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Amplification of turbulence through multiple planar shocks
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We study the amplification of isotropic, incompressible turbulence through multiple planar, collisional shocks,
using analytical linear theory. There are two limiting cases we explore. The first assumes shocks occur rapidly in
time such that the turbulence does not evolve between shocks. Whereas the second case allows enough time for
turbulence to isotropize between each shock. For the latter case, through a quasi-equation-of-state, we show that
the weak multishock limit is agnostic to the distinction between thermal and vortical turbulent pressures, like an
isotropic volumetric compression. When turbulence does not return to isotropy between shocks, the generated
anisotropy—itself a function of shock strength—can feedback on amplification by further shocks, altering
choices for maximal or minimal amplification. In addition for this case, we find that amplification is sensitive
to the shock ordering. We map how choices of shock strength can impact these amplification differences due to
ordering, finding, for example, shock pairs which lead to identical mean postshock fields (density, temperature,
pressure) but maximally distinct turbulent amplification.
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I. INTRODUCTION

The interaction of turbulence with shocks is a funda-
mental fluid phenomenon that is ubiquitous across a variety
of fields. For example, turbulence seeded by asymmetry
or Rayleigh-Taylor and Richtmeyer-Meshkov instabilities in
inertial confinement fusion (ICF) implosions [1–6] where
shocks are used in compression and are present during stagna-
tion [7]; accretion shocks, e.g., supernovae explosions [8–10]
and star formation [11]; supersonic flight and propulsion [12].

Often, there may be multiple shocks in physical situations
of interest where the interaction with turbulence or fluctu-
ations can be important. A necessary condition for ICF is
the attainment of a high areal or column density (ρR, with
ρ the density and R the radius) for the fuel layer to confine
the burning fuel for a sufficient time to fuse an appreciable
fraction [7]. To permit the attainment of high areal density, for
laser driven ICF, a sequence of shocks (e.g., 3 [13] or 4 [14])
is carefully tailored to implode the fuel while controlling the
fuel heating such that it remains cold and highly compressible.
These shocks can be chosen and implemented by combining
modeling with dedicated experiments (e.g., Ref. [15]) to con-
firm the shock sequence. When, as is typically the case, the
fuel is surrounded by a shell of ablator material (e.g., plastic,
beryllium, or multicrystalline diamond), the ablator will also
experience this rapid sequence of shocks.

If there is density nonuniformity in the target, such as
grains [16–18] or in hydrocarbon foams filled with deuterium
-tritium [19–22], interaction with the first shock can generate a
turbulent flow field that interacts with subsequent shocks [23].
In addition, some experiments at the National Ignition Facility

*Contact author: mfzhang@princeton.edu

(NIF) are investigating the Richtmeyer-Meshkov instability
(RMI) and can feature multiple planar shocks [24,25]. Related
to this, there have been computational studies to understand
how RMI behaves under the action of multiple shocks [26,27].
Within astrophysics, turbulence is important in understanding
the structure of interstellar gas and molecular clouds, where
multiple shocks may be present [28,29]. In supersonic propul-
sion, trains of shocks manifest within nozzles, and can interact
with turbulent boundary layers [30]. In many of these cases,
the conditions under which turbulence would be maximally
or minimally enhanced by a sequence of multiple (or many)
shocks is important to the dynamics. Here we will use a
theory for shock-turbulence interaction to study this and other
dynamics for multiple planar shocks.

Many works thus far have been focused on the canonical
interaction of a single planar shock with isotropic turbu-
lence [31–33]. Fundamental theoretical studies were initiated
by Ribner’s linear interaction analysis (LIA) [34,35], which
took a Kovasnay decomposition [36] of the turbulence into
a superposition of nonpropagating vorticity modes. Through
linearizing the fluid equations and Rankine-Hugoniot jump
relations under the assumption of weak turbulence relative to
the shock, how each mode changes across the shock can be
determined. The effects can then be summed to infer proper-
ties of the downstream turbulence, including the amplification
of turbulent kinetic energy.

Later works have revisited LIA and developed analytical
expressions for amplification of turbulent kinetic energy in
general and in certain asymptotic limits [37]. Others have
made use of Moore’s results on the linear interaction of an
acoustic wave with a shock [38] to adapt the analysis for
upstream acoustic and entropy modes [39,40].

In this paper, we adapt Ribner’s single-shock LIA to
develop an initial theory for the multishock amplifica-
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tion of initially isotropic (or axisymmetric), incompressible,
vortical, weak turbulence. For such turbulence, good agree-
ment on turbulent kinetic energy (TKE) amplification has
been found between Ribner’s single-shock LIA with direct
numerical simulation (DNS) [41–43] and a wind tunnel ex-
periment [33,44]. Whilst there have been discrepancies on
the downstream anisotropy [45] and when departing from the
assumptions of LIA [46–50], the otherwise good agreement
motivates the use of LIA as a building block for a theory
of multishock interaction with turbulence. We do this for
two opposite limits where either the turbulence is allowed to
isotropize between shocks, or it remains anisotropic. Taking
such limits allows for the use of inviscid LIA to compute
turbulent vortical spectra without concern for the details of
the nonlinear, viscous evolution between each shock. The
isotropy, or not, of turbulence under compression has been
shown to be important for its growth in the case of uniform
(metric) compression [51], and so we examine both limits
here.

Our model is described further in Sec. II. We give for-
mulas that prescribe the TKE amplification in each limit. In
particular, amplifications of longitudinal (parallel to shock
propagation) and lateral (perpendicular to shock propagation,
parallel to shock front) components of vortical turbulence are
given in the nonisotropized limit.

We compute these as functions of shock strength for vari-
ous multishock compression scenarios of interest in Sec. III.
General trends with shock strength are shown in each limit
for a series of identical shocks, in Sec. III A. We show that
weaker shocks are more efficient at amplifying turbulence for
a fixed final density state. In particular, for the isotropized
limit, there exists an optimal shock strength that depends
only on the thermal polytropic index. In the nonisotropized
limit, we will show that the preferential longitudinal en-
hancement of turbulence by weaker shocks sustains the
continued amplification by subsequent shocks. However, a
series of stronger shocks preferentially amplifies the lateral
component through a refractive effect and can simultane-
ously suppress the longitudinal component, limiting further
amplification.

We use these calculations, in Sec. III B, to inform compres-
sion energetics by acquiring polytropic indices via a turbulent
quasi-equation-of-state. These indices show that the turbu-
lent pressure in the weak-shock, isotropized limit exhibits
the same adiabatic behavior as the thermal pressure for an
isotropic, metric compression. In contrast, the nonisotropized
case is superadiabatic in the weak shock limit. Departing from
the weak shock limit reduces the polytropic indices associated
with turbulent pressure in both limits, leading to subadiabatic
behavior under shock compression.

One significant departure between the two limits is discov-
ered for a series of nonidentical shocks of variable strength,
in Sec. III C. We show such a scenario is noncommutative
for the nonisotropized limit, whereby the amplification of
TKE is sensitive to the order of the shocks. In Sec. IV,
we discuss the implications of these results for experimental
shock-compression scenarios, and the caveats to the assump-
tions made in the model.

II. MODEL

We now discuss our model for the multishock amplifi-
cation of turbulence, and the simplifying assumptions used.
Consider low-Mach, isotropic, homogeneous, incompressible
turbulence in a compressible flow. Assuming there are no
large macroscopic gradients, the dynamics are well described
by the compressible Navier-Stokes equations, and one could
assume an ideal gas equation of state.

The parameters that describe the flow are: density ρ, flow
velocity v, and thermal pressure p, which relates to the total
energy, Etotal, via the equation of state. We assume γ = 5/3
for the thermal polytropic index. The three spatial dimensions
are x, y, and z, with the shock normal aligned to x. v = v̄ +
ṽ includes the background flow, v̄, and the turbulent flow, ṽ.
For brevity, we will denote the turbulent kinetic portion of the
energy as

E
.= ETKE

.=
∫

d3r
1

2
ρṽ2 = 1

2
ρV ṽ2, (1)

where we have used the incompressibility and homogeneity of
the turbulence, assuming acoustic modes are negligible, and
the bar denotes a volume average. The distinction between to-
tal turbulent kinetic energy and energy density does not matter
for scenarios where the final density is fixed. However, for
cases where the final density is not fixed, considering the vol-
ume averaged energy allows us to consider the shock-induced
vorticity amplification separately from the compression
ratio.

With appropriate initial and boundary conditions, a shock
can propagate past the turbulence. Both the mean properties of
the flow and the root mean square amplitude of the turbulent
fluctuations will change across the shock. The strength of the
shock measures how large the jumps in fluid quantities are.
It can be described either by the Mach speed of the shock
relative to the background flow, or any of the jumps in mean
fluid properties such as the density, m = ρ1/ρ0, where the
subscript refers to the background quantity after that number
of shocks.

A simple setup for investigating the amplification of
isotropic, incompressible turbulence after multiple planar
shocks is shown in Fig. 1. We imagine choosing N shocks
of given strengths, defined by their density jumps,

mi
.= ρi

ρi−1
, (2)

for shock i. The shocks are spaced such that the following
shocks do not overtake the preceding shocks before propagat-
ing past the turbulent region. These density jumps, mi, give
a frame-independent measure of shock strength, whereas the
Mach speeds in the laboratory frame, M ′

i , to achieve a given mi

generally depend on the background flow speed immediately
ahead of a shock.
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FIG. 1. Setup of problem for interaction of an initial isotropic
distribution of incompressible turbulence on the left with N leftward
propagating shocks. The Mach speeds of each shock in the laboratory
frame, denoted by a prime, M ′

i , are not the same as those used in cal-
culating shock-jump relations, Mi, where the background flow ahead
of a shock is taken to be stationary. Fluid quantities downstream of
each shock are denoted by the number of the shock, with 0 denoting
the initial upstream conditions. The spacing between shocks, �xi,
can be arbitrarily adjusted such that they do not overtake each other
before propagating through the turbulence.

Two cases can then be examined in this problem: (a)
Spacing between shocks is short, such that the turbulence
does not have sufficient time to evolve between shocks. For
a turbulent turnover time, τε ∼ E/(dE/dt ) [52], this condi-
tion can be expressed as (�ti = �xi/M ′

i � τε). We will refer
to this as the nonisotropization case (NIC). (b) The second
shock follows a sufficient distance behind the first shock such
that the anisotropic, shocked turbulence returns to isotropy
before entering the second shock, and similarly for proceeding
shocks. This latter limit will be denoted as the isotropization
case (IC).

In both cases, by assuming sufficiently low-Mach (weak)
turbulence, the overall jumps in average background quanti-
ties will be approximately unperturbed [43]. Therefore, the
overall jump after N shocks can be calculated as the prod-
uct from each of the single-shock jump relations, given by
Rankine-Hugoniot. However, the overall jump of turbulent
velocity will depend on whether it returns to isotropy be-
tween shocks or not. As such, the two limiting cases will
differ.

An idealized, simplified treatment of the IC limit can be
achieved by neglecting viscous dissipation during the return
to isotropy (this is idealized because the turbulence will ex-
perience some decay in energy during the return to isotropy
[53]). This is a convenient limit to draw direct comparison to
turbulent amplification under an isotropic, uniform (metric)
compression. Under the assumption of no viscous dissipation,
the overall jump in turbulent amplitude can be calculated in a
similar manner to the background quantities, by evaluating the
product of the single-shock jumps. For the turbulent velocity,
the single-shock jump in amplitude can be calculated using
results from LIA, given in Ribner [35]. LIA has been found
to agree with direct numerical simulations (DNS) for low
mach turbulence [42]. The final turbulent amplification after
N shocks can then be calculated from the single-shock jumps

in a similar manner to the background quantities,

AN

A0
=

N∏
i=1

Ai

Ai−1
=

N∏
i=1

A�(mi ), (3)

where Ai is the total amplification of a fluid quantity, A, of
interest after a number, i, shocks, A� is the individual ampli-
fication of A across the ith shock, N is the total number of
shocks, and ρ�(mi ) = mi by definition.

Generally, however, each shock will introduce some tur-
bulence anisotropy, and the amplification will depend on the
turbulent velocity distributions entering each shock. There-
fore, in the NIC limit, where turbulence stays anisotropic
because of insufficient time to evolve between shocks, the
overall amplification cannot be treated as simply. Instead,
one can take the results of Ribner’s LIA to calculate how
the distribution of Kovasnay decomposed vorticity modes
is modified by a given shock, which, assuming no nonlin-
ear evolution, is used as the initial condition for the next
shock.

For single-shock LIA, the Kovasnay-decomposed vorticity
modes of an initially isotropic spectrum of small amplitude,
incompressible turbulence are assumed to not interact with
each other across the shock. This is satisfied if τε is longer than
the propagation time through the shock. Linearized inviscid
fluid equations and linearized Rankine-Hugoniot relations are
used to solve for and relate the perturbations downstream to
the upstream conditions for each initial vortical mode. Thus,
the problem can be reduced to the interaction of each single
vortical mode with the shock, and summed to calculate the
overall turbulent amplification. It has been shown that the
single-vorticity-mode interactions with a shock can be solved
in a two-dimensional (2D) plane containing the mode and
oblique shock [32,37], as in Fig. 2 (where we have added an
additional shock, to illustrate the extension of the 2D treat-
ment to the multishock case).

The shock has two effects on each vorticity mode: one
is a refraction of the mode by shock compression, and the
other is an amplification due to both compression and the
perturbed, rippled shock front. In Ribner’s single-shock cal-
culation, the refracted inclination of a single vorticity mode is
given by

tan θ1 = m1 tan θ0, (4)

and the energy amplification, S2, is calculated as a function
of the shock strength and initial vorticity mode inclination
in Ref. [34]. Ribner’s calculation of S2 is summarized in the
Appendix.

The amplitudes of the downstream longitudinal and lateral
components of the turbulent spectrum are calculated in LIA
by summing the spectral densities of the refracted, amplified
vortices,

ṽ2
x1 =

∫
|S|2 cos2 θ1

cos2 θ0
[ṽx0ṽx0]d3k0 =

∫
[ṽx1ṽx1]d3k1, (5)

ṽ2
y1 + ṽ2

z1 =
∫ |S|2 sin2 θ1 − sin2 θ0

cos2 θ0
[ṽx0ṽx0]d3k0 + ṽ2

y0 + ṽ2
z0,

(6)
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FIG. 2. Refraction and amplification of a vorticity mode con-
vected through two planar shocks on the right. Based on Fig. 3
from Ref. [32], but with entropy and acoustic waves neglected here.
The inclination, θ , is defined here as the angle between the velocity
perturbations and shock normal (or alternatively, between the wave
vector, k, and plane of the shock). This inclination, denoted as θi,
increases for the refracted wave across each shock.

where ṽ0 is the turbulent velocity upstream of the shock, ṽ1

is the downstream turbulent velocity, and [ṽx ṽx] is the 3D
spectral density of ṽ2

x in wave-number space.
Since the vorticity mode is only refracted in inclination

across the shock and it remains in the same plane, we may
assume, using axisymmetry and if there is no evolution, that
the 2D treatment still applies for a second shock parallel to the
initial shock. Then another refraction and amplification of the
mode will occur across the second shock, with S dependent on
the strength of the second shock and the refracted inclination
of the incoming vortex. This can then be further extrapolated

for N shocks, recursively using the results of Ribner’s LIA to
calculate the amplitude and inclination of vortices after each
shock, and therefore how the longitudinal spectral density
changes between shocks,

[ṽxiṽxi] = |Si|2 cos2 θi

cos2 θi−1
[ṽxi−1ṽxi−1]

= cos2 θi

cos2 θ0
[ṽx0ṽx0]

i∏
j=1

|S j |2, (7)

where [ṽxiṽxi] is the longitudinal spectral density of tur-
bulence downstream of the ith shock, tan θi = mi tan θi−1 =
tan θ0

∏i
j=1 mj is the vorticity mode inclination after i shocks,

and the vorticity mode amplification factor across the ith shock
is Si = S(mi, θi−1).

The overall multishock amplification of turbulence can
then be calculated from this anisotropic limiting case by sum-
ming over the final turbulence spectral densities. For initially
isotropic turbulence, ṽ2

x0 = ṽ2
y0 = ṽ2

z0, the θ0 dependency of
the initial spectral density is [ṽx0ṽx0](θ0) = cos2 θ0. Using this
with the recursive relation, Eq. (7), one can find the final
amplification, after N shocks, of longitudinal and lateral com-
ponents of initially isotropic turbulence as

ṽ2
xN

ṽ2
x0

= 3

2

∫ π/2

0
cos2 θN cos θ0

N∏
i=1

|Si|2dθ0, (8)

ṽ2
yN

ṽ2
y0

= ṽ2
zN

ṽ2
z0

= 1 + 3

4

∫ π/2

0

N∑
i=1

|Si|2 sin2 θi − sin2 θi−1

cos2 θi−1

× [ṽxi−1ṽxi−1](θ0) cos θ0dθ0. (9)

More generally, for initially axisymmetric turbulence, where
α is the ratio of the energy in longitudinal modes to the en-
ergy in lateral modes such that ṽ2

x0 = 2αṽ2
y0 = 2αṽ2

z0, the final
amplifications of each component after N shocks are given by

ṽ2
xN

ṽ2
x0

=
∫ π/2

0
cos2 θN
cos θ0

[ṽx0ṽx0]
∏N

i=1 |Si|2dθ0∫ π/2
0 cos θ0[ṽx0ṽx0]dθ0

, (10)

ṽ2
yN

ṽ2
y0

= ṽ2
zN

ṽ2
z0

= 1 +
α

∫ π/2
0

∑N
i=1

|Si|2 sin2 θi−sin2 θi−1

cos2 θi−1
[ṽxi−1ṽxi−1](θ0) cos θ0dθ0∫ π/2

0 cos θ0[ṽx0ṽx0]dθ0

. (11)

We use the amplification calculated by this model for initially
isotropic turbulence in both IC and NIC regimes to explore
general effects of shock strength and the feedback of gener-
ated anisotropy on the multishock compression of turbulence
in the next section.

III. RESULTS

A. Trends with shock strength

In some practical situations, such as compression of ICF
capsules, there may be a desired final density from shock
compression, and the amplitude of any generated turbulence

in the final state may be of interest. To generically understand
the influence of shock strength on TKE amplification in the
context of multiple shocks in the NIC or IC limits, we first
consider a series of N shocks of equal strength. Suppose the
final density amplification, ρN , is kept fixed, such that the
number, N , of identical shocks is determined by the choice
of shock strength. The final density amplification is given by
Eq. (3) for A = ρ and mi = m for all shocks, constraining N
as

N = log ρN

log m
. (12)
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FIG. 3. Final TKE amplification after N shocks of equal strength,
m, to reach a final density amplification of ρN/ρ0 = 16. The IC
limit is shown by the orange points representing integer numbers of
shocks, filled in between by an orange line for fractional values of N
(physically, the number of shocks must be an integer). The NIC limit
is given by the purple points.

Using the definition in Eq. (1) and conservation of mass,
the final TKE amplification after N shocks is given by

EN

E0
= ρN

ρ0

VN

V0

ṽ2
N

ṽ2
0

= ṽ2
N

ṽ2
0

. (13)

The volume VN here refers to the final compressed vol-
ume of a characteristic initial volume upstream containing the
same perturbations. The details of the volume are unimpor-
tant, and VN is used only to isolate the vorticity amplification
from the density compression, i.e., ρ ∝ 1/V .

First consider the IC limit, where turbulence evolves and
returns to isotropy between shocks. Then the final TKE am-
plification can be found from Eq. (3), for A = E , as

EN

E0
= EN

�, (14)

where the amplification across any given shock E�(m) =
Ei/Ei−1 = ṽ2

i /ṽ2
i−1 is identical between shocks and can be

computed from single-shock LIA via Eqs. (5) and (6).
Substituting for N in Eq. (14) using Eq. (12), EN can be

expressed as

EN

E0
=

(
E1/ log m

�

)log ρN

. (15)

In the form of Eq. (15), it is apparent that general trends of
how the overall TKE amplification (EN ) depend on single-
shock density jumps (m) can be drawn from the bracketed
quantity, and the effect of increasing the final density is to
magnify any such trends through repeated shocks.

The final TKE amplification for the IC limit as a function of
shock strength is given by the orange line in Fig. 3. It reaches
a maximum at a shock strength of m ≈ 1.1, and approaches a
minimum towards the strong shock limit. The exact position
of this maximum can be determined from Eq. (15) as

dEN/E0

dm
= EN ln ρN

(
dE�/dm

E� ln m
− ln E�

m(ln m)2

)
= 0, (16)

by equating the bracketed quantity to zero. This shock
strength for maximally efficient amplification does not depend

FIG. 4. Total amplification of longitudinal (parallel to shock
propagation direction, dashed) and lateral (perpendicular to shock
propagation, dotted) components of TKE, in the NIC limit, after
launching multiple shocks of strengths (a) 1.1 (blue), (b) 1.3 (green),
(c) 2.62 (yellow), (d) 4 (red). Note that different final densities are
reached by each strength, for the same number of shocks.

on the final density. Rather, it depends only on what is used for
the single-shock TKE jump E�, for which we used Ribner’s
LIA here [Eqs. (5) and (6)], which itself only depends on
γ and m. Thus, for any fixed final density, choosing shocks
of strength m ≈ 1.1 will maximally amplify turbulence for
γ = 5/3 in the IC limit.

Next consider the NIC limit, where turbulence does not
return to isotropy. For sufficiently weak turbulence, the
jumps in mean background quantities will be unchanged
from the IC limit, described by substituting the single-jump
Rankine-Hugoniot relations into Eq. (3). However the TKE
amplification after N shocks departs from Eq. (3), and is
instead given by Eqs. (8) and (9). Therefore, EN depends on
m through the history of how each decomposed vortical mode
is amplified at each shock, Si(m, θi ), and refracted, tan θi =
mi tan θ0. Because this differential amplification results in in-
creasingly anisotropic turbulence with each successive shock,
the overall amplification EN also varies nontrivially with the
total number of shocks N and final density ρN . Regardless,
an example for a fixed final density amplification of factor
16 is plotted in purple in Fig. 3. In this NIC limit, the TKE
amplification monotonically decreases with increasing shock
strength, similar to the isotropic case but without extrema
in the trend. Other choices of final density are not shown,
however a similar monotonic decrease is observed. For a given
final background state in both IC and NIC limits, launching
a series of weaker shocks generally results in greater ampli-
fication of turbulence than utilizing strong shocks, with the
exception of the maximum at m ≈ 1.1 for the IC limit.

As the turbulence will generally be anisotropic in the NIC
limit, it may be instructive to examine the general trends with
shock strength for amplification of individual components.
This is done in Fig. 4 for launching increasing numbers of
identical shocks of strength m = 1.1, m = 1.3, m = 2.62,
or m = 4.0. m = 1.3 is chosen as a relatively weak shock,
and because it maintains relative isotropic amplification of
both components in the single-shock case. For the series of
m = 1.3 shocks, the overall amplification stays closer to-
ward isotropy, and monotonically increases with more shocks.
The m = 1.1 case similarly shows a monotonic increase in
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TKE amplification with shock number, albeit preferentially
longitudinal and reduced relative to the m = 1.3 case for
an equivalent number of shocks due to the weaker shock
strengths. As the strengths of each shock are increased, the
stronger refraction results in preferential lateral amplification
over the longitudinal component. After enough shocks, this
can result in the amplification of the longitudinal component
stagnating, and even being suppressed by additional shocks.
This can occur for fewer than 30 shocks if the strength of each
shock is greater than m = 2.61. The longitudinal amplifica-
tion for a series of m = 2.62 shocks is shown by the yellow
dashed line in Fig. 4, which reaches a maximum at 6 shocks,
and thereafter the longitudinal amplitude decreases. A more
drastic case is shown in red for the strong shock limit, m = 4,
where the longitudinal component is suppressed strongly by
all shocks following the first. In these cases where longitudinal
amplification is limited, the ability of shocks to amplify the
lateral component reaches a plateau.

B. Polytropic index/quasi-EOS

A more general understanding for how turbulence behaves
and partitions energy under compression from multiple shocks
can be acquired by constructing a quasi-equation-of-state,
similar to Ref. [54], relating TKE to a pressure. From dimen-
sional arguments, this is

pturb ∝ 1

2
ρṽ2. (17)

This expression for the pressure can then be used to find a
polytropic index for the compression of turbulence under a
series of shocks:

n(N ) = ∂ log pN

∂ log ρN
, (18)

where n(N ) is the polytropic index after N shocks, and p is a
pressure that could be thermal or from TKE. Generally, n(N )
may depend on the history of compression (the order, number
and strength of all shocks up to shock N).

Consider again launching identical shocks of equal
strength. In the IC limit, with isotropization between each
shock, we can use Eq. (3) for N shocks of strength m, together
with Eq. (18) to find the index,

n(N ) = ∂ log pN
�

∂ log mN
= ∂ log p�

∂ log m
, (19)

which is only a function of the single-shock jumps for density
and turbulent pressure. Therefore, by taking a weak-shock
expansion of single-shock LIA, one can also find a weak
shock limit for the index. We find, to first order in (m − 1),
the amplification of the vortical turbulence components in this
limit to be

ṽ2
xi

ṽ2
xi−1

= 1 + 6

5
(m − 1) + O[(m − 1)2], (20)

ṽ2
yi

ṽ2
yi−1

= ṽ2
zi

ṽ2
zi−1

= 1 + 2

5
(m − 1) + O[(m − 1)2]. (21)

Combining with Eq. (17) to obtain the vortical turbulent
pressure jump, Eq. (19) gives a weak shock index of n = 5/3.

FIG. 5. Total thermal (yellow, dotted) and turbulent (orange for
IC, purple for NIC) pressure jumps on a log-log (base 10) scale
versus total density jump for multiple equivalent shocks of strengths
m = 1.1 (top), m = 1.3 (middle), and m = 3.9 (bottom). Adiabatic
prediction of thermal pressure (n = 5/3) shown by black dashed line.

A similar weak shock expansion of the thermal pressure also
yields the same polytropic index of n = 5/3, corresponding to
the adiabatic limit.

As has been discussed in the previous section, due to the
feedback of anisotropy, the amplification of TKE across any
given shock in the NIC limit depends nontrivially on pre-
vious shocks. Therefore, the NIC polytropic index is also a
function of the the history of shocks. The instantaneous value
of n for a given shock in a series can be inferred from the
TKE amplification by taking the gradient of the curves in
Fig. 5, which shows log(pN/p0) plotted against log(ρN/ρ0)
for increasing numbers of shocks, N , of strengths m = 1.1,
m = 1.3, m = 3.9 in both the NIC and IC limits.

Inspection of the gradients for the IC limit with m = 1.1
and m = 1.3 in Fig. 5 reveals that the weak-shock IC limit
tends towards an index of n = 5/3, as predicted from the
weak-shock expansion of LIA. Therefore, in the limit of
shocks being sufficiently weak and isotropization between
shocks (IC), a compression via repeated shocks corresponds to
a 3D, isotropic, adiabatic metric compression. Curiously, the
NIC limit with m = 1.3 also shows an index close to n = 5/3,
owing to the relative isotropy of amplification predicted by
LIA in this case, even with repeated shocks, as seen in Fig. 4.
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However, conversely, the weak-shock NIC limit exhibits a
steeper slope, with a superadiabatic index n ≈ 1.83 > 5/3,
requiring more energy to compress.

Increasing the shock strength results in a greater propor-
tion of heating than compared to compression and turbulence
amplification. This is perhaps expected from single-shock
jump trends, where the density and TKE jumps are bounded,
whereas the temperature jump is unbounded in the strong
shock limit. We see this manifesting in the IC and NIC
effective indices in Fig. 5, where the index for the turbu-
lent pressure decreases with shock strength, while that of
the temperature can increase unbounded in the strong shock
limit. Thus, in the strong shock limit nearly all the com-
pression energy does work against the thermal pressure and
goes into heating. The effects of increasing shock strength
are more adverse in the NIC limit, where the TKE amplifi-
cation can become highly anisotropic when strong shocks are
launched repeatedly, as in Fig. 4. The effect of this increasing
anisotropy on the instantaneous index can be inferred from
the purple line in Fig. 5, whose gradient decreases with an
increasing number of shocks in the strong-shock case. As
in Fig. 3, a series of stronger shocks does not amplify TKE
as efficiently, and so the strong-shock index decreases as
the turbulence becomes increasingly anisotropic with each
shock, such that minimal work is done against TKE by the
compression.

C. Shock ordering

In some compression scenarios, such as achieving a low
adiabat in ICF, multiple shocks of different strengths may be
used and the order selected to minimize the required energy
or to ensure stability [7]. Imagine such a scenario with a
desired compression level after multiple shocks (as previously
considered in Sec. III A) but now with shocks of possibly
unequal strength. Because the final compression is fixed, the
mean quantities again do not depend on the shock order.
However, given the previous discussion on the dependence of
TKE amplification in the NIC limit on the history of shocks,
the amplification of turbulence may be sensitive to a change
in the order in which the shocks are launched.

The top panel of Fig. 6 shows a contour plot of the the
amplification of TKE after a shock of strength m1 (horizontal
axis), followed by a shock of strength m2 (vertical axis), for
initially isotropic turbulence in the NIC limit. The amplifica-
tion is asymmetric between the two shocks. This can be seen
from the shapes of the contours or following a path of constant
final density (e.g., m1m2 = 6), along which E2/E0 is seen to
be greater for the half of the path at m1 < m2. Furthermore,
TKE amplification reaches a maximal value of E2/E0 = 2.5
for shocks of strengths m1 = 2.7 and m2 = 3.4, but reversing
the order of shocks such that m1 = 3.4 and m2 = 2.7 reduces
the amplification to E2/E0 = 2.43.

This asymmetry in TKE amplification with respect to
shock order is more apparent from calculating an ordering
ratio, R, of the amplification with one ordering of shocks
versus the other,

R(m1, m2) = E (m1, m2)

E (m2, m1)
, (22)

FIG. 6. Top: Contour plot of TKE amplification, after two
shocks, E2/E0, for an initially isotropic distribution of turbulence, in
the NIC limit. Strength of initial shock is given on the horizontal axis,
and of the second shock on the vertical axis. Bottom: Corresponding
contour plot of ordering ratio, R. The maximal difference is a factor
of 1.084 for an initial weaker shock of m = 1.58, followed by a
strong shock of m = 4. An example contour of constant final density
amplification of factor 6 is shown by the white dashed line in both
plots.

where E (m1, m2) is the amplification of TKE after a shock
of strength m1, followed by m2. Values of R > 1 mean the
original ordering of shocks leads to greater amplification than
if the order was reversed.

The ordering ratio, R, corresponding to the TKE amplifi-
cation example in the top panel of Fig. 6, is similarly plotted
against m1 and m2 in the bottom panel of Fig. 6. As expected,
R is “antisymmetric” around the diagonal, m1 = m2, in the
sense that R(m1, m2) = 1/R(m2, m1). That the plot is red in
the upper diagonal and blue in the lower diagonal shows that
R > 1 for m1 < m2, and R < 1 for m1 > m2. Therefore, for
two given shock strengths, the TKE amplification of initially
isotropic turbulence by the two shocks is maximized if the
weaker shock is launched first.

The maximal difference in amplification due to shock
ordering is a factor of Rmax = 1.084, if the order of two
shocks of strength m = 1.58 and m = 4 are swapped. While
Rmax = 1.084 may be small for the isotropic distribution of
turbulence, turbulence in experiments and nature can often be
highly anisotropic and the difference in amplification due to
shock order can potentially be enhanced. To understand this
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FIG. 7. Top: 2D plots of amplification of energy (S2, top left) and
refraction (change in inclination, �θ = θ ′ − θ0, top right) of a single
vortical mode of initial inclination θ0, by a single shock of strength
m. Isocontours of the respective quantities are also plotted. The dash-
dotted black line (top right) is the isocontour for θ ′ = θcr = 30◦. To
the right of this isocontour, the refracted mode will exceed the critical
inclination for any additional shocks. Bottom left: Amplification of
vortical mode energy by a single shock of strength, m = 3 (path
along purple dotted line in top plot), plotted against initial inclination
of the vortical mode. A vertical red dashed line is plotted at the
critical inclination for m = 3, θcr = 28.56◦. Bottom right: Critical
initial inclination, θcr , of a vortical mode for a shock of strength m.
This is also plotted by the red dashed line in the top left panel.

and as a general approach, it is important to examine how the
sensitivity to shock order for individual vortical modes can be
much greater for certain initial inclinations.

The LIA dependence of the single-shock energy amplifica-
tion of an individual vortical mode on its inclination is shown
in the left panels of Fig. 7, which plot S2 against initial vortical
mode inclination θ0 and shock strength m (top left), and versus
θ0 for a fixed m = 3 (bottom left). There exists a sharp peak
in amplification at a “critical inclination,”

θcr = arctan

√
(γ + 1)(m − 1)

2m2
, (23)

for which the resultant postshock flow in the steady-flow
frame (transformation velocity increases with inclination)
reaches the sound speed [35]. At θcr, the amplification in
vortical mode energy can be several times larger than at the
smallest inclinations. This finite peak can be seen in the m = 3
example, where θcr = 28.56◦. With increasingly transverse
inclinations beyond the critical inclination, the amplification
is rapidly suppressed. While the critical inclination of a vor-
tical mode depends on the strength of the shock, as plotted
for Eq. (23) in the bottom right panel of Fig. 7, it is gen-
erally a preferentially longitudinal inclination that reaches a
maximum θcr,max = 30◦ for a shock of strength m = 2 and

γ = 5/3. For a large range of shock strengths above m =
1.126, θcr lies between 20◦ < θcr < 30◦.

The corresponding refraction of a vortical mode of inclina-
tion θ0 through a single shock of strength m is given by the
change in its inclination, �θ , plotted in the top right panel
of Fig. 7. This refraction is greater for stronger shocks, pre-
dominantly for intermediate inclinations around typical θcr.
The black dash-dotted line separates the plot into a region
where the postshock inclination, θ ′ = �θ + θ0, is below the
maximum critical inclination, θ ′ < θcr,max (left of the line),
or exceeds the maximum θ ′ > θcr,max (right of the line). This
left region demarcates the parameter space of initial vortex
inclination and initial shock strength for which the refracted
vortical mode could still experience critical effects for subse-
quent shocks.

We now consider such a two-shock system, where the
strengths of each shock are denoted by m1 and m2, and
we can choose to launch either m1 or m2 first, followed by
the remaining shock. We will denote the initial inclination
of the vortical mode to be θ and the inclination after the
first shock to be θ ′. Then θ ′ will depend on which of the
shocks is launched first, θ ′(mi, θ ) = arctan[mi tan(θ )]. The
two-shock energy amplification is given by the product of
the amplifications from each shock, which depend on the
incoming vortical mode inclinations and individual shock
strengths, S2

12 = S2(m1, θ )S2(m2, θ
′(m1, θ )). If the order of

the shocks is reversed, then S2
21 = S2(m2, θ )S2(m1, θ

′(m2, θ )).
The ordering ratios for a single vortical mode, R(m1, m2, θ ) =
S2

12(θ )/S2
21(θ ), therefore expresses the difference in amplifica-

tion of vortical-mode energy due to shock ordering.
If the initial vortical mode inclination is too longitudinal

with respect to the shock, then the vortical mode cannot be
refracted enough to reach the range of critical inclinations
shown in the bottom right panel of Fig. 7 for the second shock.
For example, vortical modes with θ0 ≈ 0 (top right panel) are
not refracted to the 20◦ < θ ′ < 30◦ range. Likewise, if the
initial inclination surpasses 30◦ (θ > θcr,max), then it is beyond
the critical inclination for both of the shocks.

Ordering ratios for inclinations far outside the range of crit-
icality, such as 3◦ � θcr and 60◦ � θcr, are plotted against m1

and m2 in the top panels of Fig. 8. In the far-subcritical regime
(θ � 20◦, e.g., 3◦), the amplification is maximized with a
stronger initial shock that refracts the vortical mode more
strongly to (still subcritical) inclinations where the subsequent
shock amplification is slightly increased. For example, at θ =
3◦, amplification is slightly enhanced by up to a maximum of
0.58% for m1 = 4 and m2 = 1.6. In the supercritical regime
(θ � 30◦, e.g., 60◦), the amplification is instead maximized
by launching the weaker shock first to minimize refraction
such that the inclination of the vortical mode does not de-
part as far from θcr for the subsequent shock. For θ = 60◦,
amplification can be up to a maximum of 8.26% greater for
m1 = 1.93 and m2 = 4. In both of these noncritical regimes,
because the amplification is not greatly enhanced by critical
effects for either shock, the differences in TKE amplification
due to shock ordering are minimal.

Conversely, closer to the range of critical angles (θ � 30◦),
differences in amplification due to ordering can be substan-
tially larger. Amplification of vortical mode energy at example
inclinations of 15◦ < θcr and 30◦ = θcr,max is plotted in the
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FIG. 8. 2D logarithmic (base 10) plots of ordering ratio R, for the
two-shock amplification of vortical modes of varying initial inclina-
tion between each subplot (3◦, 60◦, 15◦, and 30◦), in the NIC limit.
Strength of initial shock is given on the x axis, and of the second
shock on the y axis. Isocontours of log R are overlaid.

bottom panels of Fig. 8. In the near-subcritical regime (θ �
20◦), a weaker first shock can refract the vortical mode to
inclinations that are critical for a stronger second shock, maxi-
mizing the amplification substantially compared to the reverse
configuration that greatly minimizes the amplification. An
example of this is shown for an initial inclination of 15◦ in
the bottom left panel of Fig. 8. Most of the space for m1 < m2

results in values of R > 1, with a maximum of R = 3.19: a
factor 3.19 greater energy amplification for a vortical mode,
initially inclined at 15◦, can be achieved by launching a
weaker shock of strength m1 = 1.94 followed by a shock of
strength m2 = 3.54 than if the shocks were reversed in order.

For inclinations close to the maximum critical inclination
θ ≈ 30◦, refraction by even relatively weak shocks (see Fig. 7,
top right) will result in a supercritical inclination for a fol-
lowing stronger shock and suppress the overall amplification.
Therefore, in this regime, the amplification can instead be
maximised by choosing the strength of the first shock such
that the initial inclination is critical, regardless of the strength
of the second shock. Reversing the order of the shocks, such
that the first noncritical shock refracts the initial vortical mode
beyond the critical inclination of the other shock, will not
produce as large an amplification. An example of this regime
is shown for θ = 30◦ in the bottom right panel of Fig. 8.
An inclination of θ = 30◦ is critical for a shock of strength
m = 2. Therefore, the amplification when launching a critical
first shock of m1 = 2 followed by a strong shock of m2 = 4 is
54.1% greater than launching a first shock of m1 = 4 followed
by m2 = 2.

We therefore see for these inclinations where critical angle
effects come into play in the multishock problem, the differ-
ences in vortical mode amplification are substantially more
extreme, with over a factor of three difference being possible

for an initial inclination of 15◦. This is in stark contrast to the
few percent differences observable for inclinations far from
critical angle effects, and for an initially isotropic distribution
of turbulence. For the latter case, the large differences due to
near-critical vortical mode components of the turbulence are
smoothed out by the other far-critical components.

IV. DISCUSSION

We now discuss the relevancy of the significant findings for
certain example applications. It was mentioned and explored
in Sec. III A (particularly in Fig. 3) that for certain scenarios,
such as in ICF, the final density from shock compression may
be fixed, and the amplitude of turbulence in the final state
could be of interest.

There could be scenarios where a final state with maxi-
mal turbulence is desired, for example a fast ignition scheme
where compression energy can be transferred to TKE and
released in a final compressed state [55]. In a variation of
such a fast ignition scheme, the TKE may in and of itself be
advantageous to directly increase the hot spot fusion reactivity
[56]. In such a setup, our analysis has shown launching a
series of weaker shocks to be optimal for TKE amplification,
especially so for the NIC limit. This is generally true in the IC
limit too, albeit with shocks of strength m = 1.1 being optimal
for γ = 5/3. A series of weaker shocks also has the benefit
of minimizing the proportion of compression energy used on
heating, with both turbulent and thermal pressures exhibiting
adiabatic behavior in the weak-shock limit.

However, if turbulence in the final state needs to be
minimized such as to reduce mix, then a series of fewer,
stronger shocks should be chosen, for the same final compres-
sion. This is particularly the case for the NIC limit, which
also has the additional effect of magnifying the turbulent
anisotropy. This anisotropy reduces further amplification and
favors components of turbulence transverse to the shock while
suppressing the longitudinal components. Therefore, in this
limit for an ICF capsule, the longitudinal turbulent fluctua-
tions will be suppressed by a series of strong shocks, further
reducing mixing in the radial direction and associated cooling
of the hotspot. However, these turbulence considerations of
course need to be balanced against the other design con-
straints, since stronger shocks result in a greater proportion of
heating.

The most major difference from the IC limit is the effect
of shock ordering in the NIC limit. We have shown how
while background mean quantities are agnostic to the order
of shocks for weak turbulence, the TKE amplification can be
sensitive to shock order. This sensitivity to shock ordering
may be an additional factor to consider when choosing shocks
in compression scenarios such as ICF.

For just the two-shock case with initially isotropic tur-
bulence, differences of up to only 8.4% are possible from
swapping the order of the two shocks, with the larger turbu-
lence amplifications coming from launching the weaker shock
first. Such differences could be changed with the addition of
more shocks, or with different initially anisotropic distribu-
tions of turbulence that are often more physically common
than the ideal case of isotropic turbulence. We have shown
how this can be done for the two-shock case with individual
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vortical modes. The sensitivity to shock ordering strongly
depends on the initial inclination of the vortical mode with
respect to the shock, with up to a factor 3.2 difference in TKE
amplification for an inclination of 15◦.

Alternatively, this sensitivity presents a novel diagnostic
for shock ordering. One could imagine a situation where
there exists an anisotropic distribution of turbulence consist-
ing mainly of vortical modes within a range of near-critical
inclinations. It would then be expected that if it were to be
passed through two shocks, one with m1 ≈ 2 and m2 ≈ 4, and
then again with the orders reversed, one could determine the
order in which they were launched based on the turbulent
amplification. This would typically be difficult to determine
from comparing the mean quantities in the initial and final
states.

In general the small scale dynamics of ICF implosions (in
particular mixing between materials, as might be influenced
by differences in TKE from shock ordering) are challeng-
ing to diagnose directly, although if the differences lead to
differences in mixing behavior, then those differences might
be diagnosed (e.g., Refs. [57–59]). Laser interferometry has
been used in the past to diagnose differences in the perturbed
shock dynamics for shocks that pass through various ablator
materials and into a witness material [60]. This diagnostic is
quite sensitive at detecting perturbations to the shock front
that represent small fractional changes from the mean shock
velocity; these shock front perturbations are related to the
postshock perturbations, and so this might be another route
by which to attempt to diagnose the differences discussed in
this work.

While the results presented in Sec. III assume initially
isotropic turbulence, the consequences of feedback of gen-
erated anisotropy in the NIC limit provides an intuition on
how our other results would change for initially anisotropic
turbulence. For example, from the discussion on Fig. 4 and
the enhanced amplification of subcritical vortical modes seen
in Fig. 7, turbulence that consists of dominantly longitudinally
oriented vortical modes could be expected to be amplified
more strongly than isotropic turbulence.

This type of axisymmetric turbulence is naturally gener-
ated in simulations of ICF implosions including perturbation
sources, such as in the first NIF experiment to achieve an
igniting fusion plasma [13,61,62]. There are three shocks in
this experimental design. In 2D simulations including initial
density perturbations in the ablator from its grain structure
[17], the first shock (strength m0 ≈ 2) generates an initial
vorticity field which is strongly biased towards perturbations
that are longitudinal relative to the second and third shocks of
strengths m1 ≈ 1.75 and m2 ≈ 2, respectively.

Taking the postshock vorticity spectrum as a function of
inclination from the simulation in Ref. [17], and assuming,
given axisymmetry, an equal partition between energy in lon-
gitudinal and lateral modes in 3D as was in the 2D simulation,
multishock amplifications of this initially axisymmetric turbu-
lence can be calculated using Eqs. (10) and (11). For the whole
shock-strength parameter space, we find the maximum TKE
amplification to be E2/E0 = 7.97 (for m1 = 3.8 and m2 = 4)
in the NIC limit, over three times greater than the maximum
amplification of E2/E0 = 2.50 available to initially isotropic
turbulence. We predict the amplification of TKE after shocks

m1 = 1.75 and m2 = 2 from the experimental design to be a
factor of E2/E0 = 4.60. For initially isotropic turbulence, we
find amplification factors of E2/E0 = 2.11 in the NIC limit,
and E2/E0 = 2.06 in the IC limit. Therefore, we predict the
expected amplification in this design to be twice as large
for this example of realistic turbulence with a longitudinal
bias than for isotropic turbulence, consistent with expectations
from our results. For an initial turbulent velocity of ∼0.5
km/s from Ref. [17], we expect a final turbulent velocity of
∼0.5

√
4.6 = 1.07 km/s.

For small scale perturbations generated in the ablator of an
ICF implosion in response to the sequence of shocks, as in
Ref. [17], the Mach number of the perturbations is expected
to be very small, because only a modest fraction of the energy
in the postshock state is converted to perturbations. This is the
applicable limit for the scenario we examined above, where
simulations suggest Mt � 0.03. Nonetheless these small per-
turbed velocities (relative to the implosion velocity) can have
a notable impact by contributing to mixing of ablator layers
(see, e.g., Fig. 11 in Ref. [63] and the surrounding discus-
sion), or to mixing of the ablator with the fusion fuel [17,63].
For perturbations in the central hot spot of the implosions,
higher (but still well subsonic) turbulent Mach numbers have
been observed in modeling. For example, Ref. [64] estimates
Mt∼0.4 for the hot-spot turbulence observed in the 3D sim-
ulations of a NIF implosion in Ref. [65]. Although the shock
dynamics in the hot spot are not identical to those in the abla-
tor, this hot spot turbulence is again influenced by a succession
of shocks (e.g., see Fig. 1 in Ref. [65]).

The predicted ideal jumps in background density and tem-
perature (ignoring rarefractions between shocks that occur in
the actual ICF design) under these two shocks are ρ2/ρ0 = 3.5
and T2/T0 = 3.68, both less than the energy amplification of
the anisotropic turbulence. From our quasi-EOS analysis in
Sec. III B, this indicates that this anisotropic turbulent pres-
sure would behave superadiabatically under compression for
this experiment, more so than the thermal pressure. Since the
turbulence is more anisotropically biased in the direction of
shock compression, more work needs to be done against the
turbulent pressure.

The difference in amplification under swapping the order
of the two shocks is relatively negligible for this anisotropic
distribution of turbulence, only 1.10%, less than the difference
of 1.33% for isotropic turbulence. Even for unconstrained
choices of shock strength, the maximal factor difference due
to ordering is only Rmax = 1.062 (6.2%), less than the Rmax =
1.084 (8.4%) of isotropic turbulence. Since most of the energy
in vorticity generated by these grains is in far-subcritical vor-
tical modes with inclination θ < 10◦, critical angle effects are
negligible for the two proceeding shocks. This could change,
however, if there was an additional shock to further refract
these modes to near-subcritical inclinations. Suppose the tur-
bulence is subjected to an initial shock of m1 = 2.2, and the
strengths of two proceeding shocks are chosen as m2 and m3.
For the axisymmetric turbulence from the grain simulation, a
maximal difference of factor Rmax = 1.128 is possible upon
swapping two shocks of strengths m2 = 1.54 and m3 = 4.
This is a greater difference than for initially isotropic turbu-
lence in the two-shock problem and also in this three-shock
problem where Rmax = 1.110.
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Both the NIC and IC limiting cases we studied in Sec. III
are only applicable when the time separation between shocks
is sufficiently shorter or longer than the timescale over
which turbulence returns to isotropy after each shock. Di-
rect numerical simulations have shown the vorticity returns
to isotropy after ten convected Kolmogorov timescales, τη =√

ν/ε, where ν is the kinematic viscosity and ε the dissi-
pation rate of turbulent kinetic energy [48]. However, the
turbulent velocity was found to remain anisotropic in their
simulated domains, and one might expect a return to isotropy
over a longer distance away from the shock. Provided this
distance is greater than the necessary shock separation to
avoid overtaking of shocks, the first limiting case can be
achieved with minimum shock separation. The second case is
possible by making the shock separations longer than both the
required shock separation and the distance needed for return to
isotropy; with the caveat that if the separations are too great,
then nonnegligible viscous dissipation and nonlinear effects
can occur that we have neglected in this model.

However, even for situations in between the two cases,
where the turbulence begins an incomplete return to isotropy
before the next shock, one may anticipate results to be a mix
of the two limiting cases. For example, shock ordering does
not matter for the isotropized case, while TKE amplification
in the NIC limit is sensitive to it. One may expect for realis-
tic regimes in between these two cases, that shock ordering
differences in TKE amplification will still manifest, but to a
lesser degree.

To model such scenarios, where turbulence evolution is
important, is outside the scope of this work. Such evolution
may be governed by nonlinear processes not included in LIA
[45] and require the inclusion of viscous dissipation.

Further, any caveats of LIA will also appear in our model,
even for the two limiting cases. We have assumed weak tur-
bulence to use LIA, and to treat the jumps in background
quantities as unperturbed from classical Rankine-Hugoniot
shock-jump relations for density, temperature and mean flow
speed. Under continuous amplification by many shocks, the
turbulence could eventually become energetic enough rela-
tive to the shocks, that this assumption is broken. In DNS,
disagreement with LIA in TKE amplification and mean
Rankine-Hugoniot jumps is found for higher turbulent Mach
numbers. However, there have been more recent theories that
treat finite Mach turbulence and the modifications to jumps in
background quantities [43], that could also be adapted simi-
larly for our model here. Moreover, the velocity anisotropies
in DNS are observed to be different from the predictions of
LIA [45], which would alter the NIC limit.

Here we have only taken the vortical contributions to tur-
bulence in calculating amplifications. However, there is also
an acoustic pressure contribution to the downstream waves
that we have neglected which is also computed in Ref. [34].
For a vorticity mode that is incident at a subcritical angle
θ < θcr on a planar shock, the downstream pressure waves
are evanescent and exponentially decay with distance from
the shock front. When the incident vorticity mode exceeds θcr,
constant amplitude sound waves are spontaneously generated
at the shock front and propagate away at an angle relative to
the downstream vorticity mode. The amplitude of these sound
waves has a finite maximum at θcr and decreases with increas-

ing inclination of the incident vorticity mode [34,38]. The
spontaneous generation of noise by a rippled shock front is a
general phenomenon also described in Chap. 90 of Ref. [66].
For the case of incident sound waves, there exists a critical
inclination at which they experience a resonance and linear
analysis breaks down [67,68]. When higher order terms are
included, the amplification of these sound waves remains en-
hanced, but finite [69].

For most shock strengths, acoustic generation is of a few
percent relative to that of the initial vorticity mode, and so our
analysis should be a reasonable approximation for fewer num-
bers of shocks. Compared to the amplification of the vorticity,
however, the noise generation can be more efficient in the
weak shock limit [37], particularly for critical inclinations of
the initial vorticity mode, as mentioned above. Furthermore,
these sound waves can be greatly amplified by subsequent
stronger shocks if they are critically inclined [69].

For our analysis with initially isotropic vortical turbulence,
the generated noise will be distributed over a wide variety of
inclinations, and so subsequent amplification and generation
of sound waves would likely only perturb our analysis for
a sequence of a large number of shocks. Likewise, for our
analysis of shock ordering, only two to three total shocks
are considered. While we consider distributions of vorticity
modes near the critical angle in some of this analysis, the
generated acoustic waves downstream of the first shock will
generally be weak relative to the energy of the initial vorticity
mode. As such, the perturbation to the second shock and
vorticity amplification may not be a large effect, even at the
critical inclination. Moreover, sound waves that are critical
with respect to the second shock may not necessarily remain
critical for the third shock and the shocks after.

Regardless, for large numbers of shocks where generated
noise can reach an appreciable amplitude, our analysis should
be extended to include the acoustic contribution.

In addition, our work neglects the effects of density
nonuniformity, which has been shown to be important for
turbulence generation by shocks in certain contexts such as
the aforementioned examples of grain structure in ICF abla-
tors [17,18]. However, thermal conduction in such cases can
smooth the postshock density field, so that any subsequent
shocks following the first would primarily interact with the
vorticity field.

The analysis presented in this paper restricts attention to
only hydrodynamic turbulence. While ablator and dense fuel
dynamics in ICF are generally well treated by such a model,
magnetic fields could play a role in the central hot spot
[70,71]. Furthermore, there are a plethora of other regimes of
interest where magnetohydrodynamic (MHD) turbulence can
interact with shocks, for example with interplanetary shocks
due to multiple solar flares. While the solar wind is a weakly
collisional plasma, and kinetic effects can be important for
small-scale processes such as ion heating [72], nonlinear re-
laxation processes can reduce the effective mean free path of
protons and enable the solar wind to behave like a magnetised
fluid on scales above the proton gyroradius [73]. Thus, with
a plethora of in situ spacecraft measurements [74], the solar
wind could be particularly well suited for testing theories of
the interaction of MHD turbulence with shocks. The multi-
shock amplification of MHD turbulence would be a natural
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extension of our theory in future work, using linear analyses
of the single-shock problem, such as in Refs. [75,76].

V. CONCLUSION

We use a linear analytical model following the single-
shock results (LIA) of Ribner [35] to study the interaction
of an incompressible, isotropic spectrum of turbulence with
multiple planar shocks in two limits: (1) the turbulence fully
returns to isotropy between each shock (IC limit), or (2)
shocks occur rapidly in time such that the turbulence spec-
trum does not evolve between shocks (NIC limit). We assume
the jumps in background quantities are unperturbed for suffi-
ciently weak turbulence. For a variety of number and strengths
of shocks, we examine the amplification of vortical turbu-
lent kinetic energy (TKE) across multiple shocks, opting to
neglect the acoustic contribution. By extracting the effective
polytropic indices for the turbulent pressure amplification,
we infer general properties of the multishock compression of
turbulence. To further inform the sensitivity to shock ordering
in the NIC limit, we also consider the multishock interaction
with single vorticity modes for certain example inclinations
with respect to the initial shock.

We find that choosing to launch a greater number of weaker
shocks to reach a fixed final background state will generally
result in greater amplification of turbulence than a series
of fewer stronger shocks. In particular, in the IC limit, we
find maximal TKE amplification (without regard to relative
temperature amplification) for a series of weak shocks with
strength m ≈ 1.1. As shock strength tends towards unity for
this IC limit, we infer the polytropic index to be 5/3, revealing
that an arbitrarily weak multishock compression of turbulent
pressure is equivalent to that of an isotropic, adiabatic volu-
metric compression. In the NIC limit of many weak shocks,
the polytropic index is instead superadiabatic, for example
n ≈ 1.83 for m = 1.1. As the multishock amplification of
turbulence becomes less efficient towards greater strength
shocks, the associated polytropic index decreases for both IC
and NIC limits, with the latter becoming adiabatic, n = 5/3,
at m = 1.3. The polytropic index of the temperature instead
increases with shock strength, and so stronger shocks convert
a greater proportion of energy into heating than into compres-
sion and turbulent amplification.

We show how the anisotropy in the NIC limit affects the
multishock amplification of turbulence, both in its compo-
nents relative to the shock fronts and overall. Stronger shocks
magnify the anisotropy, accelerating the departure of the NIC
limit from the IC limit by reducing TKE amplification and
its polytropic index with respect to multishock compression,
as the number of shocks increases. Therefore, the polytropic
index associated with the NIC limit is generally dependent on
the shock history.

In addition for the NIC limit, TKE amplification is sensi-
tive to not only the choice of shock strengths, but the order in
which each shock is launched. With two shocks, for example,
differences in amplification of up to 8.4% are possible for ini-
tially isotropic turbulence, when the two shocks are switched
in order. Single vortical modes can exhibit far greater sensi-
tivity to ordering when the vortical mode inclination is within
a band below the critical angle, with up to 219% amplification

difference upon swapping two shocks of strengths m = 1.94
and m = 3.54 for an example initial inclination of 15◦. It is
therefore likely that certain anisotropic spectra of turbulence
can be highly sensitive to the ordering of certain strength
shocks.

Our use of LIA to examine multishock compression of
turbulence in two limits informs a simple intuition for how
turbulence may behave under multishock compression and the
impact of shock strengths. We reveal an interesting sensitivity
of TKE amplification to the order in a choice of strengths of
shocks. While one could intuit behavior in a regime between
the two limits, further work on a model that includes the
evolution of the turbulence spectrum in between shocks, with
viscous dissipation, remains to be explored. Future extension
to linear analyses of MHD shock-turbulence interaction would
also expand the applicability of the theory to a wider variety
of plasma regimes.
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APPENDIX: SINGLE-SHOCK AMPLIFICATION
OF A SINGLE VORTICAL MODE

Presented is a summary of Ribner’s calculation of S2 [34],
the energy amplification of a single, inclined vorticity mode
upon convection through a planar shock. The amplitude of
the initial vorticity mode is assumed to be weak, such that
perturbations to the mean flow are small.

Schematically, the convection of the initial vorticity mode
through a normal shock can be visualized by only considering
the first shock in Fig. 2. The troughs and peaks of the inclined
vorticity mode will travel vertically along the shock front in
time, which propagates a ripple perturbation along the shock
front. For a general plane vorticity mode, the shock front de-
velops ripples in a 2D plane. However, since the out-of-plane
component of the vorticity mode would be parallel to the plane
of the rippled shock-wave, the third dimension plays no role
and the problem can be treated two-dimensionally.

The time-dependence of the problem can be removed by
transforming to a frame where the bulk flow is aligned with
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the perturbed velocity of the vorticity mode. See Figs. 3 and 4
of Ribner [34], where a velocity transformation, V , parallel to
the shock front, is taken. The mean velocity of the upstream
(downstream) flow in the transformed frame is then W0 (W1),
and the Mach speed of this flow is denoted by W0 (W1).
For initial vorticity modes with higher inclination, V will be
greater, and the mean flow in the transformed frame becomes
more oblique relative to the shock.

In this time-independent steady-flow frame, the calculation
is reduced to a boundary-value problem. To derive a partial
differential equation describing this flow, consider axes ξ and
η aligned parallel and perpendicular, respectively, to the mean
downstream flow, W1. These axes are illustrated in Fig. 4 of
Ribner [34].

Assume the initial vorticity mode is weak such that the
perturbations to the mean flow ṽ/W are small, and the
background density, temperature, and pressure remain ap-
proximately constant upstream of the shock. Then by using
an equation of state for an adiabatic flow, and linearizing the
steady and inviscid two-dimensional continuity, momentum,
and energy equations, we can eliminate (an isotropic) pressure
and momentum to find

(1 − W
2
)
∂ ṽξ

∂ξ
+ ∂ ṽη

∂η
= 0. (A1)

This equation is identically satisfied if the velocity satisfies
the following relations with a defined stream function, ψ ,

ṽξ = ∂ψ

∂η
,

ṽη = −(1 − W
2
)
∂ψ

∂ξ
. (A2)

To find a PDE that describes the evolution of ψ we express
the vorticity, defined as � ≡ ∂ ṽη/∂ξ − ∂ ṽξ /∂η, in terms of
the stream function using Eq. (A2):

(1 − W
2
)
∂2ψ

∂ξ 2
+ ∂2ψ

∂η2
≡ −�. (A3)

The vorticity can then be related to the change in entropy, s,
and enthalpy, H , perpendicular to stream lines via Crocco’s

theorem [77]:

(1 − W
2
)
∂2ψ

∂ξ 2
+ ∂2ψ

∂η2
= −� = 1

W

(
∂H

∂η
− T

∂s

∂η

)
. (A4)

The sign of the coefficient of ∂2ψ/∂ξ 2, and therefore the na-
ture of the PDE, depends on whether the resultant downstream
flow is subsonic W1 < 1 or supersonic W1 > 1. Thus, solutions
must be found separately in each case.

Boundary conditions on the velocity components can be
found by considering the standard oblique-shock relations.
Since the perturbation velocity aligns with the flow, it will
perturb the angle of the shock locally by σ (y), where y is
the direction parallel to the shock front, and x is the direction
normal to the shock. This rippling of the shock front will
introduce vorticity and thus amplify the initial mode. A linear
treatment is consistent provided that the initial vorticity mode
is sufficiently weak, such that the amplified, downstream per-
turbations are still weak relative to the bulk flow.

If the initial vorticity mode is weak, then we assume the
upstream temperature to be constant and perturbations to the
shock angle to be small. Then by applying the oblique-shock
relations to the shock-normal component of the perturbed
flow, boundary conditions relating the upstream and down-
stream velocity perturbations can be found.

Let us define the initial sinusoidal perturbation velocity by

ṽξ00

W0
= ε cos k0η0, (A5)

where k0 denotes the wave number of the initial mode, and
ε the small perturbation amplitude. Then at the shock front,
the nulls and peaks of the initial and refracted vorticity modes
must match, such that k0η0 = k1η1. Thus, the upstream per-
turbation velocity can be expressed in terms of downstream
quantities separately from the oblique-shock relations.

We assume the initially unknown perturbation to the shock
to also be sinusoidal in nature, with yet undetermined am-
plitude and phase. This can be parameterized by the two
unknowns as

σ = ε(a cos k1η1 + b sin k1η1). (A6)

Substituting the sinusoidal vorticity and shock perturbations,
Eqs. (A5) and (A6), into the boundary conditions found us-
ing the oblique-shock relations, gives the following set of
boundary conditions on the velocity perturbations parallel and
perpendicular to the mean postshock flow:

ṽξ (x = 0)

εvx
=

[
a

m

(
1 − 2

γ − 1

γ + 1
m + m2

)
sin ϕ

(
1 − 2

γ − 1

γ + 1
m

)
cos ϕ + sin2 ϕ

cos ϕ

]
cos κη +

[
b

m

(
1 − 2

γ − 1

γ + 1
m + m2

)
sin ϕ

]

× sin κη, (A7)

ṽη(x = 0)

εvx
=

[
− a

m

(
1 + 3 − γ

γ + 1
m

)
sin2 ϕ

cos ϕ
+ a(m − 1) cos ϕ + 2

(
1 − γ − 1

γ + 1
m

)
sin ϕ

]
cos κη

+
[
− b

m

(
1 + 3 − γ

γ + 1
m

)
sin2 ϕ

cos ϕ
+ b(m − 1) cos ϕ

]
sin kη, (A8)
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where we have dropped subscript 1 for denoting downstream
quantities, and let θ1 ≡ ϕ, k1 ≡ κ . The unknown constants a
and b related to the shock perturbation are to be determined
by matching to the stream function solution of Eq. (A4).

To solve Eq. (A4), we first evaluate the inhomogeneous
vorticity term on the right hand side. When perturbations
are sufficiently weak to justify a linear treatment, the down-
stream streamlines are approximately straight lines described
by η = const. Therefore, both the downstream enthalpy H
and entropy s are constant along these straight streamlines,
retaining their values from the shock front. For weak vortic-
ity perturbations, we may assume the upstream temperature,
pressure and density are constant. Therefore, the upstream
entropy will also be constant. Oblique shock relations for the
change of entropy across the shock [78] and the upstream
enthalpy evaluated at the shock can be used to re-express the
right-hand side of Eq. (A4) (evaluated at the shock front) as

(1 − W
2
)
∂2ψ

∂ξ 2
+ ∂2ψ

∂η2
= vxm2 cos ϕ

cos2 θ0

∂

∂η

(
ṽξ00

W0

)

− vx cos ϕ(m − 1)2

× ∂

∂η

(
ṽξ00

W0
− σ tan θ0

)
. (A9)

We then specialize this to our problem by substituting in the
sinusoidal perturbations for velocity and to the shock front,
Eqs. (A5) and (A6), and using tan ϕ = m tan θ0,

(1 − W
2
)
∂2ψ

∂ξ 2
+ ∂2ψ

∂η2

= vxε

(
− κ

[
sec ϕ + 2(m − 1) cos ϕ + a

(m − 1)2

m
sin ϕ

]

× sin κη + κb
(m − 1)2

m
sin ϕ cos κη

)
. (A10)

Ribner then finds general solutions of the stream function, ψ ,
to Eq. (A10) for W � 1 and W � 1, and determines both the
arbitrary constants and the two unknowns of the shock pertur-
bation through matching to the boundary conditions Eqs. (A7)
and (A8). The perturbation velocity components downstream
of the shock can then be evaluated from the stream function
using Eq. (A2).

The solutions include velocity perturbations that are
aligned with and constant along the downstream resultant flow
in the steady frame, and other perturbations that correspond to
acoustic or Mach waves. The former are identified as down-
stream vorticity modes and arise from the particular solutions
of Eq. (A10) which correspond to the inhomogeneous vortic-
ity term. Then the velocity perturbations of the downstream
vorticity mode can be expressed as the following:

|ṽvorticity|
|ṽ0| = S cos[κy(y − x tan ϕ) + δs], (A11)

where κy = κ cos ϕ = k cos θ0 and

S ≡ cos θ0

m

√
A2 + B2, (A12)

δs = arctan

(−B

A

)
. (A13)

A and B correspond to terms in the inhomogeneous part of
Eq. (A10):

(1 − W
2
)
∂2ψ

∂ξ 2
+ ∂2ψ

∂η2
= −κUε(A sin κη − B cos κη),

(A14)
with

A ≡
[

sec ϕ + 2(m − 1) cos ϕ + a
(m − 1)2

m
sin ϕ

]
, (A15)

B ≡ b
(m − 1)2

m
sin ϕ. (A16)

a and b are the now determined constants describing the
perturbation to the shock in Eq. (A6).

For the case where the downstream resultant flow is sub-
sonic, W � 1, Ribner determines these constants to be

a = m
CE + DF

C2 + D2
, (A17)

b = m
CF − DE

C2 + D2
, (A18)

where

C ≡
(

γ − 1

γ + 1
+ 3 − γ

γ + 1
m

)
tan ϕ −

[
(m − 1)2 + 2(m − 1)

γ + 1

]

× sin ϕ cos ϕ, (A19)

D ≡ βw

β2
(m − 1)[1 + (m − 1) cos2 ϕ], (A20)

E ≡ 2

(
1 − γ − 1

γ + 1
m

)
+ 2(m − 1)

β2
w cos2 ϕ

β2
, (A21)

F ≡ βw

β2
[2(m − 1) sin ϕ cos ϕ], (A22)

β2
w = 1 − W

2
, (A23)

β2 = 1 − v2
x . (A24)
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When W � 1 we find that

a = 2m(2βwm + (1 + γ + m − γ m) tan ϕ)

(3m + 1 − γ (m − 1)) tan2 ϕ + 4βwm tan ϕ − m(m − 1)(γ + 1)
, (A25)

b = 0. (A26)

For our calculation, we acquired the above expression for a, Eq. (A25), from directly matching the W � 1 general solution to
the boundary conditions.
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