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ABSTRACT. Many experiments have proved the effectiveness of lower hybrid waves for driving toroidal current in 
tokamaks, However, the use of these waves to provide all the current in a reactor is thought to be uncertain because it 
may happen that the waves do not penetrate into the centre of the more energetic reactor plasma and, if they do, the 
wave power may be absorbed by alpha particles rather than by electrons. The paper addresses mathematically the 
interaction between lower hybrid waves and alpha particles. 

1. INTRODUCTION 

Lower hybrid waves have been found to be effective 
in driving toroidal current in tokamaks [ 11 and the central 
aspects of the theory have now been established by many 
experiments [2-51. It would be of great benefit if these 
waves could be employed to provide the full toroidal 
tokamak current, thereby allowing tokamak reactors to 
operate in steady state. At present, > 2  MA of current 
are routinely produced by lower hybrid waves in 
laboratory tokamaks, but it is still uncertain whether 
these waves can be used to provide all the current in 
a reactor. The problems connected with extrapolating 
the results relate to the physics of the very centre of a 
tokamak reactor: first, it may happen that the waves 
do not penetrate into the centre of the more energetic 
reactor plasma, and, second, if they do, as pointed out 
by Wong and Ono [6], the wave power may be absorbed 
by a-particles rather than by electrons. 

The damping by a-particles can be avoided by using 
waves of high frequency. These higher frequency waves, 
however, are technically more difficult to inject into the 
plasma; the coupling to the plasma may be less efficient, 
and, if waveguides are employed, their structural dimen- 
sions will be smaller at high frequency and they will 
be more difficult to fabricate. Recent calculations by 
Bonoli and Porkolab [7], Barbato and Santini [8] and 
Spada et al. [9] explore the possibilities for avoiding 
the damping by a-particles. The calculations of Barbato 
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and Santini include the quasi-linear effect of the waves 
on the a-particle distribution. 

The question of a-particle damping would be moot, 
however, if the waves did not penetrate into the plasma 
centre. Penetration of the plasma centre is not likely to 
occur in the dense, hot, reactor plasma, because there 
are sufficient hot electrons at a distance from the plasma 
centre that absorb the lower hybrid power. In this case, 
the lower hybrid driven current would appear, but it 
would have a hollow profile. Hollow current profiles 
are not considered to be stable, so the injection of such 
a current would not be suitable for maintaining the 
complete plasma current. In a number of detailed reactor 
studies it was concluded that, in order to provide the 
full current in a reactor, lower hybrid current drive 
will need to be supplemented by other means of current 
drive. (Such a design is pursued in the present plans 
for ITER [ 101 .) These conclusions are reached precisely 
because of the assumption that the current appears only 
on the magnetic surface in which the wave power is 
absorbed. 

If the current could be provided through deposition 
of power away from the plasma centre, then there would 
be a number of favourable circumstances related to the 
interaction with a-particles: The energetic a-particles, 
produced primarily in the plasma centre, are fewer and 
less energetic away from the centre. The lower hybrid 
waves, on the other hand, have a decreasing phase 
velocity as the waves enter the higher density plasma 
centre, so the a-particle damping is much less away from 
the centre than it is at the plasma centre. Moreover, 
while an isotropic distribution of a-particles will always 
damp the lower hybrid waves (so long as the energetic 
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particles can be considered unmagnetized in the wave 
fields), this is no longer the case if the distribution 
function is not isotropic. In fact, as the a-particles 
both slow down and diffuse away from where they are 
produced (near the plasma centre), their distribution 
could become anisotropic off the centre. Since the 
a-particle distribution is energy inverted, it is possible 
that, away from the centre, the a-particles might even 
amplify the lower hybrid waves. 

The speculation that lower hybrid waves might 
provide the full current even in the presence of 
fusion generated a-particles can be analysed through 
a consideration of the details of the wave damping on 
a-particles, the evolution of the a-particle distribution 
function, including quasi-linear velocity diffusion and 
spatial diffusion, and the spatial diffusion of energetic 
current carrying electrons. In this paper, we examine the 
response of a-particles to intense radiofrequency (RF) 
heating power, in the light of the goal of generating 
the full current by RF waves. 

The paper is organized as follows: In Section 2 
we derive the one-dimensional a-particle distribution 
function, which is under the influence of intense RF 
diffusion, but no spatial diffusion. In Section 3 we 
derive the power dissipation based on the one- 
dimensional velocity distribution. A very interesting 
finding of Sections 2 and 3 is that an exact one- 
dimensional distribution function can be found analy- 
tically and that the exact power dissipation can be writ- 
ten in terms of this distribution function. We find 
a quasi-linear damping law for a-particle damping at 
high RF power that scales with the 415 power of the 
lower hybrid wave spectral intensity, while for the 
electron damping there is saturation at high power 
(‘0 power’ law scaling). Of practical interest is that, 
as other authors have found, the resonant interaction 
of lower hybrid waves with a-particles ought to be 
avoided altogether. In Section 4,  we derive the one- 
dimensional a-particle distribution function in the 
presence of a-particle diffusion in configuration space, 
but in the absence of resonant wave-particle interactions. 
In Section 5 we present our conclusions and suggestions 
for experimentation to decide key issues. 

2 .  FOKKER-PLANCK EQUATION 

Energetic alpha particles collide primarily with 
electrons, so the slowing down of an a-particle with 
velocity 3 obeys 

- V 3  d? - 
dt 
-- 

where the collision frequency v = 16 s e e 4 n e  
x lnA/3T:”m,. For a distribution of a-particles, 
we then have a kinetic equation 

a a -  N 
- f(3,t)  = --*s + - 6(v - v,) 
at a? 4nv: 

where the second term describes the birth of a-particles 
at 3.5 MeV at a rate N and the velocity space flux g i s  
given by 

(3) 

where the first term describes the slowing kown of 
a-particles in collisions with electrons and a,, is the 
quasi-linear diffusion coefficient. 

For a Landau resonant interaction, with kL B kll ,  the 
diffusion is essentially in the perpendicular direction, and 
the magnitude of the quasi-linear diffusion coefficient 
can be written, correctly for unmagnetized a-particles 
[ l l]  as 

(4) 

0 if v, < wlk, 
(5) 

i (eZ,Elm,)2(w/k,v,)2 
x (k2v2 ,I - 02)- l /2  if v, > wlk, 

DQL = 

where E is the electric field of the lower hybrid wave, 
w is the wave frequency, k, is the perpendicular wave 
number and Z, = 2 is the a-particle charge state. 

It is quite remarkable that the problem is then 
inherently one-dimensional. In contrast, other so-called 
1-D problems, such as current drive by electron Landau 
damping, are really just approximations. The problem 
of a-particle damping is rigorously one-dimensional, 
because the collisions of a-particles with electrons 
result in a contraction of the a-particle distribution 
function in parallel velocity, and this contraction 
affects neither the rate of slowing down nor the wave 
absorption resonance. This can be seen as follows. 
Let us write 

(7) 
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Then, integrating Eq. (2) over vI1, we obtain 

where the a-particle source flux Q, is 

1 N  
v, 2nv, 

Q, = H(v, - v,) - - m 
where H is a Heaviside function (H(x) = 1, x > 0, or 
else H(x) = 0), and the perpendicular flux is given by 

(9b) 
a 

av, 
Sl(Vl.9 t) = -WF(V,, t) - DQL - w , ,  t) 

In general, supplementing Eq. (8) by an initial condition 
for F(v,, t = 0) and by boundary conditions, for example, 
at v, = vo, where vo is some finite velocity, and at 
v, - 00 results in a well posed diffusion equation. 
Here, the physical boundary conditions of interest are 
for a-particles that slow down into a relatively cold 
thermal distribution, which we treat as a sink. In other 
words, we impose a perfectly reflecting (zero flux) 
boundary at v, - 03 and a perfectly absorbing boundary 
at v, - 0. The first condition is realized if F or S ,  
vanish at v, - 00. The absorption condition as v, - 0 
can be realized by matching the full flux to the colli- 
sional flux, -vv,F(v,, t). In other words, particles escape 
the region of interest to lower v, at a rate dictated just 
by slowing down collisions. 

For the interesting case of steady state, the flux S ,  
must vanish in the sourceless, semi-infinite region 
v, > v,. In the region v, < v,, we can integrate 
Eq. (8) to obtain 

where D, a normalized measure of diffusion, is 
defined as 

For w/k, > 0, both the particle source and the diffu- 
sion vanish at the boundary with the collisional region, 
v, - 0, so that boundary conditions can be realized 
by matching the solution of Eq. (1 1) for s > P to the 
solution valid for s < P ,  namely 

G(s) = s - ~  s < P  (13) 

Let us define for s > B 

(s2 - P 2 ) 3 ' 2 ( ~ 2  + 2P2/3) 1 
5D 

- -~ 

Then the solution to Eq. (1 1) can be written for 
s > P a s  

(15) 

We note that the integrating factor can be expressed in 
terms of elementary functions, as done on the right-hand 
side of Eq. (14), but further analytic progress appears 
possible only in certain asymptotic limits, which may be 
of physical interest and are described in the following 
section. 

1 + ls xe*(') G2 H(l - x)dx 
D ! 3  

- N m  
v, 27rv, 3.  POWER DISSIPATED 

where the constant of integration is zero since the flux 
must vanish at v, = v,. Note that as v, - 0, we have 
27rv,S, - N, since it is presumed that there is a sink 
at v, = 0 to collect, in the steady state, the complete 
a-particle production. 

Equation (10) is a first order ordinary differential 
equation and so it is readily solved exactly. Let us 
introduce the non-dimensional variables, s = v,/v,, 
0 = w/k,v, and G = F/(N/27rvv,3. Using the quasi- 
linear diffusion coefficient in Eq. (3, Eq. (10) may 
then be cast in the form 

The power dissipated by the waves turns out to 
be available exactly in terms of the one-dimensional 
solution. Since the RF induced flux is perpendicular, 
we can write the wave power dissipated as 

c 

Prf = d3vm7.$rf 

= 1 2sv,dv,mv, 1 dvll& 

aF = 1 27rv,dv,mv D QLav, 
where we carried out the integration over vII trivially, 
since grf is independent of vil. This power can be = s G z  H ( l -  s) 
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contrasted to the a-particle heating power 
be written as 

P, = Nmv32 

Consider the normalized wave power 

which can 

where a 
negative number indicates wave damping) 

OD 

= 2 1 ds [ s a  H(l - s) - s3G] (18) 
B 

where in writing the first equality we used Eqs (lo), 
(11) and (12), and in writing the second equality we 
used Eq. (11). The correct power dissipated may be 
found now by use of Eq. (15). Note that the calcula- 
tion of this power dissipated is exact for the physical 
model at hand - namely that a-particles are subject 
to slowing down collisions only and that the RF power 
results in perpendicular diffusion only. No approxima- 
tions are introduced through our mathematical use of 
the one-dimensional perpendicular distribution function. 
Accurately calculating the fully two-dimensional distri- 
bution function f(v,, vn) is more difficult, and might be 
approached approximately, for example, by an expansion 
in Legendre harmonics [8]. The fully two-dimensional 
distribution function f(v,, VI,)  is sufficient but not 
necessary to calculate the dissipated power, but an 
approximated two-dimensional distribution function will 
only give an approximated dissipated power; here, the 
one-dimensional distribution function F(v,), which is 
available exactly, not only suffices but is guaranteed 
to give the exact power dissipation. 

possible if the pitch angle scattering of the a-particles 
were important. This limits our consideration to wave 
phase velocities much higher than about 500 keV, which 
is where slowing down and pitch angle scattering are 
about equal. In practice, this limit is of little concern, 
since the waves must avoid entirely the less energetic 
a-particles. 

The power dissipated can be estimated analytically 
in a number of interesting limits. If /3 > 1, then, of 
course, no power is dissipated to the a-particles. Of 
great interest, however, is how sensitive the dissipation 
is under high power to a relaxation of the condition that 
> 1; in other words, whether some a-particles can 

be resonant with the wave, resulting in tolerable dissi- 
pation with P 5 1. Consider the limit /3 - 1; then, 
most of the wave power is dissipated through resonant 
interactions in the region s > 1, namely through 
acceleration of a-particles to velocities greater than 

Note, however, that this simplification would not be 

their birth velocity. This can be seen as follows: The 
first term on the right-hand side of Eq. (1 8), representing 
interactions in the regime s < 1, can be calculated 
directly as 

[" s G2 H(l - s)ds 
J P  

This integral can be compared with the second term on 
the right-hand side of Eq. (18), which, by using Eq. (15), 
can be written as the sum of two terms, namely 

- s, s3Gds 

= A + B  

Term A can be put in the form 

x -- s3 exp (-& (s2 - P 2 ) 3 / 2 ( s 2  +2P2/3)) ds 
P 

where 

g(x) = 

Now, in the limit P 2  - 0(1), but D - 00, we have 
x - 0, and we can approximate 

y exp (- f (y - x)~"(Y + 2x13)) dy (22) s: 

where we used the gamma function, r(x) = xr(x  - 1). 
Thus, we have for D - 03 
Note that the contribution of term A to the power 
dissipated is D4I5(l - P2) - '  larger than that of the term 
considered in Eq. (19), which represents interactions in 
the regime s < 1. 

Let us now show that term B is negligible compared 
to term A in the regime of interest. From Eq. (20), we 
have 
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are accelerated into the region s > /3 (vi > d k )  where 
they can then be subjected to further acceleration. 

where, for most of the interval of interest, namely 
s > 1, but /3 - 1, 

I(s) = x e’(’) H(l - x)dx s: 

Thus, term B is smaller than term A for large D and 
/3 - 1 by a factor of (1 - /3)-3’Z/D. 

Since term A is the largest term both for large D 
and /3 - 1, it follows that, asymptotically, 

P, - 1.19D4’5 F/3 
from which it follows that, in order for the RF dissi- 
pated power to be small compared to the a-particle 
heating power, the lower bound of phase velocities 
must obey 1 - /3 - D-8’5, so that, for large D, /3 is 
essentially equal to one, from which we may infer that 
there is essentially no leeway in the requirement that none 
of the a-particles be resonant with the RF spectrum in 
the limit of high RF power. 

While, in practice, the mathematical limit D - 03 is 
not physically realizable, the ITER scenarios considered 
by Barbato and Santini [8] do consider D (their para- 
meter [) in the range D - 3,  and D % 1 might be 
envisioned to occur in highly RF driven low density 
tokamak reactors. 

The limit D - 03 is an interesting limit, and the ion 
response is fundamentally very different from the electron 
response [12] to the same waves in the limit of high 
power. Under low RF power and a Landau resonant 
interaction, the RF power dissipated both in the 
a-particles and in the electrons is proportional to the 
RF power. For the electrons, however, under intense 
RF excitation, there is a maximum absorbed power, 
and the absorbed power then scales as a constant with 
increasing RF power. In contrast, at high power, the 
a-particle absorption is proportional to the 4/5 power 
of the RF intensity. The physical reason for this differ- 
ence is clear: For a Landau resonant interaction, the 
magnetized electrons exhibit a quasi-linear plateau, so 
their capability of absorbing power is limited. On the 
other hand, the a-particle absorption of power is highly 
non-linear in that, with more RF power, more a-particles 

4. WAVE ABSORPTION 
IN THE PRESENCE OF 

SPATIAL DIFFUSION OF CY-PARTICLES 

Given the necessity of avoiding damping by a-particles, 
it is important to know, in detail, the a-particle distribu- 
tion as a function of both perpendicular velocity and 
configuration space. Since non-linear effects at high 
power tend to exacerbate the damping, rather than, 
as for electrons, alleviate it, resonant interactions with 
the a-particles are best avoided altogether. In that case, 
the a-particle distribution function, F(v,, r), can be 
calculated in the absence of the RF interaction. The 
linear damping rate can then be calculated on the basis 
of that distribution function. On the basis of the result of 
Section 3, it would be anticipated that, if the a-particle 
source is isotropic in velocity space, quasi-linear effects 
do not decrease the damping, and so the wave phase 
velocity needs to be faster than the fastest a-particles 
to avoid damping of the wave. 

The processes that determine the a-particle distri- 
bution function f(3, 7, t) are then the energy slowing 
down due to the collisions with electrons, the a-particle 
source and the spatial transport. The first two processes 
can be described adequately, as done in writing Eq. (2), 
but the physics of a-particle transport is still uncertain, 
both theoretically and experimentally. Suppose that the 
transport of a-particles is diffusive in nature an4 can be 
described by a diffusion coefficient of the form 6 = E(?). 
The kinetic equation governing the a-particle distribution 
can then be written as in Eq. (2) as 

a -.-. a -. h (7) 
47rv: at a? - f ( v , r , t )  = ----as + “---6(v-v,) 

where n,(F) is the source density, where the last term 
accounts for the spatial diffusion and where the flux 
now represents collisional flux only. For diffusion out 
of a cylinder, we are interested in the distribution of 
a-particles as a function of the perpendicular velocity 
direction and as a function of radial distance r; hence, 
we define 

F(v,,r, t) = f(T,F, t)dv,ldz 

where 2 is the ignorable direction 
axis. 

(29) 

along the cylinder 
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There are a number of diffusion coefficients with 
very different parametric dependences that have been 
proposed for a-particle transport [13, 141, and certain 
toroidal effects might occur even in the wave-particle 
interaction [15]. The general case will be difficult to 
consider, but some insight may be gained by studying 
a simpler, analytically tractable problem. Let us, for 
simplicity, restrict our attention to cylindrical geometry 
and, further, to a diagonal diffusion coefficient, such that 
the radial component is a-function of perpendicular velocity 
only, i.e. of the form B(7) = D,(v,)ii + Dz(7)22. 
(Such a diffusion might arise, for example, if the typical 
radial step size in a collision were the a-particle gyro- 
radius.) Then, we can integrate over Eq. (28) to derive 

where n(r) is the axially integrated source density, i.e. 

n(r) = dzns(F) s 
In the steady state, a /& = 0, we can cast Eq. (30) 

into an inhomogenous diffusion equation for 9 = v:F. 
Using the new variable U, 

we can write 

where we defined 

(33) 

Equation (32) is an inhomogeneous diffusion equation 
with constant coefficient, in cylindrical geometry, to be 
solved with homogeneous initial and boundary condi- 
tions. It has the well known Green’s function solution 

Io(rr’/2(u - U’)) 
2(u - U’) 

G(u - U’, r - r’) = 
X exp (-(r2 + rr2)/4(u - U’)) H(u - U’) (34) 

where Io is a modified Bessel function. The function G 
solves the heat equation in a cylinder 

i a  a 1 
a U  r ar ar  r - G - - - r - G = S(u - U’) - S(r - r’) (35) 
a 

Using Eq. ( 3 9 ,  it is possible to estimate the damping 
by a-particles born on different flux surfaces. In a 

tokamak, the concentration of a-particle births is 
largest in the centre, where the percentage of energetic 
a-particles would also be correspondingly largest. The 
a-particles would diffuse away from the centre as they 
slowed down. Their contribution to wave damping off 
the centre would then be in the form of less energetic 
particles, so that the wave-particle resonance would be 
more easily circumvented. 

function is in the assumed form of the a-particle trans- 
port, especially in the assumption that the radial diffu- 
sion coefficient depends on v, only. This assumption 
completely decouples the parallel velocity from the 
perpendicular velocity space dynamics, allowing us to 
integrate Eq. (28) over the parallel direction to find an 
equation for F(v,, r,  t). In the absence of this decoupling, 
such a large simplification appears unlikely, and, 
although a Green’s function still exists (since the 
equation is linear), it is not likely to be so simple. 

To examine a special case of particular interest, 
suppose the a-particles are all born on the axis 
r = 0, i.e. 

The key simplifying assumption in deriving this Green’s 

N h,(r) = - S(r) 
27rr 

then 

W ’ )  (36) 
exp (-r2/4(u - U’)) 

9 ( r ,u )  = N du’ s:. 47r(u - U’) 

where U, = u(v,). Note that we have defined U to be 
negative, and the range of interest is 0 > U > U,. 

coefficient of the form Dr(v,) = 7,~:. Then we can 
perform the integral in Eq. (36). First, note that from 

Suppose, further, the special case of a radial diffusion 

Eq. (31) 

(37) 

so that the source S becomes 
* 

(38) 
1 S(u) = (U - u,)-l’2 

2av, G, 
Substituting now for the source in Eq. (36), we have 

9 ( r ,u )  = 1 
47r2v, G, 
exp (-r2/4(u - U’)) 

2(u - U’) 
(U’ - u,)-”~ du’ 
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[:-"U exp(-r2/4x) (U - U, - x ) - ~ ' ~  dx 
2x 

(8(u f U,)> 
X exp (-r2/8(u - U,))& (39) 

where I?, is a modified Bessel function. 
From Eq. (39), the conclusion can be drawn that 

there is damping but never amplification of the wave, 
both near and far from the source at the axis. This can 
be seen by substituting for U and \k to obtain 

F(v,, r) = N r(1/2) 
8?r2r,v,v:=) 

In this case, there is clearly no wave growth since 
F(v,, r) is a monotonically decreasing function of v, 
for all r. 

A very interesting question is what diffusion coeffi- 
cient can result in local amplification of the wave. In 
other words, although the spatially integrated distribu- 
tion function is monotonically decreasing and hence 
Landau damping, there may be radii at which the 
local distribution function is inverted and hence Landau 
amplifying. It would appear that if high v, but low V I I  

a-particles diffuse most quickly, then there may be an 
inversion in v, space at large radial distances from the 
source. Such a diffusion coefficient actually violates the 
condition under which Eq. (39) was derived, but one 
might also suppose that the parallel dependence here is 
inconsequential. It turns out that finding the class of 
diffusion coefficients that allow or disallow growth is 
more challenging than one might have expected, and 
we must leave as an open question such proofs for all 
but the simple case we considered, namely a radial 
diffusion coefficient of the form D,(v,) = r,v:. 

5. CONCLUSIONS 

Several issues have become apparent in the effort to 
implement in tokamak reactors current drive by lower 
hybrid waves. In this work we have expanded upon the 
key issues related to the a-particle environment. Here, 
we summarize our findings and address what further 

experimental effort might point to circumventing the 
problems that we have outlined. 

As discussed by several authors, the damping by 
a-particles is significant enough to prevent efficient 
current drive in the plasma centre. In Sections 2 and 3 
we supported the conclusions of these authors with an 
analytical calculation of power dissipation that is both 
precise and simple. Our observation was that the problem 
of a-particle damping could actually be posed precisely 
over the region of interest in tokamaks as a one- 
dimensional problem in velocity space. In addition we 
derived a 4/5 law for power dissipation in the asymptotic 
limit of high power waves. 

Given the necessity for avoiding a-particles at any 
power, what is first needed is an account of the 
a-particle distribution as a function of both minor 
radius and velocity. In Section 4, we derived an 
integral equation for the a-particle distribution for 
a certain class of spatial diffusion. As energetic 
a-particles diffuse from the plasma centre, we can 
expect them also to slow down, which alleviates the 
requirement on the lower hybrid wave phase velocity. 
In addition, away from the tokamak centre, the plasma 
is less dense, so the perpendicular lower hybrid wave 
phase velocity is in any event faster and more likely to 
avoid the a-particles. It may also be the case that the 
a-particle distribution as a function of radius could 
develop anisotropies in velocity space. This would 
mean that, in principle, there could be local amplifi- 
cation of the lower hybrid waves. 

In view of the above, the best scenario for current 
drive might occur if there were spatial diffusion of 
lower hybrid current carriers to produce current in the 
tokamak centre with power dissipated off the centre. 
What is needed, however, is firmer empirical evidence 
of both the radial transport of the fast electrons and the 
radial transport of the confined a-particles as they slow 
down. Also, because of the critical role played by the 
wave phase velocity, which governs the resonant inter- 
action, a more precise study of the perpendicular index 
of refraction in toroidal geometry may be useful. Only 
yith such empirical evidence can we evaluate the 
possibility of maintaining current drive by lower hybrid 
waves in a tokamak D-T reactor. 

What are the necessary experiments? The physics 
of a-particle transport is under study for other reasons, 
particularly energy confinement. Although our problem 
presents some peculiarities, in particular with respect 
to anisotropic distributions, the physics of a-particle 
transport may have to await burning experiments. On 
the other hand, probably a great deal more effort could 
be made to understand the physics of fast electron trans- 
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port. Bounds on the radial transport of these electrons 
might be inferred through global considerations, such 
as the rate of current production. 

An alternative that may give more precise informa- 
tion on electron transport would be to measure with 
radial resolution signatures of the fast electrons, such 
as the bremsstrahlung [16, 171 or the synchrotron radia- 
tion [18, 191. Such measurements would reveal more 
if, at the same time, an effort were made to localize 
in space, and possibly in time, the power dissipation. 
The advantage of localizing in time is that the trans- 
port process might be followed directly if time resolved 
measurements could be made. A second advantage is 
that, in the absence of spatial resolution, it might be 
possible to infer from the time resolved measurements 
certain plasma parameters, including those governing 
the spatial transport. One consideration in localizing in 
time the power deposition is that the transport itself 
may be affected by the concomitant induced electric 
field. Under steady power conditions, however, a 
steady state can be achieved with non-local current 
production exactly in the same way as with local 
production. 

clarified before definitive statements can be made on 
using lower hybrid current drive to provide all the 
required non-inductive current in a D-T tokamak 
reactor. One possibility of efficient current production 
by this means might rely upon the deposition of lower 
hybrid power somewhat off the centre, with subsequent 
penetration of the plasma centre by the fast, superthermal 
electrons. 

In summary, a number of concrete issues need to be 
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