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The relativistic dynamics of fast current carriers are rich in intriguing phenomena not
appearing in the Newtonian limit. It is shown that because of these dynamics there is a
bound to the efficiency of driving current in a tokamak either by waves or other means.
Analytic techniques uncover the current-drive scheme which yields the maximum attain-

able efficiency.

Among the most promising schemes for sustain-
ing continuous toroidal current in a tokamak are
those that exploit the relative infrequency with
which superthermal electrons suffer collisions. The
higher the speed of the current carrier, the more ef-
fortlessly the current is carried, so that the power
requirements for sustaining the current are dimin-
ished.! These fast electrons can be selectively in-
duced to carry current by means of the resonant
absorption of plasma waves which carry a com-
ponent of toroidal momentum, such as lower hy-
brid waves,' or even by means of the absorption of
waves with vanishingly small toroidal momentum,
such as electron cyclotron waves,? which merely
heat those electrons with the proper sign of
toroidal momentum. The efficiency of current gen-
eration by means of the absorption of either wave
increases as p|2|, the square of the toroidal momen-
tum of the current carriers, where the measure of
efficiency is J /Py, the ratio of current generated to
power dissipated.

The absence in the above scaling of a theoretical
bound on the efficiency of current generation na-
turally promotes to prime importance the question
of whether such a bound exists. Previous calcula-
tions of the efficiency, carried out for fast but non-
relativistic current carriers, are no longer valid as
the current carriers approach the speed of light. It
is this regime, which is pertinent to plasma under
tokamak reactor conditions, that is to be the focus
of the present study; we wish, however, to antici-
pate here a number of new and interesting effects
that come into play. There arises, for example, the
purely relativistic production of current, without
any tampering with the parallel momentum of an
electron, merely when the energy in its perpendicu-
lar motion is increased. (By parallel and perpen-
dicular we refer to the direction with respect to a
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dc magnetic field, presumably largely in the
toroidal direction in tokamaks.) The absorption of
a perpendicularly traveling photon will accomplish
this intriguing effect. Although the parallel
momentum is unchanged, the parallel velocity is of
necessity decreased since the electron is now
heavier. Since the electron current is proportional
to its velocity rather than its momentum, clearly
current may be produced in this manner.

While what might be called relativistic mass
enhancement is a completely collisionless effect
that generates current in the parallel direction op-
posite to the current of the affected electron, it is
always accompanied by a collisional effect,’ arising
from the decreased collisionality of the same elec-
tron, which serves to generate current in exactly
the canceling direction. That even a vanishingly
small number of collisions ensures the dominance
of the latter over the former effect is revealed only
by a.thorough treatment of the relativistic dynam-
ics of current generation which we now set out to
perform. Motivated thusly by the unexpected
phenomena that arise in this limit, we define our
goal as the precise calculation of the efficiency
measure J /P, in full generality, i.e., in the case of
acceleration of superthermal electrons in an arbi-
trary direction.

Consider the current produced when an electron
in a plasma is pushed in momentum space to a
nearby position. Not only is the electron current
changed instantaneously by this push, but also the
current carried at later times by this electron is
changed as a result of the different electron col-
lisionality if the push is to a position of different
energy. Let j||(#,P) be the current associated with
one electron initially at momentum coordinate P
and initially with energy E(P). We imagine the
continuous pushing of electrons in momentum

3245 ©1981 The American Physical Society



3246

space along the incremental vector S and with con-
stant power p;. The current thus produced evi-
dently approaches the time-asymptotic value J
such that

- —

J S- Vf ]||(t p)dt
Py 5 VE(P)

(1

where V is the gradient operator in momentum
space. That the integral is convergent is only a
statement of the negligibility of contributions to the
present and steady current J arising as a result of
pushes given to the electrons many collision times
previously.

To evaluate Eq. (1), we first find j(#, ). Note
that for superthermal electrons the diffusion in en-
ergy of test electrons is negligible compared to
their slowing down in energy. Considering then
only electrons with initial energy substantially su-
perthermal, the relevant dynamics are contained in
the slowing down equations of energy and parallel
momentum which are obtained from a relativistic
treatment of the Fokker-Planck equation.’ These
equations may be written as

d\/3t=—vgA , (2a)

d¢/ot= (2b)

6 »

where we normalized momentum to mec, i.e.,
A=p/mc and {=p||/mc, where m is the electron
rest mass and c is the velocity of light. The slow-
ing down frequencies are given by

ve=YW/2A3, (3a)

W =Yv/2P +v(1+Zv/20° (3b)
where ¥(A)=(1+1%)!/2, Z; is the ion charge state,
and v=w,InA/2mngc>. Note that v=vp, /c>,
where v is the normalizing frequency characteris-
tic of previous work."">* As pointed out in Ref. 3,
the relativistic scattering dynamics are equivalent
to the nonrelativistic slowing down of electrons
with relativistically augmented mass. On account
of this effect, the background electrons can absorb
far more of the test electron momentum than can
the background ions.

Note that Eq. (2a) is an ordinary differential
equation for A and hence may be exploited to
parametrize ¢ in terms of A. Therefore, substitut-
ing for ¢ in Eq. (2b) using Eq. (2a), and then fortui-
tously finding the integration possible in terms of
elementary functions, it may be found that
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(14+2;)72
A(t)

= ¢ { HA()] -1

MA]+1
(1+2)/2
, (4)

A +1
-1

where here §{ and A without the time argument
denote values at t =0. Note that

QN B)=—ep| () /my[M1)] =ecf(2)/y[At)], so
that again exploiting the parametrization of time in
terms of momentum magnitude, Eq. (1) can be cast
into the form

X

}f j"—[s 2G(\)+8-RLdG (M) /dA]
d

(5)
where the caretted quantities are unit vectors,

where we have normalized J to —enyc and P, to
vnome?, and where

(1+2;)/2
6= 2 |[1AEL
T =1
N )1 (142,72
X X)—
. (6
x [ o | o dx . (6

Suppose that the push that the electrons receive
is the result of absorbing a wave with frequency
and parallel wave number k” Since the ratio of
wave energy to momentum is w/k“, the electron
absorbs energy and momentum in this proportion
too. We seek now the path in momentum space
that is allowable to a particle interacting with the
wave, i.e., if the interaction is diffusive we seek
what might be called the diffusion path. In the
wave frame of reference @ =0 so that the wave can
impart momentum but, on the average, no energy
to the particle in this reference frame, and the dif-
fusion paths are contours of constant energy. For
nonrelativistic motion, these contours are spheres
in momentum space concentric with the point
P —mw/k”, p1=0. More generally, if by in-
teracting with a wave a particle experiences motion
along S’ in the wave frame, then we must have
S-VE’ in that frame, which implies that in the la-
boratory frame of reference (where the wave fre-
quency is w) we have

S-V(E —pjjw/k)))=0, )
which implies that the direction of S is such that
S« (%) /E—w/k))p\
—(c’p,/Ep) » ®
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where p) is the unit momentum vector perpendicu-
lar to ). Note that in the nonrelativistic limit E
is nearly constant so that S traces the familiar con-
centric spheres. In the relativistic limit, where
E=(E}+c**'? E is no longer constant along S
so that this simple geometrical picture no longer
holds, and S follows nonconcentric ellipsoids for
w/k) c <1 and nonconcentric hyperboloids for
a)/ k”C > 1

Substituting in Eq. (5) for the diffusion path as
given in Eq. (8) allows us to write

J/Py= G(A)/B,
+(y§/ANdG /dA) , 9)

where B, =w/k | c. In spite of its concise form,
Eq. (9) is exceedingly general and informative, and
it remains only to extract relevant information
from it.

Consider the various limits of Eq. (9). In the
nonrelativistic limit we have y—1 and we find

J 6 213
Py 5+Z;  (54+Z)B, "’

which is an equivalent representation of Eq. (10) in
Ref. 2. In the case of Landau damping, B, —¢, as
the wave is resonant only with electrons traveling
at its own parallel phase velocity. For high-phase-
velocity waves, most resonant electrons have larger
parallel momentum than perpendicular momen-
tum, so that we can take A—¢, and obtain
J/Py—8L2/(5+2Z;) as found previously. In the
case of purely perpendicular acceleration, such as
with electron cyclotron heating with 8,— + w0,
and using the above instance of A—¢, we obtain
J/P3=6L2/(5+2Z;).

Note that the largest J/P; may be obtained by
taking B, small but A large. This corresponds to a
method of maximizing current-generation efficiency
by utilizing waves with high content of momentum
(w/k) small) to interact with relatively collision-
less electrons. Such waves exist in a plasma but
their excitation may be impractical, as discussed in
Ref. 4. For these waves we have
J/Py=2M/[(54+Z;)B,].

As can be seen from Eq. (10) and the discussion
following it, J /P, increases nonrelativistically with
increasing momentum of the resonant electrons be-
cause of their decreasing collisionality with increas-
ing kinetic energy. This, in fact, is the motivation
behind the scheme of current drive in tokamaks
with fast traveling waves.! However, this scaling
ceases to hold for A >> 1, where from Eq. (10) we
calculate the limiting efficiency of J/P;—2 for
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FIG. 1. J/P; vs §. The upper solid and the upper
broken curves are for parallel diffusion while the lower
solid and lower broken curves are for perpendicular dif-
fusion. The broken curves indicate the nonrelativistic
treatment. Here Z;=1 and A=¢ are assumed.

parallel acceleration with B,—1. On the other
hand, the efficiency of current drive by selective
electron heating with infinitesimal parallel-
momentum input, say by electron cyclotron heat-
ing, goes to zero for A large. This is unfortunate,
though not discouraging, in that the efficiency of
current drive is theoretically bounded. Note that
current drive by relativistic electron beams yields
the same efficiency as by parallel acceleration by
waves in this limit and is bounded identically.
Figure 1 exhibits these cases. The only scheme for
current drive by wave diffusion that can exceed the
limiting efficiencies shown in Fig. 1 utilizes a
high-momentum content driver. Here, if p— oo,
we have J/P;—2/B,,, which can be large for 3,
small.

In summary, what has been uncovered is a
bound on the limits of current-generation efficiency
by any means which rely on the acceleration of su-
perthermal electrons. The utility of this finding is,
among other things, to bound, but not extinguish,
the recent enthusiasm over new techniques of
current drive for tokamaks. If the maximum effi-
ciencies for parallel or perpendicular acceleration
are not sufficient, then means for exciting the low-
B, waves described here may become an even more
tantalizing goal.
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