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CURRENTS DRIVEN BY ELECTRON

CYCLOTRON WAVES

C.F.F. KARNEY, N.J. FISCH
Plasma Physics Laboratory,
Princeton University,
Princeton, New Jersey,

United States of America

ABSTRACT. Certain aspects of the generation of steady-state currents by electron cyclotron waves are
explored. A numerical solution of the Fokker-Planck equation is used to verify the theory of Fisch and
Boozer and to extend their results into the non-linear regime. Relativistic effects on the current generated are
discussed. Applications to steady-state tokamak reactors are considered.

1. INTRODUCTION

The generation of electric currents in a plasma by
means of electron cyclotron wave absorption appears
to be one of the more promising schemes of providing
a steady-state toroidal current in a tokamak [1]. These
waves can be employed to generate toroidal current
merely by heating selected electrons and, interestingly,
without directly injecting substantial toroidal
momentum into these electrons. The wave launching
structures are advantageously simple; since the wave
need not have high parallel (to ﬁ, the DC magnetic
field) momentum content, its parallel phase velocity
can be superluminous and, accordingly, no slow-wave
structure is necessary. Moreover, the utilization of the
high-frequency range (the wave frequency, w, is
comparable to §2,, the electron cyclotron frequency)
implies that the wave power density is also high. It
follows that free space waves of high power density
may be injected into the plasma through conveniently
small waveguide apertures in order to drive the
toroidal current.

The main problem in generating current by this
means is the power requirement, both in terms of the
magnitude of the re-cycled power in a tokamak reactor
and the capital costs of the equipment. Efficient
CW power sources for this range of frequencies are yet
to be developed. Assuming that these sources can be
developed, the current must still be generated with
minimal power dissipation for the scheme to be
economically feasible in a fusion reactor. This
minimization requires the absorption of the wave by
only the fastest electrons, which are the most collision-
less and hence retain their directed current longest. In
this respect, this scheme is similar to the alternative
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technique of current generation by lower hybrid waves
(2], which also exploits, among other things, the rela-
tive infrequency with which the superthermal electrons
experience collisions. The present scheme, however,
may allow the wave to resonate even with relativistic
electrons [3] whereas the lower hybrid waves are
constrained by an accessibility condition that, depending
on the plasma § and temperature, allows resonance

only with somewhat slower electrons.

It is an object of the present paper to analyse, both
analytically and numerically, the mechanisms by which
the absorption of electron cyclotron waves leads to the
production of current. The paper is organized as
follows: In Section 2, we consider analytically the
wave absorption from the standpoint of linear theory
in a slab-model low-density plasma. This simplified
analysis nonetheless indicates the most promising
injection angle of the wave into the tokamak and
reasonably estimates the speed of the electrons that
absorb the wave. In Section 3, we numerically check
the formula given in Ref.[1] for J/P4, the current
generated per power dissipated, and we find close
verification of the theory. We then turn to other
effects that are likely to enter the problem in important
parameter regimes. In Section 4, we consider non-
linear effects, i.e. the effect that finite or even large
wave power has on the amount of current generated
and the wave damping rate. In Section 5, we assess
the implications of relativistic effects [3] that become
pertinent in reactor-grade plasmas. In Section 6, we
present a summary of our findings.

Throughout our discussion we shall be comparing
our observations with analytical and numerical treat-
ments of the closely related and more familiar problem
of current generation by lower hybrid waves [2, 4]
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FIG.1. Comparison of electron cyclotron and lower-hy brid methods of current drive.
The wave spectrum and distribution function for the lower hybrid (a) and the electron

cyclotron (b) methods of current drive.

where the wave-particle interaction takes place at the
Landau resonance. We conclude the present section
with an important distinction between the two
mechanisms. The resonance condition for electrons to
exchange energy with the waves is

w - klvl = nne(s)
where k, is the wave paraliel wavenumber, v; is the
electron parallel velocity, s measures distance in the
direction of the tokamak major radius and for lower
hybrid waves n =0, while for electron cyclotron waves
n==+]. It may be seen that, neglecting the poloidal
magnetic field and toroidal curvature effects, electrons
with the same v, absorb the lower hybrid wave. Near
the plasma centre, the plasma is hotter and denser than
near the plasma periphery, so the absorption can be
concentrated there as there are more electrons there to
absorb the wave. This situation is depicted in Fig.1a,
where a spectrum of waves with purposefully high
parallel phase velocity is utilized to avoid power absorp-
tion near the cool and underdense periphery.

In contrast, as electron cyclotron waves propagate
into regions of different magnetic field, they not only
resonate with more electrons, but they resonate with
electrons of different parallel velocity. This is depicted
in Fig.1b, which indicates the phenomenon in the
case of the extraordinary wave, which is launched from
the high-field side of the tokamak, where there are no
resonant electrons. At some interior point, however,
there may be a large number of resonant electrons.
Just as for the lower-hybrid wave, as the wave propa-
gates inward, more and more electrons become
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resonant. In contrast, however, to the case of the
lower-hybrid wave, the electrons becoming resonant
are those that are slower and slower as the wave nears
the resonant surface, w=§2.. The slower electrons are
less efficient to heat for generating currents so that it
becomes critical that the electron cyclotron wave
damps completely before v; becomes too small.

2. WAVE ABSORPTION

The effect of electron cyclotron resonance heating
is to increase primarily the perpendicular velocity of
the resonant electrons. The velocity increase lies in
this direction because the waves have very little
parallel momentum content compared to energy
content, so that when the wave is absorbed by an
electron, the electron energy increases, but, by
momentum conservation, its parallel momentum
barely increases. That the waves themselves have little
paralle]l momentum to impart to the electronsis a
consequence of their superluminous parallel phase
velocity. The energy in a wave is proportional to w,
while its momentum is proportional to K. Since

w/k > c, the waves possess relatively little momentum.

Neglecting then the small parallel momentum of the
wave (which vanishes in the limit w/ky—0), we view
the wave-particle interaction as a diffusive process in
velocity space where

f 1 9 ¢ 1
ot v, avl Vi Drf avl S
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where { is the electron velocity distribution and D¢

is the wave diffusion coefficient which may be written
heuristically as D¢= (Avf)/At, where Av is the charac-
teristic velocity change in an auto-correlation time At.
The waves accelerate electrons through a perpendicular
electric field, E. For extraordinary waves we may
write

(2)

glo
tet
>
o

bv, =

where e/m is the electron-charge-to-mass ratio. The
correlation time of the waves is approximately given by

At = 1T/Aklvl 3)

where we have chosen the constant 7 so that

_— 4)
M

which is just the result derived in a more precise
manner [5]. The power dissipated may be found from
Eq.(1) as

2 3f .3»

1
Pd ! 5 nomvl 3t 47v

3>
v

=2nmp__ [ £ 4V = 2nm (5)
o xf r r

£

where we have integrated twice by parts to obtain the
second equality, assuming that Dy is independent of
v, in a range in vy, and we define n; as the number of
resonant electrons. The interpretation of Eq.(5) is
that the power dissipated depends directly on the
number of resonant electrons. (This result is a con-
sequence of taking D to be independent of v,.) In
the linear limit, the distribution function is a
Maxwellian and n, and the damping rate are inde-
pendent of Dy¢. It is possible, however, that n, could
change because of non-linear effects. Should n;
increase, then the wave damping rate, with increasing
Dy, would increase rather then decrease, in contrast
to the scaling in the case of lower-hybrid waves. It is
difficult, however, to find n; analytically. We do,
however, explore numerically non-linear aspects of
this problem in Section 4.

We consider now the implications of the linear
theory on the efficiency of driving current. Using
Eq.(4) and assuming k,>k, , we may write the temporal
damping of extraordinary waves as
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where wype is the electron plasma frequency, and n,
is the density of resonant electrons in a width Av,.
The spatial damping of the wave is given in the limit
of underdense plasma as

s v ck k c Av
gs S s 1

N

D> EN
E
o] |H5

o

where the subscript s denotes the direction that is also
parallel to VR, where R is the major radius.

It is important to determine the region of velocity
space in which the largest portion of the wave energy
is absorbed. The wave enters the plasma at some
horizontal position s =s; and eventually loses its power
at some position s=sp. It may be imagined that at
s=s, there are no or very few electrons resonant with
the wave, whereas at s =sy there are a substantial
number of electrons, hopefully with normalized
parallel velocity vy /vie=w > 1, that are resonant with
the wave. Thus, sy, satisfies the equation

s
1 = f acz(s) ds = f: a(s) ds
*p b
2
T™w
=__.Lf°° n ds (8)
k cn v s x
s o 1 b

The integral is perhaps more transparent in w-space
where we write

n 2
X A__"’__ v /2 )
N V2n
and
Gw 1 a7 Qe(S)] - e (10)
ds v ds k k Rv
e 1 I te
so that Eq.(8) becomes
2
- k w -w /2
= I (ty(-Re R e
1= '/2 (k ](Q )(c/m- ) W (an
s e pe

where w is the normalized resonant parallel velocity at
$= Sp.
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For a fusion-grade plasma, it is easily seen from
Eq.(11) that w = 4 is attainable, consistently with full
damping of the extraordinary wave. Further optimi-
zation (i.e. damping at higher w) can be obtained by
minimizing kg for a given k. This corresponds to
angling the wave not only in the toroidal direction, but
also in the vertical direction as it enters the plasma.

Let us note that because of the exponential depen-
dence on w, nearly all the wave energy is absorbed in a
narrow range Aw in w. This corresponds to a narrow
width As ins. To estimate the damping width As,
consider that a Maxwellian exponentiates in a width
Aw=1/w. Thus, making use of Eq.(10), we find that
As=Kky Rvie AW/, or, in normalized parameters,

As 0.1 (R )

a2 T 7172 \3a
a T1/

10
where a is the minor radius and T, is the temperature
normalized to 10 keV. In the regime T4z 1, pertinent
to reactors, it is seen that As/a is indeed small. The
heating and current generation profiles can, however,
be much broader than is apparent at first glance. This
is because As only measures distance parallel to VR.
In fact, by vertically angling the wave (ks<k,), not
only is the current generated at higher w, but the
deposition profile is broader since the wave damping
now occurs over a longer length that intersects many
magnetic surfaces.

To determine which is actually the best configur-
ation for current generation, a full propagation study,
such as has been conducted for the heating profile (6],
would have to be undertaken. Note that for a given
plasma (i.e. density and temperature profiles and
dimensions) there is the opportunity to vary five wave
parameters: the frequency, which determines the
vertical resonance surface; the poloidal angle at which
the waveguide intersects the plasma periphery; the
angles of injection, both in the toroidal direction and
in the vertical direction; and, finally, the fifth para-
meter is the narrowness of the wave spectrum for a
given power. The power is given roughly by the
amount of current to be generated. The fifth para-
meter involved in the optimization dictates whether
this power is to be concentrated in a narrow spectrum
of k; or not.

3. CHECK OF THE LINEAR THEORY

A formula was derived in Ref. [1] for the quantity
1/P4 for the case where the waves push electrons at
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velocities much exceeding the thermal velocity. This
analysis represented a significant advance on the pre-
vious one-dimensional theory [2] in that it distinguishes
the scattering of electrons in pitch angle and energy.
Furthermore, it treats the case of electron cyclotron
damping which was not covered by the one-dimensional
treatment. The important approximation made in
Ref.[1] was the neglect of diffusion in the energy
direction. (Slowing-down only was included in this
direction.) The derivation itself is only valid when the
speed of the resonant electrons far exceeds the electron
thermal speed. We now seek to check the theoretical
result of Ref. [1] by computing J/P4 from a numerical

solution of the two-dimensional Fokker-Planck equation,

The Fokker-Planck program used is the same as
described in Refs [4, 7]. That is, it solves

3
—'§—D af+_a£

am T 9T 011

(12)
where B,f is the wave diffusion tensor (a function of
v) and the collision term 3f/dt|, is calculated
assuming fixed, constant-temperature backgrounds of
electrons and ions. As before, we adopt a normalization
where

T v t [v = lo

o o g A t_upe/(2'nnovte)]
* _ x> 2 _
u = v/vte (vte Te/m)

Normalized current and power dissipation are measured
in units of engvye and vynyTe, respectively. 1n addition,
we define x and w to be the perpendicular and parallel
(to By) components of . The domain of integration
is u <10, with the condition that there be no flux of
particles normal to the boundary. Normally, we shall
only be concerned with cases where only the X%
(cyclotron dam:Ping) or the ww (Landau damping)
component of D is non-zero.

With these normalizations J/Pq is predicted to be [1]

J__ g-V(wuB) 4 (13)
P - 2 5 + 2,
4 SeVu i

where S is a unit vector in the direction in which the
wave pushes the electrons (i.e. S=% for cyclotron
damping and S=w for Landau damping) and Z; is
the ion charge state. In practice, Eq.(13) should be
integrated over the spectrum of waves. A further
complication arises if the waves are strong enough to
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FIG.2. J/Py for small D as a function of w?) where D= 1073,
w,— W= 1. The waves exist only for x 1. Open circles denote
cyclotron damping and closed circles Landau damping. Lines
show the theoretical predictions of £q.{13).

alter the distribution function f significantly because
then f must be determined before Eq.(13) can be
applied. These difficulties rule out a detailed com-
parison of Eq.(13) with the numerical results obtained
for the Landau-damping case [4].

" Here, we circumvent these difficulties by choosing
D to be small and l%calized in velocity space. Although
the localization of D may be difficult to realize, this
approach does allow us to check the physics embodied
in Eq.(13). We take D¢ to have a form which is zero
except for w, <w <w, and x <1, where it is equal to
a constant D multiplying either XX or ww. We take
w,—w;=1and D=103, Figure 2 shows J/Py plotted
as a function of (w?2), where the average is computed
with a Maxwellian weighting, i.e.

w
2 2
fw w fM(w)dw

W =

1
fwz f. (w)dw
wl M

where fijf(w) is a Maxwellian distribution.

There is excellent agreement between the numeri-
cal results (the symbols) and the analytical predic-
tions (the lines). Interestingly, the theory and
numerical results appear to agree fairly well even
with w small for the cyclotron damping case but
not for the Landau damping case. This is because the
parallel input of momentum begins to be very sub-
stantial for low-phase velocity waves [7] and J/P3 must
begin to increase as 1/w. This effect is not present for
the ECRH. Note, however, that these numerical calcu-

NUCLEAR FUSION, Vol.21, No.12 (1981)
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lations were performed assuming the background elec-
trons to be non-drifting. If this constraint is relaxed
[7], the results for J/Py for w, , < I should be increased
by a factor of about two.

4. NON-LINEAR RESULTS

Normally, we shall be interested in cases where D¢
is large enough to perturb f significantly. To illustrate
the type of behaviour we might expect, we show, in
Fig.3, plots of f for D=0 and w;=4, w, =5, for the
cases of cyclotron and Landau damping. (As in the
previous section, we take D;r to be a constant D for
w, <w <w,. The perpendicular extent of the waves
was determined only by the integration region, u < 10.)

A novel method was developed to treat the case of
D—»oo. This is based on the observation that § -of /v
must be zero. (Recall S is the direction in which the
waves accelerate the particles.) This is achieved by
replacing the diffusion operator by an averaging
operator where the averaging is performed in strips
aligned with S.

Returning to Fig.3, we first of all note that the
perturbation to f is much greater in the cyclotron
damping case. The reason for this is that the waves
accelerate the particles so that they tend to stay in the

(a)

8 6 -4 -2 0 2 4 6 8 10

* /
Z'/{I,i /ﬁff@\\\\\q\

(b)

0 8 -6 -4 -2 0o 2 4 6 8 10
FIG.3. Steady-state distribution functions for D >0 with

w,=4, and w,=5. Figures {a) and (b) show the cases of electron
cyclotron waves and lower-hy brid waves, respectively.
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resonant region. The waves are, therefore, more
effective at accelerating the particles than waves which
interact with particles via the Landau resonance. The
greater perturbation in the cyclotron damping case
means first that more current is generated (for Fig.3,
J=3 X103 for cyclotron damping and 6 X 107* for
Landau damping). Since much of this current is
carried by relatively collisionless particles with high
perpendicular velocity, J/Pq is approximately twice

its value in the low-D limit. (For w; =4 and w,=5,
J/Pa= 37 for D — oo, while J/Pq= 17 for D—0.) In fact,
the cyclotron-damped waves have caught up with the
Landau-damped waves which at low D were more
efficient in terms of J/Pg. (For Landau-damped waves
with w; =4 and w,=5, J/Py= 37 for D+ o0 and J/P4=26
for D-0.)

The ease with which cyclotron-damped waves can
perturb f has one interesting consequence, namely
that the power dissipated by the wave does not neces-
sarily saturate as D is increased. (P4 did saturate for
the case shown in Fig.3 because of the effective cut-off
on D at u=10.) Such a saturation does occur with
waves which are Landau-damped and results in the
damping rate becoming zero as D o0, With cyclotron-
damped waves, the behaviour of the damping rate as
D varies is a function of the v, -dependence of D. In
particular, even when D is large enough to greatly
distort f, the damping rate may be fairly close to the
linear damping rate.

Figure 4 shows J/P4 and Py as functions of D forw,=4
and w,=5. As D is increased, J/Pq shows a steady rise
while Py is very nearly proportional to D, showing the
constancy of the damping rate. This is so even though
the distribution at the highest value of D given in
Fig.4, D=0.25,is far from a Maxwellian (see Fig.5).
For comparison, the lower-hybrid case is illustrated
in Fig.4 also. Note the strong saturation of Py.

A corollary of the nearly linear behaviour of P4
with D is that the damping of a particular component
of the wave spectrum is not greatly affected by the
neighbouring components. This is illustrated in Table |
where the cases of (w;, w,)=(4, 5), (5, 6), and (4, 6)
with D=0.1 are compared. We see thatJ and P4 for
the (4,6) case are given to within 10% by the sums of
the (4, 5) and (5, 6) cases. On the other hand, the
discrepancy with lower hybrid waves is a factor of
about two.

The results presented in this section need to be
taken with some caution because when D;¢ is constant
(as in these computations), there is a possibility of a
runaway in the perpendicular direction since at high v,
the collisions are not able to hold the electrons back
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circles Landau damping.

FIG.5. Steady-state distribution for D=0.25, w,=4, and
w,=5 (cyclotron damping).

effectively so that particles would be continuously
accelerated in v,, precluding the establishment of a
steady state. The presence of the numerical cut-off
of the waves at u= 10 would then dramatically alter
the results. In practice, however, the finite perpendi-
cular wavelength of the waves causes D to take a
Bessel function dependence [5] so that D¢~ 1/v, for
high v,. (In the special case of linear polarization,
there is a cancellation which results in D;¢~ I/Vi.)
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TABLE L. J AND Py FOR (w,, w,)=(4,5),(5,6),

AND (4, 6), AND D=0.1. The subscripts cyc and lh
denote cyclotron waves and lower-hybrid waves. The
column headed ‘sum’ is the sum of the columns (4, 5)
and (4, 6).

(wy, W2) (4, 5) (5, 6) sum (4, 6)

Teye 17X10% | 26 X10%]| 1.8X10% |2.1X10*
Pacye 7.9X10°|7.9X 10" 8.0X10°[8.8X 107
I 7.4X10* | L1X10°) 7.5%x10* [ 1.4x107
Pan 22X107% 124X 107} 2.2X107% | 3.6 X 10°

This decay of D;r is probably sufficiently fast to
ensure the existence of a steady state. (We are
assuming that at large v, the effectiveness of D;s is
diluted by the geometrical factor arising from the fact
that the fraction of the velocity space shell at u
occupied by the resonant region is proportional to 1/u.
The effective D;s then decays as | /u? which is at the
same rate as the frictional term in the Fokker-
Planck equation. This allows the establishment of a
steady state in which f decays exponentially with u.)
The 1/v, dependence takes over at v, ~/ky~ c.
For typical electron temperatures (~ 10 keV), this
would be x ~ 10. If we solve for f with a boundary at
u= 10, then the error entailed by introducing the
boundary will be small if f at the boundary is small
since we know that f, in fact, decays exponentially
beyond the boundary. Since the decay rate depends
on D;f, we must also restrict D;f from being too large.
To determine the behaviour of the particles at larger
values of D¢ where the large-v, behaviour of D, is
important, we must include relativistic effects because
the velocities of these particles are close to that of
light. This problem will be discussed in the next
section.

5. RELATIVISTIC EFFECTS

In this section, we outline how various relativistic
effects may play a role. These effects, which are
pertinent to fusion-grade plasmas, are all rather weak
in the lower-temperature reactors (T, <2), but become
increasingly important at the higher temperatures that
are characteristic of more advanced reactors.

NUCLEAR FUSION, Vol.21, No.12 (1981)
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The most important relativistic effect relates to the
efficiency of current generation. As is described in
Ref. [3], this efficiency is somewhat reduced for
mildly relativistic electrons, but approaches zero for
very relativistic electrons. In view of this inefficiency
of relativistic electrons, this effect supersedes the
additive deleterious effect of power loss through
synchrotron radiation of very fast electrons.

There are other relativistic effects that concern the
wave-particle interaction itself. One effect is the
decrease in D;s due to finite-gyroradius effects, which
is an effect available non-relativistically, too. We tum
here, however, to more fundamentally relativistic
effects. In our analysis, we assumed that electrons
were pushed by the wave only in v -space where they
remained in resonance with the wave. The result of
this would be that, in the absence of collisional
effects, there would be complete flattening in v, space
for the resonant electrons, i.e. f > 0. Relativistic effects
change this picture in two ways. First of all, as the
electron perpendicular energy increases, so does its
relativistic mass, which means that it can fall out of
resonance. To be specific, the resonance condition is
now

v, = (w - Qe/Y)/k'

where v = (1 —v3/c2) % and £, is the cyclotron fre-
quency of non-relativistic electrons. The result of the
electron falling out of resonance is that the flattening
in v cannot continue and f will not vanish anywhere
in the collisionless limit.

The second relativistic effect on the flattening of f
relates to the direction in which electrons are diffused.
This diffusion path may be thought of as that sector
of velocity space where f is induced to be constant
by the influence of a wave with parallel phase velocity
w/ky. 1tis given by

E - plm/kl = const (14)

which is the relativistic statement of conservation of
energy and parallel momentum. The effect of this is
again to push electrons not purely in the perpendicular
direction and hence to push them out of the resonance
with the wave. Now, f becomes normalizable in the
collisionless limit.

To appreciate Eq.(14), it is helpful to picture these
diffusion paths. In the non-relativistic limit, Eq.(14)
describes the familiar concentric circles in velocity
space about the point (v;=0, vy= w/ky). Consider,
however, Fig.6a, where diffusion paths due to a wave
at w/k;=0.6 c are depicted. The familiar circles are
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FIG.6. Diffusion paths for particles in waves. Velocity space
with (a) wiky=0.6 ¢, (b) w/ky=2c¢, (c) momentum space
with w/k = 1.1c.

now seen to be somewhat distorted in order to assure
that the particle velocity remain less than c. In Fig.6b,
we show diffusion paths due to a superluminous wave
with w/ky=2 c. Here, the topology of the paths is
seen to have changed from ellipsoidal to hyperboloidal
surfaces. The topology change is characteristic of
superfuminous waves and occurs in momentum space,
too. In Fig.6¢c, we show the diffusion paths in
momentum space for w/k;= 1.1 ¢.

We now turn to relativistic effects playing a role in
technological considerations. From an engineering
standpoint, it would be most preferable to use a wave
of the lowest possible frequency and to inject it from
the low-field side of the tokamak.

Let us first consider the launching of the extra-
ordinary plasma wave which must be done from the
high-field side of the tokamak. The resonance condition
kyvy= w — 8 /vy may be written as
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v
I o\=1
| =0+ o) (15)

l w
Qe/Y
and two implications with respect to minimizing
become apparent. Note that w/ky>c; at reactor grade
temperatures, however, vy may approach c. Thus, we
may bound

W
a_/v

Doy
and the lower (preferable) limit is accessible only for
nearly parallel injection (k> k,) and absorption by
relativistic electrons. This limit is preferred because

it minimizes the frequency of the power source.

The second point to be made about Eq.(15) is that,
for relativistic electrons, v becomes large, which has
the effect of requiring a lower-frequency power source.

For the ordinary wave, which is launched from the
low-field side, similar considerations are pertinent.
Here we have

-1

el - - 5

= ( 1 - -—)
Qe/Y w
and, for this wave, small k; implies smaller w and
w> Qe /v is always true.

6. CONCLUSIONS

We have examined various aspects of current drive
by electron cyclotron waves. Although the current
drive mechanism is intrinsically less efficient than for
current drive by lower hybrid waves, the greater
flexibility of positioning the wave spectrum and the
non-linear enhancement of J/P4 given in Section 4
offset this disadvantage.

The most interesting result of the numerical studies
of the non-linear problem is that the damping rate of
the wave is nearly independent of the power level.
The weak dependence that exists is masked by the
exponential factor exp(—w3/2) entering the formula
for the dissipated power. This means that ray-tracing
codes may safely use linear damping theory. Non-
linear effects become important in estimating the
current drive efficiency, where the non-linearity can
enhance J/Pq by up to a factor of about two.

For the current to be generated in a single direction,
we require that all the power be absorbed before the
cyclotron layer. In Section 2, it was shown that this
was easily achieved with the extraordinary wave in a

NUCLEAR FUSION, Vol.21, No.12 (1981)

€
he
b

[ {¢
al

fc
ol
ol
Ic
tr:

cd
tr
ex
cu
cu
T!
cu

at

co
de
eff
res

NU(



(15)

ing w
stor grade
“hus, we

nly for
ion by
recause
‘ce.

3) is that,
ich has
ver source.
from the
inent.

v and

ent drive
current

- than for
ater

and the
ition 4

cal studies
ng rate of
r level.
by the
formula
-ay-tracing
. Non-
ng the
arity can
0.
le direction,
refore the
1 that this
wave in a

1, No.12 (1981)

reactor. An additional margin of safety is provided,
however, by placing the source close to the top or
bottom of the machine (but still in the high-field side
of the cyclotron layer) since the group velocity normal
to the cyclotron layer is, thereby, reduced. Such an
arrangement also allows easier access for the waveguides.

We have presented here only the numerical results
for the extraordinary wave for which D is independent
of v, for low v;. For the ordinary wave, the polarization
of the wave is such that the electric field vector is
rotating in the direction opposite to that of the elec-
trons. The diffusion coefficient D then behaves as
v, for low v,. This is more difficult to model numeri-
cally because of the greater importance of an accurate
treatment of the behaviour of large-v, particles. We
expect that, for given w, and w,, the efficiency of
current generation will be greater because more of the
current is carried by collisionless high-velocity particles.
The damping rate is, however, also smaller so that more
current will be generated at lower values of w, .

Several phenomena affect the diffusion of electrons
at high v,. Finite-wavelength effects cause the diffusion
coefficient to oscillate with a Bessel function depen-
dence. Equally important, however, may be relativistic
effects which change both the diffusion paths and the
resonant region. Relativistic effects also allow the use

NUCLEAR FUSION, Vol.21, No.12 (1981)
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of frequencies substantially below the cyclotron fre-
quency. This will be important in hot second-
generation reactors.
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