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Abstract-Significantly more information is available from synchrotron emission from a plasma when the 
plasma is purposefully disturbed. An inverse problem, to deduce properties of the disturbance given time- 
dependent radiation data, is proposed. The fast time response of radiation detectors is fully exploited by 
this approach. A special case of interest, perpendicular observation of a steady-state plasma, lends itself 
to an analytic inversion. 

1. I N T R O D U C T I O N  
A MAGNETICALLY confined plasma is a copious emitter of synchrotron radiation. In 
fact, the radiated power is a matter of concern in the design of high temperature 
nuclear fusion reactors. Here, however, we concern ourselves with the possibility of 
diagnosing, by means of this radiation, important momentum space features of high 
energy electrons in a Tokamak plasma. 

One way in which this radiation might be used relies on the measurement of the 
two-dimensional pattern R(o, 8) of radiation emitted at frequency o into angle 8, 
where 8 measures the angular deviation from purely perpendicular observation of the 
magnetic field. (The Tokamak is observed in the vertical plane that includes the 
tangent to the magnetic field B, so the strength of B may be assumed constant and 
known.) The 2-D pattern R(o, 0) might then be used to infer the two-dimensional 
electron distribution function f ( p  l,pL), where pIl and pl refer to the electron momen- 
tum, respectively, parallel and perpendicular to the magnetic field. This approach, 
however, suffers because it requires the deployment of any array of microwave detec- 
tors to resolve the 8-dimension. In practice, possibly only one detector is available, 
and, while it has been used to place useful constraints onf(pll,pl) (see in the Tokamak 
literature, e.g. CELATA and BOYD, 1977; TAMOR, 1979; BORNATICI et al., 1983; 
CELATA, 1985; HUCHINSON and KATO, 1986; KATO and HUCHINSON, 1986) or to 
deduce elegantly in a relativistic electron ring geometry a one-dimensional f (MAHAJAN 
et al., 1974), a full inversion is not possible. 

A second way to obtain information might be to employ r.f. or other power to 
induce in the plasma a momentum-space flux r(p,  t ) ,  and to measure the incremental 
radiation emitted by the perturbed distribution, i.e. the additional radiation produced 
as a result of the probing r.f. power. One can then pose the following problem: to 
deduce the momentum space details of the source function, T(p, t ) ,  given this 
incremental radiation. Details of this source function give the velocity space details 
of power absorption, which may be of immediate interest in r.f. heating or current drive 
experiments. Also, the details of the absorption informs on the electron distribution 
function itself, since, basically, where (in velocity space) power is absorbed, there 
must be electrons. 
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To isolate the incremental radiation, we are at liberty to modulate or otherwise 
to control the time-dependence of the source; so suppose we impose an impulse 
r = S(p)G(t). The incremental radiation now decays in time as the electrons suffer 
collisions, obeying laws we think we know, so that this time decay reveals the details 
of the original impulse. For example, incremental radiation associated with fluxes of 
fast electrons would decay slowly ; for nonrelativistic electrons the decay time goes as 
lip3. If there are N time points collected during the electron slowing-down time, then 
the 2-D impulse response, R(o, t ;  e) ,  produces N times the constraints on S(p) 
than does the immediately available spectra R(o, t = 0 ;  e). Thus, using only one 
observation angle, we hope to deduce the 2-D wave-induced flux S(p) from the 2-D 
radiation data, R(w,  t ;  e) ,  0 fixed. Of course, if more detectors were available, the 
multiplication in information would be the same, and the additional information 
might be used to uncover spatial dependencies. 

The utility of information provided by radiation during collisional relaxation has 
been recognized before : for example, ALIKAEV et al. (1976) observe radiation decay 
subsequent to intense cyclotron heating in the TM-3 Tokamak and GIRUZZI et al. 
(1 986) observe numerically the transient radiation pattern associated with cyclotron 
heating in the presence of a d.c. electric field. The goal of the present work is to 
provide the mathematical framework to make precise the extent of information so 
obtained. Here, the analysis is limited to steady-state plasmas. We assume that the 
plasma is optically thin to the observed radiation and that the plasma density, effective 
ion charge state, and equilibrium magnetic field are known on the flux surface on 
which the electron velocity distribution is perturbed and from which the incremental 
radiation is observed. Moreover, with only one detection angle, we must assume that 
these known quantities may be treated as relatively constant over the region to which 
the incremental radiation is attributed. For example, we hope to treat the case of 
heating by lower-hybrid waves launched along the Tokamak horizontal plane, thereby 
creating a superthermal perturbation, while the incremental synchrotron emission is 
observed in a vertical plane and at, typically, the third harmonic, to which the plasma 
is likely to be optically thin. The solutions obtained here are valid only for induced 
fluxes of superthermal electrons. On the other hand, slower electrons radiate less, 
often at a distinguishably different frequency, and are thus unlikely to be an important 
source of confusion. 

Note that while frequency and time are formally conjugate variables, a huge sep- 
aration in time scales permits them to be treated as independent variables ; the 
frequencies to be measured are typically hundreds of gigahertz, while, for example, 
400 keV electrons in a plasma with density l O I 3  cm-3 slow down in about a hundred 
milliseconds. Radiation detectors with microsecond response time are readily avail- 
able, so that - lo5 time points are available in principle in a decay time. Thus, the 
potential exists for a huge multiplication in the amount of processible information. 

Relying on theories of wave-damping and quasilinear diffusion, one might use S(p) 
to infer f(p), at least where S(p) is finite. However, details of S(p) are often of 
immediate interest, because we then know where in electron momentum space wave 
power is absorbed. This locus determines, for example, the efficiency of current-drive 
by lower-hybrid waves (FISCH, 1987). Suppose the plasma current were maintained 
by these waves. By delivering through the waveguides an incremental impulse of 
power, under otherwise steady conditions, the distribution of resonant electrons may 
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be available from the incremental radiation, possibly providing useful feedback for 
waveguide-phasing. Moreover, in such a manner one might resolve the outstanding 
question of the so-called spectral gap observed in recent experiments. 

The paper is organized as follows : in Section 2, we find the Green’s function for 
the radiation response. This relates the radiation pattern R(o, t ; 0) to the perturbed 
electron flux S(p). This is the basic equation that we pose for inversion, i.e. to deduce 
the flux S(p). In this work, we do not venture beyond solving for S(p) ; for example, 
we do not solve for the background electron velocity distribution, although, as we 
noted, possibly the background could be related through other theories to S(p), 
particularly in those regions where S(p) is finite. These other theories, in turn, depend 
on the nature of the wave that induces the flux S(p), but our analysis is entirely 
independent of the precise wave that induces S(p). 

In Section 3, we show that for the special case of perpendicular observation (e  = 0), 
there is a series inversion that may be arrived at by recursion. This special case 
succumbs to an analytic solution because perturbations in S(p) on different energy 
shells may be treated independently. The dependence of each energy shell on the 
velocity pitch-angle can be inferred essentially because higher harmonics in the velocity 
pitch-angle decay faster. In Section 4, we relate the 8 = 0 solution to the ill-posed 
heat equation. The connection to this more familiar equation facilitates a discussion 
of the robustness to noise of the solution. The introduction of noise limits the number 
of harmonics that can be reliably inverted. In Section 5 we summarize our conclusions 
and present some ideas on the relaxation of some of the more stringent assumptions 
that were required here. 

2 .  FORMULATION OF THE PROBLEM 
To relate the incremental radiation R(o, t ; e)  to an externally imposed impulsive 

momentum-space flux r(p ,  t ) ,  we write the distribution function f as f = f M ( l  + 
4B+q%), where f;M is a Maxwellian distribution, 4B describes the deviation from 
Maxwellian of the background distribution, and 4 describes the distribution specifi- 
cally associated with the source r. Assume that f obeys the linearized Fokker-Planck 
equation, which for the term we are interested in may be written as 

where C is a collision term and steady-state (no d.c. electric field) has been assumed. 
Then the incremental radiation due to r may be written for an optically thin plasma 
as 

where we employ normalized momentum, U = pimc, and normalized time, z = vct, 
with collision frequency v, = nq4logA/4nm2~;c3, and we define Q(u) = -(mc)3Vp* 
S(p). Here I is the radiated power into angle 0 and frequency o of a single electron at 
momentum p, and $ is the Green’s function for the radiation response, i.e. IC/ solves the 
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relativistic Fokker-Planck adjoint equation, written for superthermal excitation in the 
high-velocity limit as 

w az U ( au 2 d p  8-l " )  a$ 1 + z  a 
- + p u -  -y- -(l-pZ)-$ = 0,  (3) 

with the initial condition $(U, U; 8, z = 0)  = I ( o ,  U; e), where Z is the ion charge state 
and we defined y2(u) = 1 +U' and p = pIi/p. A detailed derivation of these equations, 
although not with the precise boundary conditions used here, may be found in the 
review by FISCH (1987). The Green's function $(o, U, t; 6') may be thought of as a 
moment of the Green's function that solves equation (1) for 4 ; in particular, it is that 
moment that gives the radiation response. The physical interpretation of I) is apparent 
from the equalities in equation (2) ; suppose a cloud of electrons is given an initial 
normalized momentum U, then $(U, U, z ; 6') gives the probability at time z of radiation 
into angle 6' at frequency w of electrons originating in that cloud. The physical interpret- 
ation of the quantity Q(u) is the detailed distribution of these electron clouds, produced 
by the brief, initial, perturbing r.f. pulse. 

Equation (3) can be solved in closed form. For notational convenience in writing 
$ and R, we suppress now the implied 6' dependence, since, in any event, only one 
observation angle is contemplated. Separate $ and the initial conditions into Legendre 
harmonics, I)k and Ik ,  and the resulting equations for the $ k  may be integrated along 
characteristics to obtain 

where the characteristic p(u, z) solves G(p) = G(u) - z, where G(u) = Ji (x'i 
(1 + x')) dx = U - tan- ' U ,  and where ak = (1 + Z ) k ( k +  l)/2. For U nonrelativistic, 
p + (u3  - 3 2 )  l i 3 ,  indicating that after a time z = u3/3,  electrons initially with speed U 

have slowed down to U = 0, at which point they no longer radiate. Although equation 
(3) is derived rigorously for superthermal U only, it may be applied here universally, 
since radiation from slowed-down less energetic electrons is small compared to 
initially, and the terms neglected in equation (3), energy diffusion, merely act to 
thermalize, so that, in any event, the incremental radiation vanishes. 

Denoting the Legendre components of Q(u) by Qk(u),  we can write equation (2) in 
the form 

This compact form, namely equation ( 5 ) ,  in which we have been able to write the 
radiation pattern, is a major result of this work. The task here is to invert equation 
(5 ) ,  i.e. solve for the Qk given R. Note that equation (5) is a Fredholm equation of 
the first kind, with a 4-D kernel. Neither the existence nor the uniqueness of the 
solution is guaranteed. In fact, of particular interest is the null space and range of the 
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kernel, which maps Q into R. The null space, spanned by those Qk(u) which are 
mapped into R = 0, represents the irreducible ambiguity in deducing Q from R. The 
range of I) is spanned by those R(o,  z) for which solutions Q exist. Experimental data 
falling outside the range cast doubt either on the validity of the data or on the 
applicability of the assumptions that form the basis of the theory. 

The numerical inversion of equation (5) is simplified by exploiting the properties 
of the kernel I) ; in particular, note that equation (5) is of the form 

where 
Fourier transform pairs. Then equation (6) can be put in the form 

= G(u). Let q k ( w ,  s) c-) Yk(w,  t), R”(o, s) c* R(o,  z), and &(s) c* qk(t) be 

which simplifies equation (6) to a set, parameterized by s, of Fredholm summations 
of the first kind, but with 2-D, rather than 4-D, kernels. 

3 .  T H E  SPECIAL C A S E ;  0 = 0 
An important special case is purely perpendicular observation (0 = 0), i.e. obser- 

vation along a line of sight parallel to the Tokamak major axis. The radiation intensity, 
say, for ordinary polarization (i.e. with E vector parallel to the magnetic field) may 
then be written as 

where n is the cyclotron harmonic, J,  is the nth Bessel function of the first kind, and 
U, = eB/mc is the cyclotron frequency of nonrelativistic electrons. Note that the sign 
of the parallel electron velocity is not resolvable by this measurement, since the 
Doppler frequency shift is absent when observing perpendicularly. Compensating for 
this drawback is a fortuitous circumstance : electrons initially at the same energy do 
not subsequently differ in energy ; such electrons remain on the same energy shell and, 
regardless of their distribution along that shell or the energy of the shell, all radiate 
at the same frequency, both initially and subsequently. 

Consequently, we can add up constraints to deduce from nth harmonic radiation 
the flux of electrons initially at momentum uo, i.e. to deduce the Q k ( U 0 ) .  At time 
z = zo = 0, only the measurement of the frequency w = nw,.y(uo) constrains the 
Qk(uo).  In the absence of a d.c. electric field, superthermal electrons slow down in 
energy, but diffuse only in pitch angle. Hence, at some later time, say z = zl, electrons 
initially at momentum uo will all be found on the same energy surface, say U = u l ,  
and radiating at the same frequency w = nwc/y(ul) .  Therefore, to deduce the & ( U o ) ,  

all available information is found in the projection R(o,  z) + r ( z )  = R(w(z) ,  z), where, 
w(z) = nw,/y(p) tracks electrons slowing down on the trajectory p(uo ,  7). 



1064 N. J. FISCH 

It is often the case that the inversion is further simplified, because the incremental 
excitation is imposed over a region of energy space narrow enough that the incremental 
radiation at one harmonic is dominant. If this were not true, it would be necessary to 
account for the possibility that radiation from one energy shell of electrons could be 
confusable at some instant of time with radiation at a different harmonic from a 
different shell. However, it turns out that this accounting is often not necessary. For 
example, for excitations over the relatively wide range 250-500 keV the incremental 
radiation at the third harmonic can be distinguished, both initially and at later times, 
from radiation at other harmonics. 

Thus, rewriting 6(w - nwc/y(p)) = 6(u - u ( o ,  z))py2(u)/(ou2), we substitute equa- 
tion (4) and equation (8) into equation (5). We take the projection o + o ( u ,  z) and 
integrate over the &function, which now selects only one U ,  which enters as a 
parameter. We obtain 

where p = p(u, z) and o = o(u ,  z), as discussed, and 

where pk is the kth Legendre harmonic. Note that Hnk = 0 for k odd. 
Now equation (9) is a relatively easy inverse problem; it is 1-D with u entering as 

a parameter. While this equation is readily approached numerically, interestingly, 
there is a trick available here to invert it analytically. We deduce the Qk from the 
behavior of r as p + 0, or, equivalently, z + G(u). The exploitable property of equation 
(9) is that the coefficients of the higher order Qk have higher order zeros. Since we are 
interested in the behavior particularly as p + 0, we can Taylor expand the Bessel 
function to put equation (9) into the form 

where, we rewrote z = G(u) - G(p),  and we defined 

where the ut1 are constants that arise from the small argulnent expansion of the Bessel 
function, e.g. 
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U,$) = ( n " / 2 " ~ ! ) ' !  Pk(p)p2(1 - p 2 ) "  dp. (13) 
- 1  

Note that as p + 0, F&) - p ' k .  Now suppose that @(p)  is analytic-one approach 
to assure this in practice is to smooth the experimental data before processing it. (The 
question of lost information because of the smoothing is discussed in Section 4.) Then, 
if we differentiate equation (1 1) uk times and evaluate at p = 0, terms higher than k 
vanish, and we find (for k even) 

which solves for the Qk (and hence for the Q k )  by recursion. (Assumed here is that 2 
and hence ak is an integer-a modest generalization of the method handles noninteger 

It is possible that the excitation S(p) is known to be unidirectional, i.e. Q ( p  < 0) = 0. 
This might be the case, for example, in a unidirectionally launched lower-hybrid wave 
spectrum for the purpose of current-drive. This auxiliary knowledge may be exploited 
to particular advantage. Separate Q ( p )  into Qe+ Qo which are, respectively, its even 
and odd components. Now Q ( p  < 0) = 0 implies that Qe = Q o ,  and, hence, for p > 0, 
we have Q = 2Qe. Thus, our solution for the even Legendre harmonics, which gives 
Qe, represents, in fact, a complete and unambiguous inversion when unidirectional 
excitation can be assumed. Without this additional constraint, the null space of $ 
consists of all odd harmonics ; with the undirectional assumption, the null space 
vanishes. The range of $, however, may be shown to be a notably small subset of R- 
space. 

Although we have solved the inverse problem given emissions of the ordinary wave 
polarization, an entirely analogous procedure may be used to deduce Q(p) from 
emissions of the extraordinary wave polarization. This gives rise to several interesting 
questions, including the puzzle of how to approach the formally overspecified inverse 
problem when, happily, emission data of both polarizations are available. 

z.1 

4 .  RELATION TO T H E  ILL-POSED HEAT EQUATION 
A question of major importance is the sensitivity of the data inversion to noise. 

The data inversion here is technically ill-posed, and while there are a number of 
techniques for performing an inversion (see e.g. TIKHONOV and ARSENIN, 1977), in 
the presence of noise the higher harmonics are expected to be essentially irrecoverable 
and only a partial reconstruction of Q may be possible. It is possible to make a 
connection to more standard equations of the ill-posed type, in particular, to a certain 
posing of the heat equation. To do so, it is helpful to consider an alternative derivation 
of 1-D projection equation, equation (9). Assume a distribution of electrons f ( p ,  t )  
that corresponds to a shell of electrons initially at some momentum uo and deduce 
f ( p ,  t )  from the data. The angular distribution relaxes according to an equation of 
the form 
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where the diffusion coefficient D goes, e.g. as l /u3 in the nonrelativistic limit. As 
discussed above, as this shell distribution relaxes in p, it also slows down in energy, 
so that it radiates at different frequencies. The radiation of a function of time may be 
put into the form 

where the known weighting function I is the radiated power of a single electron, and 
its arguments, U = u(t)  and o = o(t) track the speed of the electron shell and the 
frequency with which they emit radiation. Given the initial condition f (y, t = 0) = 
fo(p), equation (16) may be solved by summing over Legendre harmonics 

where x ( t )  = 
Substituting now for f(y, t )  in equation (3), we can put r ( t )  into the form 

dzD(z), and where the ak are the harmonics of the initial condition. 

where &(t) is the kth Legendre harmonic of the radiation function I ,  and equation 
(18) is equivalent to equation (9). 

To deduce the ak from the data r ( t )  is an ill-posed inversion, in that the higher 
harmonics will certainly be sensitive to small amounts of noise. A comparison of 
equation (18) with equation (17) is revealing. Equation (17) represents the solution to 
a heat equation. One backward posed heat equation would be to deduce, e.g., an initial 
temperature distribution from later measurements at  one point in space for all time; 
or, equivalently, in equation (17), to deduce fromf(p = p o ,  t),  the ak, something that 
would succeed essentially for only the low k terms. The form of equation (1 8) would 
be exactly the same if &(t) were independent of time. However, the main features 
should be the same for the case at hand, where &(t) is merely a milder function of 
time than is the exponential function, exp [ - (k(k+ l)x(t))]. In any event, the difficulty 
is in deducing the higher harmonics. 

Suppose that the data r( t ) ,  polluted by noise, are given at some finite number of time 
points, say M .  Then one might expect on the basis of scaling arguments that harmonics 
such that n2 > M/l  would not be deducible, where I ,  dependent on the noise and the 
desired accuracy, is the number of time points that would accurately recover a single 
harmonic. For example, if A4 = lo4 and 1 = 10, then n - 30 is about the largest 
recoverable harmonic. A numerical experiment on inverting equation (9) was reported 
recently (FISCH et al., 1987) in which ten harmonics were recovered accurately in the 
presence of a relatively large amount of simulated noise. 
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5 .  SUMMARY 
In summary, we have proposed an invasive method for multiplying by orders of 

magnitude the information obtainable from synchrotron radiation. While certainly 
there are a number of practical matters to sort out, the key has been to use knowledge 
of the dynamics of fast electrons. These are the electrons that emit the most radiation 
and about which we are generally most curious. The inverse problem for an interesting 
special case has been solved exactly. A more general case may be approached numeri- 
cally, and further generalization is available by considering more complicated plasma 
dynamics. Perturbative solutions about our analytical result, say for small d.c. electric 
field or orbservation slightly off from 0 = 0, might be useful extensions. 

If the dynamics of fast electrons are not known precisely, then the methods here 
might be employed to pick between competing models of their dynamics. Here, it is 
worth bearing in mind that while some of the assumptions made here appear quite 
stringent, the amount of information demanded is actually relatively modest compared 
to the information content of our solution. For example, although we require knowl- 
edge of the ion charge state to the extent that that parameter affects the time- 
dependence of the radiation response, this demand is only one number, whereas, a 
function with two arguments, the divergence of the initial perturbative flux, is deduced. 
In the event that a priori partial information were available with respect to the initial 
flux, it might be fruitful to speculate on a reverse problem, where inferences might be 
drawn concerning macroscopic plasma parameters, such as the ion charge state or 
the current profile, which are difficult to deduce through other means. 
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