusion energy acceler-
ates, it becomes increasingly indispensable to develop phase
space engineering techniques to energize fusing particles and
extract energy from fusion product particles. For standard
magnetic confinement D-T fusion, self-sustained burning re-
quires that the energy of alpha particles be transferred to
fusing ions, which remains a technical challenge [1]. Phase
space engineering techniques have been designed to channel
the alpha particle energy to fusing ions directly via electro-
magnetic waves [2–6]. For advanced fuel fusion using p-B11
or D-He3, the fusion energy released is carried by charged
particles [7–16]. It is thus possible to convert the fusion energy
directly into electricity by manipulating the charged particles
of fusion products using electromagnetic fields. On the other
hand, advanced aneutronic fusion operates in nonthermal-
ized conditions, necessitating substantial power circulation
to maintain fusing particles in nonequilibrium energy states
[9,17–19]. For this purpose, energy needs to be extracted from
the thermalized fusing particles and converted into kinetic
energy.

Electromagnetic manipulation of charged particles encoun-
ters inherent physical constraints. Namely, the particle phase
space must evolve by Hamiltonian symplectomorphisms. Li-
ouville’s theorem establishes that while phase space volume
occupied by particles can be reconfigured, it cannot be re-
duced. This and other constraints led Qin et al. [18,19] to
frame a pivotal inquiry: How much energy can we elec-
tromagnetically harvest from fusion byproducts (like alpha
particles from p-B11, D-He3, or D-T reactions)? Conversely,
what is the lowest attainable energy configuration through
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electromagnetic processes? Phase-space conservation ensures
this baseline state remains above zero, effectively capping
the potential energy extraction achievable via radiofrequency
waves in plasma systems.

To give rigorous estimates on these questions, we study
how much energy can be extracted from a particle distribution
undergoing Hamiltonian time evolution. To be general, let
P be a particle phase space, mathematically a symplectic
manifold. A collection of many particles can be described
by a distribution function ft : P → [0,∞), which gives the
number of particles in a region V at time t as

∫
V ft . Given

a time-dependent Hamiltonian H(t ) : P → R generating a
complete flow φt : P → P , the distribution function evolves
in the absence of collisions as ft = f0 ◦ φ−1

t . The Hamilto-
nian H(t ) can be taken to include the self-generated fields
of the particles, as well as any externally applied fields, in
which case the evolution relation ft = f0 ◦ φ−1

t is equivalent
to the Vlasov equation. Given a reference energy function
E : P → R, representing the energy of particles in the ab-
sence of fluctuating fields, we define the energy of a particle
distribution as E [ ft ] = ∫

P ft . Our question then translates to
finding infφ∈Ham(P ) E [ f0 ◦ φ−1], the minimal energy a particle
distribution must maintain under Hamiltonian time evolution.

When the allowed transforms {φ} are relaxed to be merely
invertible and area preserving, we recover the problem posed
by Gardner in [20]. Under these relaxed assumptions, and with
enough decay assumptions on f0, the Gardner energy EG :=
inf {φ} E [ f0 ◦ φ−1] can be computed by sequentially permut-
ing equal-measure sets in phase space. This procedure has
come to be known as Gardner’s restacking algorithm [21–24].
While each permutation in Gardner restacking is noncontin-
uous, smooth approximations may be found using the theory
of Dacogna and Moser [25]. Thus, EG defines the minimal
energy even when {φ} are restricted to be area-preserving
diffeomorphisms.

When {φ} are further restricted to be symplectomorphisms,
one must ponder whether symplectic maps behave rigidly or
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flexibly with respect to the problem at hand. Unlike area-
preserving maps, symplectic maps can be quite restrictive.
Gromov’s nonsqueezing theorem [26,27] states there is no
symplectic embedding of the ball B2n(r) = {z ∈ R2n : |z|2 <

r2} into the symplectic cylinder Z (R) = {(x, p) ∈ R2n : x2
1 +

p2
1 < R2} except when r � R. Yet, symplectic maps can also

be quite flexible owing to Darboux’s theorem, which im-
plies there are no local invariants of symplectic manifolds
[28,29]. This flexibility versus rigidity conundrum can be
answered using a result of Katok [30, p. 545]. Namely, for
any two equal-measure, compact subsets A, B of a symplec-
tic manifold, and connected open set A ∪ B ⊂ U , there is a
Hamiltonian symplectomorphism ψ supported in U making
the symmetric difference between ψ−1(B) and A arbitrar-
ily small. This result allows one to approximate Gardner
restacking with Hamiltonian symplectomorphisms, thereby
showing EG = infφ∈Ham(P ) E [φ]. The details of this are given
in Appendix 2.

While we have answered our original question, we have
done so unsatisfactorily. The symplectic transformations that
take an initial distribution f0 close to its minimal energy must
generically include large gradients, and thus be infeasible to
implement physically. Consider, for example, the problem of
embedding all but an ε amount of B2n(r) into the cylinder
Z2n(R). It was shown by Sackel et al. [31, p.1116] that for
any fixed r > R, there is a positive constant C such that
the Lipschitz constant L(ψ ) of any symplectic embedding
ψ : B2n(r) → R4 must satisfy L(ψ )2 � Cε−1.

To remedy this large gradients problem, we must look
for the infimum of E [ f0 ◦ φ−1] over a more suitable family
of symplectomorphisms. The simplest case, and the one we
study in this paper, is that f0 is supported on the smallest
scale we can manipulate. Such a situation arises in accelerator
and plasma physics when one considers beams of particles
[32–34]. In such a case, we may safely neglect the topol-
ogy of P and assume P = R2n with its standard symplectic
structure. We may also approximate any allowed symplec-
tomorphism by its linearization φ(z) ≈ A(z − b) where A ∈
Sp(2n) is a symplectic matrix and b ∈ R2n. This amounts to
ignoring cubic and higher-order terms in the Hamiltonian (see
Appendix 4).

In this approximation, our refined question becomes to find

ESp(2n) := inf
b∈R2n, A∈Sp(2n)

∫
E (z) f0(A−1z + b)d2nz, (1)

a quantity we call the linear Gromov energy. Since f0 is
assumed to be supported on the smallest scale we can manip-
ulate, it is reasonable to make the further assumption that E (z)
is well approximated by a quadratic polynomial in Eq. (1). To
explore the constraints of symplectomorphisms, we will also
compute

ESL(2n) := inf
b∈R2n, A∈SL(2n)

∫
E (z) f0(A−1z + b)d2nz, (2)

which we refer to as the linear Gardner energy. Since ev-
ery symplectic matrix is area preserving, we will have that
ESL(2n) � ESp(2n), but we should not generally expect equality
when n > 1. Indeed, we will show this to be the case below.

II. ANALYSIS

We now answer the question set forth. We will assume that
E is a quadratic polynomial of the form E (z) = a + b · z +
zT V z where V is a symmetric matrix. To ensure E (z) has a
unique minimum, we assume that V is positive definite. We
will show in Appendix 1 how positive semi-definite V can be
treated. Since V is invertible, there is a constant vector d and
a scalar V0 such that E (z) = V0 + (z − d)T V (z − d). For any
nonnegative measurable function f0 such that

∫ |z|2 f0 < ∞,
we define the moments

N :=
∫

f0(z)d2nz,

c := 1

N

∫
z f0(z)d2nz,

H :=
∫

(z ⊗ z) f0(z + c)d2nz. (3)

These moments can be computed either directly or by
differentiating the Fourier transform of f0. It is important to
note that H is a positive definite matrix since for any ξ 
=
0 ∈ R2n, ξT Hξ = ∫

(ξ · z)2 f0(z + c)d2nz > 0. For any fixed
A ∈ SL(2n), we have that

inf
b∈R2n

∫
E (z) f0(A−1z + b)

= inf
b∈R2n

∫
E (z) f0(A−1(z − d − b) + c)d2nz

= V0N + inf
b∈R2n

∫
(z + b)T V (z + b) f0(A−1z + c)d2nz

= V0N +
∫

zT V z f0(A−1z + c)d2nz + N inf
b∈R2n

bT V b

= V0N +
∫

zT V z f0(A−1z + c)d2nz, (4)

where we have used that
∫

z f0(A−1z + c)d2nz = A
∫

(z′ −
c) f0(z′)d2nz′ = 0 and bT V b � 0. Equation (4) can be para-
phrased as saying that the optimal b is such that the center of
mass of f0 lies at the potential minimum. We now must find
the optimal A. We start with the simplification∫

zT V z f0(A−1z + c)d2nz = tr(VAHAT ). (5)

Thus, to compute either ESL(2n) or ESp(2n) we must solve a trace
minimization problem.

A. Linear Gardner energy

We first analyze the case that A ∈ SL(2n) since the linear
algebra is more familiar. Given any symmetric matrix M there
exists a special orthogonal, hence SL(2n), matrix OM such that
OT

MMOM = DM , where DM is diagonal. We may write any
A ∈ SL(2n) as A = OV BOT

H with B ∈ SL(2n). Our trace to be
minimized then becomes

tr(VAHAT ) = tr(DV BDH BT )

= tr
((

D1/2
H BT D1/2

V

)(
D1/2

H BT D1/2
V

)T )
, (6)
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where we have used that DH and DV are positive definite in
taking their roots. Since X := (D1/2

H BT D1/2
V )(D1/2

H BT D1/2
V )T is

positive definite, X has positive eigenvalues so we may apply
the AM-GM inequality to the eigenvalues of X to derive that

tr(X ) � 2n det(X )1/2n = 2n det(V H )1/2n, (7)

where we used det(B) = 1. Equality in Eq. (7) is obtainable
iff

B = det(HV )1/4nD−1/2
V OD−1/2

H for some O ∈ SO(2n). This
allows us to conclude that

ESL(2n) = NV0 + 2n det(V H )1/2n. (8)

B. Linear Gromov energy

We now restrict to the trickier case that A ∈ Sp(2n).
Williamson’s theorem [35] states that for any symmetric,
positive-definite matrix M there exists a symplectic matrix SM

such that

ST
MMSM =

[
DM 0
0 DM

]
= DM ⊕ DM, (9)

where DM = diag(λM
1 , . . . , λM

n ) with λM
1 � . . . � λM

n > 0.
The values λM

i are called the symplectic eigenvalues of M.
For computational purposes, we note that λM

i is a symplec-
tic eigenvalue of M iff ±iλM

i are eigenvalues of JM where

J = [
0 In

−In 0 ] is the standard symplectic form [36]. Writing

A = SV BST
H with B ∈ Sp(2n) we find that

tr(VAHAT ) = tr(BT (DV ⊕ DV )B(DH ⊕ DH )). (10)

If B is chosen to be the symplectic linear map relabeling
the canonically conjugate pairs by the formula xi 
→ xn+1−i

and pi 
→ pn+1−i, we obtain the inequality

inf
A∈Sp(2n)

tr(VAHAT ) � 2
n∑

i=1

λH
i λV

n+1−i. (11)

It is a nontrivial fact, which we hold off on proving until
Theorem 1, that the inequality in Eq. (11) can be replaced by
equality. Hence,

ESp(2n) = NV0 + 2
n∑

i=1

λH
i λV

n+1−i. (12)

Just as with the linear Gardner energy, there is a continuous
family of Sp(2n) matrices minimizing the linear Gromov en-
ergy. Notably, for any n tuple of angles (θ1, . . . , θn), we can
define the symplectic rotation matrix

X (θi ) :

[
xi

pi

]

→

[
cos(θi ) sin(θi )

− sin(θi ) cos(θi )

][
xi

pi

]
. (13)

Replacing B with X (θi )B in Eq. (10) leaves the trace invari-
ant so there is a SO(2)n family of linear maps taking f0 to
a minimal energy configuration. This family of matrices is
enlarged when the symplectic eigenvalues of either V or H
are degenerate.

It is interesting to compare Eqs. (8) and (12). Notably, the
AM-GM inequality shows that ESp(2n) � ESL(2n) since

2
n∑

i=1

λH
i λV

n+1−i � 2n (det(HV ))1/2n, (14)

with equality iff λH
i λV

n+1−i ≡ const. In particular, ESp(2) =
ESL(2) as expected.

C. Example 1

We first compute an easy example in n = 2. For ε > 0, sup-
pose that E (z, ε) = x2 + ε2y2 + p2

x + p2
y. Suppose further that

f0(z, R) = 6
R2|B(R)|χB(R) = 6

R2|B(R)|	(R2 − |z|2) is a rescaled
indicator function on the ball. We compute that N = 1, c = 0,
H (R) = I4, V0 = 0, d = 0, and V (ε) = diag(1, ε2, 1, 1). The
initial energy stored in f0 is E [ f0] = (3 + ε). For ε small, we
should expect that ESL(4) is small since f0 can be squeezed
onto the y axis via area-preserving maps. Indeed, Eq. (8) gives
us that

ESL(4) = ε1/2. (15)

Dividing this equation by E [ f0], we can alternatively compute
the inaccessible energy fraction FSL(2n) := ESL(2n)

E [ f0] to be

FSL(4) = 4ε1/2

3 + ε2
. (16)

The distribution function after an energy minimizing lin-
ear map is f0 ◦ φ−1 = 1

|B(R)|	(R2 − ε−1/2(x2 + p2
x + p2

y ) −
ε3/2y2) which looks as expected.

In contrast, the linear Gromov’s nonsqueezing theorem
prohibits squeezing f0 onto the y axis via linear symplecto-
morphisms. This implies we should find ESp(2n) to be finite
in the limit ε → 0+. V (ε) can be symplectically diagonalized
by SV = diag(1, ε−1/2, 1, ε1/2) giving DV = diag(1, ε). From
Eq. (12) we can then compute

ESp(4) = 1
2 (1 + ε), (17)

which limits to a finite value as expected. We compute the
inaccessible energy fraction FSp(2n) := ESp(2n)

E [ f0] as

FSp(4) = 2 + 2ε

3 + ε2
. (18)

Figure 1 shows EG and FG against ε for G ∈ {Sp(4), SL(4)}.
The distribution function after the energy-minimizing

mapping is f0 ◦ φ−1 = 6
R2|B(R)|	(R2 − εy2 − ε−1 p2

y − x2 −
p2

x ) which looks as expected since one cannot symplectically
compress f0 along the x axis without increasing px by a cor-
responding factor. This addresses a question put forth in [19,
p.4]. It is interesting to note that ESp(4) and ESL(4) can differ,
either in difference or ratio, by an arbitrarily large amount.
As we show in Sec. II E, Eq. (16) is also the correct formula
for the Gardner energy. This refutes a conjecture in [19, p.4]
that the linear Gromov energy must be close to the (nonlinear)
Gromov energy, infφ∈Ham(P ) E [ f0 ◦ φ−1].

D. Example 2

Suppose we continue to consider the energy function
E (z, ε) = x2 + ε2y2 + p2

x + p2
y but f0 is instead given by
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FIG. 1. Minimal energies for example Sec. II C.

f0(z) = 1
2(2π )2 exp(− 1

2 (p2
x + p2

y + 1
4 x2 + y2)). Then either by

direct integration or by computing the Fourier transform of
f0, we learn that H = diag(4, 1, 1, 1). H is symplectically
diagonalized by SH = diag(2−1/2, 1, 21/2, 1), implying DH =
diag(2, 1). The linear Gardner energy is therefore

ESL(4)(ε) = 4
√

2ε, (19)

whereas

ESp(2n)(ε) =
{

4ε + 2 0 < ε < 1
2ε + 4 ε � 1 . (20)

Figure 2 shows EG and FG against ε for G ∈ {Sp(4), SL(4)}.
Equation (20) illustrates that even for smoothly varying

H and V , the linear Gromov energy does not need to vary
smoothly. A lack of differentiability of ESp(2n)(ε) at points

where either DV or DH has repeated symplectic eigenvalues
is to be expected since the symplectic eigenvalue pairing in
Eq. (12) is generically reordered. At these points, a sort of sat-
uration occurs and a “large” symplectomorphism exchanging
canonical pairs must be applied before further energy can be
extracted from f0 via smoothly varying symplectomorphisms.
The lack of such nondifferentiable behavior in the linear Gard-
ner energy exemplifies the flexibility of area-preserving maps
in comparison to symplectic maps.

E. Example 3: Symplectic equivalence of ellipsoids

We now consider a subclass of problems for which the
Gardner and linear Gardner energy agree. We will use our
observations to prove that two ellipsoids are linearly symplec-

FIG. 2. Minimal energies for example Sec. II D.

035202-4



MINIMIZING PHASE-SPACE ENERGIES PHYSICAL REVIEW E 112, 035202 (2025)

tomorphic iff their defining matrices have the same symplectic
eigenvalues.

Given 2n × 2n symmetric, positive-definite matrix M, we
define the ellipsoid El (M ) := {z ∈ R2n : zT Mz � 1}. For M
and M ′ fixed symmetric, positive-definite matrices with the
same determinant, we take E (z) = zT Mz and f0 = χEl (M ′ ).
Since det(M ) = det(M ′), the areas of El (M ′) and El (M )
agree. It is easy to check that there is a SL(2n) matrix A
mapping El (M ′) to El (M ). It is also not hard to see that
EG = ESL(2n) = ∫

E (z) f0(A−1z). Indeed, suppose φ : R2n →
R2n is any area-preserving diffeomorphism not mapping
El (M ′) to El (M ). Then part of φ(El (M ′)) lies outside of
El (M ), say the set S. Since E |S > 1, more energy could be
extracted from f0 by moving S into El (M ). Given that the vol-
ume of El (M ) and El (M ′) agree, this proves that the optimal
amount of energy from f0 is extracted by mapping El (M ′)
to El (M ). Conversely, this argument shows that if a map φ

minimizes E [ f0 ◦ φ−1], then φ necessarily maps El (M ′) to
El (M ).

By our observations, we conclude that El (M ) and El (M ′)
are linearly symplectomorphic iff both det(M ) = det(M ′) and
ESp(2n) = ESL(2n). For the given f0 and E , we have that V0 = 0,
c = 0, V = M, and H ∝ (M ′)−1. The symplectic eigenvalues
of H are proportional to the reciprocals of the symplectic
eigenvalues of M ′ so, with a uniform proportionality constant,
λH

i ∝ 1
λM′

n+1−i

. Hence, by equality condition for Eq. (14), we

learn that El (M ) and El (M ′) are linearly symplectomorphic

iff λM
i

λM′
i

≡ const and det(M ) = det(M ′). These two conditions

are combined to give λM
i = λM ′

i , concluding the proof.

F. Example 4: Gromov’s nonsqueezing theorem

In this last example, we prove the affine Gromov non-
squeezing theorem using our energy-minimization theory.
Namely, we will show for R > r there is no affine symplec-
tomorphism taking the ball B(R) into the symplectic cylinder
Z (r).

We define the energy E (z) = x2
1 + p2

1 so V = ex1 ex1 +
ep1 ep1 . For R > r we take f0 = χB(R). We compute
H = R2n+2

2n+2(2n) |S2n−1|I2n. Using the result of Appendix 1
to justify the limit swap limε→0+ infX∈Sp(2n) tr(X (V +
εI2n)X T H ) = infX∈Sp(2n) tr(XV X T H ), we compute ESp(2n) =

R2n+2

n+1(2n) |S2n−1| = ∫
f0(z)E (z)d2nz. This shows there is no way

to reduce the energy of f0 by symplectomorphisms. Under
any affine symplectomorphism, f0 transforms into the char-
acteristic function of an ellipsoid. We will show for every
ellipsoid El ⊂ Z (r) linearly symplectomorphic to B(R) that∫

El E < ESp(2n), proving no such El exists.
If z0 + El (M−1) is an ellipsoid in Z (r) then we can move

z0 + El (M−1) to the coordinate origin without increasing its
energy and while keeping it confined to Z (r). Without loss of
generality, we thereby set z0 = 0. We compute that
∫

El (M−1 )
x2

1 + p2
1 =

√
det(M )

|S2n−1|
2n(2n + 2)

(M1,1 + Mn+1,n+1).

(21)
By assumption, El (M−1) ⊂ Z (r), so for every unit vec-
tor v we have 〈x1, M1/2v〉2 + 〈p1, M1/2v〉2 � r2. Since M1/2

is self-adjoint, taking v = ||M1/2x1||−1M1/2x1 shows that

||M1/2x1||2 � r2. Similarly, we conclude ||M1/2 p1||2 � r2.
These inequalities imply that M1,1 � r2 and Mn+1,n+1 � r2.
If, for the sake of contradiction, B(R) is linearly symplecto-
morphic to the ellipsoid El (M−1) then

R2n+2

2n(n + 1)
|S2n−1| � r2√|M||S2n−1|

2n(n + 1)
. (22)

Since the areas of B(R) and El (M ) necessarily agee, it must be
that |M| = R4n. Simplifying, we have the erroneous inequality
R2 � r2, the desired contradiction.

Theorem 1. For any 2n × 2n, symmetric, positive-definite
matrices V, H with respective symplectic eigenvalues λV

1 �
. . . � λV

2n > 0 and λH
1 � . . . � λH

2n > 0,

inf
S∈Sp(2n)

tr(SV ST H ) = 2
n∑

i=1

λH
i λV

n+i−1.

Proof. To complete the proof of Theorem 1, we have only
to show that

inf
S∈Sp(2n)

tr(ST (DV ⊕ DV )S(DH ⊕ DH )) � 2
n∑

i=1

λH
i λV

n+1−i.

(23)
We will prove Eq. (23) with a method similar to Son and
Stykel [37] using a theorem of Liang et al. [38].

Theorem 2. [38, p.489] Let A, B ∈ Cd×d and D± ∈ Ck±×k±

be Hermitian matrices such that A 
= 0, B has both positive
and negative eigenvalues, k+ + k− = d , D± � 0, and the ma-
trix pencil A − λB is positive semidefinite. Let

Jk =
[
Ik+ 0
0 −Ik−

]
, D =

[
D+ 0
0 D−

]
,

and let ω+
1 � . . . � ω+

k+ � 0 and ω−
1 � . . . � ω−

k− � 0 be the
eigenvalues of D+ and D−, respectively. Let λ−

k− � . . . �
λ−

1 � λ+
1 � . . . � λ+

k+ be the eigenvalues of the matrix pencil
A − λB. Then

inf
X †BX=Jk

tr(DX †AX ) =
k+∑

i=1

λ+
i ω+

i −
k−∑

i=1

λ−
i ω−

i .

For our purposes, we will take d = 4n, k± = 2n, D+ =
D− = DV ⊕ DV , and A = DH ⊕ DH ⊕ DH ⊕ DH . Trivially,
ω+

2i−1 = ω+
2i = ω−

2i−1 = ω−
2i = λV

i are the symplectic eigenval-
ues of V . As in [37], for any S ∈ Sp(2n) we define

B =
[

0 J
−J 0

]
, X (S) = 1√

2

[
S SJT

SJT S

]
. (24)

B is Hermitian and has eigenvalues ±1, each with multiplicity
2n. Considering λ = 0 shows the matrix pencil A − λB is
positive definite. It’s also easy to verify that the eigenvalues
of the pencil A − λB are ±λH

i , each with multiplicity two.
Since X (S)†BX (s) = Jk , and since all the hypotheses of the
Theorem 2 are satisfied,

tr(DX †(S)AX (S)) = 2 tr(S(DV ⊕ DV )ST (DH ⊕ DH ))

� 4
n∑

i=1

λV
i λH

n+1−i. (25)

Since Eq. (25) holds for every symplectic matrix, we conclude
our proof of Theorem 1.
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III. DISCUSSION

Efficiently extracting energy from particle distributions is
vital for making fusion energy a reality. It is therefore critical
to have useful bounds for the amount of extractable energy
in a plasma. Complicating the minimization of energy in a
system is the constraint that particles ideally evolve by Hamil-
tonian symplectomorphisms. With this constraint in mind,
we were able to compute the minimal energy of a system
in two extremes: one has arbitrarily fine control of phase
space, and one has only very coarse control of phase space.
The former energy we showed was equivalent to the Gardner
energy EG, while the latter we showed could be computed
with Eq. (12). Both of these cases were interesting, high-
lighting the flexibility vs rigidity of symplectomorphisms.
Nonetheless, our analysis seems unsatisfactory in places. The
distribution function becomes pathological when minimizing
energy using nonlinear symplectomorphisms. On the other
hand, in coarse graining the problem, we were left with trans-
formations too blunt to efficiently extract energy from many
classical nonthermal distributions (see Appendix 3). Given
the rich theory already developed here, it is likely a rich
medium ground may be found. There are many nonequiv-
alent approaches to explore, but we leave this for future
work.

Our analysis is not meant to conclude the question of
energy extraction. We have not addressed thermodynamic or
realistic technical constraints. Rather, we view this work as a
first step toward understanding phase space engineering and
the constraints of symplectomorphisms. To this end, much
work remains to be done. Even within the limited problem of
exacting energy with a restricted set of symplectomorphisms,
many families of transforms may be fruitfully considered. Per-
haps the most important family of transformations to consider
are those corresponding to a Hamiltonian of the form H =
1
2 (p − qA(x, t ))2 + φ(x, t ), or even simply those of the form

H = p2

2 + φ(x, t ). Understanding these flows would lead to
a better understanding of electromagnetic phase-space engi-
neering. We leave such a study to a future work.

While not always sharp, the linear Gromov energy gives
a good benchmark for energy extraction, even when only the
fluid moments of a distribution are known. The linear Gromov
energy can also be useful when computing the allowed energy
under nonlinear symplectomorphisms. Composing nonlinear
maps with optimal linear maps can give a computationally
feasible way to compute the Gardner energy. In a future
publication, we will present a machine learning inspired nu-
merical approach to computing upper bounds on the nonlinear
Gromov energy with both free and periodic spatial boundary
conditions. This approach will allow us to investigate the
effect of regularizing the Gromov-Gardner problem by con-
straining the gradient of the symplectomorphism, a question
which is functionally intractable within the linear theory pre-
sented here.

Perhaps the biggest goal of this work has been to show
how physical problems and mathematical theory can fruitfully
coalesce. In deriving the ground state energy of a particle
distribution, we were led to prove a trace-minimization theo-
rem. Many more results may yet be derived from the problem
of phase-space engineering. These results would deepen our

understanding of how particles can be manipulated, and might
themselves be of mathematical interest.
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APPENDIX

1. Degenerate Potentials

Suppose the potential matrix V is merely positive
semidefinite. Then for either G = Sp(2n) or G = SL(2n),
we will show that EG = NV0 + infX∈G tr(XV X T H ) = NV0 +
limε→0 infX∈G tr(X (V + εI2n)X T H ). Since V + εI2n is posi-
tive definite for ε > 0, this allows us to compute EG using
Eq. (8) or Eq. (12).

Proof. Define for ε � 0 the nonnegative function EG(ε) =
NV0 + infX∈G tr(X (V + εI)XH ). We must show E (ε) is con-
tinuous at ε = 0. It is easy to verify that E (ε) is monotonously
increasing, and in particular that E (0) � E (ε) for any ε � 0.
Let δ > 0 be fixed. Let X0 be such that tr(X0V X0H ) − E (0) <

η/2. Then for any ε > 0 such that εtr(X0V X0H ) < δ/2, the
triangle inequality implies

δ > tr(X0(V + εI2n)X0H ) − E (0) � E (ε) − E (0) � 0.

(A1)
Hence, limε→0 E (ε) = E (0), proving the result. �

2. Gardner’s restacking and Hamiltonian approximations

We elaborate on Gardner’s restacking algorithm and
Hamiltonian approximations thereof. For simplicity, we will
assume P = R2n, but there is no obstruction in allowing P to
be a manifold. We will also make the simplifying assumption
that f0 is continuous, but this restriction can easily be lifted.
As always, we assume E is bounded below and that f0E is
integrable.

When {φ} are required to be area preserving, but possi-
bly discontinuous, Gardner’s restacking allows us to compute
EG = inf {φ} E [ f0 ◦ φ−1]. To describe the algorithm in a math-
ematically rigorous manner, let n ∈ N be a natural number.
Let h = 2−n. We define the lattice �h = hZ2n. For λ ∈ �h,
we define Sh

λ = λ + [0, h]2n. We break phase space into a col-
lection of disjoint squares of side length h, viz P = ⊔

λ∈�h Sh
λ.

Since �h is countable, we may index every element λ ∈ �h

by a natural number, denoted by λi. We choose two such
indexings. The first denoted by a subscript f is such that
f0(λ1, f ) � f0(λ2, f ) � . . . � 0. The second indexing of �h,
denoted with a subscript E , is such that E (λ1,E ) � E (λ2,E ) �
. . .. We then define a bijective, area-preserving map φ(n) send-
ing Sh

λi, f

→ Sh

λi,E
, say the identity map on squares. Essentially,

φ(n) permutes equal-area sets in phase space until we have
minimized the energy of the approximate distribution function
f (n)
0 = ∑

λ∈�h f0(λh)χSh
λ
. The ground state energy of f (n)

0 is
computed to be E (n) = ∑∞

i=1 f (λi, f )E (λi,E ). EG is computed
as the limit of E (n) as n tends toward infinity.
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We note that the distribution function after the energy min-
imizing mapping, formally denoted f∞ = limn→∞ f (n) ◦ φ(n),
may or may not uniquely exist. If E has a level set of nonzero
measure, then one generically has an infinite number of pos-
sible final states, f∞. If E is nondegenerate except around its
minimum, then it is likely that f∞ is a well-posed measure.
In 1D for example, if f0(p) and E (p) = p2

2 , then f∞(p) is the
symmetric decreasing rearrangement of f0 [39,40].

To show that infφ∈Ham(P ) E [ f0 ◦ φ−1] = EG, we show that
it is possible to approximate the steps in Gardner’s restacking
with Hamiltonian maps.

For convenience, we will assume that f0 is compactly
supported. Let h be as before. Let R be a square containing
the support of f0. We can apply Gardner’s restacking to R
as described above. Let S1, . . . , SN be squares of side length
h covering R. Gardner’s algorithm permutes these squares,
mapping Si 
→ Sσ (i) in some area-preserving manner. In or-
der to do the same with Hamiltonian maps, let δ > 0. We
remove a δ

2N amount of area from the edges of each square
Si making each trimmed square S̃i closed and disjoint. Then
Katok [30, p.545] shows there is a Hamiltonian diffeomor-
phism ψ (n) supported in a neighborhood of R almost mapping
S̃i 
→ S̃σ (i) in the precise sense that |(ψ (n) )−1(S̃σ (i) ) ∩ S̃i| <
δ

2N . As we send δ → 0, we closely approximate a map
sending Si to Sσ (i). The region of measure δ not mapped
according to Gardner’s algorithm contributes an error of
at most δ||E ||L∞(R)|| f0||L∞(R) to the energy integral. Taking
δ = exp(−1/h) and taking the limit h → 0 therefore shows
that EG = infφ∈Ham(P ) E [ f0 ◦ φ−1].

It is interesting to compare this result to that of Kolmes and
Fisch [21]. They showed that Gardner’s restacking could be
arbitrarily approximated by diffusive operations. Given that
many fundamental processes can lead to apparent diffusion,
it is perhaps not surprising that Gardner’s restacking can be
approximated by Hamiltonian diffeomorphisms.

3. Linear vs nonlinear operations

While the “bluntness” of linear maps avoided the problem
of overcontrolling phase space, this same bluntness prevents
energy from being extracted in many classical scenarios. Con-
sider, for example, a 1D idealized bump on tail distribution

f0(p) = n0√
2πT

exp(−p2/2T ) + n1δ(p − p0) = feq + fbump,

where T, n1, and n0 are constants. The energy function is the
classical energy E = p2

2 . f0 is spatially homogeneous, but it
still makes sense to speak of the energy density. Using R-F
waves, one can cause f0 to form a quasilinear plateau around
p = p0, extracting energy in the process. Optimally, one could
move fbump to p = 0 by Gardner restacking. The resulting
distribution function has the lowest possible energy since feq

is symmetric and decreasing. This extracts an energy per unit
volume of p2

0n1 giving a Gardner energy density of n0T
2 .

With linear operations, none of the previous operations
are allowed. The only x independent, affine, area-preserving
map is the shift map p 
→ p + δp. To extract energy from
f0, all we can do is shift f0 until there is no net mo-
mentum, i.e.,

∫
p f0(p − δp)d p = 0. The energy density of

f0(p − δp) is

n0

2
(δp2 + T ) + n1(p0 + δp)2

2
, (A2)

which is minimized when δp = − n1 p1

n0+n1
. In this case, the en-

ergy extractable by linear maps is a pittance compared to the
energy extractable by nonlinear maps.

We can play similar games in multiple dimensions with
slightly more interesting results. For example, suppose we
have a 3D bump on-tail

f0(p) = n0

(
1

2πT

)3/2

exp(−p2/2T ) + n1δ(p − p0)

= feq + fbump.

Then the Gardner energy is again obtained by moving fbump

to p = 0. Restricting to linear maps, we can again shift mo-
mentum space in the direction of p0 space until

∫
p f0(p −

δp0)d3p = 0. Now with more dimensions, we are additionally
able to squeeze momentum space in the p0 direction while
uniformly expanding the orthogonal plane. While still far
from saturating the nonlinear energy bound, the linear energy
is nonetheless closer due to the increased flexibility of higher
dimensions.

Area-preserving linear maps cannot alter the internal struc-
ture of f0. It is no surprise that the linear Gardner and Gromov
energies often depend only on the first few moments of f0.
This is both a blessing and a curse. At least in many cases,
ESp(2n) and ESL(2n) can be computed directly from a fluid
theory. No information about the kinetics is needed. The linear
energies can therefore serve as a useful upper bound for the
nonlinear energies in the absence of an exactly known distri-
bution f0. However, when f0 is known to some accuracy, and
manipulations can be performed on scales smaller than the
support of f0, the linear theory may fail to yield useful results.

4. Quadratic Hamiltonian and linear maps

To understand how linear maps may arise naturally, con-
sider Hamiltonian’s equations on R2n,

ż = J∇H(z). (A3)

If, at least to an approximation, H(z, t ) = 1
2 ztHz is a

quadratic polynomial, then

ż = JHz. (A4)

The flowmap φt is easily computed as φt (z0) = exp(JHt )z0.
The matrix exp(JHt ) is symplectic, and thus φt is of the
allowed linear form. Alone, however, matrices of the form
exp(JHt ) do not give the full symplectic group. To get
Sp(2n), we must consider time-dependent Hamiltonian flows.
If H is allowed to be time dependent then the formal solution
to Eq. (A4) is φt (z0) = T exp(

∫ t
0 H(s)ds)z0, where T exp is

the time-ordered exponential. It can be shown that matrices
of the form T exp(J

∫ t
0 H(s)ds) are precisely the symplectic

matrices. In fact, only using that Sp(2n) is connected, it was
shown by Wüstner that every symplectic matrix can be written
as a product of the form exp(JH1) exp(JH2) [41].

Affine linear maps are achieved by additionally consid-
ering Hamiltonians of the form H = −Jb · z, in which case
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Hamilton’s equations read

ż = b. (A5)

Trivially, φt (z0) = z0 + bt . Composing this flow with a linear
flow gives all the affine linear flows. Thus, affine symplecto-
morphisms arise naturally when the Hamiltonian of a system
is well approximated by a quadratic polynomial.
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