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When an intense, plane-polarized, laser pulse interacts with a plasma, the relativistic nonlinearities in-
duce a third-harmonic polarization. A phase-locked growth of a third-harmonic wave can take place,
but the difference between the nonlinear dispersion of the pump and driven waves leads to a rapid un-
locking, resulting in a saturation. What become third-harmonic amplitude oscillations are identified
here, and the nonlinear phase velocity and the renormalized electron mass due to plasmon screening are
calculated. A simple phase-matching scheme, based on a resonant density modulation, is then proposed

and analyzed.

PACS numbers: 52.60.+h, 52.25.Rv, 52.40.Nk

Recent advances in laser pulse compression [1] now
make possible the exploration of laser-plasma interactions
at fluxes above 10'® W/cm2 Harmonic generation is
among the important new processes that take place at
such high laser intensities, and has been recently investi-
gated [2] and identified as a promising candidate for a
coherent light source at very short wavelength.

The nonlinear orbit of an electron in an intense, plane-
polarized, laser pulse can be the current source of two
different processes. (i) Spontaneous harmonic Compton
scattering [3]: This process is incoherent, so that the
emitted power scales as the density, i.e., as the square of
the plasma frequency wﬁ. (ii) Collective forward har-
monic Compton scattering: In a cold plasma the phases
of the currents are fixed by the pump, so that a coherent
harmonic wave, in phase with the nonlinear currents, can
grow or decay. The efficiency of this phase-locked
coherent harmonic generation was recently studied [2],
and was shown to scale as wj.

The main issue of harmonic generation in condensed
and gaseous media is the phase-velocity mismatch be-
tween the pump and the harmonic waves [4]. This is also
the case for harmonic generation in a plasma, and the
efficiency of the conversion of power to high harmonics is
dramatically sensitive to this mismatch. What happens
then, we demonstrate, is that the harmonic wave does not
really grow at all; rather, there are amplitude oscillations
at a saturated level, scaling with w,%. Also, we demon-
strate that, by modulating the density, linear growth can
be accomplished with an efficiency scaling as w,f or as
03,

Consider an intense pulse, such that the plasma period
a)p_' is shorter than the pulse duration @ ~'. In this re-
gime, each electron is displaced in the direction of the
pulse as the pulse passes it by. Then, after a transient
response, a nonlinear oscillation, driven by the wave, and
modulated by the plasma collective effects, is set up. To
analyze the nonlinear response, we use a Lagrangian
description of the plasma, rather than a Eulerian one.
This method has proven to be powerful in studying the
generation of beat waves [5] and plasma wakes [6].

The nonlinearity parameter of an intense electromag-

netic wave, with vector potential A, is e4/mc, where ¢ is
the velocity of light, and —e and m are, respectively, the
electron charge and mass. For ultraintense waves,
eA/mc > 1, and the electron quiver velocity becomes rela-
tivistic, so that the polarization currents saturate at the
value eowgmc/e. On the other hand, the displacement
currents increase with A4, as gw?A, where w/2x is the
wave frequency. Because of the saturation of the polar-
ization currents, the wave dynamics is dominated by non-
linearity, and the normalized density can be used as an
expansion parameter, with all orders in eA/mc kept.

The large value of the pump field causes electrons to
respond with an effective mass [7] M, so that a density
expansion scheme is valid only if 0i/0’M = o}/w’
x (eA/mc) is a small parameter. This parameter is small
at high power even for frequencies below the linear
cutoff, i.e., w, =w; this is a very favorable circumstance,
because efficient harmonic generation requires a dense
plasma, and the smallness of this parameter at high
power assures both the wave penetration and the validity
of our analysis.

Intermediate, but important, calculations here include
the nonlinear phase velocity of an intense wave and the
electron renormalized effective mass, due to plasmon in-
ertia.

Finally, to overcome the problem that we identify, we
propose and analyze two phase-matching schemes, based
on a resonant density modulation. In the following, ex-
cept in the final part, we will use e =m=c=w=1.

Consider an intense, plane-polarized, laser wave propa-
gating along the z axis:

A(z,1)=A(z,t)coslt —z+¢(t)]e, , (1)

where ¢(z) is a slowly varying phase [d¢/dt =0(w}/A4)],
which accounts for the nonlinear dispersion of the phase
velocity, and where A(z,t) is a slowly varying envelope,
whose dynamics is insignificant to the problem, provided
that 9.4/9z < A, 84/8t < A4, and dw < w,.

Under such conditions, when an electron enters the
pulse, it behaves essentially as in an infinite wave. The
power transfer from the pump to the harmonic wave is di-
minished primarily by the phase-velocity mismatch, and,
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to a much lesser extent, by the group-velocity mismatch.
This latter mismatch accounts for the imperfect overlap-
ping of the two pulses, it takes place on a far longer time
scale, and will be evaluated at the end of this Letter.

Each electron is described by its unperturbed position
zo, and follows a Lagrangian orbit, h(zo,z) =z(t) —zo,
x(zo,t), about its rest position. To lowest order in wp/A
when collective plasma effects are neglected, the electrons
perform the well-known “figure-8” motion [8]:

x =%sin[Mr(t,zo)+¢] ,

0))

A2
= vE sin[2M 1 (¢,z9) +2¢] ,

2
t=zo+ M1+
8M

sin[2M1 +2¢],

where we used the effective mass of the electron in an in-
tense wave [71 M =(1+A42/2)"2 and where 7(z¢,1) is
the proper time. The sum of all the Lagrangian currents,
— (dx/dt)8lz —zo—h(t,z¢)], gives the Eulerian current,

which is the source term of the Maxwell equations. With
the Lorentz gauge we obtain
9’°A _ 9’A _ Az,t)
32—2- 52 w,,fdzo5(z zo—h(t,z¢))—2+ Gol)
=2 A (
= —_—, 3
“r (1 +0h/dz) )

where we have introduced the relativistic energy, ¥?

=14+ (dh/dt)?+ (dx/dt)?, and used the conservation of
the transverse canonical momentum, ydx/dt=A. To
evaluate y(1+90h/9z¢) as a function of the longitudinal
momentum, p =dh/dz, we consider h = [ *p(u)du, to ob-

tain 0h/dz9=pd1/9z¢. Then, we note that all the elec-
trons have the same orbit but translated in space and
time in order to accommodate the delay between their ex-
citation; thus, to calculate the global plasma response, we
write the time variable as t =zo/V+ [ “y(u)du, where V
is the slope of this space-time translation. At the front of
the pulse, we have V' =1, while, in the bulk, we take V =1
to lowest order, and ¥ =V*, the phase velocity, to higher
order. This expression for ¢ is then differentiated with
respect to zo, so that we obtain y(1+0h/dz¢) =y—p/V.
To lowest order in the plasma effects, Eqs. (2) give
y—p =M, with the result that, although the microscopic
Lagrangian currents contain the various harmonics of w,
the Eulerian current, to this order, contains only the fun-
damental.

The relativistic nonlinearity does manifest itself
through an effective plasma frequency, w,f/M. The non-
linear dispersion, described by the slowly varying phase ¢,
is then easily calculated with Egs. (1)-(3) to get
d¢/dt =w2/2M. The nonlinear phase velocity of the
pump, V'*, can be written as V* =1+ w}/2M.

Because of the cancellation between the relativistic ve-
locity anharmonicity and the relativistic density oscilla-
tions, y(1+8h/8z9) =M, harmonic generation occurs
only at the order wp/A42 i.e., at the order w2/A for the
Lagrangian orbits. In this order, the Coulomb interac-
tions, responsible for the plasma collective effects, enter
the Lorentz equations. The transverse x dynamics
remains unaltered, but, on applying the Gauss theorem to
the perturbed density, one finds an additional restoring
force [9], proportional to the density, w2, and the dis-
placement A. In addition to this force we have to take
into account the first-order nonlinear dispersion which in-
troduces a d¢/dt term. We have

dh
2P -‘}%— ——2—s1n[2(t—z)+2¢] wpvh, (4a)
dt dy 2
Ay A e A G —2)+20] |1+ —w2ph . (4b)
it s 5 sm[ (t—z)+2¢] 2M] wpp
These equations describe a perturbed nonlinear oscillator.
To implement an ®?2/A expansion scheme, we must be 42
careful to avoid secular terms [10]. On the basis of the y—p=M* 1+w3WCOS(2M*T+2¢)
unperturbed solution, Eqs. (2), we seek a first-order solu- )
tion of the form 42
R t—z=M*t+o} 32M*Jsin[2M*r+2¢].

A2
h~ o aysinl2M T +29] +0(w}/A),

(5)

2
=~ M*c+ =2 _sinl2M* £ +291+0(w}/4) .
8SM
The plasma effects add up higher-order harmonic
terms, O(wp/A), and renormalize the nonlinear funda-
mental frequency M, to give a new effective mass,
M*=MI[1+0(w}/4)], dressed by plasmons. Solving
Egs. (4) with Egs. (5) leads to

The dressed effective mass is then obtained by demand-
ing that there be no secular drift along the z direction.
After some algebra, we obtain a relation between M and
M* and to first order

7

4
M* =M |1 — 0} =2 5
64M

This last result is not specific to the problem of har-
monic generation, and is, in fact, quite general. Equation
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(7) is the effective mass of an electron in an intense wave,
when Coulomb collective interactions are taken into ac-
count. The plasma collective effects decrease the bare
effective mass M, because the collective forces are restor-
ing forces, —w,‘}/h, which oppose the driving fast oscilla-
tions, and screen A.

On the basis of Egs. (3) and (6), we see that the trans-
verse Eulerian polarization current has a third-harmonic
component, of order wj/A% which is able to excite a
third-harmonic wave,

alz,t)=a(t)cosl3(t —z)+¢(t)le,, (8)

with the amplitude a and phase ¢ evolving on the slow
time scale of the problem. Provided that a < A, the cou-
pled Maxwell equations are

9’A _ 9°A _ wp _ wp3A?
8z 9t M* 3RM*4T ©
9
8%a 9% _ o; wp3A4?
5—2—— Y = e a— 32}‘/1*4/1005[30*z)+3<j>(t)]e,(.
4

The first term on the right-hand side of the second equa-
tion describes the reactive dispersion due to the polariza-
tion currents, but with dressed electrons, whose inertia is
given by Eq. (7). The second term drives the harmonic
generation. On the basis of the first equation, one can
calculate the nonlinear dispersion of A4, 2d¢/dt=w}/
M* —wp3A4%/32M**, thus, to this order, the nonlinear
phase velocity of the pump is

wp _ wp3A? | wpA®
2M 64M*  128M°¢

The equations for the slowly varying amplitude and
phase, a and ¢, share some similarity with the
Rosenbluth-Liu [5] equations for beat-wave generation,
but here the detuning term is independent of the ampli-
tude. Rather than using the variable ©(r), where
de/dt =w}/6M — 0y A°cos(0)/64M *a, it is more con-
venient to use the variable 8(¢) =¢(t) —3¢(¢), so that we
get

V¥=1+ (10)

da _ _ 4 A’

PR 64M4sin(0), (11a)
do d0f  , A% cos(9)

e : 11b
dt M Peamt  a (11b)

The tendency to phase lock at large a, due to the second
term on the right-hand side of Eq. (11b), is canceled by
the phase-velocity mismatch, described by the first term.
No phase locking occurs, so that instead of growing
linearly with time, the amplitude oscillates. The orbits

1

da _ _ wpA’

di 64M

-——— +2ssin(9t)]%JN(—4sw,§/3M0)sin

4Cl)p T
——t+NQt+N—|.
M 2

are arranged around the elliptic points (a=* w?34°/
256M3, 0=nn). These equations are a Pfaffian system,
and the first integral is / =a’+ 0}(34°/128M *)a cos(0).
Two classes of orbits are easily identified: circulating or-
bits (I>0, for large |a|) and trapped orbits (I <0,
for small |a|). The equation describing either orbit
is [Ut]=—arcsinQUI —U2a*+2v2)/2v (V2 +2U1) "2,
where U=—402/3M and V=—w;43/64M*. If the
amplitude is large enough, the I > 0 orbits can be approx-
imated by a =[—V/Ulcos(Ut).

It is interesting to note that Egs. (11) can be mapped
onto a Hamiltonian system. Let us define P=asin(8),
Q=acos(8), and the time s = —Ut/2. Equations (11a)
and (11b) can be obtained from the Hamiltonian
H=P2+Q+2VQ/U, describing an offset linear oscilla-
tor whose orbits are circles in P-Q phase space.

The length over which the harmonic generation is de-
tuned is /= (w,,/w)Jc/w,,, which is too hard to set up
in a plasma. In addition, in the regime A4 = I, the con-
version is only P3/P,=~10"*(0,/w)* We now proceed
to show a method that overcomes the serious problem of
the short detuning length, and moreover, does it with
higher conversion efficiencies. A resonant density modu-
lation is to be used in order to detrap the / =0 orbit.

Imagine a one-dimensional plasma media, with alter-
nating, along z, high- and low-density sections. The laser
pulse will induce harmonic generation in the active high-
density sections, but the interaction with the low-density
plasma will result only in a reactive phase shift between
the pump and the harmonic. Choosing the width of the
reactive low-density sections to compensate the phase
mismatch due to the active one now restores linear
growth,

After s steps, a reaches sw?343/128M°. Thus, the
power conversion efficiency scales as P3/P)= 10 32
x (eA/mc)*(wy/w)*, where the a exponent is 4, if 4 <1,
0,if 4=1, and —2, if A>1. Strong density modula-
tions might be set up by, for example, the laser ablation
of a multiple-layered media, or a nonlinear plasma wave.

However, such a strong resonant modulation may not
be necessary, and it would be more convenient to use a
low-frequency, small-amplitude density wave in an homo-
geneous plasma, such as, for example, a long-wavelength
ion-acoustic wave. Actually, even a weak modulation has
a dramatic effect which can be studied within the frame-
work of the previous model. Because the density is modu-
lated, én/n=gsin(Q1), with e< 1 and Q@ < éw < w, < o,
we substitute wi[1 +esin(Q1)] for w) in Egs. (11). As
soon as the amplitude becomes larger than ®}/256, the
second term on the right-hand side of the phase equation
is negligible compared to the first one, and the amplitude
equation becomes

2

(12)

The amplitude is thus driven by a sum of oscillating terms, and, if one of these oscillations is resonant, it induces a secu-
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lar linear growth. When N is odd the resonance condition is

NQ=+40}/3M =0.

(13)

The associated resonant term quickly dominates the other bounded components, and we can average out the oscillating
part of g, to study the secular part of the third-harmonic amplitude, (). Taking the asymptotic expansion of Jy (N¢) in
the resulting equation, d{a)/dt =Jn(Ne)wjA*/64M*, we obtain

(@)=(18x1073)A3M ~"3p B3 1BA([1.52M ~Ppte ™13 =23 (1 - )11,

where Ai is the Airy function, and one can take the typi-
cal value ¢ "'*Ai=0.1. The efficiency scaling becomes
P3/P, =10 "3(ed/mc) (0,/0)***(Q/w)¥*(wt)?.  The
exponent a is now —10/3if 4> 1.

So far, we have solved a nonlinear initial value prob-
lem; i.e., an infinite plane wave A(¢) is turned on adia-
batically in an infinite plasma, and we have studied the
associated response a(¢). This solution is relevant to the
corresponding initial boundary value problem, i.e., the
study of the a(z,t) response to an A(z,z) pump, provided
that the wave-packet overlapping problem, due to group-
velocity mismatch, takes place on a long time scale. A
departure from overlapping appears after a time
c6w "' 20(9v,/dw) = S0 ~'o?/w}. This time is to be
compared with the time needed to complete one genera-
tion cycle, = w/wg. Since o> dw for a wave packet, the
overlapping mismatch comes into play for a time scale far
longer than all the other processes. Nevertheless, this
overlapping does limit the maximum number of steps in
the strong modulation scheme, as well as the time in Eq.
(14) (tmax =60 ~'0*/0?).

To assess more carefully the potential of phase match-
ing with a small amplitude wave, consider an ion-acoustic
wave. The quasineutral, low-frequency, long-wavelength
dispersion relation for a wave with &n/n=gsin(Q ¢
—K,z) is O, =K,(T/m;)"2, where T is the electron tem-
perature and my; is the ion mass. Under typical laborato-
ry conditions, Q; < @, < 6w < wpe < w, the pulse length
is smaller than the ion-acoustic wavelength, so that, Eq.
(12) applies, provided that we use the effective modula-
tion frequency, Q=stg/(T/m,-)'/2, seen by the pulse.
We do not need to know the exact expression of vg, the
nonlinear group velocity of the pulse, because vg=1
+0((0,/®)?) and we are working to the lowest relevant
order in w,/w. Thus the equivalent frequency to be used
in Eq. (12) is @ =Q,/(T/m;) 2. Taking the group veloc-
ity mismatch as the ultimate limitation, and consider-
ing the regime A=1, we obtain P3/P=~10"2[T/
(1 eV (w,/0) ¥ (0,/0) Y (0/s0)?

To summarize, we have set up, discussed, and solved,
the equations for relativistic third-harmonic generation in
a plasma. The important problem of phase mismatch has

(14)

been identified and addressed. The nonlinear phase ve-
locity, the renormalized electron mass, and the conversion
efficiency have been calculated. Two simple modulation
schemes, to overcome saturation, have been proposed and
analyzed. Using plasma for third-harmonic generation
has advantages over using other nonlinear condensed or
gaseous media; plasmas do not suffer material breakdown
at high intensities, and can convert radiation over a very
broad range of frequencies.
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