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The Rosenbluth form for the collision operator for a weakly relativistic plasma is derived. The
formalism adopted by Antonsen and Chu can then be used to calculate the efficiency of current
drive by fast waves in a relativistic plasma. Accurate numerical results and analytic asymptotic

limits for the efficiencies are given.

I. INTRODUCTION

Currents may be efficiently generated in a plasma by the
injection of rf waves whose phase velocities are several times
the electron thermal speed.! The efficiency, defined as the
ratio of current generated to power dissipated, is achieved in
this instance because the rf-generated plateau decays at a
rate given by the collision frequency for the fast electrons,
which is relatively low. In the quest for higher efficiencies,
current drive by waves which interact with relativistic elec-
trons has also been considered.? Relativistic effects modify
the scaling of the efficiency, placing an upper bound on the
efficiency achievable by current drive by fast waves. In this
paper we do several things: We give a more complete analy-
sis of this problem based on a formalism adopted by Anton-
sen and Chu.?® Specifically, we find that the effect of finite
electron temperature leads to an enhancement of the effi-
ciency. In order to calculate this effect, we first give expres-
sions for the most important terms in the electron—electron
collision integral in the relativistic limit. These expressions
are put in Rosenbluth form so as to be amenable to easy
implementation on a computer. We imagine that the relativ-
istic Rosenbluth potentials that we identify may be useful in
other problems arising in very hot plasmas.

In order to put the present work in perspective, let us
briefly review the chief tools used in the study of current
drive. The early work used fairly crude analytical models."*
These models were sufficient to obtain the scaling laws for
the efficiency of current drive but were unable to provide the
coefficients with any accuracy. Therefore the analytical
treatment was supplemented by numerical solutions to the
two-dimensional (in momentum space) Fokker-Planck
equation,>® from which accurate estimates of the efficiency
could be found. The first accurate analytical treatment of
current drive was based on a Langevin formulation of the
electron motion.>? This involved taking the electron tem-
perature to be small, allowing energy scattering to be ig-
nored. The moment hierarchy for the Langevin equations
can then be closed, which allows an analytical solution to be
obtained. This was followed by a more complete numerical
study of the Fokker-Planck equation for current drive in
which the problem was reduced to the numerical solution of
a one-dimensional (1-D) integro-differential equation with a
source caused by the rf.!° In this work toroidal effects were
also included. The results agreed with the Langevin analy-
sis? in the limit of large phase velocities (as they should) and
gave more accurate numerical data for phase velocities com-
parable to or smaller than the thermal velocity. More recent-
ly, Antonsen and Chu® and, independently, Taguchi'! using
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methods first used in the study of beam-driven currents'>*?

recognized that it is not necessary to solve the rf-driven

- Fokker-Planck equation in order to find the rf-induced cur-

rent. Instead, they showed that the Green’s function for the
current is the Spitzer—Hirm function'* describing the per-
turbed electron distribution in the presence of an electric
field. This reduces the problem to the determination of a
single 1-D function, from which the current generated by
any form of rf drive can be calculated by a simple integration.

Up until now, the only reliable analytical results for
current drive in a relativistic plasma are those obtained using
the Langevin methods by Ref. 2. As we will show, these are
only exact for T, ¢m,c* and p*»m,T, (where p is the mo-
mentum of the resonant electrons). A more complete analy-
tical or numerical treatment along the lines of that achieved
in the nonrelativistic case was hampered by the lack of a
convenient form for the relativistic collision operator. This is
remedied to some extent by the results of this paper, where
we calculate the collision integrals for the first Legendre har-
monic of the perturbed electron distribution neglecting elec-
tromagnetic effects on the binary interaction (in this approx-
imation the collision integral reduces to the Landau form).
Having done this, we are able to generalize the treatment of
Antonsen and Chu® to the relativistic case. A number of
useful results flow from this: We can numerically calculate
to high precision the current-drive efficiencies in the relativ-
istic regime. We can perform an asymptotic analysis of the
Spitzer-Harm problem to obtain analytic approximations to
the efficiencies. In addition, we give higher-order asymptotic
corrections to the current-drive efficiencies in the nonrelati-
vistic limit. Throughout this paper, toroidal effects are en-
tirely ignored. Although these effects are important in the
study of current drive by low-phase-velocity waves, they
play little role in current drive by fast waves. Incorporation
of these effects, however, proceeds in exact analogy with the
treatment for the nonrelativistic case.’

Relativistic effects on rf current drive have also been
considered by Hizanidis and Bers.'* However, their analysis
is flawed and their results for the current-drive efficiency are
incorrect.

The plan of this paper is as follows: In Sec. IT we show
how the relativistic collision operator may be reduced to the
Landau form. In this form, the collision operator is costly to
evaluate numerically; so, in Sec. III we convert the collision
integrals to a Rosenbluth form, which may be evaluated very
efficiently. The formulation of Antonsen and Chu is general-
ized to the relativistic case in Sec. IV. The numerical results
for the efficiencies are given in Sec. V and the asymptotic
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results in Sec. VI. Finally, in Sec. VII we examine the asymp-
totic form of the efficiencies using the full relativistic colli-
sion operator.

Il. RELATIVISTIC COLLISION OPERATOR

The collision operator for a relativistic plasma is given
by Beliaev and Budker.' They give the collision operator as

coll
%@ =3 Clfusfo) (1a)
t b
C(forfo) = (g9 /87e5) log A **
9 . (D)
xZ- [u(nm 2%
0\ 5.
_f;z(p) "—ép,_)d p, (lb)

where the kernel U is given by
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Here a and b are species labels, g, is the charge of species s,
log A ** is the Coulomb logarithm, €, is the dielectric con-
stant, p is the momentum, v, = ¢f8, = p/m,y, is the velocity
of species 5, and ¥, = (1 + p?>/m?c?)"/2 The distributions are
normalized so that

[rwas=n,

the number density. We are primarily interested in situations
where fast electrons are colliding off a weakly relativistic
background. In that case 8 ; €1, and we can approximate U
by its nonrelativistic form

U = (2%l — uu)/u?,

Since the original form for U was symmetric in the primed
and unprimed variables, we could equally well have obtained
Eq. (1c) under the assumption that S, €1. The relative dif-
ference between Eqs. (Ic) and (2) is O (8 }). However, the
error in the collision operator C (£, f,) is smaller than this.
This point is examined in more detail in Sec. VII. Equations

u=v, —v,. (1c)

(1) are precisely the collision operator given by Landau.'” -

Indeed, an examination, of his derivation shows that the me-
chanics of the collisions are treated relativistically; the inter-
action, however, is calculated nonrelativistically assuming a
Coulomb potential. Use of Landau collision operator implies
a neglect of the relativistic (i.e., electromagnetic) effects on
the binary interaction. What we have shown here is that such
an approximation is valid provided at least one of the collid-
ing particles is nonrelativistic.

It is readily established that Egs. (1) conserve number,
momentum, and energy (¥, = m,c?y,), that an H theorem
applies, and that the equilibrium solution is a relativistic
Maxwellian  f(p)«<exp(— &./T), where &.=(&,

— v4p)/(1 — v3/c*)"?is the energy in a frame moving at v,
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and 7 and v, are independent of the species s.

Throughout the rest of this paper we will restrict our
attention to an electron—ion plasma. We assume the ions are
stationary and infinitely massive (m;,— ). This allows us to
express the electron—ion collision operator in ( p,u) space
(wherey = p /pand || and 1 are with respect to the magnetic
field) as

CLf)=T

where
I'=n.qlog A “*/4ré: ,
Z= —gq;logA“/q, log A~ —q,/q.,

z 3 2y 9
2vp2$(1_'u ) % S(p), (3)

and we have assumed neutrality ¢.n, + ¢;n; = 0. In Eq. (3)
and henceforth we shall omit the species labels from all elec-
tron quantities.

Ill. GENERALIZATION OF THE ROSENBLUTH
POTENTIALS

For computational purposes, the Landau operator is
not the most convenient form for the collision operator. If
the plasma is azimuthally symmetric, a 2-D integration must
be performed at each point in momentum space. If the num-
ber of grid points is N X N, this requires O (N %) calculations.
This requirement is dramatically reduced in the nonrelati-
vistic case by expressing the collision operator in terms of
Rosenbluth potentials.'® Unfortunately, although the Lan-
dau operator can be used without change to describe the
collisions in a relativistic Coulomb plasma, the Rosenbluth
form no longer applies. [The derivation of the Rosenbluth
form from the Landau form requires, for instance, that (3 /
dp)U = — (8 /dp'yU, arelation that only holds nonrelativis-
tically.]

However, because the kernel of the collision integral
Eq. (1c) has the same form as in the nonrelativistic case, it is
possible to borrow some of the techniques of Ref. 18. We
convert the p’ integration in Eq. (1b) to v’ space, substitute a
particular Legendre component for f(p’), and manipulate
the resulting integrals into the form

fh—ﬂ&m%WMW

or
fw—ﬂ”hm%ww%:

which may be evaluated in the same way as Rosenbluth po-
tentials'® (P, is a Legendre polynomial).

Here we give the resulting expressions for collisions off
a stationary Maxwellian background, i.e., C( £, f,,), and for
collisions of a Maxwellian off the first Legendre component
of a background, i.e., C(f,,, uf;). In both cases only elec-
tron—electron collisions are considered. These terms are all
that are required for the solution of the Spitzer-Hirm prob-
lem (giving the Green’s function for the rf-current drive), and
they suffice for an accurate numerical solution of the 2-D
Fokker—Planck equation as described in Sec. V.

Beginning with the case of collisions off a Maxwellian,
let us start by assuming merely that the background is iso-
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tropic f(p) = fo( p)- The 3-Dintegralsin Eq. (1b}, then reduce
to 1-D integrals giving

_1d 9
CUR=%5 (A(p) = +F(p))f(p)
Blp) 3, .23
+ 28 -1 Lo (4a)
where
/4 2
A(p) =“’3”—F(f PP o
f %(p')l,dp'), (4b)
_ 4l v —v/c?
Fip) = (fpfo( ) 2L gy
+fp fb(P')%dP'), (4c)
_L (7 e o V2
2o =2 ( [ rhir S ap
+ r Pl p’% dp’) - (4d)

Specializing to the case f, =/, and using the relation
af,./dp= — (v/T)f,, we find that

F(p)={/T)A(p)

and the steady-state solution to C(f, f,,) =0 is that fis a
relativistic Maxwellian'® with temperature 7,

FulP) = TKZ(@“) XP( T ) Gl
where

& = mc?y,

@ =T/mc

(® = 1 corresponds to an electron temperature of 511 keV),
and X, is the nth-order modified Bessel function of the sec-
ond kind.

For later use we define here a thermal momentum

P =ymT,

a mean-squared velocity
=~ [vhapan=Lyz,
3n m
Vi=1-30+3%60%+0(0?,

i |
I(X)_wr[mf (:’)xl(p)
g [ ot 2 [ L2 (o 46

5f P PA(P) %[pL%(

The term is square brackets in the last integral matches that
in the first integral except for the interchange of the primed
and unprimed variables. The simplification of Eq. (7) was
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a thermal collision frequency
v, =mI /p} = ng*m log A /4nél p? ,

and a collision frequency normalized to the speed of light
v, =I'/m?c® = nq* log A /4wesm*c®

Note that these frequencies differ by a factor of 2 from those
used in earlier publications."*>%82 Specifically, we have
v, = vy/2 and v, = v/2. This means that all our normalized
efficiencies are a factor of 2 smaller than in these earlier
papers. (We made this change because the normalized
Fokker—Planck equation in the high-energy limit now has a
simpler form. This convention is also used by other workers
in this field.)

For p>p,, the indefinite limits in the integrals in Eq. (4)
can be replaced by o, giving®®

. T/,
= (1/20)(1 — 2/v?).

A(p)=
B(p)

(6a)
(6b)

Note that the frictional force F ( p) reaches a constant value as
p—oo. This implies, for instance, that an electric field
smaller than I'v?/qTc? cannot produce runaways.?! On the
other hand, the pitch-angle scattering frequency B ( p)/p?
continues to decay as p— 0. As the energy of the electron
increases, its effective mass increases; it is then more difficult
to deflect the heavier particle. In this limit, pitch-angle scat-
tering is negligible compared with frictional slowing down.
This is to be contrasted with the nonrelativistic case where
the pitch-angle scattering frequency and the frictional slow-
ing down rate decay as 1/p% and the two processes are of
comparable importance.

The implication for current drive is that the efficiency
of parallel wave-induced fluxes, say by lower-hybrid waves,
approaches a constant. This can be seen as follows: Nonrela-
tivistically, the efficiency increases as p? Relativistic elec-
trons, however, slow down faster because they are heavier,
and they also do not carry more current when pushed in the
parallel direction. Each of these effects reduces the efficiency
by ¥ ~p; hence the approach to a constant.

The other term we shall need is C( f,,,, uf;). This term is
rather harder to compute. We define fi( p) = f,.{ p)x:( ») and
write C ( f,,., fo. 1) = uf 51 (1) Again, we reduce (this time
after much algebra) the integrals in Eq. (1b) to 1-D ones to
give

1

T —op))+ 527‘}— (% - Lure+ )| ap

(7 r-gurro)|e).
m

Ly re
—3r —om)+ 5

I
achieved, in part, with the help of the symbolic manipulation
program, MACSYMA.%?

Equations (4) and (7) are now in a computationally con-
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venient form. Their evaluation involves the determination of
a number of indefinite integrals (the unprimed variables
should be factored out of the integrals for this step), and the
multiplication of these integrals by various functions of p. If
the distribution functions are known on a grid of NV points,
then the computational cost is just O (V). Furthermore, the
calculation can be arranged so that nearly all the computa-
tions vectorize.?* The general solution of the linearized elec-
tron—electron collision operator C (f; .} + C(f,,.,f)} =0is

f=la+bp+c&)f,,
wherea, b, and ¢ are arbitrary constants. Witha = ¢ =0and
b = P, this provides a useful check on Eqs. (4) and (7) and
their computational realizations.

IV. FORMULATION

We now turn to the calculation of the rf efficiency.
There are three steps involved: the specification of the rf
current-drive problem, the identification of the Spitzer—
Harm function as the Green’s function for the rf-driven cur-
rent, and the solution of the Spitzer-Harm problem.

We begin with the specification of the problem. This is
just a standard application of the Chapman-Enskog proce-
dure.** The most important assumption is that the colli-
sional time scale is much shorter than the transport time
scale (the time scale for heating the plasma by the rf). This
places some restrictions on the rf drive. However, these are
usually not severe ones in the case of fast-wave current drive
since, even if the rf is strong, there are so few resonant parti-
cles that the heating rate is small.

The effect of the f is to induce an electron flux

af
S= D% 8
3 (8)

in momentum space, where D is the quasilinear diffusion
tensor.?® In the Chapman~Enskog ordering this is taken to
be of first order. The zeroth-order electron distribution is
given by setting the collision term C ( f, /) + C(f, f;)equal to
zero. The general solution is a Maxwellian equation (5) with
n and T arbitrary functions of time and position. For simpli-
city we ignore the spatial variations. Since the rf drive is
particle conserving we may take 7 to be a constant. A drift-
ing Maxwellian does not solve the zeroth-order system since
the ions are taken to be stationary.

The first-order equation is given by substituting
S=/rn{1 + ¢) with ¢ ordered small to give

_d . (& - (%)) d
Clfn¥)= Y S+ —F S I log 7, (9)
where

Cf)=ClLfn)+C L )+ CIL L) (10)
is the linearized collision operator, and (&) is the mean
energy per particle!®

K@)

_1 3 2
#) = [ # .01 d% = me (RAE]

The last term in Eq. {9) represents the heating of the Maxwel-
lian. The equation for the time evolution of T'is given by the
solubility condition for Eq. (9) which is obtained by taking its
energy moment. Since the linearized collision operator is en-

+3@).
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ergy conserving (recall that we take the limit m,— o0, so that
there is no energy exchange between electron and ions), this
gives

n i@ - P’
dt
where P is the power dissipated per unit volume by the rf,
P=J-S'vd3p. (1)

[There is another solubility condition given by the density
moment of Eq. (9). This is automatically satisfied by taking
dn/dt = 0.] The solution to Eq. (9) is made unique by de-
manding that f,,¥ have zero density and energy.

In the nonrelativistic limit, Eq. (9) is the equation solved
numerically by Cordey et al.'® However, since we are usually
interested primarily in the current density generated by the
rf

7=q o 1w (12)

and the efficiency of current generation defined by the ratio
J /P, we usually do not need to know the full solution for ¢.

The method for determining the current without solv-
ing for ¥ was given by Hirshman'? and Taguchi'® for neu-
tral-beam-driven currents and was introduced into the study
of rf-driven currents by Antonsen and Chu® and Taguchi."
The key is to define an “adjoint™ problem

CfmX)= —quy frn- (13)
Again f,, y is required to have zero density and energy. This
is the Spitzer-Harm problem for the perturbed electron dis-
tribution function caused by an electric field E = 7§, . Using
the self-adjoint property of the linearized collision operator
SYC(f.x)d°p = § ¥C(f,.¥)d>p, it is readily found that

(ed s
7= [ st xwd. (14

In this equation y plays the role of a Green’s function for the
rf-driven current. The ratio of Egs. (14) and (11) gives the
efficiency

P SSwvd’ )
An important special case is when the rf excitation is local-
ized. Then it is only necessary to know the position and di-
rection of the excitation to determine the efficiency

J _ 59/9p) x(m)

P Swv
where all quantities are now evaluated at the position of the
excitation. If we compare this method with the Langevin
method of Fisch,? we see that Y is the mean integrated cur-
rent caused by a group of electrons released atpat ¢ =0,

xmh=qu(w>dn

The power of these results is that the calculation of J /P
does not require a solution of Eq. (9) for the rf distribution ¢.
On the other hand, Eq. (13) must be solved for the Spitzer—
Hirm function y. This reduces to the solution of a 1-D inte-
gro-differential equation which may be accurately comput-

(16)
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ed. Furthermore, in the nonrelativistic limit, it has been tab-
ulated." This method also substantially reduces the
parameter space to be investigated numerically. The solu-
tion of Eq. (13) depends on two parameters only, Z and ©. In
contrast, the solution of Eq. (9) depends on various param-
eters specifying the nature of the rf excitation (for instance,
the direction of S, the minimum and maximum phase veloc-
ities, etc.) as well as Z and @.

In order to determine the rf current-drive efficiency us-
ing Eq. (15) or (16), we must solve the Spitzer-Hirm prob-
lem, Eq. (13). The solution y consists of only the first Le-
gendre harmonic, so we substitute y (p) = uy,(p) into Eq.

(13) giving

1 d , ?_X_l vA (p) 9y,
— 2 p2y LAY 4/ 41
7 é,pp (p) e T o

2B IrZ/
_BRATZR )+ =0, (17)

where 4 ( p) and B ( p) are given by Eq. (4), the electron—ion
term is given by Eq. (3), and 7 (y,) is given by Eq. (7). The fact
that the solution of Eq. (13) consists of only a single Legendre
component constitutes an additional advantage to this meth-
od of determining current-drive efficiencies. The solution of
the full «f problem given in Eq. (9) consists, in general, of
many Legendre components. Often some truncation is per-
formed in computing these numerically.

Equation {17) may be solved by approximate analytic
methods either by expressing y as a sum of Sonine polynomi-
als?*?% or by formulating the equation as a variational prob-
lem.'? These methods have the disadvantage that they gener-
ally fail to reproduce the correct asymptotic (large p) form
for y. This failing does not affect the calculation of the elec-
trical conductivity significantly since in that case y is inte-
grated with a weighting factor proportional to f,,,. However,
it rules out such methods for the study of rf current drive,
since the efficiency may depend on the local value of y.

This leaves us either with asymptotic methods, which
we apply in Sec. V1, or with numerical methods. Numerical
solutions to Eq. (17) have been given in the nonrelativistic
casein Refs. 14 and 27. Here we use a simpler method which
avoids most of the problems with the application of bound-
ary conditions. We cast Eq. {17) as a 1-D diffusion equation
by setting the left-hand side to dy, /3t and solve this diffusion
equation until a steady state is reached. (The initial condi-
tions may be chosen arbitrarily.) The integration is carried
out in the domain 0 <p <p,,,, and the boundary conditions
X1{0) =0and y {(P.x) = O areimposed. The diffusion equa-
tion describes the physical problem of the evolution of the
perturbed electron distribution in the presence of an electric
field and is therefore guaranteed to give the correct solution
of Eq. (13) without having to worry about spurious solutions
which divergeatp = Oorp = «. Since this is a 1-D diffusion
equation, it may be solved by treating the differential opera-
tor fully implicitly (the time step may be taken to be large).
The integral operator I (y,) is treated explicitly and is recom-
puted after every time step. In the calculations shown here,
the momentum step size was taken to be p, /50, the time step
was taken to be 1000/v,, and the process converged (i.e., the
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relative change in y, per step was less than 1 part in 10'%)
after about 50 steps.

In the following sections we will also need the function
G (p) = x:(p)/p so that y (p) = p; G ( p). In terms of G, the
gradient of y is

3 . .
gx(p) =G (pp, +p,G,(p)b,

where G, (p) = dG( p)/dp.

V. NUMERICAL RESULTS

The solution for y is given as a contour plot in Fig. 1 for
Z = 1and @ = 0and 0.01. From these and a knowledge of S,
the direction of the rf-induced current can be determined. In
the nonrelativistic case, Fig. 1(a), y rises ever more steeply as
pisincreased giving the favorable p?scaling for the current-
drive efficiency.® On the other hand in a hot plasma, Fig.
1{b), the slope reaches a constant (the contour levels are

10
7 ta)
4 8=0
c T T T 1

!
0 5

o | \ \ "

\ \
\\\\ '

) T T
0 5 10
Pii /Pt

FIG. 1. Contour plots of y (p) for Z = 1 and (a) ® = O and (b) @ = 0.01. The
contour levels are evenly spaced with increments of 50 gp, /mv,. The higher

levels are on the right [i.e., dy (p)/&pn >0].

pL/pt
T
i
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equally spaced) leading to a limit in the efficiency of the cur-
rent drive.”

Figure 1 also shows that the contours become vertical
for p, small. This indicates that pushing electrons with small
py in the perpendicular direction (as with cyclotron-damped
waves) is not effective in generating current. Pushing elec-
trons in the parallel direction is effective, especially for small
Py, since the denominator in Eq. (16) can be small. In general,
when the contours of constant energy (p = const) cross con-
tours of constant y, the efficiency can be very large.

Turning now to the numerical results for the efficiency,
we begin with the case of localized spectrum, Eq. (16). Al-
though this situation may not be realized in practice, it is
important because it can help us to determine the best cur-
rent drive schemes by showing where in velocity space to
induce the flux. There are two major classes of fast waves
that have been considered for current drive, namely Lg.\ndau-
damped waves (e.g., lower-hybrid waves) for which S = j,
and cyclotron-damped waves for which S = §, . Taking the
limit p, —0, we have

J/P=[G(p)+pG,(p)]/v, (18a)
J /P = pG,(p)/v, (18b)

for Landau-damped and cyclotron-damped waves, respec-
tively. The efficiencies are plotted in Fig. 2 for Z=1 and

£-mc2(Mev)
0 0i5 1.0 1.5 2.0

{a)

0.2
0.l

o
T
)

0.05

0.02

J/P/q/me v
1/W (Amp/Watt)

ol
o
1

p/mec

£-mc2(MeV)
0 0.5 1.0 1.5 20
T T

0.3

I/W(Amp/Watts)

J/Pfq/me v

p,/me

FIG. 2. Efficiencies for localized excitation for (a) Landau-damped waves
(parallel diffusion) Eq. (18a), and (b) cyclotron-damped waves (perpendicu-
lar diffusion) Eq. (18b). The different curves show the efficiencies for various
values of the temperature @ as indicated. In all cases Z = 1. The top scale
gives the kinetic energy of the electrons. The right scale gives the efficiency
for a plasma with n = 10°°m—3,log A = 15,and R = 1 m.
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® =0, 0.02, 0.05, 0.1, and 0.2 (these correspond to 7'=0,
10, 26, 51 and 102 keV). The curves for ® = 0 in the two
cases are given analytically from Eq. (24); they agree with the
results of Ref. 2. This confirms the earlier analysis and shows
that it is exact in the limit of T¢mc? and p*>mT.

We next consider current drive by a narrow spectrum of
Landau-damped waves. In this case all particles satisfying
the Landau resonance condition @ — kv, = Ointeract with
the wave and the quasilinear diffusion tensor is

D@ — kyvy) by by < (¥8(p) — mv, )by by

where v, = w/k, is the parallel wave phase velocity. Assum-
ing that the electron distribution is weakly perturbed, we can

take = f,, in Eq. (8) to give
Sayv) fn8(py — mv, ¥y
When we substitute this expression into Eq. (15), we obtain
1 50 {G(p) + [(myv,}'/p] G,(p)} ¥ Sl PP dp
v, = Vfwl PP dp ’

A
5=
(19)

where p,=mv,/(1 —v}/c is the minimum resonant
momentum. This efficiency is plotted in Fig. 3. In the limit
v,—0, the efficiency becomes large. This demonstrates that
current may be efficiently driven by low phase velocity
waves as was proposed by Wort.*

A similar analysis can be performed for a narrow spec-
trum of cyclotron-damped waves. The situation is more
complicated here because the electron-cyclotron frequency
depends relativistically on the momentum?® and because rel-
ativistic effects distort the diffusion paths.® In addition, the
variation of the diffusion coefficient with p, depends on the
harmonic number. This means that the efficiency depends
on three wave parameters w/k, £2 /k; (f2 is the rest-mass
cyclotron frequency), and the harmonic number. We there-
fore will treat this case only in the nonrelativistic limit.

In the nonrelativistic limit (@—0, p/mc—0), the effi-
ciencies for both kinds of waves have been calculated by Cor-

2)1/2

5

1.0 2=

L a

© €

E s

o =

P =

~

=05 i

[ W N 1

1 1

1
0 0.5 1.0
vp/c

FIG. 3. Efficiencies for narrow Landau spectrum equation (19) as a function
of the phase velocity v,. The curves correspond to the various values of ©. In
all cases Z=1. The top scale gives the parallel index of refraction
n; = c¢/v,. The right scale gives the efficiency for the same conditions as in
Fig. 2.
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dey et al.’® and Taguchi.!! They considered a narrow spec-

trum of Landau-damped waves for which the efficiency is
given by the nonrelativistic limit of Eq. (19) and a narrow
spectrum of cyclotron-damped waves for which the diffu-
sion coefficient is

Do~ "8y —v,)B, 8.,
where / is the harmonic number and v, = (0 — I2)/k;,. As-
suming that f=f,, in Eq. (8), the efficiency for cyclotron-
damped waves is

S 07 = P5) £ P)G,(P) 4

i=m2u, 2 P 21’0 2I(p) »(P)dp (20)

P o P* —P5)fm( PP dp
where p, = mv,. (Here we consider only the fundamental
cyclotron resonance / = 1). In Fig. 4, we plot these efficien-
cies normalized to the thermal quantities together with the
asymptotic results, Egs. (31) and (32a). For mv, »p,, the effi-
ciencies scale as vf, as predicted by Fisch and Boozer.® The
1/v, scaling seen in the Landau-damping case for mv, <p, is
obtained by taking the limit v,—0 in Eq. (19) to give

J _ 1 5D(p)fu(pi)G(pL) P, dp,

P, SD(p)fm(p.)p. dp:

Here we have included an arbitrary dependence of D on p, .
In Ref. 6, three different types of low-phase-velocity current
drive were identified, namely by Landau damping, transit-
time magnetic pumping, and Alfvén waves. These methods
differ in the forms for D{ p, ),

(21)

1 (Landau damping),
D(p,)=1{(p./p.)* (transit-time magnetic pumping),
[2 —(p./P.)*]? (Alfvén waves).

The case plotted in Fig. 4 is the first one (Landau damping).
Evaluating the integrals in these cases gives

C.
i = CM q )
P C, my,v,

where the coefficients C are given in Table I. The coefficients

25

1.0
20
L5 2
a ~
s g
} 0.5 <
310 =
~
—
5 ¢ /’,,’ ]
0 1 1 1 I 1
0 | 2 3 4 5 é)
vp/v,

FIG. 4. Efficiencies for narrow spectra of Landau-damped (L ) waves and
cyclotron-damped (C) waves (I = 1) for the nonrelativistic case ®—0 and
Z = 1. Also shown as dashed lines are the asymptotic results, Eqgs. (31) and
(32a). The right scale gives the efficiency for a plasma with n = 10 m 3,
T'=10keV,logA =15,and R =1 m.
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TABLE I. The coefficients for the efficiency for the three types of current
drive by low-frequency waves.

z C. Cy c,
1 3.76 8.49 8.09
2 1.88 5.17 5.07
5 0.75 2.55 2.60

10 0.38 1.42 1.48

for Z = 1 should be compared with the (less exact) results of
Ref. 6 obtained by a numerical solution of the 2-D Fokker—
Planck equation where the constants of proportionality are
given as 4, 6.5, and 6.5, respectively. The coefficient C; has
been determined analytically by Cordey et al.'® to be

C.=¥2n/Z.

The dependence on Z indicates that the current is unaffected
by electron—electron collisions. This result may be derived by
taking the momentum moment of Eq. (13). The electron—
electron collision term then drops out (from momentum con-
servation) and the electron—ion term is proportional to the
numerator in Eq. (21).

The last numerical example is one in which we relax the
condition that f=f,, in Eq. (8). This allows us to find the
flux S that develops in the presence of high rf power. In order
to determine S, we numerically solve the 2-D Fokker—
Planck equation

af J af

Z-c,.. Z o2,

3¢~ Couml S+ 7 o
until a steady state is reached. The numerical collision opera-
tor is defined as

Com(N)=C (£, f) + C( S, i) + C(LSi)s
where uf is the first Legendre harmonic of f. The electron—
ion term C(f, f;) is calculated using Eq. (3).

In order to justify our handling of the electron—electron
collisions, let us consider the linearized electron—electron
operator C(f, f,.) + C(f,.,f). The first term describes the
relaxation of the tail particles on the bulk and the second
describes the concomitant heating of the bulk. The lineariza-
tion is justified even with strong rf, as long as f(p)~f,, ( p) for
& ~T. The linearized electron—electron operator conserves
energy, and if this were used in Eq. (22), there would be
nothing to balance the power input by the rf (there is no
transfer of energy to the ions in the limit m;,— ), and so a
steady-state solution to Eq. (22) would not be possible. In Eq.
(9) this is handled by allowing the temperature of the Max-
wellian to increase slowly with time. In the numerical code
we adopt a different approach, namely to modify the colli-
sion operator so that energy is lost in an innocuous way. The
term responsible for the bulk heating is the second term
C(fn»f)- Letus write f in this term as a Legendre harmonic
expansion

flp)= 5 Pmfilp)

(22)

Of the terms in this series, only one, the £ = 0 term, contrib-
utes to the bulk heating. (The energy moments of the other
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terms vanish.) Thus in order to lose energy we drop the term
C(fn» Jo). Of the remaining terms in the series, only the first,
the m = 1 term, is of importance—it is responsible for ensur-
ing conservation of momentum. Thus we retain only this
term and approximate C(f,,,f) by C(f..,uf}) to give the
collision operator C,,.,.

The collision operator C,,,,, has the following proper-
ties: energy is not conserved (thus allowing a steady state to
be reached); momentum is conserved; and quantities such as
the Spitzer-Hiarm conductivity, which are given solely in
terms of the first Legendre harmonic, are correctly given. To
justify the way in which energy conservation is handled, we
may check that the results are insensitive to the details of
how this is done. One such check is given below where we
compare the efficiency given by the numerical solution of
Eq. (22), in which energy is lost, and that given by Eq. (15),
where energy is conserved.

We assume that the rf diffusion term in Eq. (22) is
caused by high-power lower-hybrid waves whose phase ve-
locities lie between v, and v,. Thus we take

D= [D (p) BBy, forv, <py/(my)<v,
0, otherwise

where D (p) is chosen to be large enough to plateau f. [Here

we choose D (p) = 10v, p7/(1 + p/p,).]

Figure 5 shows the steady-state solution of Eq. (22) for
Z=1 ©@=001 (T=5 keV), v,=04c=4p,/m, and
v,=0.7c = 7p,/m (the parallel refractive index satisfies
1.43 <ny <2.5). Using the numerical solution for f(p) and
S(p), and the definitions (11} and (12), we obtain
J=3.74x10"%gnc, P=1.28X10"mnc*v,, and J/P
=0.293¢/mcv,.

This is to be compared with the result given by Eq. (14)
with the numerically determined flux S(p), namely
J=3.77X10"*gnc and J/P = 0.296q/mcv,. (The figure
for P remains unchanged since this depends on S alone.)
These two sets of figures are within 1% of each other. The
excellent agreement illustrates two points: the approxima-
tions made in the numerical collision operator, namely, the
neglect of the heating term C( f,,,, f;), has little effect on the
results for the current-drive efficiencies (discretization ef-
fects are probably a greater source of error in these results);

(e

T T 1T I LB | TTITT ] L T I T ‘ T T 171 | T rrT TT7T7T
-2 - [ 2
Py /mc

~n

Resonant
Region

py/me
|Ill|I1IITIIII|IIll

(=]

FIG. 5. Contour plot of the steady-state distribution f obtained by numeri-
cally integrating Eq. (22). Here Z = 1, @ = 0.01, v, = 0.4¢, v, = 0.7c. The
resonant region is indicated. The contour levels are chosen so that for a
Maxwellian they would be equally spaced with 4p = mc/30.
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and the analytic result, Eq. (15) can be used to obtain reliable
figures for the efficiency for cases of strong rf. What is need-
ed in the latter instance is an estimate for the rf flux S. This
may be found from a numerical solution of 2-D Fokker-
Planck equation (as here) or from an approximate analytical
solution. Some saving may be possible using this method in
conjunction with a numerical code; since S reaches a steady
state sooner than £, it may not be necessary to run the code
so long in order to obtain a reasonably accurate estimate for
the efficiency.

Vi. ASYMPTOTIC ANALYSIS

We have seen that the efficiency of current drive may be
expressed in terms of the solution of the Spitzer—-Hadrm prob-
lem Eq. (17). This equation may be approximately solved in
the limit p»p,. We will begin with the relativistic case and
later treat the nonrelativistic limit. We start by writing down
the normalized form of Eq. (17) in the limit p»p,. We chose
normalizations based upon ¢, m, ¢, and v.. Thus momenta
are normalized to me, y,togc/v., J/P tog/mev,, etc. We
use the same symbols to represent the normalized and un-
normalized quantities. The coefficients 4 ( p) and B( p) are
given by Egs. {6), suitably normalized. The integral term may
be evaluated by replacing the indefinite limits in Eq. (7) by
o0, giving when normalized

I(y)=@>[H,(O,Z)/vp + H,(O,Z)/v"],
where H, and H,, are definite integrals of y, (and thus inde-
pendent of momentum) which must be determined numeri-

cally. In the limit ®—0, both H, and H, are finite. In nor-
malized form with p*>@, Eq. (17) reads

ov; 82,1/,_(_v_+ 3 )axl]

v | gp? vw plaop
1 ov;
Ty <1+Z_ 2 )Xl
p v
H H,
+@3/2(—“+—2”)+u=0. (23)
vp v

The error in this equation is exponentially small.
We now make a subsidiary expansion in small @. In the
limit ®—0, several terms in Eq. (23) drop out, leaving

This may be solved with the boundary condition
xi(p=0)=0to give

(1+2Z)y2 P — (1+2Z)2
n=(E e I "
y—1 Y +1

This is the result derived using the Langevin equations by
Fisch.? For integer values of Z, the integral may be expressed
in terms of elementary functions. In particular for Z = 1 we
have

X1 =1y + 1/(r — 1))op — 2 log 7).
Of particular interest is the efficiency for large p since this
gives a limit to the efficiency of current drive by fast waves. If
we let p>» 1, the integral may be approximately evaluated to
give
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Xi—p —(1+Z)logp.

If we not take @ to be finite, Eq. (23) cannot be easily
solved. However, we may solve it in the limit p»1. We
achieve this by writing

Xi1=ap+PBlogp (25)
in analogy to the situation with @ = 0. Substituting this
form of y, into Eq. (23) and balancing terms of equal order in
p gives

a=(1+6*H,)V? (26a)
from the O( p°) terms and
B=— [(1+Z—3@V,2)a—@3/2Ha]/Vf (26b)

from the O( p~!) terms. When the rf excitation is localized
the current-drive efficiency is given by Eqs. (18) which, with
Y1 given by Eq. (25), read

J/P=a+B/p, (27a)
J/P=B(1 —logp)/p, (27b)

for current drive by Landau-damped and cyclotron-damped
waves, respectively. [The factor of 1/v in Eqs. (18} is replaced
by unity in the limit p— c0.] Equation (27a) (with p replaced
by p,) also applies for current drive by a narrow spectrum as
given by Eq. (19). In the limit of p~»oo, the efficiency of
cyclotron-damped current drive vanishes, while for current
drive by Landau-damped waves J /P—a. In order to deter-
mine this limiting efficiency, either Eq. (26a) may be evaluat-
ed using the numerically found value of H,(®,Z ) (see Table
II) or else the equation may be expanded as a series in @ to
give for p— oo,

J/P=1+30+ H,(0,Z2)0*> (28)

Here H,(0,Z ) is tabulated in Table III.

We now turn to the solution of Eq. (17) in the nonrelati-
vistic limit @®—0. We shall still consider only the limit p>p,.
The limits here are nonuniform. Equation (23) was obtained
by taking p>p, followed by ®—0. Here we will take the
limits in the opposite order. To do this, it is convenient to
renormalize Eq. (17) using g, m, p,, and v, as the system of
units. In this case J /P is normalized to ¢/p,v,. Making this
change of normalization and taking the limit ®—0is equiva-
lent to formally replacing @ by unity and substituting v = p,
y =1, and V? = 1in Eq. (23) to give

1 [y, ( l)c?,yl]
ol Reveabal U2 shy hrwe
plap p/ dp
1
~L(+z—Jn+ -0, (29)
P p P

TABLEII. Table of efficiencies J /P for Landau-damped waves in the limit
v, —<. The efficiencies are normalized to g/mev, .

1] Z=1 Z=2 Z=5 Z=10
0.01 1.04 1.03 1.03 1.03
0.02 1.09 1.07 1.06 1.06
0.05 1.25 1.20 1.17 1.15
0.1 1.55 1.44 1.34 1.30
0.2 2.19 1.91 1.70 1.61
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TABLE III. The coefficients H,(0,Z ) and H (Z).

V4 H, H
1 13.69 21.12
2 9.13 13.51
5 4.94 7.01
10 2.88 4.01

where H (Z)= H,(0,Z) + H,(0,Z) (this is tabulated in Ta-
ble III). For p> 1 {in this normalization this means p>»p,), we
may develop an asymptotic expression for y, as a series in
powers of p. Balancing the terms in Eq. (29) from O p) (the

4 2
X1= F__ 4 % + Hp
5+Z (5+Z)3+Z) 2+Z
9 -
+0(p7?).

+
5+Z)3+Z)1+Z)
For localized excitation, Eq. (18) becomes

4p’ 18 Hp~!

J
== + +0(p™),
P 5+Z (5+Z)3+Z) 2+Z (P )(30a)
_._I_= 3p? + 9
P 5+4Z (5+ZM3+2)
-2
% +0(p~ (30b)

5+ Z)B+Z)1+2)

for Landau-damped waves and cyclotron-damped waves, re-
spectively. The leading order terms here (those proportional
to p?) are exactly those derived by Fisch and Boozer.®

In order to compute the efficiencies for current drive by
a narrow spectrum of waves, it is necessary to carry out the
integrations in Eqgs. (19} and (20). The following asymptotic
series is useful for this purpose:

J‘ exp(_%yZ)yn+ldy
=exp(— 4 X7)[x" + nx" "2 nln — 2" 4 4 ]

For n even, the series terminates and is exact. The efficiency
for current drive by a narrow spectrum of Landau-damped
waves, Eq. (19), becomes

4?2 Hy !
i= 4 + 6(6 +Z] + [ + O(UP_Z).
P 5+Z (5+Z)3+Z) 2+Z

(31)

For a narrow spectrum of cyclotron-damped waves, Eq. (20)
gives

J__3 39 +22) -
P 5+Z +(5+Z)(3+Z)+0(v” h (22)
J_ 3 94 +2) 2
P 5+zZ Birzitrz) C BN

for /=1 and I = 2, respectively. The effect of the integra-
tions is to change only the higher-order O (v3) corrections to
the efficiencies. The leading-order terms are the same as for
the localized excitation equations (30). Equations (31) and
{32a) are plotted in Fig. 4. These closely approximate the
exact results for v, > 2v,.
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VII. HIGH-ENERGY LIMIT OF COLLISION OPERATOR

In the previous section we derived finite temperature
corrections to the efficiency limit found in Ref. 2. However,
the collision operator in the Landau form, Eqgs. (1), was de-
rived by assuming that the background electrons are only
weakly relativistic or that @«<1. We must check, therefore,
that the finite @ corrections to the Landau operator do not
affect the formula for the efficiency limit Eq. (28).

The linearized collision operator Eq. (10) consists of
three collision terms. Since in all practical cases the ions are
nonrelativistic, the ion term C(f, f;) needs no correction.
The term C(f,,, f) contributes to the integral term I (y,) in
Eq. (17). However, this resulted in a O (© */?) contribution to
efficiency limit Eq. (28), so that corrections to this term will
be of still higher order.

Therefore we need consider only collisions off a Max-
wellian electron background C (f, f,,). Furthermore, if @ is
small and if p»p,, we may take v'<v in the full collision
kernel equation (2) and approximate U by its Taylor expan-
sion about v’ = 0. By retaining terms up to second order in
v/, we obtain

r Ja o AUR vl
=2 (yo Sk v
Cln) 2 ap, (’ o T

1 62 lO) vtz af ),
2 a;, au;,, api
where summation over repeated indices is implied and the

superscript (0) is used to indicate that U and its derivatives
are evaluated at v' = 0. Evaluating these coefficients gives

UR =08y —vu /v,

auyR 2,

R

l aZU(O) _ 20 Uk - 4) U(O)
2 v}, v},

(This calculation was carried out using MACSYMA.”) If we
compare these with the equivalent expressions using U from
Eq. (1c), we find that only the term proportional to 3 * is new.
The high-energy form of C(/, f,,) is given by Eq. (4a) with

A (p) given by Eq. (6a), F(p) = (v/T )4 (p), and

In other words, in the high-energy limit the electromagnetic
correction only changes the pitch-angle scattering term. The
new term has no effect on the asymptotic form for the effi-
ciencies equations (27), because it is smaller by 5 * than an-
other term in B which had no effect.

Connor and Hastie?! also give an expression for colli-
sions of high-energy particles off a fixed background. The
corrections to Eq. (6) that they obtain differ from ours. This
is possibly because the background distribution that they
treat is only approximately Maxwellian.

Viil. CONCLUSIONS

We have considered the problem of current drive by fast
waves in a relativistic plasma. Let us briefly review the ap-
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proximations made. The major one is the reduction of the
full collision operator to Landau form. We show in Sec. I1
that this holds if the background temperature is small
T<mc?. The corrections to the Landau operator in the high-
energy limit are derived in Sec. VII and are shown to be
small. The second important approximation is the lineariza-
tion of the electron—electron collision operator. This is accu-
rate provided the rf strongly affects only electrons on the tail
of the distribution. The subsequent analysis leading to the
formula for the current-drive efficiency equation (15) is ex-
act. In order to apply this formula, it is necessary to deter-
mine the rf-induced flux S from Eq.(8) and the Spitzer—
Hiérm function y from Eq. (13).

We consider two methods for computing S: either by
assuming that f=£,, in Eq. (8) (corresponding to linear
damping) or by solving the 2-D Fokker—Planck equation,
Eq. (22), numerically. The latter method may be necessary in
the case of high rf powers and wide spectra. Note that the
efficiency can be accurately calculated even if the S is known
only approximately since Eq. (15), being an integral operator
on S, is insensitive to small errors in S. Often useful informa-
tion can be extracted from Eq. (15) even with very limited
information about S. If the rf spectrum is known, we can
make some estimates (based on either numerical or approxi-
mate analytical solutions to the Fokker—Planck equation) of
where in momentum space the flux is largest. We can then
use Eq. (16) to give the efficiency.

The Spitzer-Hérm function y can be determined by
solving Eq. (17) numerically as in Sec. V. Since this equation
is just a 1-D equation, there is little difficulty in obtaining
arbitrarily accurate results in this way. This method can be
regarded as exact. Alternatively, we found asymptotic forms
for y in Sec. VI. From this we can write down analytical
expressions for the current-drive efficiency in various cases
as given in Egs. (27), (28), (30)+32).

The primary application of this work is, of course, to
maintain a steady-state toroidal current in a tokamak reac-
tor. The viability of this scheme depends upon the amount of
circulating power that is required. Thus, an accurate calcu-
lation of the current-drive efficiency, as well as an assess-
ment of the best possible efficiency, are of crucial impor-
tance.

When applying these results to the study of steady-state
current drive in a tokamak, it is useful to convert the effi-
ciency J/P to I/W where I =AJ is the total current,
W = 27RAP is the total if power, A4 is effective poloidal
cross-sectional area, and R is the tokamak major radius.
This gives

I_ 1 7J_ J/P 10®m~3 1m 15
W 2nR P q/mcv, n R logA
20 -3
—40.7x10-3 /P 107 m
q/pv, n
T 1m 15

10keV R logA

The last two equalities give the conversion from the normal-
ized efficiencies given in the figures and in Sec. VI to practi-
cal units. Figures 2—4 contain scales in these units.
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The present work calculates the efficiency that can be
expected from an arbitrary wave-induced flux. It is possible,
therefore, to come to some very general conclusions about
the best possible efficiency that can be obtained by driving
currents with different waves. In particular, there is a limit,
given by Eq. (28), to the efficiency of current drive with fast
waves, such as lower-hybrid waves, that interact through a
Landau resonance with relativistic electrons. These waves
are, perhaps, the most likely candidate for current drive in a
reactor.

The present calculations also apply to other types of
current drive, for example, relativistic electron beams.?®
Here the efficiencies will be similar to those of Landau-
damped waves. Care must be taken, however, in interpreting
experiments on relativistic electron beams because the as-
sumption of a steady state is generally inapplicable.

The equations developed here apply to other forms of rf
current drive. Some of these may be very efficient, more so
than lower-hybrid wave-induced fluxes. For example, if low-
phase-velocity waves interact through a cyclotron resonance
with fast electrons, the rf flux may be nearly parallel to the
constant energy contours, at the same time that the collision-
ality of the resonant electrons is small. This gives very high
efficiency, but, in practice, these waves are much more diffi-
cult to generate than are lower-hybrid waves.

Settling the question of the highest attainable current-
drive efficiency with fast waves we hope should enable toka-
mak reactor designers to assess the practicality of using
waves to drive steady-state currents. There may, of course,
be other effects that present difficulties, such as the accessibi-
lity of the waves or nonlinear effects. On the other hand,
there may be effects, such as the bootstrap current, which
could be helpful.

Finally, we hope that the form that we derived here for
the relativistic collision operator, which enabled us to solve
for the relativistic Spitzer—Harm function, will be of use in
other numerical problems dealing with collisions in hot plas-
mas.
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