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Abstract—Short laser pulses can be significantly amplified in the process of Raman backscattering in plasma
inside an oversized dielectric capillary. A dielectric capillary allows obtaining high intensities of the output radi-
ation by sustaining efficient amplification at large distances compared to the diffraction length. The efficiency
of the interaction between the pump wave and the amplified pulse is shown not to be critically sensitive to the
transverse structure of the wave fields. For a quasi-single-mode initial seed pulse and a low pump intensity, the
amplified pulse tends to preserve its transverse structure due to nonlinear competition of the capillary eigen-
modes. At a high power of the pump wave, multimode amplification always takes place but the growth of the
front peak of the pulse still follows the one-dimensional model. The Raman backscattering instability of the
pump wave resulting in the noise amplification can be suppressed in detuned interaction by chirping the pump
wave or arranging an inhomogeneous plasma density profile along the trace of amplification. The efficiency of
the desired pulse amplification does not significantly depend on detuning in the case of a smooth detuning pro-
file. Density inhomogeneities are shown to exert less influence on the amplification within a capillary than in
the one-dimensional problem. Parameters of a future experiment on the Raman amplification of a short laser
pulse inside a capillary are proposed. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Laser intensities inside conventional amplifiers are
limited to gigawatts (GW = 109 W) per cm2, above
which a nonlinear modification of the material refrac-
tion index causes unacceptable distortions of the laser
pulses [1]. The chirp pulse amplification technique
allows increasing the output intensities by means of the
longitudinal compression of laser pulses after their ampli-
fication [2]. The compression is usually performed by
means of metallic diffraction gratings, which can survive
intensities not larger than tens of TW/cm2 (TW = 1012 W)
[1]. One of the most promising ways for further increas-
ing the output intensities consists in using the advan-
tages of plasma technology [3]. Replacing all the major
elements of the amplification–compression scheme by
one element containing fully ionized plasma capable of
acting as the stretcher, the nonlinear amplification
medium, and the compressor simultaneously is cheaper
and more adequate compared to the extensive develop-
ment of traditional solid-state devices.

Currently, significant attention is attracted to the
problem of generating ultraintense laser pulses in plas-
mas by means of the Raman backscattering process [3].
In this process, the seed pulse amplification follows the
resonant excitation of a plasma wave provided by the
beating of the seed pulse and the counterpropagating

¶This article was submitted by the authors in English.
1063-7761/02/9504- $22.00 © 0625
pump wave. The pump wave energy is primarily
absorbed by the front part of the amplified pulse, which
results in compression of the latter. By means of the res-
onant mechanism discussed in this paper, the amplified
pulse duration can be decreased to the period of Lang-
muir oscillations. In what follows, we term such pulses
as short, which corresponds to a femtosecond laser
pulse duration for realistic experimental conditions.
(As shown in [4], amplification of even shorter pulses
is possible via Compton backscattering, which remains
out of the scope of our study, although it represents a
process complementary to the Raman interaction of
laser waves.)

Compared to its solid-state analogues or plasma
amplifiers utilizing the interaction of copropagating
pulses, the scheme allows faster amplification, higher
maximum output wave intensities, higher thresholds
for developing plasma instabilities, and better limits for
the nonlinear pulse compression. Because of a relative
simplicity of the experimental implementation, the
Raman backscattering pulse amplification in plasmas
can successfully compete with more complicated tech-
niques of generating femtosecond laser pulses [2].

Conventionally, the problem of short laser pulse
amplification in the Raman backscattering process in
plasmas is considered within the framework of a one-
dimensional (1D) model, and the transverse structure of
the pulse is neglected [1, 3, 5]. But the transverse effects
2002 MAIK “Nauka/Interperiodica”
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can become important in the experimental implementa-
tion of the amplification scheme and further practical
applications. The study of the transverse effects was
recently started for the pulse interaction in vacuum [6],
where the amplification efficiency is significantly lim-
ited by the transverse diffraction of the amplified pulse.
An efficient interaction in a boundless medium is only
possible at distances small compared to the diffraction
(Rayleigh) length zR ~ kR2, where k = 2π/λ is a charac-
teristic wave number of the seed pulse and R is its char-
acteristic transverse scale. After the amplified pulse
passes the distance z @ zR, diffraction increases the
transverse scale of the pulse and, therefore, lowers its
intensity, which results in a decrease in the interaction
efficiency.

In order to maintain high interaction efficiency at
large spatial scales compared to zR, additional laser
pulse focusing must be applied. Because of the high
intensities of the amplified radiation, conventional
dielectric lenses cannot adequately focus the amplified
pulse. The problems of the refraction index distortion
or even the dielectric medium breakdown, which might
occur, can be eliminated using the channeling proper-
ties of a dielectric capillary that plays the role of an
optical waveguide for both the pump wave and the
amplified pulse. (A similar technique is often used in
other Raman media for pulse amplification with signif-
icantly lower wave intensities [7, 8].) In oversized
(R @ λ) dielectric capillaries, the field amplitude
decreases to the edges of the transverse waveguide
cross section and almost equals zero on the inner wall
of the tube [9]. Therefore, it is possible to have a field
amplitude higher than critical (with respect to the
breakdown of the dielectric material of the waveguide
walls) in the center of the capillary without damaging
its walls. These and other properties of channeling laser
pulses in the process of the Raman backscattering
amplification within a dielectric capillary are the main
subject of this paper.

The paper is organized as follows. In Section 2, we
give the basic equations describing Raman backscatter-
ing in plasmas. In Section 3, we revise some aspects of
the 1D Raman amplification problem. We consider the
capillary problem in Section 4, where we develop a
mode approach allowing quantitative and simple quali-
tative understanding of some phenomena occuring dur-
ing the laser pulse interaction inside a capillary. We also
generalize the conventional 1D linear theory of pulse
amplification by considering the interaction between
the capillary modes of the amplified pulse and discuss
some aspects of selective mode discrimination in capil-
laries. Single- and multimode amplification regimes are
discussed in Section 5 in detail. In Section 6, we discuss
the problem of detuned amplification. Some numerical
estimates and the summary of the main ideas are given
in Section 7. Specific features of the cylindric dielectric
capillary are discussed in the Appendix.
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2. BASIC EQUATIONS

Equations for vector electric fields describing parax-
ial propagation of laser pulses along the z axis can be
written as (see, e.g., [10, 11])

(1)

(2)

(3)

where the vectors a and b represent the slowly chang-
ing amplitudes of the respective electric fields

(4)

of the pump and the seed pulse, and f is the normalized
potential of the plasma wave electric field

(5)

where

Here,

is the plasma frequency, ne is the electron density, and e
and me are the electron charge and mass respectively.
We assume the rare plasma conditions ωp ! ωa ≈ ωb ≡
ω and kfλD ! 1, and therefore, ka, b ≈ ωa, b/c and the dis-
persion of plasma waves can be neglected (∂kωf ≈ 0). In
terms of the dimensionless amplitude a, the pump
intensity is

see [6].
It is useful to introduce the dimensionless equations

(6)

(7)

(8)

where
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the time τ is measured in the units t0 = , the
longitudinal coordinate z is measured in the units ct0, f

is measured in , the transverse coordinate ρ is
measured in the units c(2ωpω3)–1/4, and the detuning δω
is measured in the units .

For further analysis, it is convenient to introduce the
coordinate ζ = τ + z (in what follows, this change of
variables is called the shift to the reference frame mov-
ing together with the amplified pulse at the speed of
light). To describe the strongly nonlinear regime of the
amplification of a compressed pulse, it suffices to keep
only the ζ derivatives of a and f (the so-called quasis-
tatic approximation [1, 3]); the basic equations then
become

(9)

(10)

(11)

In the case of zero detuning, the basic equations are
invariant under the transformation

a  Ca, b  Cb,

f  Cf, τ  τ/C, ζ  ζ/C, ρ  ρ/

Therefore, the specific value of the pump amplitude
a0 = a(z  –∞) is in fact not important in the sense
that the field dynamics for another value of a0 can be
obtained by a simple rescaling.

3. THE ONE-DIMENSIONAL PROBLEM
For better understanding of the qualitative phenom-

ena to be discussed in relation to the Raman backscat-
tering inside a capillary, it is useful to revise the basic
aspects of the conventional 1D problem first (see [1, 3]
for a detailed discussion). During the linear stage of
amplification, when the pump depletion is negligible,
a ≈ a0 = const, the solution to Eqs. (6)–(8) can be
obtained by the Laplace transformation and is given by
[1]

(12)

where we assume zero detuning (a constant detuning
can be removed from the evolution equations; the case
of the linear detuning ∂zδω = const is considered in
detail in [1, 5]). We note that the spatial coordinate –z
plays the role of time in Eqs. (12), measuring the inter-
val between the initial and the current positions of the
amplified pulse propagating along the z axis with a
fixed velocity equal to the speed of light.

2/ωωp

ω/2ωp

t0
1–

2∂ζa i 1 σ+( )∇ ⊥
2 a– bf ,=

∂τb i∇ ⊥
2 b– a f ∗ ,–=

∂ζ f iδωf+ b† a.⋅–=

C.

b ζ z,( ) ζ∂
∂

G ζ ζ '– z,( )b ζ' 0,( ) ζ',d∫=

G ζ z,( ) I0 2 η( ),=

η a0
2ζz,–=
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For η @ 1, we have

In the original variables,

and the maximum of G is therefore reached at z = –ct/2;

it increases with the peak growth rate γ = a0  as
exp(γt).

The linear approximation Eqs. (12) is valid until

remains small compared to unity; for larger e, a nonlin-
ear solution is formed. Because of the pump depletion,
only the front part of the seed pulse is then amplified,
which leads to the effective compression of the pulse.
Eventually, as the pulse becomes sufficiently short, the
quasistatic approximation (Eqs. (9)–(11)) becomes
valid, and for the real constant pump, the solution is
therefore given by

(13)

where U satisfies the sine-Gordon equation

(14)

Equation (14) has a family of self-similar solutions
(Fig. 1) U(τ, ζ) = U(η) that satisfy the equations

(15)

or

(16)

where we equate η with  because of the quasistatic
approximation. It is convenient to consider the solution
to Eq. (16) in the plane (U, Uξ), which can approxi-
mately be treated as the phase plane of a nonlinear
oscillator with the effective dissipation determined by
the term Uξ/ξ (Fig. 1). The absolute maximum of the
self-similar solution grows in time as

and the locations of the pulse maxima change as

The self-similar solution U(η) in Eqs. (15), (16) cor-
responds to the initial conditions

(17)

G 2 η( )/2 π η.exp≈

η a0
2ωωp t z/c+( ) z–( )/2c,=

ωωp/2

e τ( ) b z τ,( ) zd∫=

a a0 U/2( ),cos=

f 2a0 U/2( ),sin–=

b ∂ζU/ 2,=

∂τζ
2 U a0

2 U .sin=

ηUηη Uη+ Usin=

Uξξ Uξ /ξ+ U , ξsin 2 η ,= =

a0
2τζ

bmax a0
2τ 1 4 2π/e0( )ln+( ) 1–

, e0 e 0( ) ! 1,≡≈

ζmax ~ 1/bmax.

b z τ 0=,( ) b0 z( )≡ e0δ z( ),=
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Fig. 1. Self-similar profiles of |a(ξ)|/a0 (dotted decay), |f(ξ)|/a0 (dotted growth), |b(ξ)|/τ  (solid line) for e0 = 0.01 and the behavior

of the self-similar solution on the (U, Uξ) plane (dashed line represents the solution without the “friction” term Uξ/ξ; ξ =

2( (t + z/c)(–z)/2c)1/2).
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which imply that

and which are therefore applicable for all ζ to the left of
the initial location of the seed pulse in the frame mov-
ing together with the amplified pulse. Consider now
what happens when the spatial scale of the amplified
pulse ∆(τ) becomes comparable to its initial spatial
scale ∆0 ≡ ∆(0), so that the delta approximation for ini-
tial conditions (17) therefore becomes invalid. In this
case,

does not determine the solution, and new initial condi-
tions for a self-similar profile must then be applied. The

U ξ 0+=( ) e0, U' ξ 0+=( ) 0,= =

e0 b0 z'( ) z'd

∞–

+∞

∫=

bmax/a0

12
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Fig. 2. The amplitude of the amplified 1D pulse maximum
normalized to the amplitude of the pump wave (bmax/|a0|) as

a function of γt ≡ |a0|τ for b0(z) = e0exp(–z2/ )/ : a

delta-shaped initial pulse (z0  0, self-similar profile

with fixed e0 = 1.3 × 10–2, dashed line) and a finite-width

initial pulse (z0 = , quasi-self-similar profile with eeff(τ),
solid line).

z0
2 πz0

5
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front pulse faces the unperturbed profile of the pump
wave. Qualitatively, pump depletion becomes signifi-
cant (δa/a0 ~ 1) starting only with ζ = ζ*, where ζ* is
determined by the condition e(ζ*(τ) ~ 1, with

(18)

(To make a rough estimate, one can equate ζ* to the
location of the first maximum of b(ζ, τ) at a current
instant τ.) Therefore, linear solution (12) remains valid
for ζ < ζ*. In the case where the spatial scale of the
Green’s function G is large compared to the spatial
scale of the initial pulse, Eq. (12) can be written as

(19)

On the other hand, because the self-similar solution
represents an attractor, its formation still occurs starting
from the end of the linear stage, where its profile can be
obtained from linearized Eq. (15) and is given by

(20)

where eeff is some constant. At the location where the
linear stage ends and the self-similar solution starts,
i.e., at ζ = ζ*(τ), the two solutions in Eqs. (19) and (20)

must match, which defines eeff(τ),

(21)

As long as ∆(τ) @ ∆0, we have

eeff ≈ e0 = const.

But when the nonlinear compression makes ∆(τ) com-
parable to or less than ∆0, eeff can become significantly
smaller than e0. If eeff(τ) is changing sufficiently slowly,
so that the self-similar profile has enough time to set up
on the entire length of the pulse, the entire solution
remains close to the self-similar one with the only
change that it is now parameterized by time-dependent

e ζ( ) b ζ' τ,( ) ζ'.d

∞–

ζ

∫=

U e ζ( )G η( ).=

U eeffG η( ),=

eeff τ( ) e ζ* τ( )( ).=
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quantity (21) (Fig. 2). But if eeff(τ) changes fast, the
self-similar solution may not be able to form and, there-
fore, does not represent an attractor. Stochastic behav-
ior of the amplified pulse structure is observed in this
case.

In the approximation of geometric optics, when the
pulse propagation is considered at small distances com-
pared to the Rayleigh length zR ~ kR2, the diffraction-
caused distortion of the transverse structure of laser
pulses can be neglected. In this case, 1D quasi-self-sim-
ilar solutions are formed on geometric rays constituting
the field of the amplified pulse. The spatial profiles of
the amplified pulse that are then formed have a shape
similar to nested horseshoes. But for pulse traces z > zR,
the diffraction terms in Eqs. (6)–(11) become signifi-
cant and must therefore be taken into account (see Sec-
tion 5).

4. THE MODE APPROACH 
TO THE NON-ONE-DIMENSIONAL PROBLEM

We consider the pump wave a and the amplified
pulse b given by a series in the normalized eigenmodes
ys, 〈ym|yn〉  = δmn

(22)

where R is the radius of the capillary, which we include
as a normalization factor to make the amplitudes an and
bm dimensionless (see the Appendix for the explicit
form of yn for a dielectric capillary). By definition, the
eigenfunctions ys satisfy the equation

(23)

where χs is the transverse wavenumber of the sth eigen-
mode. From Eqs. (6)–(8), we obtain the equations for
the amplitudes an and bm,

(24)

(25)

where 

(or  = (cχn)2/2ωa, b in dimensional variables)
and

a R an z τ,( )yn r⊥( ),
n

∑=

b R bm z τ,( )yn r⊥( ),
m

∑=

∇ ⊥
2 ys χs

2yn+ 0,=

∂τ ∂z iδΩn
a( )+ +( )an f nmbm,

m

∑=

∂τ ∂z– iδΩn
b( )+( )bm an f nm* ,

n

∑–=

δΩn
a( ) χn

2 1 σ+( ), δΩm
b( ) χm

2= =

δΩn
a b,( )

f nm yn f ym〈 〉=
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are dimensionless transverse moments of the plasma
wave profile satisfying

(26)

with constant dimensionless coefficients given by

(27)

The eigenmode approach can be useful only in the
case where the modes are coupled weakly, which corre-
sponds to the case of a strong waveguide dispersion.
Otherwise, the number of modes to be taken into con-
sideration becomes infinite. If the characteristic trace z0
of the pulse evolution is large compared to the Rayleigh
length zR, Eq. (26) can be reduced to

(28)

where we assume the eigenfunctions to contain com-
plexity in polarization factors at most, but not in the
functional dependence of the transverse coordinates
(for simplicity, below we ignore the fact that Cnm can be
equal to zero for modes of the opposite polarization).
Equations (24), (25), and (28) represent a completely
defined Lagrangian set of equations that can be used for
obtaining the amplitudes of resonantly interacting
modes of the three waves a, b, and f in the case of weak
coupling (see below).

The important conclusion following from Eqs. (24),
(25), and (28) is that for every pair of modes of the
pump and the seed, an and bm, the resonant plasma wave
harmonic fnm can be generated to provide coupling of
the two electromagnetic waves. This is a specific fea-
ture of light scattering on a cold plasma wave for which
the spatial resonance condition

is satisfied automatically because the wave vector kf

remains arbitrary for the given frequency ωf ≈ ωp. For
scattering on any other low-frequency wave f for which
the wavevector depends on its frequency ωf, the multi-
ple-mode interaction on the quadratic nonlinearity is
impossible.

The presence of the  term in Eq. (28) is
responsible for a possible parasitic resonance, which
can be explained as follows. We consider the interac-
tion between the nth mode of the pump an and the mth
mode of the seed pulse bm generating the resonant
plasma wave fnm with the longitudinal wave number

∂τ iδω+( ) f nm Cnklmalbk*,
k l,
∑–=

Cnklm R2 yn yk
† yl⋅ ym=

=  R2 r2
⊥ yn

† ym⋅( ) yk
† yl⋅( ).d∫

∂τ i∂ω+( ) f nm

Cnm

1 δnm+
----------------- anbm* ambn*+( ),–=

Cnm Cnmnm 0,≥≡

ka kb k f+=

ambn*

hnm ka kb– δΩn
a( )– δΩm

b( ).–=
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For very small σ ~ ωp/ωb (namely, for σ & zR/z0, where
z0 is the characteristic spatial scale of the pulse evolu-
tion), we have hnm ≈ hmn, where hmn is the wave number
of the plasma wave fmn resonant to the beating wave of
the modes am and bn, which provides an additional cou-
pling of these two pairs of electromagnetic waves. For
example, in the case where the pump contains the
modes a1 and a2 and the seed pulse contains only b1, the

second seed harmonic b2 = O( a1b1) is generated.
This effect can already become important at the linear
stage of the interaction in a multimode pump, because
it alters the increments of the linear Raman amplifica-
tion.

We now use the developed mode approach to con-
sider the linear stage of the pulse amplification inside a
capillary in terms of the equation

, (29)

which directly follows from Eqs. (7) and (8) with zero
detuning δω and with a constant pump a. The right-
hand side of Eq. (29) can be considered as the result of

applying the linear operator  = aa† to the vector b,
and therefore, Eq. (29) can be rewritten as

(30)

where γm =  represents the increment of the linear
amplification of the mth partial waveguide mode. In an
arbitrary waveguide, for a single-mode pump, an = δnsa,
the matrix elements Amn are of the order of a2 for n, m ~
1 and Amn = A(|m – n|) for n, m @ 1, where the function
A(k) ~ a2 for k ~ 1 and decays as its argument grows.

The eigenmodes of the empty waveguide are cou-
pled via the pump inhomogeneity. Only for the uniform
pump is the matrix Amn diagonal, and the right-hand
side of Eq. (30) is therefore zero. For a nonuniform
pump, which is only possible inside a capillary, the
effect of mode coupling always occurs. In the case of a

weak interaction (γm ! δ ), the eigenwaves of sys-
tem (30) are close to its partial waves, and the incre-
ments of the eigenwaves are approximately given by γm,
m = 1, 2, …, ∞ (here, we neglect the effect of the para-
sitic resonance discussed above). For the single-mode
pump, an = δnsa, all the increments are of the order of a
and are independent of m for m @ s. Specifically, for
pulse amplification on the lowest mode of the pump in a
dielectric capillary, s = 1, we have 
Hence, the increments of amplication of all the
waveguide modes are close to each other at the linear
stage of interaction.

a2
*

∂τ ∂τ ∂z– i∇ ⊥
2–( )b a a† b⋅( )=

Â

∂τ ∂τ ∂z– iδΩm
b( )+( ) γm

2–[ ] bm Amnbn,
n m≠
∑=

Amn ym Â yn ,=

Amm

Ωm
b( )

γm( γ1 ) / γ1– 0.16.<
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Variations of the pump transverse structure do not
change the interaction efficiency significantly. For
example, without the possible parasitic resonance taken
into account, the amplification increment of the mth
partial mode (equal to the increment of the mth eigen-
mode in the case of weak interaction) is given by

(31)

which implies that each mode of the pump amplifies
each mode of the seed, because Cnm > 0 for all n and m.
The higher modes of the pump amplify the seed with
approximately the same efficiency as the lower ones,
because

This effect originates in the fact that the wave interac-
tion inside a capillary is not a three-wave but a multi-
wave process, where the effective energy exchange
between every pair of the pump and the seed modes is
possible.

Because the increments of the linear amplification
are approximately the same for all waveguide modes,
the linear stage of pulse amplification cannot provide
significant enhancement of the signal-to-noise ratio.
This is true, however, only if the energy losses (which
have not been taken into account yet) are negligible at
the distance of pulse propagation, which might not be
the case in real experiments. In an oversized cylindrical
dielectric capillary, the energy losses are mostly radia-
tive and can be incorporated into the model by intro-
ducing the spatial decrements of individual modes [9],

(32)

(see Appendix for the notation). The spatial scale of the

exponential decay  decreases with the mode num-

ber s roughly as s–2, and for γ1  α1, only the lowest
mode can be amplified and the amplification of the
higher modes is suppressed. This implies that the radi-
ative energy losses essentially result in a selective mode
discrimination, which can provide the single-mode
operation regime.

Additional mode discrimination can occur in rela-
tively narrow waveguides, where the group velocity
substantially differs from mode to mode. After the
amplified pulse passes the distance z * Lpulse(kR)2,
where Lpulse is the length of the pulse, the wave envelope
corresponding to the lowest mode leaves the envelopes
of the higher modes behind. The front envelope then
has a preferential opportunity of absorbing the energy
from the pump wave. Because the pump is significantly

γm Cnm an
2

n
∑ ,=

Cnm/Cmm const 1 for n @ m.∼≈

αnm

µm n,

2π
---------- 

 
2 λ2

R3
-----∼

α s
1–

≈>
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dispersion provides nonlinear competition of the modes in the nonlinear regime of amplification. Although the small amplitude b3
appears at the linear stage, it is left behind the wave envelope b1 later. Amplification of b3 is then slowed down by the pump depletion
provided by b1.

bm
0( )

an
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a0
depleted by the lowest mode, the higher ones are left
with less energy to absorb, which also maintains the
single-mode amplification regime.

5. SINGLE- AND MULTIMODE AMPLIFICATION
The condition of a weak interaction (or the condi-

tion of a strong waveguide dispersion)

can be treated as follows. The increment of the pulse

amplification γ ~ a  determines the spread of the
amplified pulse spectrum δh ~ γ/c. As long as δh
remains small compared to the spectral gap between the
individual modes,

the waveguide eigenmodes do not overlap, and hence,
they represent a good basis for developing the mode
approach in the linear theory. In this case, the eigen-
modes of coupled system (30) remain close to the par-
tial waves of the empty waveguide. This implies that an
initially single-mode seed pulse remains single-mode
over the entire duration of the linear stage.

The next question is what happens after the linear
stage, when nonlinear compression comes into play,
providing its own spectrum broadening. We consider
the single-mode initial conditions for the seed pulse,

γ ! δΩ b( ),

a ! acrit, acrit 2/ωωp cχ( )2/2ω, χ π/R,= =

ωωp

∆h δΩb/c 1/kR2,∼∼
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e.g.,  = δm1. Until the end of the linear stage, the
higher mode amplitudes remain small compared to b1.
Then, it is the mode b1 that passes from the linear to the
nonlinear regime first, because its amplitude is the larg-
est. (Here, by the nonlinear regime of an individual
mode, we mean the ability of this particular mode to
deplete the pump, which might have already been dis-
torted by other modes at the moment.) In the laboratory
frame, the maximum of the wave envelope moves
approximately with the speed of light in the nonlinear
regime, but in the linear one, the effective pulse velocity
is substantially lower. For example, as follows from the
linear theory of pulse propagation in a constant pump
(Section 3), the maximum travels with the speed equal
to half the speed of light. The higher mode envelopes
(remaining in the linear regime) are therefore left
behind the envelope of the first mode. The effective
amplitude of the pump aeff < a0 determining the incre-
ments of the higher modes is decreased by the first
mode. Because the first mode suppresses the growth of
the higher modes, the waveguide dispersion effectively
results in a nonlinear competition of the modes tending
to sustain the single-mode operation. We call this effect
the mode elasticity, because the strongest mode tends to
dominate in the nonlinear stage of amplification,
thereby preserving the transverse structure of the pulse.

The evolution of the two lowest modes having the
highest amplitudes is shown in Fig. 3. (To show the
robustness of the mode competition mechanism,
numerical calculations demonstrating the single-mode

bm
0( ) b1

0( )
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Fig. 4. The normalized energy integral distribution within a
quasi-single-mode amplified pulse (averaged over the cap-
illary cross section): up to 50% of the pulse total energy is
contained within the first peak; the parameters are the same
as in Fig. 3, γt = 40.
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Fig. 5. Characteristic spatial profiles of the amplified pulse
|b(ζ, ρ)| in the case of a strong waveguide dispersion (planar
waveguide). At the first stage of the nonlinear amplification,
the waveguide dispersion leads to the competition of
modes, which supports the single-mode amplification.
Later, the higher modes also enter the nonlinear regime,
catch up with the wave envelope of the first mode, and ruin
the structure of its tail. The front of the pulse always
remains single-mode, however, because it always stays in
the linear regime, where the growth of the higher modes is
suppressed by a strong waveguide dispersion.
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amplification were performed for a ~ acrit.) In this case,
the single-mode amplification also continues in the
nonlinear regime, ensuring that the problem remains
essentially one-dimensional. We can see the formation
of the self-similar profile, which represents the attractor
of the single-mode operation, similarly to the 1D prob-
lem. The energy distribution inside the amplified pulse
(which determines the effective pulse length) averaged
over the capillary cross section is given in Fig. 4.

The qualitative arguments given above lead to the
conclusion that the formation of the single-mode oper-
ation regime in the case of a strong waveguide disper-
sion is stable with respect to fluctuations of the seed
pulse. Neither can the fluctuations of the pump trans-
verse structure influence the single-mode operation
because all the modes of the pump wave provide
approximately equal efficiencies of the energy transfer
into the amplified pulse, as discussed in Section 4.

The nonlinear competition of the modes constitut-
ing the amplified pulse remains efficient only until the
higher modes enter the nonlinear stage of amplification.
After that, their envelopes catch up with the wave enve-
lope of the first mode and ruin the tail of the single-
mode structure (Fig. 5). But the front of the amplified
pulse always remains in the linear regime (see also Sec-
tion 3), which provides its single-mode structure.

In the other limiting case, where the interaction
between the pump and the amplified pulse is strong
(γ @ δΩ(b), or a @ acrit), the pulse is significantly ampli-
fied on a small distance compared to zR, i.e., before the
diffraction effects come into play. The waveguide walls
cannot then influence the formation of the pulse struc-
ture at the first stage of amplification, and a solution
close to those formed in a boundless vacuum is pro-
duced. Vacuum solutions [6] are shaped as nested
horseshoe structures resulting from the transverse inho-
mogeneity of the pulse and the pump (Fig. 6). On every
geometric ray, a self-similar profile is formed with its
own e0(ρ) (or eeff(ρ)), which determines the longitudi-
nal spatial structure of the pulse at given p. At the edges
of the amplified pulse, the amplitudes of both a and b
are smaller than in the center of the system, and the lon-
gitudinal spatial scales are correspondingly larger.

In the frame moving together with the front of the
amplified pulse (at the speed of light), the longitudinal
locations of the pulse maxima ζmax(ρ) are bounded by
the position of the front of the seed pulse ζ0. On the
other hand, the nonlinear compression provided by the
preferential amplification of the front of the pulse
“pushes” the tail of the pulse from behind to ζ = ζ0,
which implies that ζ0 represents the limit of ζmax(ρ) for
all ρ. The front of the horseshoe structure therefore
tends to flatten as τ  ∞.

Although stable on small distances compared to zR
and robust with respect to the structure of the seed (see
also [6]), the horseshoe solution deteriorates inside the
waveguide at z * zR, where the diffraction becomes sig-
 AND THEORETICAL PHYSICS      Vol. 95      No. 4      2002
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nificant (Fig. 7). The very front of the horseshoe, how-
ever, always remains in the linear regime and therefore
maintains its regular shape. In the center of the
waveguide, the front peak of the amplified pulse grows
similarly to the self-similar solution of 1D problem (16)
(Fig. 8), which allows using the 1D model for estimat-
ing the maximum amplitude of the amplified pulse. The
energy distribution inside the amplified pulse (which
determines the effective pulse length) averaged over the
capillary cross section is given in Fig. 9. At large t, the
averaged energy longitudinal distribution becomes a
smooth function (cf. Fig. 4), and it is therefore difficult
to distinguish the individual peaks of the amplified
pulse. On average, the energy becomes distributed over
a length that is significantly larger than the length of the
first peak.

6. SUPPRESSING NOISE AMPLIFICATION
IN DETUNED INTERACTION

Because of the extreme efficiency of the Raman
backscattering, which makes fast compression possi-
ble, delivering the pump wave energy to the seed pulse
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Fig. 6. Quasi-vacuum (horseshoe) nonlinear solutions for
|b(ζ, ρ)| in the case of the strong pump (a @ acrit); the pla-
nar-waveguide scalar problem: (upper) R = 10π, a0(ρ) =

sin(πρ/R), b0(ζ, ρ) = 0.1sin(πρ/R)exp(–(ζ – 4)2/0.5), τ = 20;
(lower) R = 100π, a0(ρ) = 2sin(πρ/R), b0(ζ, ρ) =

0.1sin(2πρ/R)exp(–(ζ – 4)2/0.5), τ = 10.
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through the amplifying plasma layer represents a sig-
nificant challenge. As the pump traverses the plasma
layer towards the seed pulse, the fast Raman backscat-
tering of the pump by thermal Langmuir waves or elec-
tromagnetic fluctuations existing inside the plasma
layer or coming from outside can lead to a premature
pump depletion. The problem is aggravated by the fact
that the linear Raman backscattering instability of the
pump (responsible for the unwanted noise amplifica-
tion) has a larger growth rate than its nonlinear counter-
part (responsible for the useful amplification of the seed
laser pulse).

To see how significantly the thermal fluctuations can
limit the maximum amplification gain of the seed pulse,
consider the amplification at the identically zero detun-
ing of the three-wave interaction. After a certain period
of time tm, the amplification gain

becomes sufficient for thermal fluctuations to deplete
the pump wave substantially, and further amplification
of the seed pulse is then suppressed. The dimensionless

Dm e
Gm, Gm∼ γ tm,=
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Fig. 7. Deterioration of the horseshoe solution |b(ζ, ρ)| as
τ  ∞ and flattening of the front of the amplified pulse

(the planar-waveguide scalar problem, R = 10π/ ,

a0(ρ) = a0sin(πρ/R), b0(ζ, ρ) = 0.1a0sin(2πρ/R)exp(–(ζ –

4)2/0.5): γt ≡ a0τ = 20, 90, respectively; dark regions corre-
spond to larger |b|.
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quantity Gm depends on the plasma temperature and
does not depend on the amplitude of the pump wave.
The maximum amplification of the desired signal with
respect to a0 is then given by

(33)

and is independent of the amplitude of the pump. For
Gm ≈ 20, the electromagnetic wavelength λ = 1 µm, the
initial pulse duration of 50 fs, and the initial pulse
power density P = 1013 W/cm3, we find that the maxi-
mum amplification that can be achieved in a pump of an
arbitrary intensity before the noise is amplified to the
level of suppressing the pump is bmax/a0 ≈ 6.

Nevertheless, through a nonlinear filtering mecha-
nism identified in [5], it is possible to suppress the
unwanted instability of the pump wave without sup-
pressing the desirable seed pulse amplification. The fil-
tering effect occurs because the pumped pulse duration
decreases inversely proportional to the pulse amplitude
in the nonlinear regime. The pulse frequency band-
width increases with the pulse amplitude, and the grow-
ing nonlinear instability can therefore tolerate larger
and larger external detuning from the backscattering
resonance. Because the linear instability, i.e., the expo-
nential growth of thermal fluctuations, has a narrower
bandwidth, filtering the desired signal can be achieved
by arranging for an appropriate combination of the
detuning and nonlinear effects. A slight frequency
detuning can be equivalently provided either by pump
chirping or by inhomogeneity of the plasma density
along the trace of the pulse amplification resulting in

bmax

a0
---------

2Gm 2

1
4
e0
---- 2π 

 ln+
------------------------------------≈

|b(ζ, p)|max/|a0|

12
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0 20 40 60 80 γt

Fig. 8. The maximum amplitude of a horseshoe-type pulse
normalized to the amplitude of the pump wave (|b(ζ,
ρ)|max/|a0|) as a function of time γt ≡ |a0|τ (solid line). The
dotted line represents a 1D solution with eeff(τ) for b0(ζ,
R/2) (the same initial conditions as in Fig. 7). The front peak
of the amplified pulse grows similarly to the one of the 1D
self-similar profile with decreasing eeff.
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variations of the plasma frequency involved in the
three-wave resonance condition.

While the exact solution for a delta-pulse amplifica-
tion problem obtained in [5] precisely deals with the
linear profile of frequency detuning, we use an approx-
imate analysis in this section to describe how the pulse
amplification develops in the case of an arbitrary detun-
ing profile. To do this, first consider the linear stage of
amplification of a weak pulse b governed by the equa-
tion

(34)

(without the loss of generality, we temporarily neglect
the transverse structure and the polarization of the
amplified pulse for qualitative conclusions). Using the
quasistatic approximation and assuming the detuning to
change slowly along the trace of the pulse propagation,
we can treat δω as a slow function of time τ [5]. Per-
form the Fourier transformation of Eq. (34),

and take

(35)

to transform the equation for the amplitude of the pulse
spatial harmonic ψ to the form

(36)

∂τ iδω–( ) ∂τ ∂z–( )b a0
2b=

b b∆k i∆kz( )exp ∆k,d∫=

b∆k τ( ) ψ τ( ) i
δω τ'( ) ∆k+

2
----------------------------- τ'd

0

τ

∫ 
 
 

exp=

d2

dτ2
-------- w2 τ( )+ ψ 0,=

w2 iΩτ Ω2 a0
2, Ω–+ + δω ∆k–( )/2.=
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Fig. 9. The normalized energy integral distribution within a
horseshoe-type amplified pulse (averaged over the capillary
cross section): γt ≡ a0τ = 20 (solid line) and γt = 90 (dashed
line); the same parameters as in Fig. 7. For larger γt, the
averaged energy distribution becomes a smooth function
(cf. Fig. 4), and it is therefore difficult to distinguish the
individual peaks of the amplified pulse. On average, the
energy is distributed over a length that is significantly larger
than the length of the first peak.
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In accordance with the assumption of a smooth
detuning profile, take

Outside the regions where Ω2 is close to |a0|2, the effec-
tive frequency w can be estimated as

(37)

and the amplification gain is given by

in the WKB approximation. At Ω2 > |a0|2, G depends on
the length of the trace of the pulse propagation logarith-
mically, and the amplification gain is therefore negligi-
ble in the adopted approximation. Thus, the total ampli-
fication gain is given by

(38)

For the detuning monotonically changing along the
trace of the pulse propagation, Eq. (38) can be written
as

(39)

where |qmin| stands for the minimum rate of the detuning
evolution on the trace of amplification. As can be seen
from Eq. (39), the upper limit of the total amplification
gain on the entire trace of the pulse propagation is inde-
pendent of ∆k (included in the definition of Ω over
which the integration is performed). For q = const, we
have

as obtained in [5], and therefore D itself is independent
of ∆k.

We can also generalize Eqs. (38), (39) to the case of
oblique propagation of the pulses, describing the ampli-
fication of the electromagnetic noise coming from out-
side the system. The only difference is then that the
group velocity of the amplified harmonic differs from
the speed of light, which results only in a redefinition of
∆k and does not affect the form of the final result in
Eqs. (38) and (39) if q(τ) is calculated relative to the
actual trajectory of the amplified pulse.

Equations (38) and (39) predict that each harmonic
of a given frequency and a wave number is amplified
only inside the region where the three-wave resonance
conditions are satisfied in the sense that Ω2 < |a0|2 (or,
in dimensional variables, (δω – c∆k)2/4 < γ2). The idea

q τ( )
δωτ

a0
2

---------- ! 1.=

w Ω2 a0
2–

iΩτ

2 Ω2 a0
2–

------------------------------,+=

D ~ eG, G Imwdτ∫≈

G a0
2 Ω2 τ( )– τ .d

Ω2
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G
2
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Ω2
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∫ π
qmin
------------,≤≈

D ~ π/ q( ),exp
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of the approach given here is similar to the one pro-
posed by Rosenbluth and Pilia (see, e.g., [12]), who
estimated the total linear amplification gain for station-
ary waves in an inhomogeneous medium with the
wave-number detuning but with the temporal resonance
condition satisfied exactly. The difference between the
two cases is that instead of the wave-number detuning,
the frequency detuning is important for the Raman
pulse amplification in inhomogeneous plasmas. For the
Raman backscattering in a cold plasma, the wave-num-
ber resonance condition is satisfied automatically,
because a plasma wave is allowed to have an arbitrary
wave number, although it oscillates at a certain fre-
quency ωp.

The conclusion that follows from the obtained result
is that the detuning profile along the pulse amplification
trace can be chosen such that the noise amplification is
suppressed above a certain level determined by Eq. (38).
Monotonically changing the detuning allows a stronger
suppression, because there exists only one region for a
given harmonic where the amplification occurs. In this
case, the requirement for the characteristic |q| to ensure
that the noise is not amplified up to the transition to the
nonlinear stage but the desired signal is (  * 1,

see [1, 3]) can be formulated as

(40)

(41)

where the characteristic spatial scale Lδ of the detuning
evolution due to the plasma inhomogeneity (the first
term in Eq. (41)) and the pump chirping (the second term)
is measured in centimeters, the wavelength λ is measured
in microns, and the pump power is measured in W/cm2. 

The next problem is how the frequency detuning
influences the desired signal amplification in the non-
linear regime. We now show that it does not as long as
these variations remain sufficiently smooth. To prove
this, we consider the change of variables

(42)

leading to the following 1D form of Eqs. (6)–(8):

(43)
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These equations are equivalent to Eqs. (6)–(8) with
zero detuning if q = 0. The physical meaning of the for-
mal change of variables (42) is as follows. The carrier
frequencies of the seed pulse and the plasma wave are
chosen such that the three-wave resonance condition is
satisfied locally,

(44)

where

are functions of space, and the carrier frequency of the
pump wave  = ωa is left unchanged. It is only the
gradient of the detuning that enters Eqs. (43), and the
constant part of δω enters the initial conditions for the
seed pulse only.

In the frame moving together with the seed pulse
(ζ = z + τ), in the quasistatic approximation [3], the
basic equations can be written as

(45)

which implies that the term corresponding to the detun-
ing is negligible compared to the nonlinear drive when
the overfall of the detuning ∆(δω) on the length of the
pulse is small compared to 1/τ. Because

where the characteristic length of the pulse is ζpulse ~

1/ at the nonlinear stage of interaction [3], the con-

ω̃a ω̃b z( )– ω̃f z( ),=

ω̃b z( ) ωb δω z( ), ω̃f z( ) ωp z( )≡+=

ω̃a
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Fig. 10. Pulse-detuned nonlinear amplification bmax(τ) at
different frequency detuning profiles δω(τ) = 2(1 +

/τ0)): q = 2/( ) = 0.22, 0.44, 0.74, 1.1;

a0 = 0.3. (The larger q is, the lower the graph goes at τ >
100.) For q ~ 1, the amplification efficiency decreases in the
region where the detuning evolves relatively fast (100 < τ <
150), while, at small q (e.g., for q = 0.22), the amplification
proceeds exactly as in the case of zero detuning for all τ.

( τ 100–( )tanh a0
2τ0
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dition of negligible detuning becomes

(46)

The obtained condition for efficient amplification of
short pulses was tested numerically. It can be seen from
Fig. 10 that, for q ~ 1, the amplification efficiency
decreases in the region where the detuning evolves rel-
atively fast, while, at small q (e.g., for q = 0.22), the
amplification proceeds exactly as in the case of zero
detuning for all τ, exactly as predicted by the qualitative
arguments given above.

The obtained results imply that, for short pulses,
amplification can be efficient on the entire trace of the
interaction with the pump wave. The integral variation
of δω (or the maximum frequency detuning amplitude
experienced by the pulse on its trace of amplification)
does not significantly influence the amplification effi-
ciency if the detuning evolves smoothly along the trace
of amplification. Condition (46) only requires the band-
width of the wave envelope ∆ωb to grow due to the non-
linear compression sufficiently fast for the local-reso-
nance frequency ωa – ωp(z) to lie within the amplifica-
tion line. For growing |q| that approaches unity, the
interaction becomes nonresonant, and the pulse ampli-
fication ceases. If q decreases, the pulse amplification
develops similarly to the solution with a constant detun-
ing. The degenerate case where q = const and the ampli-
fication efficiency depends on the amplitude of the ini-
tial pulse logarithmically is discussed in detail in [1, 5].

In a real experiment, transverse plasma inhomoge-
neities must be taken into account in addition to the
detuning provided by pump chirping and longitudinal
variations of the plasma density. It is important that the
dependence of δω on the transverse location lowers the
sensitivity of the interaction efficiency to the average
detuning (over the cross section). In the 1D problem, as
shown above, the pulse amplification can be entirely
suppressed by large gradients of the plasma density.
But in the case where the plasma density also changes
in the transverse direction, a radial position ρ* such that

δω(ρ*) = 0 exists at every cross section of the pulse tra-

jectory. The pulse can extract energy from the pump
wave in the vicinity of ρ = ρ*, although the interaction

remains inefficient far from this point. This local pulse
amplification cannot be entirely suppressed by large
detuning that might exist at other radial positions. This
fact determines a higher robustness of the pulse ampli-
fication in inhomogeneous plasmas in 2D or 3D sys-
tems than in the 1D case. In the case where the amplifi-
cation occurs inside a capillary, the pulse energy is
mixed in the transverse direction because of the reflec-
tion of electromagnetic waves from the walls of the
waveguide, which eventually results in a nonlocal
amplification of the waveguide eigenmodes, i.e., in the
amplification of the entire pulse.

q  ! 1.
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7. DISCUSSION

Characteristic parameters of the proposed Raman-
backscattering pulse amplification experiment are
given in table. For the wavelength λ ≈ 1 µm and the
radius of the capillary sufficiently large for the radiation
energy losses to be negligible, the single-mode opera-
tion can only be provided by low pump intensities,
which do not allow significant amplification on a rea-
sonable (centimeter size) interaction length. At pump
intensities higher than the critical one, multimode solu-
tions are formed.

The parameters given in table correspond to the
maximum possible amplification gain at the given
wavelength and the electron density limited by such
effect as the Langmuir wave breaking and the forward
Raman scattering instability [1, 3], which remained out
of the scope of our study and represent a field of further
research in the context of the 3D Raman scattering
problem. As regards the modulation instability, it is
expected to be suppressed for the proposed parameters
because the critical power of the amplified pulse self-
focusing Pcrit = 17(ω/ωp)2 GW [3] is equal to 1.7 ×
1012 W, which is less than the power of the amplified
pulse.

In summary, using a dielectric capillary for channel-
ing laser radiation in a Raman amplifier provides a sig-
nificant advantage as regards maintaining high interac-
tion efficiency at distances larger than the diffraction
length, which allows obtaining higher intensities of the
output radiation. In addition, various mechanisms of
selective mode discrimination and nonlinear competi-
tion of capillary modes are provided by the transverse
waveguide dispersion, but cannot be achieved in a
boundless vacuum. Although the presence of the capil-
lary walls can influence the structure of the pulse, it
does not alter the amplification of the front peak of the
pulse, which carries a significant amount of the total
energy of the pulse.

We find that, depending on the intensity of the
pump, two possible regimes of operation can be real-
ized within a capillary, namely, the single-mode and the
multimode pulse amplification. For a low pump wave
intensity, when the single-mode operation is possible,
the problem admits the resonant mode approach that we
develop in this paper. We also develop the linear theory
of pulse amplification inside a capillary by generalizing
the 1D linear problem. Contrary to the intuitive expec-
tations, we show that the pulse amplification efficiency
is not critically sensitive to the transverse structure of
the pump wave, and therefore, both lower and higher
modes of the pump provide approximately the same
amplification rates of the seed pulse.

We generalize the mechanism of avoiding the pump
wave instability (resulting in noise amplification) by
chirping the pump wave or inhomogeneous plasma pro-
file along the trace of the pulse propagation [5] in the
case of an arbitrary smooth detuning profile. We show
that, as the noise amplification can be suppressed by
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detuning, the latter does not alter the amplification of
the desired pulse as long as the detuning profile remains
sufficiently smooth. We conclude that guiding laser
pulses through the capillary provides an additional
robustness of the interaction efficiency with respect to
transverse inhomogeneities of the plasma density.
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APPENDIX

Waveguide Modes of a Dielectric Capillary

The waves channeled by a dielectric capillary can be
separated into surface and waveguide-type waves [13].
A slow surface wave propagates without dissipation
inside the dielectric walls of the tube with the wave
number

,h ek2 κ e
2+=

Sample parameters for the Raman amplification inside an
oversize dielectric capillary

Wavelength λ 1 µm

Electron density ne 1019 cm–3

ω/ωp 10

Radius of capillary R 50λ
Diffraction length zR 0.16 cm

Inverse decay rates 60/40 cm

Trace of amplification 1.2 cm

Pulse duration 40 ps

a0 0.006

Pump intensity 1014 W/cm2

Pump power 4 × 109 W

Amplification length c/γ 0.12 mm

Seed pulse duration 100 fs

Seed pulse intensity 1014 W/cm2

∈ 0 0.25

 Amplification factor bmax/a0 20

Amplified pulse intensity 3.5 × 1016 W/cm2

Amplified pulse power 1.4 × 1012 W

The refraction index of capillary walls is taken to be n = 1.5; the
pump wave intensity corresponding to a = acrit is 1.4 × 1011 W/cm2,
and the amplified pulse is therefore of the horseshoe type; the

inverse spatial decay rates  are calculated for the two most

slowly decaying modes.

αnm
–1

αnm
–1
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where e is the dielectric permittivity, κe ~ 1/d is the
wave transverse wave number, and d is the width of the
capillary wall. Outside the dielectric, the field of the
surface wave decays exponentially with the spatial dec-
rement

for kd @ 1. Therefore, at the distance of several wave-
lengths from the wall, the surface wave field essentially
equals zero, and as regards the interaction of pulses
inside the capillary, the impact of the surface wave field
can be neglected.

Waveguide-type waves propagate inside the capil-
lary, with the channeling provided by reflection of
waves from the inner surface of the capillary dielectric
wall. For paraxial propagation (k @ 1/R), the reflection
coefficients of most of the waveguide-type waves are
close to unity. The only exception is given by several
waves with transverse wave numbers close to the reso-
nant ones, for which the dielectric walls of the given
width are transparent. Unless the capillary transverse
sizes are maintained with high precision, which is not
usually the case for the applications similar to the
Raman amplifier, these resonances disappear because
of the random corrugation of the wall surface. In this
case, one can therefore treat all the waveguide-type
waves as decaying slowly.

In the first-order approximation, the boundary con-
ditions for the electric and magnetic fields on the inner
wall of the dielectric capillary (under the assumption of
a negligible decay rate) are given by

(see [13]). The transverse structure of the electric field
is then given by

(47)

where

κ0 h2 k2– e 1–( )k2 κ e
2

– k∼= =

Er R( ) Hr R( ) 0= =

ym n 1±, ,
p 1±

π
-------

Jm 1± µm 1± n, r/R( )
RJm µm 1± n,( )

------------------------------------------ imθ( ),exp=

p 1±
q 0( ) ir 0( )±

2
------------------------ y 0( )( ix 0( ) ) iθ±( )exp±

2
-----------------------------------------------------= =
JOURNAL OF EXPERIMENTAL
are unit polarization vectors and µm ± 1, n are the roots of
the Bessel functions (Jm ± 1(µm ± 1, n) = 0). Eigenmodes
(47) are normalized such that

(48)

where m1, 2 stand for the azimuthal indices, n1, 2 stand
for the radial indices, and j1, 2 determine the polariza-
tion of the modes. The decay rate αn for the nth mode
can be obtained in the second order of perturbation the-
ory under the assumption of the known transverse
structure of the mode. Explicit expressions for αn are
given in [9] (see also Section 4).
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