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Abstract

M
ICROINSTABILITY DRIVEN TURBULENCE IN TOKAMAKS is

studied via numerical simulation of a comprehensive �uid model� For

the ions� toroidal gyro�uid equations are derived which contain accu�

rate models of the kinetic e�ects arising from toroidal rB and curvature drifts�

parallel Landau damping and its inverse� �nite Larmor radius e�ects� and trapped

ion e�ects� For the electrons� sophisticated bounce averaged trapped electron �uid

equations are derived which model the toroidal precession resonance and use a

Lorentz collision operator for pitch angle scattering� These coupled ion and elec�

tron equations can simultaneously describe the nonlinear evolution of toroidal ion

temperature gradient driven instabilities and trapped electron modes� and provide

realistic nonlinear calculations of ion and electron heat �uxes and particle �uxes�

These equations are solved in a reduced �ux tube geometry� formulated in general

magnetic coordinates� This technique exploits the elongated nature of microin�

stability driven turbulence� which has long parallel scales and short perpendicular

scales� The reduced simulation volume allows high resolution simulations in realis�

tic tokamak geometry� fully retaining important toroidal e�ects such as good and

bad curvature� These toroidal simulations predict much larger thermal transport

than found in simpli�ed sheared slab geometry� bringing the predictions up to ex�

perimentally measured levels� The turbulent �uctuation spectrum is peaked at long

wavelengths compared to the fastest growing linear modes� and the �uctuation spec�

trum is anisotropic in kr and k�� as seen in experimental �uctuation measurements�

The nonlinear generation of sheared E�B �ows is found to play an important role

in the development and saturation of this turbulence� and the damping of these

�ows is carefully investigated� Finally� the predicted transport from these simula�

tions is compared with experiment� The simulations underestimate the transport

near the plasma edge� but encouraging agreement is found between the predicted

and measured ion and electron heat transport in the core�
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Chapter �

Introduction

D
EVELOPING AN UNDERSTANDING of turbulent transport in toka�

maks has been a primary goal of magnetic con�nement fusion research for

decades� The main goal of this thesis is to develop techniques for mak�

ing quantitative predictions of tokamak turbulence� These predictions can then be

compared with present experiments� and used to aid in the design of future fusion re�

actors� While much progress has been made in both the theory of microinstabilities

and experimental measurements of turbulent �uctuations in tokamaks� quantitative

comparisons between experiment and non�empirical theories have been unsatisfac�

tory in the past� This thesis presents new toroidal gyro�uid equations and nonlinear

simulations which provide perhaps the most promising direct comparisons between

�rst principles theory and experiment to date� both in levels of transport and �uc�

tuation spectra� for actual tokamak parameters� Several advances are presented in

this thesis which have been ignored in previous simulations and make these com�

parisons favorable� primarily� the inclusion of destabilizing toroidal e�ects ignored

in slab theories� the use of an e�cient �ux tube simulation geometry for three di�

mensional high resolution nonlinear simulations in realistic tokamak geometry� the

self�consistent evolution of small�scale turbulence generated sheared �ows and real�

istic damping of these �ows� and the inclusion of nonadiabatic electron dynamics

with a sophisticated trapped electron �uid model�

�



	 Chapter �� Introduction

��� Motivation

In all tokamak experiments� the particle and heat losses greatly exceed the neo�

classical predictions which result from collisional di�usion� However� �uctuation

measurements in tokamaks invariably see small scale �compared to the size of the

tokamak� but large compared to the Debye length� �D� and low frequency �com�

pared to the plasma frequency� 	pe� �uctuations which apparently enhance transport

above collisional levels� These �uctuations are believed to arise from microinsta�

bilities primarily driven by the temperature and density gradients inherent in any

con�nement device� The fastest growing microinstabilities typically have per�

pendicular scales on the order of the ion gyroradius� k�
i � ��	� where the ion

gyroradius� 
i � vti��i� and frequency and growth rate scales on the order of the

diamagnetic drift frequency� 	� � k�
ivti�Ln� Here v�ti � Ti�mi is the ion thermal

velocity and Ln � ��d lnn��dr��� is the equilibrium density scale length� Based

on mixing length estimates� the simplest description of the nonlinear saturation of

these instabilities� these �uctuations should lead to particle di�usivities� D� and

heat di�usivities� �� which scale as

D�� �
�x�

�t
�

�

k�
�

�
�

k�
i


�ivti
Ln

�

Assuming that the dominant �uctuation scale is set by the fastest growing modes

�k�
i � �� yields the �gyro�Bohm� di�usivity� DgB � 
�ivti�Ln� While this leads to

reasonable estimates for global energy con�nement times  Perkins� ����!� it has

several problems� The most striking disagreement is in the variation of �uctuation

levels and di�usivities with minor radius� Experiments show that � and �uctua�

tion levels increase with increasing minor radius� while the gyro�Bohm � decreases�

because of the T ��� dependence� The gyro�Bohm � is thus too high in the core�

and too low at the edge� see  Horton et al�� ���	!� Additionally� using � and k�

from the fastest growing mode usually predicts di�usivities less than those measured

in experiments� Another problem is that the experimentally measured �uctuation

spectra peak at k�
i � ��� � ��	  Fonck et al�� ���
!� not at the fastest growing

wavelengths� The mixing length formula above shows that the largest eddies �small�

est k�� are the most dangerous and cause the most transport� This emphasizes the

need to understand where the �uctuation spectrum peaks� i�e� why the dominant

scale is at k�
i � ��� � ��	� and not at the fastest growing scales or the longest
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possible scales� k�
i � 
i�a � ����
� Many versions of this mixing length estimate

have been proposed which compensate for the long wavelength peak in the spec�

trum� for example� using the maximum ��k�� rather than � and k� for the fastest

growing mode� An understanding of the nonlinear dynamics at a level beyond the

simplest mixing length estimates is clearly needed� and nonlinear simulations can

help sort out these various possible scaling relations�

Theoretical predictions of turbulent transport beyond this simple estimate

are quite challenging� The evolution of the turbulence is intrinsically nonlinear and

three dimensional� In addition� microinstabilities are strongly in�uenced by kinetic

�velocity space� e�ects� since present day tokamak plasmas are in the long mean

free path regime� Future experiments and reactor grade plasmas will also be in this

regime� Either velocity space e�ects must be accurately modeled in �uid equations�

or a kinetic approach which resolves velocity space is necessary� making the prob�

lem �ve dimensional� Our approach has been to develop simpli�ed �uid equations

which retain accurate models of the important physics for tokamak transport" pri�

marily� long mean free path e�ects leading to Landau damping and its inverse� from

both parallel free streaming and toroidal rB and curvature drifts� These reduced

equations allow the use of high resolution� three dimensional� nonlinear computer

simulations to investigate the turbulent dynamics in realistic tokamak geometry

without further approximation� Most previous theories of tokamak turbulence have

necessarily used either simpli�ed dynamics� simpli�ed geometry� or simpli�ed non�

linear analysis� mixing length or quasilinear estimates� weak turbulence theory� or

lower resolution computer simulations�

The combination of more accurate �uid models and fully nonlinear three

dimensional simulations in toroidal geometry have resolved some of the aforemen�

tioned discrepancies between theory and experiment� In the simulations presented

here� the peak in the �uctuation spectrum is at longer wavelengths than the fastest

growing wavelengths �also seen in full torus gyrokinetic particle simulations  Parker

et al�� ���
!�� These toroidal gyro�uid simulations �nd much higher transport levels

than the simplest mixing length estimates or sheared slab simulations� and bring the

predictions up to the measured levels� Finally� part of the discrepancy in the radial

dependence of � is remedied by our toroidal gyro�uid equations� which give more

accurate linear growth rates than have previous �uid theories� If the instabilities are
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nearly stable in the core and strongly unstable in the edge� or if some dependence

on local parameters causes nonlinear saturation levels to increase near the edge� the

radial variation of predicted and measured transport is in much better agreement�

Recent comparisons between experiment and a transport model based on simula�

tions with our toroidal gyro�uid code and linear fully kinetic calculations indicate

that this is the case in the core �r�a � ���	
 of L�mode type discharges �Dorland

et al�� ����b Kotschenreuther et al�� ����a�� Direct comparisons of the nonlin�

ear toroidal simulations developed here with a TFTR L�mode discharge� presented

in Chapter �� show reasonable agreement� which encourages us to continue adding

more physics to this code to try to explain a wider range of experimental conditions�

��� Brief Historical Review

The host of di�erent of plasma instabilities can make a �rst foray into the microin�

stability literature quite daunting� An important guide to understanding this zoo

is that all microinstabilities which may be considered relevant for tokamak turbu�

lence are accurately described by the nonlinear electromagnetic toroidal gyrokinetic

equation �Frieman and Chen� ����� �with an appropriate collision operator
 for

all plasma species� ions� impurities� beams� and electrons �though the drift ki�

netic equation can be used for the electrons since the electron gyroradius is small
�

The wide range of instabilities in the literature arises from making assumptions

that simplify this fundamental equation� each simpli�cation generally isolates an

instability� and it is given a new name� Even linearly� the complexity of the gy�

rokinetic equation makes it di�cult to solve� and full solutions are only available

numerically �Rewoldt et al�� ���� Kotschenreuther et al�� ����b�� Before

proceeding chronologically� it is useful to have the basic results from these com�

prehensive numerical solutions in mind� These kinetic calculations show that for

realistic tokamak parameters �low � and low collisionality
 the dominant instability

is either the toroidal Ion Temperature Gradient �ITG
 driven instability �also called

the �i mode
 or the Trapped Electron Mode �TEM
� and that either the toroidal

ITG mode or the TEM is linearly unstable or nearly unstable for measured toka�

mak parameters� Some of the distinction between the ITG and TEM is arti�cial�

since ion and trapped electron dynamics a�ect both modes� The distinction arises

because the toroidal ITG mode is primarily driven by the ion temperature gradi�
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ent and the TEM is primarily driven by the trapped electron toroidal precession

resonance� At higher �� kinetic versions of ideal MHD ballooning modes can be

driven unstable �Rewoldt et al�� ������ but tokamaks usually operate below this

� limit� and electromagnetic corrections to the basic electrostatic instabilities are

usually small� The toroidal ITG and TEM are thus the most promising candidates

for explaining anomalous transport in tokamaks� and have been the focus of much

work in this area� Variations of these instabilities are the most likely cause of the

observed density and temperature �uctuations in large tokamak experiments� with

the possible exception of the extreme edge�

Some of the major simpli�cations which have been used in the past are

local vs� nonlocal treatment� simpli�ed magnetic geometry� and �uid vs� kinetic

treatment� In the local approximation� each Fourier harmonic of the perturbations

is assumed to be independent� while physical inhomogeneities may couple these

harmonics� Nonlocal treatment takes this coupling into account� and turns the lo�

cal algebraic dispersion relation �zero�dimensional
 into a one� or two�dimensional

di�erential or integral equation in space� The nonlocal eigenmode is then a super�

position of many coupled Fourier harmonics� The simplest magnetic geometry is an

unsheared slab where B is straight and constant� The next level of complication is

a sheared slab� where B is still constant� but the �eld lines twist� This couples the

radial and parallel directions �kr and kk
 and makes the linear problem spatially

one dimensional� In more realistic toroidal geometry where B also varies with ma�

jor radius� toroidal rB and curvature drifts become an important destabilization

mechanism� both through �uid�like and kinetic e�ects� In addition� the poloidal

variation of the rB and curvature drifts introduce coupling of di�erent poloidal

harmonics �k��s
� making the problem two dimensional� Fully nonlocal investiga�

tions in toroidal geometry awaited the development of the ballooning representation

�Connor et al�� ������ which reduces the problem back to one dimension by exploit�

ing the perpendicular scale separation between the equilibrium and the �uctuations�

Finally� to avoid the additional complexity of resolving velocity space� many ear�

lier works were based on �uid equations which did not capture the kinetic e�ects

of phase mixing and wave�particle resonances� Kinetic e�ects are often important

for microinstabilities� and accurate stability calculations based on �uid equations

require models of these e�ects�
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The ITG mode can be isolated from the TEM by assuming that the electrons

are adiabatic� which removes the trapped electron drive� The earliest investigations

of the ITG instability were in simpli�ed magnetic geometry� �rst in an unsheared

slab �Rudakov and Sagdeev� ����� and later in a sheared slab �Coppi et al��

������ The magnetic shear and Ti�Te dependence of the threshold for instability

was fully treated by �Hahm and Tang� ����� in the small ion gyroradius limit�

including kinetic e�ects� In an unsheared or sheared slab� the ITG mode is basi�

cally an ion acoustic wave driven unstable by the ion temperature gradient� Later

investigations revealed that in more realistic toroidal geometry the ITG mode can

be strongly destabilized by rB and curvature drifts� and becomes the interchange�

like toroidal ITG mode �Horton et al�� ���� Coppi and Pegoraro� ������ The

toroidal ITG mode is unstable if �i � �criti � where �i � Lni�LT i� In these early

oversimpli�ed �uid limits �criti � �� �Horton et al�� ������ although �criti also de�

pends on k���
�
i and �n � Lni�R� Later work began including the kinetic e�ects

of parallel and toroidal drift resonances� usually keeping either parallel or toroidal

drifts� but not both� �Guzdar et al�� ����� retained the parallel resonance in a

nonlocal treatment� while �Terry et al�� ���� Biglari et al�� ���� Romanelli�

����� retained the toroidal resonance in the local limit� Both of these approaches

show that the kinetic �criti � �� demonstrating the importance of kinetic e�ects on

the toroidal ITG mode� In the �at density limit where �n � �� the stability cri�

terion actually becomes a criterion on Lti�R instead of �i �Tang et al�� ������ and

Lti�R � Lcrit
ti �R for instability� In the purely toroidal local kinetic limit �ignoring

kk and parallel Landau damping
� �Biglari et al�� ���� Dominguez and Rosen�

bluth� ����� �nd Lcrit
ti �R � ���	� The fully toroidal nonlocal kinetic calculations

by �Dong et al�� ����� are very complete within the context of adiabatic electrons

and ignoring trapped ion e�ects� These results clearly demonstrate inadequacies in

the local approximation� For example� in the local approximation the safety factor�

q� and magnetic shear parameter� �s � �r�q
�q��r� do not enter �although a q de�

pendence can be introduced by assuming kk � ��qR in local calculations
� Fig� �

of �Dong et al�� ����� shows a strong dependence of the toroidal ITG growth rate

on �s� an e�ect which is completely missed within the local approximation�

Impurities and beams can also a�ect the toroidal ITG mode� If the impurity

density is outwardly peaked �inverted
� impurities can be strongly destabilizing� as

was �rst shown in an unsheared slab by �Coppi et al�� ������ Later nonlocal in�
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vestigations in sheared slab geometry �Tang et al�� ����� con�rmed that inverted

impurity density pro�les can be strongly destabilizing� and that inwardly peaked im�

purity density pro�les are strongly stabilizing� That these trends persist in toroidal

geometry was shown in the fully toroidal kinetic calculations of �Dong et al�� ������

Thus the radial variation of Ze� is potentially an important stability parameter�

and if Ze� is peaked near the edge� this impurity destabilization may increase theo�

retical transport predictions in the edge� bringing them into closer agreement with

experiment� as pointed out by �Dorland et al�� ����a�� The e�ects of impurities

�strongly stabilizing with �at Ze�
 and beam ions �weakly stabilizing
 have also

been demonstrated in comprehensive toroidal kinetic calculations of the toroidal

ITG mode �Kotschenreuther et al�� ������ and the e�ects of a non�Maxwellian

beam distribution have been investigated by �Rewoldt and Tang� ����� for both

the toroidal ITG mode and TEM�

Another complication is the e�ect of trapped ions� When the mode time

scales fall below the ion bounce frequency 	bi �
p
�vti�qR� trapped ion e�ects

become destabilizing� Since the toroidal ITG mode typically has 	 � k��ivti�R�

trapped ion e�ects are important for long wavelengths� k��i �
p
��q� Although the

trapped�ion mode and toroidal ITG mode are often considered distinct� the toroidal

ITG mode gradually evolves into the trapped ion mode at long wavelengths� The

work of �Xu and Rosenbluth� ����� includes trapped ions� but assumes adiabatic

electrons�

For more complete instability calculations� the adiabatic electron assumption

must be relaxed� The dominant contribution to the nonadiabatic electron response

comes from the bounce averaged trapped electron response the passing electrons

and non�bounce�averaged trapped electron response are usually weak �Rewoldt

and Tang� ������ The early work on electron driven instabilities usually isolated

the e�ects of electrons by either assuming cold ions� which considerably simpli�es

the analysis but removes the ITG mode� or by using a �uid ion approximation� The

TEM was �rst investigated in the local approximation� with �uid ions and kinetic

trapped electrons� with �Adam et al�� ����� and without �Liu et al�� ����� electron

toroidal precession drifts� The nonlocal calculation with �uid ions� neglecting ion

toroidal drifts� was performed by �Catto and Tsang� ������ A nonlocal calcula�

tion using the ballooning representation including ion toroidal drifts� for small k��i
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was presented in �Cheng and Chen� ������ There is a somewhat arti�cial distinc�

tion between the dissipative �DTEM
 and collisionless �CTEM
 trapped electron

modes� since the transition between them is smooth� and they are slightly di�erent

versions of the same instability�

The �ubiquitous mode� of �Coppi and Rewoldt� ���� Coppi and Pego�

raro� ����� is the short wavelength �k��i
�� �
 version of the instabilities considered

above�

In toroidal geometry� when full kinetic ions and electrons are both consid�

ered� whether the toroidal ITG mode or TEM will dominate is primarily a function

of the parameters �i� �e � Lne�LTe� �n� and electron collisionality� 
�e� When

�i � �criti �or Lti�R � Lcrit
ti �R in the �at density gradient limit
� the toroidal ITG

mode dominates� but can be further destabilized by the trapped electron precession

resonance� Below the ITG threshold� the TEM can still exist if 
�e is su�ciently

small� Because electron temperature gradients can destabilize the trapped electron

mode� whether or not the TEM will be unstable below �criti depends on �e and �n�

If the electron collisionality is large enough� the TEM drive is removed� and the

plasma can be completely stable for �i
�� ��

The nonlinear saturation of these instabilities and the resulting transport is

of great interest and has been considered by many authors� Because of the di�culty

of nonlinear analysis� much of this work has been based on simpli�ed �uid mod�

els and sheared slab geometry� and has focused on the ITG mode� beginning with

the early �uid simulations by �Horton et al�� ������ In an analytic �uid theory�

�Lee and Diamond� ����� calculated the transport expected from ITG turbulence

in a sheared slab� at a much greater level of detail than mixing length estimates�

Later� �Terry et al�� ����� argued that higher radial eigenmodes strongly increase

the predicted slab ITG ion heat transport� suggesting that ion temperature pro�les

would remain close to marginality� These analytic theories required a number of

uncertain assumptions and approximations� The three dimensional direct simula�

tions of �Hamaguchi and Horton� ����� resolved a number of these uncertainties

and lead to a more reasonable scaling with shear and ��i � �criti 
� However� as a

�uid model� it still neglected some important kinetic e�ects� The importance of

kinetic e�ects on microinstabilities stimulated the development of gyrokinetic par�

ticle simulations �Lee� ���� Dubin et al�� ���� Lee� ������ used to investigate
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the sheared slab ITG mode in �Lee and Tang� ������ The sheared slab gyrokinetic

particle simulations by �Kotschenreuther et al�� ����� showed that �uid simu�

lations without kinetic e�ects overestimate the ITG driven transport by a factor of

ten� Recent work has focused on including kinetic e�ects in improved �uid equa�

tions by using closure approximations which model Landau damping �Hammett

and Perkins� ����� and FLR e�ects� These slab gyro�uid simulations �Dorland�

����� �nd reduced transport compared to previous �uid simulations� bringing them

into agreement with gyrokinetic particle simulations �Parker et al�� ������

These improved slab ITG gyro�uid simulations �Dorland et al�� ���� Dor�

land� ����� also revealed that turbulence�generated sheared �ows play an impor�

tant role in the development and saturation of ITG turbulence� an e�ect which had

previously been investigated as a mechanism for the H�mode transition �Diamond

and Kim� ���� Biglari et al�� ������ This e�ect had also been seen in simulations

of resistive drift waves �Hasegawa and Wakatani� ����� and resistive pressure

gradient driven turbulence �Carreras et al�� ������ which tended to emphasize the

edge� Both slab and toroidal �Beer et al�� ���� Hammett et al�� ����� gyro�uid

simulations showed that this is also an important e�ect in the plasma core� and

for all modes with near�adiabatic electron response� This e�ect had been missed in

most previous ITG simulations because of limitations in the adiabatic response or

in the treatment of the �k� � �� kk � �
 mode and boundary conditions� Recent

gyrokinetic particle simulations have also seen this e�ect �Cohen et al�� ������ The

importance of the generation and damping of sheared �ows is even more pronounced

in the toroidal ITG simulations �Beer et al�� ���� Hammett et al�� ���� Waltz

et al�� ����a� than in a sheared slab�

The obvious need to consider toroidal ITG turbulence was addressed with

Braginskii�based �uid simulations �rst in a local �D approximation �with kk � ��qR

�xed
 �Waltz� ������ and then in full �D toroidal geometry �Waltz� ������ The

latter work used a rough model of Landau damping� rather than collisional based

dissipation� and was one of the �rst in this regard� Analytic estimates of toroidal

ITG transport were presented in �Biglari et al�� ������ Increasing computational

power allowed full torus �Parker et al�� ����� and toroidal annulus �Dimits et al��

����� gyrokinetic particle simulations� Meanwhile� the slab gyro�uid equations were

extended to include the kinetic e�ects of toroidal drifts �Waltz et al�� ������ and
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later improved to include more accurate models of toroidal drifts and the e�ects of

trapped ions �Beer et al�� ������ These toroidal gyro�uid equations are simulated

using a reduced �ux�tube simulation geometry described in this thesis� allowing high

resolution toroidal ITG simulations with kinetic e�ects� These simulations predict

much larger transport than gyro�uid and gyrokinetic sheared slab simulations� re�

viving the notion that pro�les may be forced to remain near marginality �Dorland

et al�� ����b Kotschenreuther et al�� ����a�� Recently� the trapped electron

�uid equations presented in this thesis have been implemented in fully nonlinear

simulations including both the trapped electron drive and the toroidal ITG drive�

A personal and readable perspective on the progress and challenges in under�

standing plasma turbulence through ���� can be found in �Waltz� ������ A broader

review through ���� can be found in the U� S� DoE Transport Task Force Reviews

on Anomalous Transport in Tokamaks in the December ���� issue of Physics of

Fluids B�

��� Simple Physics of the Toroidal ITG Driven

Instability

Because the toroidal ITG instability is a likely cause of the observed density and

temperature �uctuations in experiments� in this section the basic mechanism of the

toroidal ITG instability is presented in the spirit of Cowley�s picture of the slab ITG

mechanism �Cowley et al�� ������ This rough picture will be based on a simple

�uid model� and later chapters will introduce more physics to make our description

of this instability more complete� Since later chapters will get quite complicated�

it is useful to have in mind a rough picture of the structure and dynamics of these

modes� and of the turbulence which ensues�

Before developing our model equations� we begin with a brief outline of the

dynamics� The toroidal ITG mode is primarily driven by bad curvature e�ects�

while the slab ITG mode is driven by parallel dynamics� Thus the toroidal version

of this instability �the one most relevant to actual tokamak experiments
 can be

roughly described by ignoring the parallel dynamics altogether� This simpli�cation

will lead to reasonable estimates for growth rates� but cannot give the correct mode

structure or the nonlinear evolution of the mode� since parallel Landau damping
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is the dominant damping mechanism nonlinearly� The essential di�erence between

the slab and toroidal ITG modes is the inclusion of the toroidal rB and curvature

drifts� For low�� equilibria� the toroidal rB and curvature drifts can be combined

into�

vd �
v�k � v����

�B�
B�rB� ����


Consider a pressure perturbation with kr � k� on the outer midplane of the tokamak

as shown in Fig� ���� The toroidal rB and curvature drifts� vd� are down� Because

of the velocity dependence of vd� hot particles will drift down faster than the cold

particles� increasing the density below the hot spots and above the cold spots� The

ion density perturbation produced by vd in turn causes a potential perturbation via

quasineutrality� producing the electric �eld as shown� This electric �eld induces a

radialE�B drift� which convects hotter plasma into the hot spots and colder plasma

into the cold spots� causing the perturbation to grow� On the inner midplane� where

rp� is reversed but rB points in the same direction� this feedback mechanism is

shut o�� In this case the toroidal drifts produce the same density perturbation and

electric �eld� but now E � B convection brings hotter plasma into the cold spots

and colder plasma into the hot spots� so the perturbations are damped�

Our derivation of this instability is based on a simpli�ed limit of the gyroki�

netic equation� Setting kk � �� and ignoring �nite Larmor radius e�ects� the drift

kinetic equation is �the full toroidal gyrokinetic equation is given in Eq� ����

�

�

�t
�FB
 �r � �FB�vE � vd
� �

�

�vk
�FBvk��b � r�b
 � vE� � �� ����


Here vE � �c�B�
B�r�� is the E�B drift velocity� and �� is the perturbed elec�

trostatic potential� The gyrokinetic equation is written here in conservative form�

and the combination FB appears because B is the Jacobian of the transformation

from �vk� v�
 to the �vk� �
 variables used here� where � � v����B is the magnetic

moment adiabatic invariant� The ���vk term conserves toroidal angular momen�

tum� an E�B drift which moves a particle in major radius ��b � r�b is in the rB
direction
 causes a parallel acceleration�

Simpli�ed �uid equations can be derived by taking moments of Eq� ����


over velocity space� For example� the particle density is�

n �
Z
d�vF � �

Z
�

��

dvk

Z
�

�
d�BF ����
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Figure ���� Simple picture of the toroidal ITG instability mechanism on the outer
midplane of a tokamak� The velocity dependence of the downward rB and curva�
ture drifts cause ion density build�up below the hot spots and above the cold spots�
This produces the electric �eld� which E �B convects hotter plasma into the hot
spots� and colder plasma into the cold spots� On the inner midplane where rp�
is reversed with respect to rB� colder plasma is convected into the hot spots� and
this feedback mechanism is shut o��
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When taking moments of Eq� ����
� the v�k and v���� in vd introduce the parallel

and perpendicular pressures into the density equation� pk �
R
d�vmv�kF and p� �R

d�v�mv����
F � To avoid the complexity of evolving pk and p� separately �as in

Chapter �
� for the present simple model� assume that v�k � v���� when taking

moments of this term� i�e�� the curvature drift is replaced by the rB drift� This

is commonly called the rB approximation �Terry et al�� ������ The di�erences

between therB model and the constant energy resonance model� v�k�v���� � ��v�k�

v��
�� �Romanelli and Briguglio� ������ will not appear within the context of

this simple �uid model� Integrating Eq� ����
 over velocity space gives the evolution

of the perturbed density�

�n

�t
�r �

�
nvE �

�p

m�B�
B�rB

�
� �� ����


where the pressure p �
R
d�v�mv�
�� �

R
dvk

R
d�BFm�v�k � ��B
�� � R

dvk
R
d�

BFm�B in the rB approximation� Breaking the density into equilibrium and

perturbed parts� n � n� � �n�

��n

�t
� vE � rn� � vE � r�n� n�r � vE �

�

m�B�
B�rB � r�p � �� ���	


The second term is the E�B convection of the equilibrium density gradient� and

the third term is the nonlinear convection of the perturbed density� In the fourth

term� as shown in Chapter �� r�vE � ��c�B�
B�rB �r��� This term arises from

the variation of B with major radius in a tokamak r � vE � � if B is constant� as

in a sheared slab model� Also discussed in Chapter �� r � �����B�
B �rB� � ��

so it comes out of the divergence� leaving the vd term above� The divergence of the

vd drift comes from the fact that hot particles rB drift faster than cold particles�

as shown by Eq� ����
� so pressure perturbations cause density perturbations� The

toroidal angular momentum conserving term vanishes upon integrating over vk�

The notation can be simpli�ed by normalizing perturbed quantities to their

equilibrium values� n � �n�n�� p � �p�p�� � � e���Ti�� where p� � n�T�� and

introducing the diamagnetic drift and toroidal drift frequencies�

i	� �
cTi�
eB�n�

B�rn� � r� ����


i	d �
cTi�
eB�

B�rB � r� ����
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In the usual low aspect ratio tokamak geometry� with B � �B�R��R
�e��r�qR�e�
�

these frequencies become� 	� � �k��ivti�Lni and 	d � ���ivti�R
�kr sin ��k� cos �
�

In this discussion we will only consider non�inverted pro�les� so L��ni � �d lnni��dr
and L��T i � �d ln Ti��dr are positive� The linearized density equation is then�

�n

�t
� i	�� � �i	d� � �i	dp � �� ����


To �nd the evolution equation for the pressure� multiply Eq� ����
 by m� �

mv����B and integrate over velocity to get�

�

�t

p

B
�r �

�
p

B
vE �

Z
d�vF

mv��
�B

vd

�
� �� ����


The toroidal drift terms now introduce the v�kv
�
� and v�� moments� The simplest

way to evaluate these terms is to assume that F is Maxwellian�

F �
n

���m
���T�
q
Tk
e
�mv�

k
��Tk�m�B�T�� �����


but with total �equilibrium plus perturbed
 n� Tk� and T�� Then

Z
d�vF

mv��
�B

v�k � v����

�B�
B�rB �

pkp� � �p��
nm�B�

B�rB� �����


This is e�ectively a closure approximation for the v�kv
�
� and v�� moments in terms

of the lower known moments �n and p
� Better closure approximations will be

introduced in Chapter � which model the phase mixing associated with toroidal

drifts and its related resonances�

Again separating the equilibrium and perturbed parts� and approximating

pk � p� in Eq� �����
� the pressure equation Eq� ����
 becomes�

��p

�t
�vE �rp��vE �r�p�p�r�vE�p�BvE �r �

B
�

p�
n�m�B�

B�rB �r���p���nT�
 � ��

�����


Upon normalizing and linearizing� the r � vE and BvE � r���B
 terms combine to

give �i	d�� and the vE � rp� term becomes �i�� � �i
	�� using �i � Lni�LT i� The

pressure equation is then�

�p

�t
� i�� � �i
	�� � �i	d� � i	d��p � �n
 � �� �����
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For normal modes� the pressure and density are given by�

n � �	�
	
� � �

	d
	
� � �

	d
	
p� �����


p �
�	��� � �i
� � �	d� � �	dn

	 � �	d
� ����	


Although kk has been ignored so far� in reality these modes have kk � ��qR�

Because of their fast parallel motion� the electrons are nearly adiabatic �kkvte �
vte�qR� 	 � 	�
� and the perturbed electron density is given by �ne�ne� � e���Te��

Nonadiabatic electron response� which primarily comes from trapped electrons� can

signi�cantly a�ect these modes in some regimes� and will be considered in Chapter

�� The perturbed densities are quasineutral� since k�D � �� Keeping the small

b � k�
�
��i limit of the polarization density� Eq� ����
� the perturbed electron and ion

densities are related by�

�ne � �ni � b
e��

Ti�
ni��

Substituting �ne � ne�e���Te� and again normalizing to ne� � ni�� and � � e���Ti��

Ti�
Te�

� � n� b��

or

�� � b
� � n� �����


where � � Ti��Te��

The dispersion relation for this simple model is quadratic� and is obtained

by combining Eqs� �����
� ����	
� and �����
�

�� � b
	��	���	d�� � b
 �	�� �	d� � �	�
d�� � � � b
� �	�	d��i� �
 � �� �����


with roots�

	 �
�	d�� � b
 � �	d � 	�

��� � b

�����


	
q
��	d�� � b
 � �	d � 	��� � ��� � b
��	�

d�� � � � b
 � �	d	���i � �
�

��� � b


The growth rate from this simple model is shown in Fig� ��� for �i � �� � � �� b � ��

and varying �n � Ln�R� Also shown are the fully kinetic and gyro�uid growth rates



�� Chapter �� Introduction

Figure ���� Comparison of kinetic� gyro�uid� and simple �uid growth rates of the
purely toroidal ITG mode� for �i � �� Including models of kinetic e�ects signi��
cantly improves the accuracy of the gyro�uid results�

corresponding to this purely toroidal limit� as found in Chapter �� Including kinetic

e�ects brings the gyro�uid results into much better agreement with kinetic theory

than the simple model discussed here� but this simple model captures the gross

features of the instability�

In is instructive to �rst look at the �at density gradient limit� where Lni �
�� so �n and �i ��� In this limit Eq� �����
 reduces to�

	 �
�	d�� � b
 � 	d

�� � b

	

q
�	�

d�� � b
� � 	�
d � �	d	��i�� � b


�� � b

�����


To get instability� we need �	d	��i�� � b
 � �	�
d�� � b
��	�

d� Clearly� 	d	��i � � is

necessary �but not su�cient
 for instability� since the other terms inside the square

root in Eq� �����
 are positive� From this condition� it can be ascertained from

the de�nitions of 	� and 	d in Eqs� ����
 and ����
 that rp� and rB must point

in the same direction for instability ��bad� curvature
� and if rp� and rB are

antiparallel ��good� curvature
 the mode is stable� Because 	� � �k��ivti�Lni and

	d � ���ivti�R
�kr sin ��k� cos �
� perturbations on the outer midplane of the torus

�� � �
 are unstable� while perturbations on the inner midplane �� � 
 are stable�
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The dispersion relation Eq� �����
 shows the stabilizing e�ect of Ti� � Te��

�� � �
� both in the threshold for instability� because the stabilizing �	�
d�� � b
�

term increases more rapidly with � than the destabilizing ��	d	��i�� � b
 term�

and in the growth rate� because the �� � b
 in the denominator beats the
p
� � b

coming from the drive� This stabilization of the toroidal ITG mode from Ti� �

Te� is a likely mechanism for improved transport in supershots and hot�ion modes

�in combination with relatively weak electron temperature gradients to keep TEM

driven transport small
� The stabilizing e�ect of Ti � Te occurs by reducing the

ion density perturbation produced by �� weakening the feedback mechanism that

causes instability� as discussed below� In addition� Eq� �����
 shows some of the

stabilizing in�uence of �nite Larmor radius �FLR
 e�ects through b� though the FLR

corrections in the density and pressure equations have been neglected� Physically�

FLR stabilization occurs because the ions feel the averaged potential around their

gyro�orbits� and this gyroaveraging reduces the response to high k��i components

of the potential� In the large �i �strongly unstable
 limit� Eq� �����
 gives a purely

growing root�

	 � 	i
s
�	d	��i
� � b

� �����


Since 	�� 	d 
 k�� the growth rate stops increasing with b near b � k���
�
i � ��

With the more complete FLR terms in Chapter �� the growth rates peak around

k��i � ���� and then drop� Though ignored in this simple model� the perturbed

impurity and beam densities can also a�ect stability� as discussed in the previous

section�

In the slab limit� where �n � � so the toroidal terms vanish� the two roots

of Eq� �����
 are neutrally stable� 	 � � �the ion acoustic wave
 and �	���� � b


�the electron drift wave
� Parallel dynamics are necessary for instability in the slab

limit�

To see the physical mechanism of this instability� consider a perturbation on

the outer midplane in the large �i limit� where the mode is purely growing �� � 	r
�

Assuming � � � and neglecting FLR corrections �b � �
� from Eq� �����
 we �nd

� �
p
�i	d	� �

p
�	d	�T � Eqs� �����
 and ����	
 become� � � ��	dp�	 and

p � �	��i��	� Using � �  �exp�ik�r�� � i	t� and p �  p exp�ik�r�� � i	t � i���
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where  � and  p are real�

���� t
 � ��� � ����� �  � cos�k�r��
 exp��t
�

p��� t
 � ��p� p���� �  p cos�k�r�� � �
 exp��t
�

From Eq� ����	
� taking k� � �� so 	� � ��

 pei� �
��	�
i�

 �� � � ����

thus the perturbed pressure will be �� out of phase with the potential� leading to

the density perturbations as shown in Fig� ���� and the instability mechanism from

E�B convection of the equilibrium pressure�

Now going back to the general dispersion relation� Eq� �����
� but assuming

� � � and b � �� the roots are�

	 � �	d � 	�
�
	 �

�

q
��	�

d � 	�
�
� �	d	��i� �����


In this more general case� the E � B convection of n�� and r � vE �the �rst two

terms on the RHS of Eq� �����
 are not negligible �as they were in the large �i limit
�

so the phase shift between the density and pressure perturbations will not be ���

This makes the mode propagate it propagates in the ion direction for �n � ��� and

in the electron direction for �n � ���� For b � � and � � �� the quasineutrality

constraint� Eq� �����
� gives n � �� so Eq� ����	
 becomes�

p �
�	��� � �i


	 � �	d
�� �����


When the phase shift between p and � is large enough �� � � or  for � � �
� the

feedback mechanism is shut o� and the mode is stabilized� For this simple model�

this occurs at�

�criti �
� � ����n

��n
�

and the mode is unstable for �i � �criti � This is a reasonable approximation to the

kinetic �criti � which is a also function of �n� but is always greater than ���� In the �at

density limit� �n ��� �criti � ��n� so the critical �i becomes a critical temperature

gradient� Lsf
Tc�R � ��	 from this simple �uid model� and instability requires LT �

LTc� The toroidal gyro�uid equations in Chapter � give Lgf
Tc�R � ����� which is a

better approximation to the kinetic Lkin
Tc �R � �����
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Now consider a mode with kr � �� so the perturbations pictured in Fig� ���

are tilted in the poloidal plane� At the outer midplane� since sin � � �� 	d is

unchanged also� 	� is unchanged� The toroidal drifts still produce density per�

turbations aligned with the pressure perturbations� and E�B convection is along

these tilted perturbations� leading to the same instability� Thus the only e�ect of

kr is to increase b � k���
�
i � which is stabilizing� so kr � � perturbations are the most

unstable�

In a real tokamak these perturbations are aligned with the magnetic �eld

lines� since parallel Landau damping or phase mixing quickly damps any high kk

components� As a �eld line rotates around the magnetic axis �from Bp
� it samples

both good and bad curvature regions� Minimizing kk while simultaneously localizing

the modes in the bad curvature region leads to mode structures with kk � ��qR� with

large amplitude at the outer midplane and smaller amplitude at the inner midplane

��ballooning� mode structure
� In addition� magnetic shear causes the �eld lines on

neighboring �ux surfaces to rotate at di�erent rates� The perturbations try to follow

this twisting� which increases kr moving along the �eld line� This increases FLR

stabilization away from the point where kr � �� Thus the parallel mode structure is

determined by the competition between minimizing kk� localizing the mode in the

bad curvature region� and magnetic shear localization through FLR e�ects�

These instabilities grow until the nonlinear E � B terms in Eqs� ���	
 and

�����
 become comparable to the linear terms� For radially elongated modes as

pictured in Fig� ���� r�n and r�p are nearly perpendicular to vE� so the nonlinearity

is weak� allowing these modes to grow to large amplitude� However� these elongated

modes may be susceptible to �secondary instabilities� �Cowley et al�� ������ and

are strongly a�ected by radially sheared perpendicular �ows� which stretch and twist

the perturbations� enhancing decorrelation and reducing the �uctuation amplitudes

�Biglari et al�� ������ From this simple picture� we expect these modes to evolve

into turbulent blobs with short perpendicular scales� k��i
�� ���� and long parallel

scales� kk � ��qR �i�e� very elongated along the �eld line
� with ballooning mode

structures� These gross features are in fact observed in the more complete nonlinear

simulations discussed in Chapter 	�
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��� Outline

����� Improved Toroidal Gyro�uid Equations

The inclusion of rB and curvature drift e�ects is an important destabilization

mechanism for tokamak microinstabilities� The growth rates for the toroidal ITG

mode are typically three to four times higher than the growth rates of the slab ITG

mode� Using models similar to �Waltz et al�� ������ toroidal gyro�uid equations

with more accurate closure approximations to model toroidal phase mixing are

derived in Chapter �� These toroidal gyro�uid equations also incorporate models

of parallel phase mixing �Hammett and Perkins� ����� and linear and nonlinear

FLR e�ects �Dorland and Hammett� ������ although the linear FLR terms are

slightly modi�ed by toroidicity� The derivation presented in Chapter � is valid for

�nite kk� while �Waltz et al�� ����� focused on the purely toroidal �kk � �
 limit

and a term to remove a singularity for �nite kk was added a posteriori�

Slab �Dorland et al�� ���� Dorland� ����� and toroidal �Beer et al��

���� Hammett et al�� ����� simulations revealed that an important nonlinear sat�

uration process for tokamak turbulence is the nonlinear generation and damping

of radially sheared �zonal� E�B �ows ��ows which cause �ux surfaces to rotate
�

These sheared �ows are very weakly damped in a sheared slab �via classical viscos�

ity
 the dominant damping mechanisms arise from toroidal e�ects� The mirroring

��b � rB term is included in these toroidal gyro�uid equations to provide accurate

models of poloidal �ow damping from magnetic pumping� and also to model the

e�ects of trapped ions� which extend the validity of these equations into the trapped

ion regime at low k��i� Finally� a Krook collision operator has been incorporated�

important for poloidal �ow damping in the P�rsch�Schl!uter regime� and for colli�

sional e�ects on very low frequency modes�

����� Fluid Models for Trapped Electrons

Trapped electron models developed in this thesis have provided the �rst high resolu�

tion three dimensional toroidal simulations which simultaneously include trapped�

electron e�ects as well as the ITG drive� which we presented in �Hammett et al��

������ This enables realistic nonlinear calculations of the full transport matrix
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�electron and ion heat �uxes and particle �uxes
� Previous ITG simulations us�

ing adiabatic electrons had no electron heat �ux or particle �ux� A sophisticated

trapped electron �uid model is derived in Chapter � which retains the pitch angle de�

pendence throughout� as opposed to more simpli�ed trapped electron models which

assume that the electrons are deeply trapped �Kadomtsev and Pogutse� ������

Retaining this pitch angle dependence is potentially important for advanced toka�

mak con�gurations in the second stability regime or with reversed magnetic shear

�Kessel et al�� ������ where a major fraction of the trapped electrons have favorable

toroidal precession drift� stabilizing trapped electron modes� Because these electron

equations are bounce averaged� the fast parallel electron time scale is removed� and

nonlinear simulations with trapped electrons are only about two times slower than

simulations assuming adiabatic electrons� We can now study regimes where the

collisionless or dissipative trapped electron mode �TEM
 dominates over the ITG

mode� or in mixed regimes where the TEM drive may double the growth rate of the

ITG mode� These simulations can also investigate why the core of supershots are

convection dominated� or search for �o��diagonal� pinch e�ects�

����� Flux Tube Simulation Geometry

Simulation of turbulence in a full tokamak is very challenging since one must simul�

taneously resolve the machine size and the scales of the turbulence� The scale of

the turbulence is on the order of the ion gyroradius� �i� while the size of present day

tokamaks is much larger� a��i � 	�� � ����� where a is the minor radius� This re�

quires a very �ne computational grid� and is slightly beyond today�s computational

capabilities for realistic a��i� In Chapter � a reduced simulation geometry is pre�

sented which resolves only a thin �ux tube rather than the full torus� exploiting the

elongated nature of the turbulence� which has short perpendicular scales but long

parallel scales� This method allows high resolution simulations in realistic tokamak

geometry� retaining the important toroidal e�ects of good and bad curvature� It

is also applicable to non�tokamak magnetic con�gurations� and the formulation in

Chapter � is presented in a form applicable to general magnetic geometry� The

material in Chapter � is available as a PPPL report �Beer et al�� ������
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����� Nonlinear Simulation Results

The toroidal gyro�uid equations and bounce averaged trapped electron �uid equa�

tions derived in Chapters � and � are solved via direct numerical simulation using

the e�cient �ux tube geometry in Chapter �� The most interesting physics results

from these simulations are presented in Chapter 	� The importance of small scale�

turbulence�generated� sheared poloidal rotation� and the damping of this rotation�

is demonstrated� The damping rates of this rotation from magnetic pumping from

the gyro�uid model are calculated and compared with neoclassical theory� The non�

linear �uctuation spectra are peaked at long wavelengths compared to the fastest

growing linear modes� and are anisotropic in kr and k�� similar to BES measure�

ments �Fonck et al�� ������ The �uctuation energy balance in the simulations shows

that the dominant dissipation mechanism is parallel Landau damping� and that the

dominant drive comes from equilibrium density and temperature gradients� Finally�

nonlinear simulation results with trapped electrons are presented� where it is found

that in moderate or low collisionality regimes� both ion and electron heat transport

are strongly dependent on the electron collisionality and electron temperature and

density gradients�

����� Comparison with Experiment

In Chapter �� results from these nonlinear simulations are compared against a TFTR

L�mode discharge� using measured plasma parameters� The predicted transport lev�

els are in reasonable agreement with those calculated from power balance �SNAP
�

The central transport is small because the linear drive is weak� and increases to�

ward the edge as the linear drive increases� Near r�a � ���� the predicted transport

falls o�� Possible mechanisms which could increase the predicted transport in the

edge are discussed� This behavior is very similar to that found in �Dorland et al��

����b Kotschenreuther et al�� ����a�� where a transport model based on our

toroidal gyro�uid simulations and linear kinetic theory was used to predict tem�

perature pro�les� The comparison with experiment is presented here to roughly

demonstrate where we stand� and should be considered qualitative� Only one shot

is compared here �though �Dorland et al�� ����b Kotschenreuther et al��

����a� looked at many shots
� and more detailed investigations are necessary�



Chapter �

Derivation of the Toroidal

Gyro�uid Equations

T
HE TOROIDAL GYROFLUID EQUATIONS describe the time evolution

of a few moments of the gyrokinetic equation� We will concentrate on a

set of six guiding center moments� the guiding center density� n� parallel

velocity� uk� parallel pressure� pk� perpendicular pressure� p�� and the parallel �uxes

of parallel and perpendicular heat� qk and q�� The toroidal gyro�uid equations

presented here incorporate reliable models of most of the physics considered impor�

tant for ion dynamics in tokamak turbulence� The moment hierarchy is closed by

approximations which model the kinetic e�ects of collisionless phase mixing from

parallel free streaming and toroidal rB and curvature drifts� and linear and non�

linear FLR e�ects� The ��b � rB force is included� which recovers some trapped

particle e�ects and magnetic pumping� Ion�ion collisions are modeled with a simple

Krook collision operator� Since the e�ects of ion collisions are usually weak� this

should be su�cient� Probably the most signi�cant limitation of these equations

is the electrostatic approximation� This reduced set of nonlinear �uid equations

is simple� yet accurate enough to be used in �D high resolution direct numerical

simulations of tokamak turbulence�

��
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��� The Toroidal Gyrokinetic Equation

The starting point of the derivation of the toroidal ion gyro�uid equations is the non�

linear electrostatic gyrokinetic equation in toroidal geometry �Hahm� ��		
 Frie�

man and Chen� ��	��� see also �Lee� ��	�
 Dubin et al�� ��	�
 Lee� ��	�� The

usual gyrokinetic ordering is used�

�

�
� kkvt

�
� e�

T
� F�

F�
� �

L
� �� �� k�� � �� �����

where � is a typical frequency� � � eB�mc is the cyclotron frequency� kk is a typical

parallel wavenumber� k� is a typical perpendicular wavenumber� � � vt�� is the

gyroradius� v�t � T�m is the thermal velocity� and L is a macroscopic �equilibrium�

scale length� e�g� the density scale length L��n � ����n��rn�� The equations derived
in this chapter will apply to ion species� for which k�� � � and � � �t � vt�qR�

main ions� impurities� or a Maxwellian energetic component �e�g�� beam ions�� The

ordering k�� � � is a �maximal ordering� and allows for a subsidiary expansion

k�� � � at a later time� although we will assume that k� isn�t too small� i�e��

we will assume k�L � �� The gyrokinetic equations �at least the version we are

presently using� may need a generalization to be able to handle the plasma edge

where equilibrium gradients may be short enough that k�L � � and e��T � �� In
Chapter � we will derive equations for the electrons by a very di�erent approach�

since they satisfy a di�erent ordering� k��e � � and � � �te� The gyrokinetic

ordering removes the fast cyclotron time scale� which allows averaging over the gy�

roangle� reducing the velocity space dimensions from three to two� It also retains

the physics of strong turbulence even though the �uctuating quantities e��T and

F��F� are ordered small� since rF��rF� � �� Thus the dominant E�B nonlin�

earity is retained� and other nonlinearities are O��� smaller� In conservative form�
the resulting equation is�

�

�t
FB �r �

h
FB�vk�b� vE � vd�

i

�
�

�vk

�
FB�� e

m
�b � rJ��� ��b � rB � vk��b � r�b� � vE�

�
� BC�F �� �����

which is valid up to O���� This equation describes the evolution of the gyrophase
independent part of the guiding center distribution function F � F �R� vk� �� t��
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where � � v����B� vk is the parallel guiding center velocity� and R is the guiding

center position� This form is valid for a general magnetic �eld� and �b is the unit

vector in the direction of the magnetic �eld� B � B�b� The combination FB enters

because B is the Jacobian of the transformation from �vk� v�� variables to �vk� ���

Because �nite Larmor radius e�ects are retained �k�� � ��� the particles feel the

gyroaveraged E�B drift� vE � �c�B��b � rJ��� where J� is the linear operator
that carries out the gyroaveraging of the electrostatic potential� In Fourier space�

this operator is the Bessel function J��k�v����� where k� is the perpendicular

wavenumber of �� not of F �

The rB and curvature drifts have been combined in

vd �
v�k
�
�b� ��b � r�b� � �

�
�b�rB� �����

Using the equilibrium relations rp � ���c�J�B and ����c�J � r �B� and the

identity �b � r�b � �r� �b�� �b� this can be written�

vd �
v�k � �B

�B�
B�rB � ��v

�
k

�B�
�b�rp� �����

where the rp term is negligible for 	 � 	�p�B� � �� i�e� �b � r�b � rB� �For
larger 	� or stongly rotating plasmas where nmiv � rv is not ignorable in the
equilibrium pressure equation� one simply needs to keep the curvature and rB
drifts separately� Thus instead of �d in Eq� ������� one would use two operators�

�rB and ���� Toroidicity enters in Eq� ����� through the rB and curvature drifts�

the vk��b � r�b� � vE toroidal angular momentum conserving term� through the non�
zero divergence of vE in toroidal geometry� toroidal FLR e�ects� and the ��b � rB
mirroring force� All these terms arise because B is not constant in general� in

contrast to a sheared slab model�

For ion species� collisional e�ects will be modeled with a particle� momen�

tum� and energy conserving BGK operator �Gross and Krook� ����� �ion�electron

collisions are negligible��

C�Fj� � �
X
k


jk�Fj � FMjk�� �����

where 
jk is the collision rate of species j with species k� Collisions between species j

and k cause Fj to relax to a shifted Maxwellian� FMjk� with the appropriate density�
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velocity� and temperature to conserve particles� momentum� and energy� Because

F� is small� FMjk can be linearized� For a single ion species plasma� this leads to�

C�F � � �
ii
�
F� �

�
n�
n�
�
ukvk
v�t

�
T�
T�

�
v�

�v�t
� �
�

��
F�

�
� �����

where v� � v�k � v�� and T� � �Tk� � �T������ The generalization for multiple ion

species can be found in �Gross and Krook� ����
 Stringer and Connor� �����

Since the perturbations of interest satisfy k�D � � ��D � �i for typical

tokamak parameters�� we will assume quasineutrality� ne �
P
Zjnj � where ne is the

electron density� nj is the ion particle density �not the guiding center density� of

the j�th species� and Zje is the species charge� The ion particle density is related

to the guiding center density by �Lee� ��	�
 Dubin et al�� ��	�
 Lee� ��	��

nj � �nj � nj���� ���Zje�

Tj
� ����

where ���bj� � exp��bj�I��bj�� I� is a modi�ed Bessel function� bj � k��v
�
t�j��

�
j �

k���j� and v
�
t�j � T�j�mj� The second term on the right hand side of Eq� ���� comes

from the gyrophase dependent part of the distribution function� and is usually called

the polarization density� The k� in the polarization density term comes from ��

The contribution to the particle density from the gyrophase independent part of the

distribution function� �nj� is

�nj �
Z
d�v J�F �

Z
d�v �F� � J�F��� ���	�

Here J� operates on F�� i�e� k� comes from F�� For a pure ion�electron plasma� with

hydrogenic ions �Z � ��� the quasineutrality constraint then becomes�

ne � �ni � ni��� � ���e�
Ti
� �����

The equations derived in the remainder of this chapter are applicable for each ion

species� but for simpler notation� we will drop the species index j and set Zj � �� To

incorporate multiple ion species� one simply evolves the moments for each species

independently� Di�erent species are coupled together through the quasineutrality

constraint and through inter�species collision terms�

We will now manipulate Eq� ����� into a form convenient for deriving �uid

equations� All of the toroidal e�ects except the ��b � rB terms can be written
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compactly using the notation�

i�d � �v�t ��B��B�rB � r� ������

Let us �rst look at the rB and curvature drift terms� For example� pulling

��B����B�rB out of the divergence�

r � �FBvd� � �

�B�
B�rB � r�FB�v�k � �B�� � FB�v�k � �B�r �

�
�

�B�
B�rB

�

the second term becomes�

r �
�
�

�B�
B�rB

�
�

�

�B�
rB � r �B � �

which is small for low 	 since the toroidal component of rB is zero and the current�
J� is mostly toroidal� Thus� for low 	�

r � �FBvd� � �

�B�
B�rB � r�FB�v�k � �B�� � ���v�t �i�d�FB�v

�
k � �B��� ������

In toroidal geometry� FLR e�ects are complicated by the fact that the ar�

gument of J� depends on B� When deriving �uid equations by taking moments of

Eq� ������ it is easiest if F and J� appear together� i�e� on the same side of spatial

gradient operators� We now manipulate the terms in Eq� ����� involving J�� so

gradients only act on the combination FJ� or FJ�� De�ning � � k�v���� and

recalling that the spatial gradients are taken holding vk and � �xed� we can write�

rJ�� � J�r� � �rJ��

rJ��k�v���� � rJ���� � �J�
��
r� � J����

�

�B
rB�

The E�B term becomes�

r � �FBvE� � r � �FBJ� c

B�
B�r� � FB�J�

�

�B

c

B�
B�rB��

The divergence of the E�B drift can be written in the same form as the rB and

curvature drift terms�

r � � c
B�
B�r�� � c

B�
r�� �r�B�� �c

B�
�B�r�� � rB � ��e�T �i�d��
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since again� r� is mostly perpendicular� and J is mostly toroidal� Writing v� �
�c�B��b �r�� we have�

r � �FBvE� � v� � r�FBJ�� � �FBJ��e�T �i�d� � �e�T �i�d�FBJ��k�v�
��

��

The �rst term on the RHS includes the usual linear �� terms �from F�� and the

E�B nonlinearity �from F��� with FLR corrections as discussed in �Dorland and

Hammett� ������ The linear pieces of the second and third �toroidal� terms �	 F��

are of the same order as the slab E�B nonlinearity in the gyrokinetic ordering �we
keep B��rB � F��� rF��� The nonlinear pieces in the toroidal terms �	 F�� are

higher order in the gyrokinetic ordering� and can be ignored�

Performing similar manipulations on the toroidal angular momentum con�

serving term� using the identity ��b � r�b� � vE � ��c�B���B � rB� � rJ��� leads
to�

�

�vk
�FBvk��b � r�b� � vE� � � �

�vk
�Fvk�

c

B�
B�rB � rJ��

� � �

�vk
�Fvk�

c

B�
B�rB � �J�r� � J�

�

�B
rB��

The J� term again has the �d form� and the J� term vanishes leaving�

�

�vk
�FBvk��b � r�b� � vE� � � �

�vk
�FBJ�vk��e�T �i�d��

Since kk� � �� the only contribution from the Ek term is linear� so in this

term we only need F�� Using the notation rk � �b � r� and a Maxwellian F��

F� �
n�

���v�t ����
e
�v�

k
��v�t��B�v�t � ������

we have rkjvk��B��F���vk� � ��F���vk�B�� � �B�v�t �rk lnB� so this term be�

comes�

� e

m
��b � rJ����F�

�vk
B � � e

m
rk�J��B

�F�

�vk
� �

e

m
J��B

�F�

�vk
��B�v�t � ��rk lnB�

Combining all these terms� Eq� ����� can be written�

�

�t
FB � Brk

FBvk
B

� v� � r�FBJ�� � �FBJ��e�T �i�d� ������
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� �e�T �i�d�FBJ��k�v����� �
i�d
v�t
�FB�v�k � �B��� e

m
rk�J��B

�F�

�vk
�

�
e

m
J��B

�F�

�vk

�
�B

v�t
� �

�
rk lnB � �B

�

�vk
�FB�rk lnB

� �

�vk
�FBJ�vk��e�T �i�d� � ��

This form is messy� but most suited for taking moments� because velocity dependent

terms �such as F � J�� �� etc�� are grouped together on the same side of spatial

gradient operators�

��� General Toroidal Gyro�uid Equations

We are interested in deriving evolution equations for velocity space moments of

Eq� ������� de�ned by�

n �
R
F d�v nuk �

R
Fvk d

�v
pk � m

R
F �vk � uk�� d�v p� � �m���

R
Fv�� d

�v
qk � m

R
F �vk � uk�

� d�v q� � �m���
R
Fv���vk � uk� d

�v
rk�k � m

R
F �vk � uk�� d�v rk�� � �m���

R
Fv���vk � uk�� d�v

r��� � �m���
R
Fv�� d

�v s��� � �m���
R
F �vk � uk�v��d

�v
sk�k � m

R
F �vk � uk��d�v sk�� � �m���

R
F �vk � uk��v��d

�v

It will often be convenient to use temperature instead of pressure� where the parallel

temperature is de�ned by pk � nTk and perpendicular temperature by p� � nT�

We now proceed to derive moment equations by integrating Eq� ������ over

velocity space� These equations express exact conservation laws of the gyrokinetic

equation� e�g�� conservation of particles� momentum� etc�� in the collisionless limit�

However� because of the velocity dependence in the parallel free streaming term�

kkvk� the toroidal drift terms� �d�v
�
k�v������ the mirroring terms v

�
�r lnB� the FLR

terms� J��k�v����� etc�� higher moments are introduced into each of these equations�

leading to the usual problem of the coupled moments hierarchy� These equations are

not useful until closure approximations are made for the highest moments �which

are not evolved�� as discussed in following sections� Taking integrals of the formR
dvk d� v

j
k�

k � � � of Eq� ������ leads to the following exact moment equations� using

the notation� nhAi � R
d�v FA � ��

R
dvkd�FBA�

�n

�t
� Brk�nuk�B� � v� � r�nhJ�i� � �nhJ�i�e�T �i�d� ������
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� �e�T �i�d��nhJ��i��� � ���T �i�d�pk � p� � nmu�k� � ��

�

�t
nuk � Brk�pk�m� nu�k��B � v� � r�nhJ�vki� � �nhJ�vki�e�T �i�d� ������

� �e�T �i�d��nhJ�vk�i��� � ���T �i�d�qk � q� � �pkuk � p�uk � nmu�k�

�
e

m
rknhJ�i� � e

m
nhJ��v����v�t � ��i�rk lnB �

p�
m
rk lnB

� nhJ�vki�e�T �i�d� � ��

�

�t
�pk � nmu�k� � Brk�qk � �pkuk � nmu�k��B � v� � r�nhJ�v�ki� ������

� �nhJ�v�ki�e�T �i�d� � �e�T �i�d��nhJ�v�k�i���
� ���T �i�d�rk�k � rk�� � �qkuk � q�uk � �pku

�
k
� p�u

�
k
� nmu�

k
�

� �
e

m
rknhJ�vki� � � e

m
nhJ�vk�v����v�t � ��i�rk lnB

� ��q� � p�uk�rk lnB � �nhJ�v�k i�e�T �i�d� � ��

�

�t

p�
B

� Brk�q� � p�uk��B
� � v� � rnhJ�v��i

�B
� �

nhJ�v��i
�B

�e�T �i�d� �����

� �e�T �i�d��nhJ�v���i��B� � ���T �i�d�rk�� � r��� � q�uk � p�u
�
k��B � ��

�

�t
�qk � �pkuk � nmu�k� �Brk�rk�k � �qkuk � �pku

�
k � nmu�k��B ����	�

� v� � r�nhJ�v�ki� � �nhJ�v�ki�e�T �i�d� � �e�T �i�d��nhJ�v�k�i���
� ���T �i�d�sk�k � sk�� � �rk�kuk � �rk��uk � ��qku

�
k � ��pku

�
k � p�u

�
k � nmu�k�

� �
e

m
rknhJ�v�ki� � �

e

m
nhJ�v�k �v����v�t � ��i�rk lnB

� ��rk�� � qkuk � p�u
�
k�rk lnB � �nhJ�v�ki�e�T �i�d� � ��

�

�t

q� � p�uk
B

�Brk�rk�� � q�uk � p�u
�
k��B

� � v� � rnhJ�vkv��i
�B

������

� �
nhJ�mvkv

�
�i

�B
�e�T �i�d� � �e�T �i�d��nhJ�vkv���i��B�

� ���T �i�d�sk�� � s��� � �rk��uk � r���uk � p�u
�
k��B �

e

m
rk

nhJ�v��i�
�B

�
e

m
nhJ��v����B��v����v�t � ��i�rk lnB

�
r���
B
rk lnB � nhJ�vkv���Bi�e�T �i�d� � ��
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Before proceeding to discuss closure approximations� it is useful to note that many

of these terms are higher order in the gyrokinetic ordering� and can be neglected�

By separating the moments into equilibrium and �uctuating parts� e�g�� n � n��n��

where n��n� � O���� the parallel nonlinearities drop out� since they are higher order
in �� In addition� we assume F� is an unshifted Maxwellian� so the equilibrium parts

of odd moments are zero� and terms like u�k are higher order� We retain the E�B
nonlinearities �the v� � r terms�� which are leading order�

��� Finite Larmor Radius E�ects

In �Dorland and Hammett� ������ accurate models of FLR e�ects were devel�

oped by carefully approximating velocity space averages of J� which appear in the

dynamical equations and in the quasineutrality constraint� Eq� ������ As they did�

we choose to evolve moments of the guiding center distribution function� not real

space moments� to provide a better description of linear FLR e�ects �including the

�Bakshi�Linsker� e�ect �Bakshi et al�� ��
 Linsker� ��	��� and additional FLR

nonlinearities� For simplicity� we will not incorporate the nonlinear FLR phase

mixing model in �Dorland and Hammett� ������ speci�cally because we do not

see large �uctuation levels at high k��i in our toroidal nonlinear simulations� where

these terms become important� In addition to approximating hJ�i� hJ�vki� hJ�v�k i�
hJ�v��i� hJ�v�ki� and hJ�vkv��i� which appear in the slab limit� we also need to ap�
proximate hJ�v��i� hJ��i� hJ�v�k�i� and hJ�v���i� which arise from toroidal terms�

Linearly� these terms involve only F�� and could be evaluated exactly� However� in

the quasineutrality constraint we have to approximate �ni� which comes from F�� see

Eq� ���	�� F� is not Maxwellian� so the hJ�F�i term in �ni needs to be approximated�
As discussed in �Dorland and Hammett� ������ the best agreement with linear

kinetic theory is obtained by approximating both the hJ�i terms and �ni� In the
linear kinetic equation� the J� in Eq� ���	� combines with the J� in the E�B drifts
in the gyrokinetic equation� Eq� ������ so the average of J�

� over a Maxwellian enters

the dispersion relation �in the slab limit�� not the average of J�� These are quite

di�erent� since hJ�
� i � ���b� and hJ�i� � exp��b� behave quite di�erently for large

b� This motivated the hJ�
� i � ����� approximation introduced by �Dorland and

Hammett� ������ which is more robust and more accurate for linear dispersion

relations� With the inclusion of toroidal e�ects� the v� in J��k�v���� couples with
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the v�� in the toroidal drifts� so it is no longer simply ���b� that enters the linear

kinetic equation� see Eq� ������ and Eq� ������� We have not found a completely

satisfying replacement to hJ�i � ����� for the general toroidal case� but hJ�i � �����

continues to work reasonably well� Therefore� we will use the results of �Dorland

and Hammett� ����� to approximate�

hJ�i � ����� � ������

hJ�vki � vt�
���
� � ������

hJ�v�ki � v�t�
���
� � ������

hJ�v��i � �v�t
�

�b
�b����� � � v�t ���

���
� � �r�

�� ������

hJ�v�ki � v�t�
���
� � ������

hJ�vkv��i � �v�t
�

�b
�b�

���
� � � v�t ���

���
� � �r�

��� ������

The modi�ed Laplacian operators �r�
� and

��r
�

� are de�ned by�

�

�
�r�
� � b

������

�b
�� ������

��r
�

� � b
��

�b�
�b����� ��� �����

where  � �
���
� � is the approximation to the gyroaveraged potential�

There are four new terms due to toroidicity that need approximating� hJ�v��i�
hJ��i� hJ�v�k�i� and hJ�v���i� Several techniques could be used to approximate these
terms
 one is to follow the approach and rationale in �Dorland and Hammett�

������ For example� the hJ��i term can be rewritten using the following trick�

hJ��i � � �

�	

�����
���

hJ��	��i � ����	�

Thus the approximation for hJ�i is the fundamental one� and all other FLR terms
can be derived from it� Using hJ�i � ����� leads to�

hJ��i � � �

�	

�����
���

����� �	�b� � ��b��
���
�

�b
� � �r�

�� ������
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and D
J�v

�
k
�
E
� ��v�t b

��
���
�

�b
� �v�t �r�

�
� ������

For the hJ�v���i term� we will assume that F is approximately Maxwellian� so that

v��F � �v�t ��T�F ���T�� and�
D
J�v

�
��
E
� � �

�	

�����
���

�v�t
�

�T�
�T� hJ��	��i� � ��v�t

�

�b

	

b�������

�b

�
A � ��v�t ��r�

��

������

The �nal toroidal FLR term is�

hJ�v��i � �v�t
�
b
��

�b�
�b�

���
� � � �b

�

�b
�b�

���
� �

�
� �v�t

�
��

���
� � �r�

� �
��r
�

�

�
� ������

These approximations remain �rst order accurate in b to those obtained using the

Taylor series expansion J� � � � k��v
�
����

��

While the above represents one consistent way to approximate all of the

toroidal FLR terms� we empirically �nd that the agreement with kinetic theory

near marginal stability for some parameters can be slightly improved by using the

following FLR approximations for the toroidal terms�

hJ��i � � �r�
� � � ��r

�

��� ������

hJ�v�k�i � v�t � �r�
� � � ��r

�

��� ������

hJ�v���i � v�t �� �r�
� � �

��r
�

��� ������

hJ�v��i � 	v�t ������ � �r�
��� ������

The third of these� Eq� ������� is not �rst order accurate in b� This appears to

compensate for errors in the linear response of T� in the toroidal case� whereas

the linear response of T� in the slab limit is quite good� The FLR closures in

Eqs� ������������� were used in the nonlinear runs in Chapter � and �� and in the

trapped electron mode comparisons in Chapter �� Far from marginality� these terms

give very similar results to Eqs� ������������� �for example� in Fig� ���� the di�erence

in the linear growth rates is less than �!�� The approximations Eqs� �������������

are more consistent and rigorous �they are O�b� accurate�� so in the derivation
that follows we will use Eqs� ������������� instead of Eqs� �������������� We do
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not recommend using Eqs� �������������� since they may actually do worse than

Eqs� ������������� in some regimes� but include them here for completeness� With

these closures� the toroidal FLR terms in Eqs� ������� ������� ������� and ������ are

modi�ed as follows� �
� �

�

�
�r�
�


i�d �


�
� �

�

�
�r�
�
� ��r

�

�

�
i�d �

�
� �

�

�
�r�
�


i�d �


�
� �

�

�
�r�
� � ��r

�

�

�
i�d ��

� �
�

�
�r�
� �

��r
�

�

�
i�d �


�
� � � �r�

� � �
��r
�

�

�
i�d ��

��r
�

� �
�

�
�r�
� 

�
rk lnB �


�
�

�
�r�
� 


rk lnB�

Now we look at linear FLR e�ects in the E�B terms� For example� in the

density equation� following �Dorland and Hammett� ������

v� � rnhJ�i � v� � r�n������ � � nonlinear terms �����

Since b � k��v
�
t���

� depends on both B and T� �through v�t� � T���m�� gradients

acting on functions of b �FLR modi�ed terms�� introduce pieces proportional to rB
and rT���

rb � b

T��
rT�� � �b

B
rB�

rn������ � ����� rn� � n�
������

�b
rb�

We now introduce the diamagnetic frequency i�� � ��cT�eBn��rn� � �b�r� k �
Ln�LTk� and � � Ln�LT�� where LTk and LT� are the equilibrium scale lengths of

parallel and perpendicular temperature� which can be di�erent in general� When

they are assumed to be the same� we drop the subscripts� and write � With these

de�nitions� Eq� ����� becomes�

v� � rnhJ�i � �n�i�������

e�

T�
� n��b

������

�b
i��

e�

T�
� �n�b

������

�b
i�d

e�

T�
�

since v� � ���B�rB � �i�d�e��T �� For a general function of b�

v� � rn�f�b� � �n�f�b�i�� e�
T�
� n��b

�f

�b
i��

e�

T�
� �n�b

�f

�b
i�d

e�

T�
�
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This form will be used to evaluate terms like v� � rhnJ�v��i�
In the linear part of the �e��T �i�d��nhJ��i� terms� we need to evaluate

�d��nhJ��i� � n� hJ��i�d� � �n�� hJ��i
�b

�db� � hJ��i�dn��

The last two terms are higher order in �� so the hJ��i terms only contribute�

�e��T �i�d��nhJ��i� � in�

�
J�
�

�

�
�d

e�

T�
�

Because the �nal equations will get rather complicated� for the moment� we

will treat the linear and nonlinear terms separately� We normalize time� parallel

lengths� and perpendicular lengths as

�t� kk� k�� � �
tvt
Ln

� kkLn� k���� ����	�

and �uctuating quantities as

��� n� u� p� q� r� s� �
�

Ln
�
e�

T�
�
n�
n�
�
u�
vt
�

p�
n�mv�t

�
q�

n�mv�t
�

r�
n�mv�t

�
s�

n�mv�t
�� ������

where normalized quantities are on the left hand side and dimensional quantities

are on the right� With these normalizations� the characteristic drift wave time

and space scales are O���� and the perturbed quantities will be O��� at the gyro�
Bohm saturation level� In this chapter� all equilibriumquantities are ion parameters�

i�e� T� � Ti�� vt � vti� For the equilibriumF� we use a Maxwellian� so the normalized

equilibrium values of the moments are pk� � �� p�� � �� rk�k� � �� rk��� � �� and

r���� � �� With the linear FLR approximations discussed above� the moment

equations are�

�n

�t
�Brk

uk
B
�
�
� �

�
�
�r�
�


i�� �

�
� �

�

�
�r�
�


i�d � i�d�pk � p�� � �� ������

�uk
�t

�Brk

pk
B
�rk �

�
p� �

�

�
�r�
� 


rk lnB � i�d�qk � q� � �uk� � �� ������

�pk
�t
�Brk

qk � �uk
B

� ��q� � uk�rk lnB �
�
� � k �

�
�
�r�
�


i�� ������

�
�
� �

�

�
�r�
�


i�d � i�d�rk�k � rk��� � ��
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�p�
�t

�B�rk

q� � uk
B�

�
�
� �

�

�
�r�
� � �

�
� �

�

�
�r�
� �

��r
�

�

��
i�� ������

�

�
� �

�

�
�r�
� �

��r
�

�

�
i�d � i�d�rk�� � r���� � ��

�qk
�t
�rk�rk�k � �pk� � ��rk�k � �pk � �rk�� � �p��rk lnB ������

�i�d�sk�k � sk�� � �qk � �q� � �uk� � ��
�q�
�t

�rk

�
rk�� � pk �

�

�
�r�
� 


� ���rk�� � r��� � pk � p��rk lnB ������

�

�
��r
�

� �
�

�
�r�
� 

�
rk lnB � i�d�sk�� � s��� � qk � q� � uk� � ��

If we had evaluated the velocity space averages using a Maxwellian F � giving hJ�i �
exp��b�� the n� uk� pk and p� equations above would be equivalent to those derived in
�Brizard� ����� �in the electrostatic limit of his equations�� The q equations would

also be equivalent if �Brizard� ����� had proceeded to higher moment equations�

but he stopped at p� This equivalence can be veri�ed by replacing ����� 
 exp��b���
and evaluating the derivatives with respect to b in Eqs� ������ and ������ These

equations require closure approximations for rk�k� rk��� r���� sk�k� sk��� and s���� which

�Brizard� ����� did not address� and will be discussed in following sections�

For the nonlinear terms� we follow �Dorland and Hammett� ������ Thus�

to each of the equations above we add the usual E�B nonlinearities plus additional
FLR nonlinearities� as follows�

�n

�t
� v� � rn� ��

�
�r�
�v�� � rT� � � � � ������

�uk
�t

� v� � ruk � ��
�
�r�
�v�� � rq� � � � � �����

�pk
�t
� v� � rpk � ��

�
�r�
�v�� � rT� � � � � ����	�

�p�
�t

� v� � rp� � ��
�
�r�
�v�� � rp� � � ��r

�

�v�� � rT� � � � � ������

�qk
�t
� v� � rqk � � � � ������

�q�
�t

� v� � rq� � ��
�
�r�
�v�� � ruk � � ��r

�

�v�� � rq� � � � � ������
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In these terms� v� is the approximation to the E�B drift in the gyroaveraged

potential� v� � �c�B��b �  � where  � ����� �� There is a typological error in

Eq� ���� of �Dorland and Hammett� ������ where the nonlinear term involving

q� should be dropped�

Now let us return to the quasineutrality constraint� Eq� ������ Here we have

to approximate the real space density� Because of the J� which acts on F�� �ni will

involve the guiding center density and all higher perpendicular moments� but we

only evolve up to T�� Thus we need another closure approximation which relates

�ni to n and T�� The approximation for �ni in �Dorland and Hammett� �����

was tailored to �t the local kinetic dispersion relation in the slab limit� In the

toroidal case� because of the v� dependence of the toroidal drifts in the resonant

denominator of the toroidal response function� Eq� ������� following such a procedure

is more complicated� so we simply use

�ni �
�

� � b��
n� �b

�� � b��
T�� ������

This is �rst order accurate in b for both the n and T� terms� and behaves appropri�

ately ��ni 
 �� in the b
� limit� The FLR approximations used here and above

provide a reasonably accurate �t to the kinetic FLR behavior in the local kinetic

dispersion relation� and continue to perform well nonlocally� as demonstrated in

Section ��	 of this chapter� Note that the FLR models described in this section can

also be used with a simpler Pad"e approximation� by substituting �
���
� 
 ���b�����

in Eqs� ������ and ������ as discussed in �Dorland and Hammett� ������

��� Local Linear Toroidal Response Function

Our closure approximations for rk�k� rk��� r���� sk�k� sk��� and s���� will be chosen to

provide accurate models of the kinetic e�ects of parallel and toroidal drift phase

mixing� Ultimately� we choose the closure coe#cients to provide an accurate �t to

the local linear toroidal response function� which is derived in this section�

We begin by transforming the linearized gyrokinetic equation to �E��� vari�

ables� so F � F �R� E� ��� where E � v�k�� � �B� Then breaking F into adiabatic

and nonadiabatic pieces� F � g � F�J� e��T�� the equation for the nonadiabatic
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piece is found to be�

g � F�
� � �T

�

� � kkvk � �dv
J�
e�

T�
� ������

where �dv � �d�v�k � �B��v�t and �T
�
� ���� � �v�k��v

�
t � �B�v�t � ������ In the

local approximation� we treat �d� ��� and kk as constants� using �d � �k��vt�R
and �� � �k��vt�Ln� so �d��� � Ln�R � �n� The total distribution function in

guiding center coordinates� f � f�R� E� �� is�

f�R� � F � $f � F �R�� e��x�

T�
F� � F�J�

e��R�

T�
� ������

where F is gyrophase independent� and $f is the gyrophase dependent part� The �rst

piece of $f is in real space� x� To obtain the real space ion density �not the density of

gyrocenters�� only the parts in guiding center space need to be gyroaveraged �acted

on by J���

n�x� �
Z
d�vf�x� �

Z
d�v

�
J�F �R�� e��x�

T�
F� � F�J

�
�

e��R�

T�

�
������

� �n� e�
T�
�
Z
d�vJ�g�

since the J�F and F�J
�
� e��T� pieces combine to give J�g� Inserting the solution for

g� Eq� ������� the ion density response function is�

Ri �
n

�n�e��T� � � �
�

n�

Z
d�vF�

� � �T
�

� � kkvk � �dv
J�
� �k�v����� ������

which is the usual linear form� Trapped particle e�ects appear in the variation of

vk along a particle�s orbit� We will neglect trapped particle e�ects in this section�

and treat vk as a constant�

For Im��� � �� the resonant denominator can be written�

�

� � kkvk � �dv
� � i

�d

Z
�

�
d� ei�	��kkvk��dv
��d� �����

and now the vk and v� integrals can be evaluated� Normalizing � and kkvt to the

toroidal drift frequency by introducing x � ���d and zk � kkvt��d� and using a

Maxwellian F�� Eq� ������� the response function becomes�

Ri � � �
ip
��

Z
�

�
d�
Z
�

�
dv�v�

Z
�

��

dvk

�
x� �

�n

�
� � �

v�k � v��
�v�t

� �
�
�

��
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�ei� �x�zkvk�vt�v�k�v�t�v����v�t �e�	v�kv��
��v�tJ�
� �k�v����

The v� integrals are�

Z
�

�
dv�v�e

�	�i�
v����v
�

tJ�
� �
p
bv��vt� � v�t

e�b�	�i�


� � i�
I�

�
b

� � i�

�
� ����	�

and Z
�

�
dv�v

�
�e
�	�i�
v����v

�

tJ�
� �
p
bv��vt� � ������

�v�t
e�b�	�i�


�� � i� ��
I�

�
b

� � i�

��
�� b

� � i�
�

b

� � i�

I��b�� � i� �

I��b�� � i� �

�
�

where I� and I� are modi�ed Bessel functions� The v� dependence in the resonant

denominator was neglected in the numerical evaluation of the v� integrals of J� in

�Waltz et al�� ����� �although it was retained everywhere else�� and thus I� and

I� had real arguments� instead of the complex arguments in the expressions above�

This produces di�erences in the local dispersion relations at large b� The response

function in �Kim et al�� ����� correctly retains the v� dependence of the resonant

denominator while integrating over v�� The local kinetic response function described

here� and the local kinetic eigenvalues calculated using this response function in

Section ��	� were carefully checked against the results of �Kim et al�� ������

The vk integrals are�

Z
�

�
dvke

�	��i�
v�
k
��v�t�i�zkvk�vt �

p
��vt

e
���z�

k
��	��i�


p
� � �i�

� ������

and

Z
�

�
dvkv

�
ke
�	��i�
v�k��v

�

t�i�zkvk�vt �
p
��v�t

e
���z�

k
��	��i�


�� � �i� ����
�� � �i� � � �z�k�� ������

Putting it all together�

Ri � �� i
Z
�

�
d� ei�xe

���z�
k
��	��i�


e�b�	�i�
I�

�
b

� � i�

��
x� ��� �

�i���n

�� � i� �
p
� � �i�

������

�i
�n

�
�� � b

�i� �
b

�i� I��
b

�i� ��I�
�

b
�i�

�
�� � i� ��

p
� � �i�

�
�� i

�n

�
� � �i� � � �z�k

��� � i� ��� � �i� ����

���
� �

Thus� the local toroidal response function is a rather complicated function� Ri �

Ri�x� zk� b� �n� �� We are looking for closure approximations so the �uid equations
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will closely match this response function� In this form �a one dimensional integral�

the response function is easy to evaluate numerically� which we will be forced to

do to �nd the optimal closure coe#cients and to solve the local dispersion relation�

The response function can be factored into three pieces� the �rst independent of ���

the second proportional to ���n� and the third proportional to ��n� Since we will

be interested in matching this kinetic response for all  and �n� we need to �t each

of these pieces independently�

Ri � R� �R���n �R���n� ������

where R�� R�� and R� are independent of  and �n�

R� � � � i
Z
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�
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���z�
k
��	��i�
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�
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The response function of the �uid equations will also naturally factor into these

three parts� In the purely toroidal limit �kk � ��� neglecting FLR �b � ��� these

expressions simplify considerably� and can be written in terms of the usual plasma

dispersion function �Biglari et al�� ��	���
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The resonant denominator in Eq� �������

� � kkvk � �d�v
�
k � v������v

�
t � ��

can be written� by completing the square�

�

�d
�
k�kv

�
t

���
d

�

�
kkvt
��d

�
vk
vt

��

�
v��
�v�t

� �����
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The left hand side of Eq� ����� is negative� but the right hand side is positive for all

v� Thus along the real � axis� no particles are in resonance for � � �k�kv�t ���d� and
Ri is purely real� as shown in Figs� ��� and ���� As kk 
 �� this cuto� frequency
moves to ��� and Ri approaches the slab limit response function�

We will also use the kinetic response function of other moments �not just

density�� which can be written in the following compact form in the b � � limit�

Mj�k �
Z
d�vfvjk�v

�
����

k � �n�v�kjt

e�

T�
$Mj�k �����

$Mj�k � $M 	�

j�k � $M 	�


j�k ��n � $M 	�

j�k ��n �����

$Mj�k �
�j��p
�

� � ����j
�

��k � ����
j � �

�
� � i��j��

Z
d� ei�x � �����

��
x� �

�n
�
�

�
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�n
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� � i�

�
$Kj � 

�n
$Kj�

�
��k � ��e��

�z�
k
��	��i�


�� � i� �k��� � �i� �j���

$Kj �
�j���� � �i� �j���p

��vj�t

e
��z�k��	��i�


Z
�

��

dvkv
j
ke
�	��i�
v�k��v

�

t�i�zkvk�vt �����

For the lowest few j�s� we have�

$K� � ��

$K� � �i�zk�
$K� � ��� � �i� �� � �z�k �

$K� � �zk���i�� � �i� � � i� �z�
k
���

$K� � ���� � �i� �� � ��� �z�k �� � �i� � � � �z�k �

The odd $Kj �s are proportional to odd powers of zk �or kk�� while the even $Kj �s are

proportional to even powers of zk� This will guide our choice of closure approxima�

tions in the next section�

��� General Closure

There are three places in the moment equations Eqs� ������������� where closure

approximations are needed �in addition to the FLR closures in Section ����� in the

parallel terms rkrk�k and rkrk��
 in the toroidal terms �d�rk�k�rk���� �d�rk���r�����
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�d�sk�k�sk���� and �d�sk���s����
 and in the mirroring terms rk�krk lnB� rk��rk lnB�

and r���rk lnB� For each� we make closure approximations designed to model the

physical processes these terms represent�

The velocity dependence in the kkvk parallel term introduces parallel phase

mixing� leading to linear Landau damping� Consider a simple �D kinetic equation

with no E �eld�
�f

�t
� vk

�f

�z
� �� �����

The solution is simply f�z� vk� t� � f�z�vkt� vk� t � ��� If we start with a Maxwellian
perturbation in f �

f� � eikkzfM � eikkz
n�q
��v�t

e
�v�k��v

�

t � �����

free streaming will cause moments of f to phase mix away� For example� the density

is�

n �
Z
d�v f �

n�q
��v�t

Z
dvk e

ikk	z�vkt
e
�v�k��v

�

t � n�e
ikkze

�k�kv
�

t t
���
� ����

To model this process� we need to introduce damping proportional to jkkjvt into our
�uid equations� Thus� for the parallel closures� we choose �Hammett and Perkins�

����
 Dorland and Hammett� ������

rk�k � ���pk � n� � 	kTk � i
p
�Dk

jkkj
kk

qk� ���	�

rk�� � pk � p� � n� i
p
�D�

jkkj
kk

q�� �����

where 	k � ��� � ������� � 	�� Dk � �
p
����� � 	�� and D� �

p
���� With this

closure� the �uid equations reproduce the linear kinetic behavior quite well in the

slab limit� as shown in �Hammett and Perkins� ����
 Dorland and Hammett�

������

Similarly� the velocity dependence of the rB and curvature drifts introduces
phase mixing� In this case the damping rate is di�erent� since the toroidal drifts

depend on v�
k
and v�

�
��� Now consider only the phase mixing due to the toroidal

drifts�
�f

�t
� vd

�f

�y
� �� ���	��
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vd � vd�
v�k � v����

v�t
� vd� �

�vt
R

�

The solution is f�y� vk� v�� t� � f�y � vdt� vk� v�� t � ��� Starting with a Maxwellian

perturbation in f �

f� � eikyyfM � eikyy
n�

���v�t ����
e
�	v�

k
v��
��v

�

t � ���	��

free streaming will again cause moments of f to phase mix away� For example� the

density is�

n �
Z
d�v f �

n�
���v�t ����

��
Z
dvkdv�v�e

ikyy�vd� �v
�

k
�v�t�v

�

���v
�

t 
t�e
�	v�

k
v��
��v

�

t

�
n�e

ikyyq
� � ikyvd�t�� � ikyvd�t���

� ���	��

To capture this toroidal phase mixing� damping proportional to jkyjvd� � j�dj must
be introduced into the �uid equations� but with complex closure coe#cients to get

the phase shift in Eq� ���	���

The toroidal closure terms enter in the combinations rk�k � rk��� rk�� � r����

sk�k � sk��� and sk�� � s���� Expanding the general moment response functions

Eq� ����� for small kk� all the odd j moments have O�kk� corrections� while the
even j moments have O�k�k � corrections� Thus in our closure approximations for the
toroidal terms� we close the even moments rk�k� rk�� and rk��� r��� in terms of the

lower even moments �n� pk� and p��� and the odd moments sk�k� sk�� and sk��� s���

in terms of the lower odd moments �uk� qk� and q��� to preserve this small kk be�

havior� At large kk �the slab limit� the response function is primarily determined

by the parallel closures� and the toroidal closure approximations are subdominant�

In addition� we break the r and s closures into dissipative and Maxwellian pieces

�the terms that would arise if F was exactly Maxwellian�� The Maxwellian parts

are rk�k � �p�k�n� rk�� � pkp��n� r��� � �p���n� and sk�k � sk�� � s��� � �� Lin�

earizing and normalizing� these become rk�k � �pk � �n� rk�� � pk � p� � n� and

r��� � �p� � �n� Guided by the discussion above� we choose dissipative pieces
proportional to j�dj��d� Thus in the toroidal terms� combining the Maxwellian and
dissipative pieces� we choose�

rk�k � rk�� � pk � p� � �n � �i j�dj
�d

�
�Tk � 
�T�� ���	��
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rk�� � r��� � pk � �p� � �n� �i j�dj
�d

�
�Tk � 
�T�� ���	��

sk�k � sk�� � �i j�dj
�d

�
�uk � 
�qk � 
�q�� ���	��

sk�� � s��� � �i j�dj
�d

�
�uk � 
�qk � 
��q�� ���	��

Each closure coe#cient has both a dissipative and non�dissipative piece� 
 � 
r �

i
ij�dj��d� This choice is motivated by �Waltz et al�� ������ Making the dissipative

parts of the r closures only depend on Tk and T� ensures that the �uid response

will match the kinetic response at ���d � � in the kk � � limit�

The toroidal closure coe#cients 
�� 
�� are chosen so the response function

of the �uid equations closely approximates kinetic response function� Eq� ������� In

the local limit with b � � and rkB � �� and inserting the closure approximations

above� the �uid equations Eqs� ����������� can be written in matrix form� using

g � �d�� � ��x and k � kk��� and assuming �d � � to simplify notation�

M �

�
���������

� �k �g �g
� �� �g �k �

g��� �i
� � �i
�� ��k � � g�� �i
�� �g��� �i
��
g��� �i
� � �i
�� �k �g��� �i
�� � � g��� �i
��

�� � 	�k �g�� � i
�� ��� � 	�k �
k �g�� � i
�� � �k

� � �

� � �

� �
�g �g
�k �
� �k

� � i
p
�Dkk � g�� � i
�� g�� � i
��

g�� � i
�� � � i
p
�D�k � g�� � i
���

�
���������

M

�
���������

n
uk
pk
p�
qk
q�

�
���������
�

�
���������

�
k�g
�
�
�
�

�
���������
g� �

�
���������

��
�
��
��
�
�

�
���������
g

�n
� �

�
���������

�
�
��
��
�
�

�
���������
g

�n
� ���	�

Thus� the response functions of the �uid equations also naturally factor into

the form Eq� ������� Because this set of equations is rather complicated� to de�

termine the toroidal �uid response functions we solve for n and p� by numerically
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row reducing the matrixM � In �Waltz et al�� ������ the �uid and kinetic response

functions were compared only in the �� � � and  � � limit� In the slab limit�

determining the closure coe#cients in the �� � � and  � � limit �R�� also gave an

equally good �t for the �� and  pieces �R� and R��� but in the toroidal case this is

not automatic� In addition� in �Waltz et al�� ����� the toroidal closure coe#cients

were matched at kk � �� and good agreement for kk �� � is not guaranteed �although
as kk 
 � the slab limit is recovered and the agreement will again be good�� In

fact� if the toroidal terms are closed in the purely toroidal limit �kk � ��� the toroidal

closure terms in the odd moment equations drop out� This led to singular behavior

of the response function for the closure in �Waltz et al�� ����� at some non�zero

kk� since the �d�qk � q�� term in the parallel velocity equation was dropped� This

was corrected in the addendum to that paper�

Therefore� special care must be taken �nd toroidal closure coe#cients which

simultaneously provide a good �t to the kinetic response function for all three

parts of the response function� for all kk� Because both �uid and kinetic response

functions are complicated with �nite kk� we choose the closure coe#cients numer�

ically� by minimizing the di�erence between the kinetic and �uid response func�

tions over a range of kk�s simultaneously� but in the b � � limit� We use Powell�s

method �an e#cient multidimensional minimization method� �Press et al�� ��	��

to adjust the coe#cients 
� � 
�� until the error between the kinetic and �uid

response functions along the real x axis is minimized� If R has no poles in the

upper�half x plane� matching along the real axis guarantees that the �uid R will

also match the kinetic R in the upper�half x plane� Since we are primarily in�

terested in accurately modeling the growth rates of unstable modes� the errors in

the lower half plane are probably not important� as long as we do have damped

modes in the system� The best �t between the kinetic and �uid R�s was found

using �� kk�s evenly spaced from zk � � to ���� over the range of x where the

kinetic response function is changing most rapidly� �	 � x � �� at zk � � and

��� � x � �� at zk � ���� with ��� grid points in x� To the error in the den�

sity response function� we also add �%��� the error between the kinetic and �uid

p� responses� since n is most important for the local dispersion relation� but p�

enters the linear dispersion relation from FLR e�ects� While an excellent �t to n

is obtained� it is di#cult to simultaneously match the p� response for intermediate

kk�s� We �nd 
� � ��������������� 
� � ������� ����	�� 
� � �������� ���	�� 
� �
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Figure ���� Kinetic and �uid toroidal response functions in the purely toroidal limit�
R�� R�� and R�� with b � � and kk � ��
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Figure ���� Kinetic and �uid toroidal response functions in the mixed toroidal%slab
limit� R�� R�� and R�� with b � � and kkvt��d � ���
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�����������	��� 
� � ��	���� �������� 
� � �	����� �����	�� 
� � ������� �������

� � �����	��	������ 
� � ����������	��� and 
�� � �	����� ������� These are an

improvement over the closure coe#cients in �Hammett et al�� ������ The �t be�

tween the kinetic and �uid response functions is excellent� as shown in Figs� ��� and

���� The �uid equations give a rational function approximation �a ratio of poly�

nomials� to the kinetic response function� and cannot capture the branch cut at

���d � �k�kv�t ����
d exactly �see Eq� ������� but this set of closure approximations

provides a reasonable �t to this sharp transition�

Finally� we have to close the mirroring terms� introduced by the ��b � rB
terms in the gyrokinetic equation� These terms incorporate trapped particle e�ects�

reproducing the CGL �Chew et al�� ����� pressure balance equation� They are also

important to model the damping of poloidal �ows by magnetic pumping� Since

these terms introduce no new dissipative processes� we take Maxwellian closures�

rk�k � �pk � �n� ���		�

rk�� � pk � p� � n� ���	��

r��� � �p� � �n� ������

While this is not the ultimate set of closure approximations� the resulting

�uid equations provide a very accurate model of the physics underlying ion dynamics

in toroidal plasmas� More complicated closure approximations could certainly be

developed which are more accurate� but the relative simplicity of the closures used

here a�ord a tractable and su#ciently accurate model�

��� Final Equations

We arrive at the six moment toroidal gyro�uid equations by inserting the closures

discussed in the previous section into the moment equations� Eqs� �������������� with

the nonlinear terms given by Eqs� �������������� Speci�cally� we use the parallel

phase mixing closures in Eqs� ���	�������� the toroidal phase mixing closures in

Eqs� ���	������	��� and Maxwellian closures for the mirroring terms� Eqs� ���		��

������� In addition� we add the collision terms obtained by integrating Eq� �����

over velocity space� We will also refer to this set of equations as the ����� model�
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since it evolves � parallel moments and � perpendicular moments�

dn

dt
� �

�

�
�r�
�v�� � rT� �Brk

uk
B
�
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�
�
�r�
�
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�r�
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�r�
�v�� � rq� �Brk
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B
�rk �

�
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�

�
�r�
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rk lnB ������

� i�d�qk � q� � �uk� � ��

dpk
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� �
�

�
�r�
�v�� � rT� �Brk

qk � �uk
B

� ��q� � uk�rk lnB ������

�
�
� � k �

�
�
�r�
�


i�� �

�
� �

�

�
�r�
�


i�d � i�d�pk � p� � �n�

� �j�dj�
�Tk � 
�T�� � ��
�

ii�pk � p���

dp�
dt

� �
�

�
�r�
�v�� � rp� � � ��r

�

�v�� � rT� �B�rk

q� � uk
B�

������

�
�
� �

�

�
�r�
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�
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�

�
�r�
� �

��r
�

�

��
i�� �

�
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�

�
�r�
� �

��r
�

�

�
i�d 

� i�d��p� � pk � �n� � �j�dj�
�Tk � 
�T�� �
�

�

ii�pk � p���

dqk
dt

� �� � 	k�rkTk �
p
�Dkjkkjqk � i�d���qk � �q� � �uk� ������

� j�dj�
�uk � 
�qk � 
�q�� � �
iiqk�
dq�
dt

� �
�

�
�r�
�v�� � ruk � � ��r

�

�v�� � rq� �rk

�
T� �

�

�
�r�
� 


������

�
p
�D�jkkjq� �

�
p� � pk �

��r
�

� �
�

�
�r�
� 

�
rk lnB

� i�d��qk � q� � uk� � j�dj�
�uk � 
�qk � 
��q�� � �
iiq��

The main E�B nonlinearities have been absorbed in the total time derivative

d�dt � ���t � v� � r� In the slab limit ��d � rk lnB � �� these equations

reduce to Eqs� ��������� of �Dorland and Hammett� ������ The quasineutrality

constraint is�

ne �
n

� � b��
� bT�
��� � b����

� ��� � ���� �����

When the electrons are assumed to be adiabatic�

ne � � ��� h�i�� ����	�
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where � � Ti��Te� and h�i is a �ux surface average� This will be discussed in
Section ����

This constitutes a fairly complicated set of �uid equations compared to those

usually used in plasma physics� A somewhat simpler four momentmodel is described

below� and it is worth justifying the complication of the six moment model� In

principle� the six moment model is more appealing because as more moments are

retained� more details of the distribution function are accurately described� On

more pragmatic grounds� the six moment model provides a signi�cantly improved

�t to the kinetic response function� and is necessary for quantitative accuracy in

linear growth rates and mode structures� especially near marginal stability� The

six moment model is also required to capture the destabilization from trapped

ion e�ects� which become important in the long wavelength regime� Finally� six

moments may be required to obtain accurate damping rates of poloidal �ows from

magnetic pumping� Magnetic pumping arises from parallel �ow damping� and since

no closure approximations appear in Eq� ������� the uk equation is an exact moment

of the gyrokinetic equation to O�b�� This is not the case for the simpler four moment
model discussed below� Magnetic pumping rates from this six moment model are

calculated in Section ����

A variation of these equations was used in �Hammett et al�� ����� where

jkkjqk in Eq� ������ was replaced by Bjkkj�qk�B� and where jkkjq� in Eq� ������ was
replaced by B�jkkj�q��B��� i�e� jkkj acted on q��B

�� not just q�� However� it was

found that this leads to a weakly growing mode even in the �d � �� �  � � limit

which should be stable �a bumpy cylinder limit�� Switching to the present form of

the parallel closures removed this spurious instability�

��	 Four Moment Model

We present here a simpler and slightly less accurate gyro�uid model which only

evolves four moments� n� uk� pk� and p�� We will also refer to this set of equations

as the ����� model� since it evolves three parallel moments and one perpendicular

moment� In this case� since we are not evolving qk and q�� instead of closing the

toroidal s terms with Eqs� ���	�� and ���	��� we need to close the �d�qk � q�� term
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in the parallel velocity equation�

qk � q� � ��i j�dj
�d


�uk� ������

We still use the toroidal r closures in Eqs� ���	�� and ���	��� but with new closure

coe#cients� In addition� we use the parallel closures of �Hammett and Perkins�

����
 Dorland and Hammett� ������ extended to include collisions as well as

collisionless phase mixing�

qk � � � � 	kp
�Dkjkkj� 
ii

ikkTk �������

q� � � �p
�D�jkkj� 
ii

ikk

�
T� �

�

�
�r�
� 


�������

These are essentially the high kk and%or high 
ii limit Eqs� ������ and ������� keeping

only the slab terms�

We again use the method described in Section ��� to minimize the error

between the �uid and kinetic local response functions to determine the toroidal

closure coe#cients 
�� 
�� The best �t is 
� � ������� ������ 
� � �������� �������

� � �������� ������� 
� � ����	��������� and 
� � ������������	��

Inserting these q closures into Eqs� �������������� using the nonlinear FLR

terms in Eqs� ������������� without the q� part of Eq� ������ and dropping the qk

and q� mirroring terms �qk � q� � � for a Maxwellian�� the dynamical equations

are�
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B
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rk lnB � �i�duk �������

� �j�dj
�uk � ��
dpk
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�

�
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�v�� � rT� �

�� � 	k�k�kTkp
�Dkjkkj� 
ii

� �rkuk � ukrk lnB �������

�
�
� � k �

�
�
�r�
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i�� �

�
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�

�
�r�
�


i�d � i�d�pk � p� � �n�
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dp�
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�
i�d � i�d��p� � pk � �n� � �j�dj�
�Tk � 
�T��

�
�

�

ii�pk � p���

The quasineutrality constraint� Eq� ������ is unchanged for this model�

��
 Linear Benchmarks

In this section the accuracy of the toroidal gyro�uid equations is demonstrated by

comparing with linear kinetic theory� using adiabatic electrons� We �rst test the

toroidal gyro�uid equations against kinetic theory in the local limit� where kk and

�d are treated as constants� The eigenfrequencies are determined by �nding roots

of the local dispersion relation with adiabatic electrons� Ri � �� � where the kinetic
Ri is calculated by numerically evaluating the integrals Eq� ������ and the �uid Ri

is calculated by numerically row reducing the matrix equation in Eq� ���	�� with

additional FLR terms on the right hand side if b is non�zero� In the local limit� we

ignore the rk lnB terms in the gyro�uid equations and ignore the modulation of vk

along a particle�s orbit in the kinetic response�

Fig� ��� shows the kinetic and gyro�uid growth rates in the purely toroidal

limit �kk � ��� with b � �� for the parameters of Fig� �a of �Waltz et al�� ������

where � � �� i � �� ���� �� and �� varying �n� The four moment model in Section ��

reproduces the stable low �n regime better than the four moment model presented

in �Waltz et al�� ����� �which used di�erent closure coe#cients�� The six moment

equations provide much better agreement with kinetic theory� but are slightly o�

for low i� near marginal stability�

Fig� ��� shows a comparison in the local limit for kk �� �� the the mixed

toroidal%slab limit� We use the parameters of �Dong et al�� ����� Fig� �� where

i � ���� �� �� �n � ���� and we choose kkLn � Ln�qR � ���� using the normal

connection length for the mode width Lk � qR� and q � �� The linear growth rates
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Figure ���� Comparison of local linear growth rates from the ����� and �����
toroidal gyro�uid equations vs� kinetic theory in the toroidal limit� with kk � �
and b � �� The four moment equations in Section �� reproduce the stable low �n
regime better than the four moment model in �Waltz et al�� ����� but is slightly less
accurate at large �n� The six moment equations are much more accurate� and are
quite good for i � �� away from marginal stability�
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Figure ���� Local growth rates from the six moment toroidal gyro�uid equations
compared with kinetic theory� now in the mixed toroidal%slab limit with kk � ���
and �n � ���� The toroidal gyro�uid equations again provide a very accurate model
of the fully kinetic results�

from the six moment toroidal gyro�uid model and kinetic theory are shown vs�

k��i� The six moment toroidal gyro�uid equations provide an accurate description

of the full kinetic behavior� Both the growth rate and real frequency of the toroidal

ITG mode vary roughly as �� �r 	 k��i at long wavelengths� As k��i decreases�

j�j �
q
�� � ��

r decreases� and the stabilizing e�ect of parallel Landau damping

becomes more important� When j�j � kkvti� the mode is stabilized� producing the

long wavelength cuto� at k��i 	 kkLn 	 Ln�qR�

Now we move on to nonlocal comparisons with kinetic theory� We will com�

pare with fully kinetic calculations in the circular �ux surface equilibrium� as de�

scribed in Section ���� Linearly� the coordinate system in Chapter � is equivalent

to the ballooning representation� so we compare with the ballooning calculations of

�Dong et al�� ����� and �Xu and Rosenbluth� ������ Nonlocally� we evolve the

eigenmode structure along the �eld line coordinate �� so a range of kk�s are cou�

pled for each eigenmode� The � coordinate described in Chapter � is the �extended

ballooning angle� in the ballooning representation� In these nonlocal calculations�
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Figure ���� Linear nonlocal eigenfunction comparison with the fully kinetic calcu�
lations of �Dong et al�� ������ The coordinate along the �eld line� �� is equivalent to
the �extended ballooning angle��

both �d and k� vary along the �eld line� as given by Eqs� ������ and ������� The �

dependence of �d describes the e�ects of the good and bad curvature regions� and

the � dependence of k� comes from the fact that as one moves along the �eld line�

the mode twists� and k� increases� For the comparison with �Dong et al�� ������

we neglect trapped particle e�ects by turning o� the rk lnB terms� In circular �ux

surface geometry� B � B�R��R � B���� � � cos ��� so setting � � � removes the

rk lnB mirroring terms� As in �Dong et al�� ������ we also neglect collisions and

assume adiabatic electrons� All of the results compared in this section will only look

at modes with �� � �� i�e� those centered in the bad curvature region� since they

are typically the most unstable and most kinetic calculations only focus on these

modes� The growth rate spectrum for �� �� � is discussed in Chapter �� and has

important implications for the anisotropic �uctuation spectra seen in our nonlinear

simulations and in experimental �uctuation measurements in tokamaks� Fig� ���

shows the eigenfunction from the fully kinetic integral calculation of �Dong et al��

����� and from the ��� toroidal gyro�uid equations for the parameters in Fig� ��c�

of �Dong et al�� ������ i � �� �n � ���� q � �� �s � �� k��i � ����� and � � �� The
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Figure ���� Nonlocal linear growth rate and real frequency comparison between
the toroidal gyro�uid equations and kinetic theory� for the four moment and six
moment models� The six moment model provides excellent agreement with fully
kinetic theory� especially for k��i � ����

�ballooning� mode structure along the �eld line shown in Fig� ��� is determined by

the � dependence of both �d and k�� The mode is primarily localized near � � � in

the bad curvature region� Landau damping is strongly stabilizing for high kk� so the

the most unstable modes have broad mode structures along the �eld line� Minimiz�

ing kk while simultaneously localizing the modes in the bad curvature region leads

to mode structures with kk � ��qR� with large amplitude at the outer midplane

and smaller amplitude at the inner midplane� Further along the �eld line �i�e� away

from � � ��� magnetic shear causes k� to increase� which leads to FLR stabilization

at large � � ��� This magnetic shear stabilization through FLR e�ects keeps the

mode amplitude small in bad curvature regions further along the �eld line� e�g� at

� � ��� When �s or k��i are small� this magnetic shear e�ect is weaker� and the

eigenfunctions get broader�

Fig� ��� compares the kinetic and �uid growth rates and real frequencies

for the parameters of Fig� � in �Dong et al�� ������ i � ���� �� and �� �n � ����

q � �� �s � �� and � � �� The agreement between the ��� gyro�uid equations and
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Figure ��� Comparison of linear growth rates from kinetic theory and the six
moment model� Again� the agreement is quite good except for �n � ����� where
�s � ����

kinetic theory is quite satisfactory� especially for k��i � ��� where our models of

FLR e�ects are very accurate� This level of agreement is a substantial improvement

over previous �uid theories� and is more accurate than the four moment gyro�uid

model of �Waltz et al�� ������ As k��i decreases� the mode width increases and kk

becomes smaller� which shifts the long wavelength cuto� to lower k��i than in the

local limit� where kk is held �xed� In other respects the fully nonlocal results seem

to follow the local trends fairly closely�

Fig� �� shows a comparison with �Dong et al�� ����� Fig� � parameters�

i � ���� �n � ���� ���� ����� q � ���� and �s � ��� � q��n� The toroidal gyro�uid

and kinetic results are not in terribly good agreement for low �s� At low �s� shear

localization is weak� and the eigenfunction becomes more extended along the �eld

line� For the �n � ����� �s � ��� case� the eigenfuction extends out to � � 	� roughly
twice as broad as for �n � ��� and �s � ���� It may be that the kinetic calculations

were not resolving this broad eigenfunction�

To test of our models of trapped ion e�ects� we compare with the linear

gyrokinetic particle simulations of �Xu and Rosenbluth� ������ and the gyroki�



�	 Chapter �� Derivation of the Toroidal Gyro�uid Equations

netic �Vlasov� simulations of �Liu and Cheng� ����� which both include trapped

ion e�ects� Fig� ��	 shows a comparison of nonlocal linear eigenfrequencies from

all three approaches� in the �at density limit� i 
 �� The other parameters are�
LT�R � ���� q � �� �s � �� � � �� and � � ���� in the collisionless limit� as in

Fig� � of �Xu and Rosenbluth� ������ All three calculations assumed adiabatic

electrons� The gyro�uid and Vlasov results are shown with �� � ���� and without

�� � �� trapped ion e�ects� to show the destabilizing e�ect of the trapped ions

for very long wavelengths� Since the rk lnB mirroring terms are proportional to

�� setting � � � turns o� these terms� Without the mirroring terms� all modes

are stable below k��i � ����� With the mirroring terms� the toroidal ITG mode

gradually evolves into a trapped ion mode� Trapped ion e�ects become important

when the mode time scales are comparable to or less than the ion bounce frequency�

j�j �� �bi �
p
�vti�qR� For these parameters �biLT�vti �

p
�LT�qR � ����� so

trapped ion e�ects become signi�cant for k��i
�� ���� The six moment toroidal

gyro�uid equations model this e�ect with reasonable accuracy� In particular� the

gyro�uid model shows that trapped ions can remove the long wavelength cuto�

which exists when trapped ions are ignored� in agreement with fully kinetic theory�

In Fig� ��� we show the same results as in Fig� ��	� but now normalized to

vti�LT � which is independent of k�� and is thus proportional to the growth rate in

physical units� This demonstrates more clearly than in Fig� ��	 that the growth

rates of the trapped ion modes are much less than those of the fastest growing

modes near k��i � ���� and suggests that our models of trapped ion e�ects are

probably adequate�

For the measured parameters used in �Xu and Rosenbluth� ������ �i �
����cm and r� � ��cm
 so k��i � ���� � nq�r� implies n � �� where n is the toroidal
mode number� Thus� the ballooning approximation �and in the representation in

Chapter �� the neglect of radial variations in the equilibrium� is de�nitely breaking

down at these very long wavelengths� This issue is discussed in Section ��	�



��	� Linear Benchmarks ��

Figure ��	� Comparison of linear growth rates and real frequencies normalized to
��T from fully kinetic calculations and the six moment toroidal gyro�uid equations
with trapped ion e�ects� Including trapped ions �� � ���� further destabilizes the
toroidal ITG mode at long wavelengths� which gradually evolves into a trapped ion
mode for k��i

�� ����
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Figure ���� Linear growth rates and real frequencies normalized to vt�LT � In physi�
cal units� the growth rates of the trapped ion modes are much less than those of the
fastest growing modes near k��i � ���� which suggests that our models of trapped
ion e�ects are probably adequate�



Chapter �

Bounce Averaged Electron Fluid

Equations

N
EW FLUID EQUATIONS FOR TRAPPED ELECTRONS are developed

in this chapter� The �uid equations for the ions derived in Chapter �

can accurately describe the dynamics of the toroidal ITG and �somewhat

less accurately� trapped ion modes when the electrons are adiabatic� but for re�

alistic tokamak parameters� the nonadiabatic electron response� which primarily

comes from trapped electrons� is often important� Proper treatment of the nona�

diabatic electron response is essential to describe electron heat transport and par�

ticle transport� When the electrons are purely adiabatic� there is no net particle

transport� since the E�B convection of the perturbed electron density is zero

�E�B � r�ne � r�� � B � r�� 	 
�� Quasineutrality then implies no net ion

transport� In addition� in the adiabatic limit there are no electron temperature

�uctuations� so there is no electron heat transport� Trapped electrons are a well

known important destabilization mechanism� the drive from the trapped electron

toroidal precession resonance can double the growth rate of the ITG mode in some

regimes� and can also destabilize the trapped electron mode �TEM�� In this chap�

ter� a sophisticated bounce averaged trapped electron �uid model is derived which

retains the pitch angle dependence of the trapped electron response� as opposed

to more simpli�ed trapped electron models which assume the electrons are deeply

trapped Kadomtsev and Pogutse� ���
�� Retaining this pitch angle dependence

is potentially important for advanced tokamak con�gurations in the second stabil�

ity regime or with reversed magnetic shear Kessel et al�� ������ where a major

��
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fraction of the trapped electrons have favorable toroidal precession drift� It also

allows use of a full pitch angle scattering collision operator for electron collisions

�and not a Krook�type algebraic approximation�� so these equations are continu�

ously valid from the collisionless regime� where the trapped electron response is

driven by the toroidal precession resonance� to the dissipative regime� to the very

collisional regime where the trapped electrons become adiabatic�

Since their fast parallel motion allows bounce averaging of the electrons� the

fast parallel time scale is removed� and these trapped electron �uid equations are

not numerically sti�� Coupled with the ion equations derived in Chapter �� these

equations can be used e�ciently in high resolution �D toroidal simulations which

simultaneously include trapped electron e�ects as well as the ITG drive� and enable

calculation of the full transport matrix� electron and ion heat �uxes and particle

�uxes�

��� Nonlinear Bounce Averaged Kinetic Equation

The electron dynamics are actually simpler than the ion dynamics in two respects�

because me � mi� Firstly� since the turbulent scales are on the order of the ion

gyroradius� k��e � �� so we can neglect FLR e�ects for the electrons and use the

drift kinetic equation instead of the gyrokinetic equation� Secondly� the turbulent

time scales �on the order of the ion transit frequency� �ti 	 vti�qR� or the dia�

magnetic frequency� �� 	 k��ivti�Ln� are long compared to the electron bounce

frequency� � � �be 	 vte�qR� �This ordering breaks down for barely trapped parti�

cles� where �be � 
� but only over a very small region of velocity space�� Thus we

can average over the fast electron bounce motion� so the trapped electron dynamics

are described by the nonlinear bounce averaged drift kinetic equation Gang and

Diamond� ���
��

�
�

�t
� i�de � C��hen 	 � e

Te
Fe�

�

�t
� i�T

�e�
D
e�inq��n

E
b
�Nn� �����

This equation is four dimensional �two velocity space and two con�guration space

dimensions�� since the variation along the �eld line has been removed by bounce

averaging� Before deriving the trapped electron �uid equations� it is useful to rewrite

this equation in a form more suitable for taking moments�
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In Eq� ������ �hen is the nonadiabatic part of the electron distribution function�

fe 	 Fee��Te � he� This equation was derived for axisymmetric circular concentric

�ux surfaces� and the perturbed distribution function and potential were written

using�

he�r� �� �� 	
X
n

hen�r� ��e
�in�� �����

��r� �� �� 	
X
n

�n�r� ��e
�in�� �����

To lowest order in ���be� the fast parallel motion causes he to be constant along

the �eld line� so

he���n 	 �hen�r�e
inq�� �����

and he is zero to lowest order in ���be for passing electrons� Thus Eq� ����� describes

the evolution of the bounce averaged part of the nonadiabatic electron distribution

function� The bounce average is de�ned by�

hA�r� �� ��ib 	
H
dl�jvkjA�r� �� ��H

dl�jvkj � �����

where the integration is along a �eld line� and l is the distance along the �eld line�

The nonlinear term Nn describes convection by the bounce averaged E�B drift�

Nn 	 �i c
B

X
n��n��n

�
n�q

r
�hen�

�

�r

D
e�in�q��n�

E
b
� n�q

r

D
e�in�q��n�

E
b

�

�r
�hen�

�
� �����

Using a �eld�aligned coordinate system� as described in Chapter �� this equation

can be cast in a simpler form� Speci�cally� if we use the transformation Eq� �������

where x is the radial variable� y is perpendicular and mostly poloidal� and z 	 � is

the coordinate along the �eld line� we can rewrite Eqs� ����� and ������

he�r� �� �� 	 he�x� y� z� 	
X
n

�hen�r�e
�in���q�� 	

X
ky

he�x� ky�e
ikyy� �����

so to lowest order in ���be� he is independent of the coordinate along the �eld line�

z� At �xed z� the y variable is simply the toroidal angle� so he can be thought of

as the distribution function of banana centers at minor radius x and toroidal angle

y� It will be most convenient to use the velocity space variables v and �� where v is

the total velocity �E 	 v���� and � is a pitch angle variable de�ned by�

�� 	
� � 	Bmin�E

�
B
� �����
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where 
B 	 �Bmax � Bmin���Bmax� This is the pitch angle at the outer midplane

normalized to unity at the trapped�passing boundary� and is a constant of the

electron bounce motion� For deeply trapped electrons �with E 	 	Bmin�� � 	 
�

and the maximum � for passing particles �where 	 	 
� is ��
p
�
B� At the trapped�

passing boundary �where E 	 	Bmax�� � 	 �� For trapped particles �� � ��� the

poloidal angle of the banana tip or turning point� �t� is related to � by�

� 	 sin��t���� �����

This can be seen by using E 	 	Bt where B at the turning point is Bt 	 B���� �


 cos �t�� If we expand for small 
 	 r�R�� the de�nition for �� Eq� ������ becomes�

�� 	 v��� � 	B���� 
���
v�� ����
�

This pitch angle variable di�ers slightly from the one used in Gang and Diamond�

���
�� �� 	 v��� � 	B��� � 
����
	B�� but for trapped particles the di�erence is

negligible since v � v�� So to lowest order in ���be� the nonadiabatic distribu�

tion function is a function of two spatial coordinates �x and y� and two velocity

space coordinates� �v and ��� The eikonal e�inq� appears inside the bounce averageD
�ne

�inq�
E
b
since Eq� ����� has been written as an evolution equation for �hen� and

both sides of ��he��t� � � �� have been multiplied by e�inq�� Using Eq� ����� to write

jvkj in terms of v and �� jvkj 	 v
q
��B�Bmin��� �
B���� the bounce time is

�b��� 	
I
dl�jvkj 	 qR

v

Z �t

��t

d�q
��B�Bmin��� �
B���

� ������

and the bounce average becomes�

h�ib �x� y� �� 	
H
dz��x� y� z��jvkjH

d��jvkj 	
qR

v

Z �t

��t

d���x� y� ��

�b
q
� �B�Bmin��� �
B���

� ������

Bounce averaging turns functions of � into functions of pitch angle� because of the

� dependence of the turning point� jvkj� and �b� Our derivation is correct for general
magnetic geometry� but from time to time it is instructive to look at the large

aspect ratio �small 
� limit to relate to previous work� Using B 	 B���� � 
 cos ��

and expanding for small 
 leads to the more standard form�

h�ib 	
Z �t

��t

d���x� y� ��q
�� � sin������ �K����

� ������
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where K���� is the complete elliptic integral of the �rst kind�

K���� 	
Z �

�

dtq
�� � t����� ��t��

	
Z ���

�

dtp
� � �� sin� t

� ������

The bounce averaged rB and curvature drift frequency� �de� is the toroidal

precession frequency� For small 
� this is Kadomtsev and Pogutse� ������

�de 	
cTe
eB

ky
R

v�

�v�te
G��s� ��� ������

G��s� �� 	

�
�
E����

K����
� �

�
� ��s

�
E����

K����
� � � ��

�
�

where E���� is the complete elliptic integral of the second kind�

E���� 	
Z �

�
dt

p
�� ��t�p
�� t�

	
Z ���

�
dt
q
�� �� sin� t� ������

It is important to keep the pitch angle dependence of �de to describe the stabilization

of trapped electron modes in reversed shear con�gurations ��s � 
�� The limiting

values G��s� � 	 
� 	 � and G��s� � 	 �� 	 �� are independent of shear� but as

�s decreases� more trapped particles precess in the favorable direction� G � 
� as

shown in Fig� ����

Finally� �T
�e is the bounce averaged diamagnetic frequency�

�T
�e 	

cTe
eB

ky
Ln

�
� � e

�
v�

v�te
� �

�

��
�

To derive electron �uid equations� it is more convenient to write Eq� ����� in

terms of hfeib instead of �hen� Writing Eq� ����� in terms of he instead of �hen removes

the eikonal from inside the bounce average� Then the ���t term can be removed

from the right hand side of Eq� ����� by evolving hfeib instead of he� using�

hfeib 	 hheib �x� y� v� �� � Fe

�
e�

Te

�
b

�x� y� ��� ������

Since he is independent of z to this order in ���be� hheib 	 he�

fe 	 he � Fe
e�

Te
	 hheib � Fe

e�

Te
	 hfeib � Fe

�
e�

Te

�
b

� Fe
e�

Te
� ������
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Figure ���� Pitch angle dependence of the toroidal precession frequency in the
function G��s� ���

Then Eq� ����� becomes�

�
d

dt
� i�de

�
hfeib 	 hCib �hfeib � h�ib� � iFe��de � �T

�e� h�ib � ������

The nonlinear term has been absorbed in the total time derivative d�dt 	 ���t�
�b � h�ib � r� and � has been normalized to e�Te�

Before taking moments of this equation� let us calculate the total electron

density� which we break into separate integrals over passing and trapped particles�

Since the passing particles are adiabatic�

ne�x� y� z� 	
Z
p
d�v�Fe �

Z
t
d�vfe

	
Z
p
d�v�Fe �

Z
t
d�v �hfeib � h�ib Fe � �Fe�

The last line made use of Eq� ������� The adiabatic pieces for trapped and passing

particles can now be combined�

ne�x� y� z� 	 n�� �
Z
t
d�v �hfeib � h�ib Fe� � ����
�
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As in the purely adiabatic limit� special treatment is required for components which

are constant on �ux surfaces� i�e� with ky 	 
� Treatment of this subtlety is post�

poned until Section ���� The velocity space integral over trapped particles in v and

� variables isZ
t
d�v hfeib 	

Z �

�
��dv v�

Z �

sin�����

�B
B� hfeib d�
Bmin

q
� � �B�Bmin��� � �
B���

� ������

where the � integral is limited to the range sin����� to �� since at a given �� only

particles with turning points beyond � will contribute to the local density� and

� 	 sin��t���� Expanding for small 
� this takes the more familiar form�

Z
t
d�v hfeib 	

p
�

Z �

�
��dv v�

Z �

sin�����

d�� hfeibq
�� � sin������

�

We introduce the following shorthand notation for the pitch angle integration�

hA���i� 	
Z �

sin�����

�B
B�A���d�

Bmin

q
� � �B�Bmin��� � �
B���

� ������

Averaging in pitch angle turns functions of � into functions of �� because of the �

dependence of the Jacobian and the turning points� The electron density in real

space is just the � average of the v�averaged hfeib� De�ning a pitch angle dependent
trapped electron �density� by integrating only over v�

nt�x� y� �� 	
Z �
�

��dv v� hfeib �

the total electron density in real space is�

ne�x� y� z� 	 n�� � hnt�x� y� ��i� � n�hh�ib �x� y� ��i�� ������

The � average of h�ib which appears here is analogous to the polarization density

in the ion real space density� Eq� ������ and comes from the z�dependent part of the

total electron distribution function�

��� Bounce Averaged Fluid Equations

As seen in the previous section� the pitch angle dependence of the electron distri�

bution function enters the kinetic equation in a fundamentally di�erent way than
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the v dependence� Firstly� the � dependence of the toroidal precession drift is sep�

arable from the v dependence� and secondly� the bounce averaged potential which

enters the kinetic equation is pitch angle dependent� since deeply trapped particles

only respond to the potential on the outer midplane� while barely trapped particles

respond to the potential averaged over the entire poloidal angle� This suggests a

signi�cantly di�erent approach for deriving trapped electron �uid equations� For

the ions� we take moments over vk and v� of the �ve dimensional fi�x� y� z� vk� v��

to obtain three dimensional ion �uid equations� For the electrons� we start with

the �ve dimensional fe�x� y� z� v� �� and bounce average� which removes the parallel

coordinate� Then we only need to take moments over v of hfeib �x� y� v� �� to obtain
three dimensional pitch angle dependent ��uid� equations for the electrons� which

are functions of x� y� and �� These moments can be thought of as the electron den�

sity� pressure� etc�� of banana tips� since � is directly related to the turning point

by � 	 sin��t���� The resulting trapped electron �uid equations look similar to the

�D �uid equations derived in Chapter �� with the parallel coordinate replaced by

the pitch angle variable� �� Retaining the pitch angle dependence of the electron

moments allows us to keep the full pitch angle pitch angle dependence of the to�

roidal precession frequency and the bounce averaged potential� It also allows the

use of a full pitch angle scattering Lorentz collision operator for electron collisions�

When the real space electron density is needed in the quasineutrality constraint� we

perform the � average in Eq� �������

We derive trapped electron moment equations by averaging in v over the

bounce averaged electron distribution function� hfeib� Since only even powers of v

appear in Eq� ������� we will only need even moments�

nt�x� y� �� 	
��

n�

Z �
�

dv v� hfeib �

pt�x� y� �� 	
��

�n�v�te

Z �
�

dv v� hfeib �

rt�x� y� �� 	
��

��n�v�te

Z �

�
dv v	 hfeib �

tt�x� y� �� 	
��

�
�n�v	te

Z �

�
dv v
 hfeib �

vt�x� y� �� 	
��

���n�v
te

Z �

�
dv v�� hfeib �

where the electron moments have been normalized to their Maxwellian values� The
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v� dependence of the bounce averaged precession frequency� Eq� ������� brings the

next higher even moment into each dynamical equation� introducing the usual clo�

sure problem of the coupled moments hierarchy� Performing the v integration� we

have�

dnt
dt

�
�

�
i�dept � �

�
i�de h�ib � i��e h�ib 	 hCib �nt � h�ib� ������

dpt
dt

�
�

�
i�dert � �

�
i�de h�ib � i�� � e���e h�ib 	 hCib �pt � h�ib� ������

drt
dt

�
�

�
i�dett � �

�
i�de h�ib � i�� � �e���e h�ib 	 hCib �rt � h�ib� ������

dtt
dt

�
�

�
i�devt � �

�
i�de h�ib � i�� � �e���e h�ib 	 hCib �rt � h�ib� ������

The collision terms will be discussed in Section ���� We require a closure approxi�

mation for the highest moment which models toroidal precession drift phase mixing�

By analogy with Chapter �� we use an extension of the method of Hammett and

Perkins� ���
�� For a ��moment electron model �evolving nt� pt� and rt� we choose�

tt 	 �i j�dej
�de

��ant � �bpt � �crt�� ������

and in the ��moment electron model �also evolving tt�� we choose�

vt 	 �i j�dej
�de

��ant � �bpt � �crt � �dtt�� ������

As in Chapter �� each closure coe�cient has both a dissipative and non�dissipative

piece� � 	 �r � i�ij�dej��de� but now �de is pitch angle dependent� We choose these

closure coe�cients to closely approximate the bounce averaged kinetic response

function� derived in the next section�

��� Electron Closures

From the linearized bounce kinetic equation� we can derive the response function

for the pitch angle dependent electron density�

Re 	
nt���

n� e h�ib ����Te
	 ��

Z
dv v�Fe

��de � �T
�e

� � �de
� ����
�
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which can again be factored into the form�

Re 	 Re� �
��e
�de

Re� �
��ee
�de

Re�� ������

These integrals can be performed analytically� and are functions of xe 	 ���de and

� �through �de���� Tang� ������

Re� 	 � � �xe � �x���e Z�
p
xe�� ������

Re� 	 ��� �pxeZ�pxe��� ������

Re� 	 �� � �xe � �x���e Z�
p
xe�� � �� �

p
xeZ�

p
xe��� ������

where Z is the usual plasma dispersion function�

Choosing �de � 
 to simplify the notation in the following expressions� the

response functions from the ��moment electron equations are�

Re� 	 ���x�e � �� �cxe � �
� �b � �
xe � �
� �c � �
�

�x�e � �� �cx�e � �
 �bxe � �
� �a
� ������

Re� 	
�x�e � ���cxe � �
�b � ��xe � ���c � �


�x�e � ���cx�e � �
�bxe � �
��a
� ������

Re� 	
��xe � ���c � �


�x�e � ���cx�e � �
�bxe � �
��a
� ������

and for the ��moment electron equations�

Re� 	
��x�e � ����dx�e � ����cxe � ���	�b 
 �c 
 �d � �� 
 ��x�e � ����dxe 
 ���xe

���x�e � ���dx�e � ����cx�e � ��
�bxe � ����a
� ������

Re� 	
��x�

e
� ���dx

�

e
� ����cxe � ����b
 ��x�

e
� ����dxe � ����c 
 ��xe � ����d 
 ���

��x�e � ���dx�e � ����cx�e � ��
�bxe � ����a
�

������

Re� 	
���x�e � �
��dxe � ����c � ��
xe � ��
�d � ��


���x�e � ���dx�e � ����cx�e � ��
�bxe � ����a
� ����
�

Powell�s method Press et al�� ����� is again used to determine the closure co�

e�cients by minimizing the error between the �uid and kinetic response func�

tions� Re�� Re�� and Re�� along the real xe axis for �� � xe � �� The best �ts

are �a 	 ���
�������
�� �b 	 ������� ���
��� and �c 	 ������������� for the ��

moment model� and �a 	 ��
��� �
���� �b 	 ���
�
�������� �c 	 ����
��� �������
and �d 	 ���
������
�� for the ��moment model� The response functions for the

��moment model are shown in Fig� ����
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Figure ���� Kinetic and �uid bounce averaged response functions� Re�� Re�� and
Re�� for the ��moment electron model�
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��� Bounce Averaged Lorentz Collision Operator

Since the pitch angle dependence is retained in the trapped electron �uid moments�

it is possible to use a Lorentz collision operator �a di�erential operator rather than a

Krook algebraic model� for pitch angle scattering by electron�electron and electron�

ion collisions�

C 	
�e�v�

�

�

��
�� � ���

�fe
��

� ������

where the pitch angle� � 	 vk�v� The energy dependent collision frequency is�

�e�v� 	
��nee

� ln�

m�
ev

�
�Ze� �Hee�v�vte��� ������

where the Ze� part accounts for electron�ion collisions �assuming v� vti� summed

over ion species �Ze� 	
P

j Z
�
j nj�ne�� and the Hee�x� part is from electron�electron

collisions� where Hee�x� 	
q
��� exp��x�����x � � � ���x���erf�x�

p
��� This col�

lision operator conserves particles and energy� but not momentum� Electron�ion

collisions do cause a loss of electron momentum� which is transferred to ion momen�

tum� but is usually ignorable since me � mi�

The bounce average of this collision operator enters Eq� ������� and is calcu�

lated in Cordey� ����� Hammett� ������

hCib 	
�e

�j��j�b
�

���

�
��� ����

�b
j��j

��
Bmin

B

�
b
� ��� ����

�
�f

���

�
� ������

where �� is vk�v at the midplane� �� 	
q
�� 	Bmin�E� Transforming to � using

�� 	
p
�
B�� using Eq� ������ for fe� and the fact that the adiabatic piece Fee��Te

is independent of pitch angle� we have�

hCib 	
�e

�
�Bj�j�b
�

��

�
��� �
B�

��
�b
j�j

��
Bmin

B

�
b
� � � �
B�

�
�
� ������

�

��
�hfeib � h�ib�

�
�

This collision operator must be integrated over velocity� v� to �nd the collision terms

in the trapped electron �uid equations� This leads to two complications� the ��v�

dependence of the electron�ion term is singular in the electron density equation� and

the other integrals do not lead to simple combinations of the electron moments we
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evolve� For example� the collision term in the trapped electron pressure equation

couples di�erent moments together�

�pt
�t

	 � ��

�n�v�te

Z �

�
dv v� hCib � ��e�

Z
dv v hfeib ������

� ��e���nt � �pt � � � ���
where in the last step� hfeib has been expanded using the electron moments as

a basis set� with as yet undetermined coe�cients� To avoid solving the closure

problem again� at this point we assume �e 	 constant� using�

�e � �e� 	
�
p
��nee� ln�

�m
���
e T

���
e

�Ze� � ��� ������

Integration over v then leads to the collision terms in Eqs� ������������ A better

approximation� which we leave to future work� would lead to weaker coe�cients

in the higher moment equations to model the velocity dependence of �e� but the

present approximation captures the essential feature of the collision operator� which

is primarily the pitch angle scattering process�

��� Evolution of Trapped Electron Moments

This section describes how these electron moment equations are solved� The empha�

sis is on numerical solution� but analytic solution would follow conceptually similar

procedures�

In the numerical simulations described in later chapters� the ion gyro�uid

moments are stored and evolved in �x� y� z� space� The parallel grid points are

evenly spaced in z 	 � from �N� to N�� where N � �� as discussed in Chapter ��

This parallel coordinate is linearly equivalent to the extended poloidal angle in the

ballooning representation� The electron moments are stored and evolved in �x� y� ��

space� The pitch angle grid points are at � 	 sin����� to provide more resolution

near the trapped�passing boundary where �de is varying rapidly� Separate electron

moments are independently evolved in each magnetic well along the parallel co�

ordinate� i�e�� the moments for �� � � � � are separate from the moments for

� � � � ��� The bounce averaged h�ib �x� y� �� is calculated from ��x� y� z� by

numerically integrating Eq� ������� and then used to advance the electron moments
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in time� Special care must be taken at the turning points� where Eq� ������ has

integrable singularities� Choosing the � spacing � 	 sin����� so that the turning

points lie exactly on a � grid point simpli�es this integration� The electron nonlin�

earities are evaluated in a manner completely analogous to the ion nonlinearities�

but in � rather than in z� The electron collision terms are evaluated implicitly�

The � dependence in Eq� ������ and the boundary condition that hfeib 	 h�ib at
the trapped�passing boundary automatically incorporates the strong e�ects of pitch

angle scattering near the trapped�passing boundary�

Only the electron density moment ever needs to be evaluated in real space�

To solve the quasineutrality equation� Eq� ������ the real space electron density�

ne�x� y� z�� is calculated by performing the � averages of nt�x� y� �� and h�ib as

given by Eqs� ������ and ������� Again� special care must be taken at the turning

points where Eq� ������ contains integrable singularities� Then the quasineutrality

equation is solved for �� and this entire process is repeated for the next time step�

As in the adiabatic limit� special treatment is required for perturbations

with ky 	 
� which are constant on �ux surfaces� When ky 		 
� trapped electrons

scattered onto passing orbits quickly become adiabatic� but this is not true if ky 	 
�

When ky 	 
� �de 	 ��e 	 
� so the bounce averaged kinetic equation reduces to�

d

dt
hfeib 	 hCib �hfeib � h�ib�� ������

The ky 	 
 electron moments for passing particles are separately evolved� and

interact with the trapped electron ky 	 
 moments through collisions� We need to

extend the � variable to include passing particles� which occupy the range � � � �

��
p
�
B� and extend the de�nition of the bounce average for � � ��

h�ib 	
R �
�� dz��x� z��jvkjR �

�� dz�jvkj
� ������

for modes which are independent of y� For modes with ky 		 
� h�ib 	 
 for passing

particles� Including nonadiabatic passing particles for ky 	 
� the generalization of

Eq� ������ is�

ne�x� y� z� 	
Z
p
d�vfe �

Z
t
d�vfe 	

Z
d�v �hfeib � h�ib Fe � �Fe� � ������

which can be written in the same form as Eq� �������

ne�x� y� z� 	 n�� � hnti� � n�hh�ibi�� ����
�
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if we extend the � average to include passing particles�

hA���i� 	
Z ��

p
��B

sin�����

�B
B�A���d�

Bmin

q
�� �B�Bmin��� � �
B���

� ������

When nt 	 
� Eq� ����
� becomes ne 	 n��� � hh�ibi��� That this is the proper

adiabatic density response� Eq� ������� can be seen by using the identity hh�ibi� 	R
dz ��x� y� z��B�

��� Comparison with Linear Kinetic Theory

We �rst test these trapped electron �uid equations by comparing the local linear

growth rates and frequencies with kinetic theory� In the local limit� we choose

kk 	 ��qR� and ignore the bounce averages� i�e� we approximate � 	 h�ib� We also

evaluate �de in the deeply trapped limit� at � 	 
� The local dispersion relation with

trapped electrons isRi 	 ��Re� where the �uid and kineticRi�s are given in Chapter

� and the �uid and kinetic Re�s are given by Eq� ������ and Eq� �����������
��

Fig� ��� shows the growth rates and real frequencies vs� k��i for the parameters

i 	 e 	 �� q 	 ���� 
n 	 ���� 
 	 ���� and Ti 	 Te� in the collisionless limit�

The gyro�uid and trapped electron �uid results are in very good agreement with

fully kinetic theory� The eigenfrequencies with adiabatic electrons are also shown�

These are the same parameters as in Fig� � of Kotschenreuther et al�� ����b��

and comparison with Fig� ��� shows that the destabilization by trapped electrons

is strongly over�emphasized by the local and deeply trapped approximations� which

neglect the bounce averaging of the potential and the variation of the toroidal

precession frequency with pitch angle� Both of these e�ects will reduce the trapped

electron density response� The three and four moment electron equations yield

virtually identical results�

We next compare fully nonlocal results with kinetic theory in the collisionless

limit� The eigenfrequencies from the six moment toroidal gyro�uid equations and

the three moment trapped electron �uid equations are compared with fully kinetic

calculations Kotschenreuther et al�� ����b� in Fig� ���� These results are for

a pure deuterium plasma in the collisionless limit for the parameters i 	 e 	 ��

�s 	 �� q 	 ���� 
n 	 ���� and 
 	 ���� as in Fig� � of Kotschenreuther

et al�� ����b�� The gyro�uid results with purely adiabatic electrons are also shown�
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Figure ���� Comparison of local linear eigenfrequencies from gyro�uid and trapped
electron �uid equations and fully kinetic results� The six moment toroidal gyro�uid
equations are used� coupled with either the � moment or � moment electron equa�
tions� The �uid results are in very good agreement with kinetic theory� The results
with adiabatic electrons are also shown� Comparison with Fig� ��� shows that the
destabilization by trapped electrons is strongly over�emphasized by the local and
deeply trapped approximations�
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Figure ���� Comparison of linear eigenfrequencies from gyro�uid trapped electron
�uid equations and fully kinetic results� The agreement is quite favorable� Also
shown are the gyro�uid results with adiabatic electrons� showing that the trapped
electron response doubles the growth rates for these parameters� even though this
is an ITG mode�

The trapped electron response doubles the growth rates for these parameters� even

though this is an ITG mode� Overall the agreement between gyro�uid and kinetic

results is quite favorable�

Now we test our model of electron collisions by comparing with fully kinetic

results� In Fig� ���� the variation of linear eigenfrequencies with collisionality is

shown� for k��i 	 
���� as in Fig� � of Kotschenreuther et al�� ����b�� The

other parameters are as above� Again� there is very good agreement� The gyro�uid

equations give a somewhat sharper transition from the collisionless regime to the

strongly collisional regime where the electrons become adiabatic� Better agreement

should be possible by modeling some of the velocity dependence of �e�v��

While trapped electrons have a strong e�ect on the ITG mode for low col�

lisionality� the most interesting e�ect of the nonadiabatic electron dynamics is the

destabilization of the trapped electron mode �TEM�� For large collisionality the elec�
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Figure ���� Variation of linear eigenfrequencies with �e� from kinetic theory and
the gyro�uid trapped electron model� There is good agreement from the collision�
less regime where the electron destabilization comes from the toroidal precession
resonance� to the strongly collisional regime where the electrons become adiabatic�
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trons are nearly adiabatic� and when i falls below a critical value� criti � the ITG

mode is stabilized and the plasma is completely stable� At low collisionality� when i

falls below the adiabatic criti � the trapped electron mode can still be unstable Re�

woldt and Tang� ���
�� Fig� ��� shows this behavior using the gyro�uid trapped

electron model� for the parameters above� holding i 	 e� The solid squares are

the linear growth rates for k��i 	 
�� at large ��e� At this large collisionality� below

i � ���� the ITG mode is stabilized� The open circles are the linear growth rates

for ��e 	 
�
�� For i
�
 ���� the ITG mode is unstable� and is further destabilized

by trapped electrons �compared to its growth rate with adiabatic electrons�� Below

i � ���� it evolves into a trapped electron mode� When this transition occurs is

a function of k��i� so the trapped electron mode growth rates are also shown for

k��i 	 
��� Near i 	 ���� it is di�cult to determine the eigenfrequency� since there

are two unstable modes with nearly the same growth rates�

Thus� at low collisionality� the most striking e�ect of trapped electrons is to

soften the ITG threshold� The TEM has quasilinear Qe � Qi� while the ITG mode

has Qe � Qi� as in Rewoldt and Tang� ���
�� so the TEM can be expected to

cause less ion heat transport� In this respect� there is still a threshold for the ion heat

transport� but it is not a sharp threshold at low collisionality� Below the adiabatic

ITG threshold� the growth rates become strong functions of electron collisionality

and electron temperature and density gradients� which suggests that the turbulence

levels and both ion and electron heat transport will be strongly dependent on these

parameters in this regime�
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Figure ���� Linear growth rates from the gyro�uid trapped electron model varying
i and holding i 	 e� showing the transition from an ITG mode to a trapped
electron mode at k��i 	 
��� At high collisionality �solid squares�� ��e 	 �
� the

electrons are nearly adiabatic� and when i
�
 ��� the plasma is completely stable�

At low collisionality �open circles�� ��e 	 
�
�� for i
�
 ��� the TEM is unstable�

The TEM growth rate for k��i 	 
�� is also shown� since the transition from ITG
to TEM depends on k��i�
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Field�aligned Coordinate System

T
URBULENCE IN TOKAMAKS is characterized by long parallel wave�

lengths and short perpendicular wavelengths� This chapter describes a

coordinate system for nonlinear �uid� gyrokinetic �Vlasov�� or particle

simulations that exploits the elongated nature of the turbulence by resolving the

minimum necessary simulation volume� a long thin twisting �ux tube� It is very

similar to the ballooning representation� although periodicity constraints can be in�

corporated in a manner that allows E�B nonlinearities to be evaluated e�ciently

with FFTs� If the parallel correlation length is very long� however� enforcing peri�

odicity can introduce arti�cial correlations� so periodicity should not necessarily be

enforced in poloidal angle at � 	 ��� The advantages and limitations of this ap�

proach are discussed� and some of the inherent assumptions are tested numerically

with 
D simulations of toroidal ITG driven turbulence�

��� Motivation

The turbulence that evolves from �ne�scale instabilities �e�g� �i� trapped electron�

or resistive ballooning modes� is thought to be responsible for the anomalously

large particle� momentum� and heat transport levels in tokamaks� It is therefore of

great interest to simulate numerically the nonlinear evolution of these instabilities

to determine the resulting �uctuation and transport levels� These instabilities are

characterized by long wavelengths parallel to the magnetic �eld and short perpen�

dicular wavelengths� on the order of the ion gyroradius� �i� This is� of course� a

�
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consequence of the rapid communication along �eld lines �at the sound speed for

electrostatic instabilities� and slow communication across the �eld lines �typically

velocities across the �eld do not exceed the diamagnetic speed�� In addition� �uc�

tuation measurements �Fonck et al�� ���
� Mazzucato and Nazikian� ���
� in

tokamaks indicate a relatively short perpendicular correlation length �� ���i�� but

a long parallel correlation length �Zweben andMedley� ����� Simulation of a full

tokamak with adequate resolution of these �ne perpendicular scales is somewhat be�

yond the presently available computational resources� since �i�a � ���� for present

day large tokamaks� where a is the minor radius� �The latest full torus gyrokinetic

particle simulations can now be run down to �i�a 	 ���� �Hammett et al�� �������

However� it may be unnecessary to simulate a whole torus to reproduce small�scale�

locally�driven turbulence� This chapter describes a coordinate system for nonlinear

simulations that resolves a much smaller volume and is therefore computationally

more e�cient� while still resolving the relevant small scales� The smallest possible

simulation volume is a long thin �ux tube that is several correlation lengths wide

in both perpendicular directions �radial and poloidal�� and extended along the �eld

line� exploiting the elongated nature of the turbulence �k� � kk�� This approach

is advantageous for �uid� gyrokinetic �Vlasov�� and particle simulations� and could

eventually be compared with full torus simulations�

The fundamental idea is to use coordinates that follow �eld lines� With

such coordinates a �ux tube �a tube with a surface parallel to B� which is bent

by magnetic curvature and twisted by magnetic shear� is mapped into a rectangu�

lar domain� Such twisting coordinates were originally proposed by �Roberts and

Taylor� ������ and �Cowley et al�� ����� emphasized their utility for nonlinear

calculations� In �Hammett et al�� ���
�� we described the essential features of this

approach� with an emphasis on slab geometry� Here we focus more on the toroidal

aspects and actual details of implementation� The major problem of these �eld line

coordinates is enforcing the periodicity constraint since the coordinates are multi�

valued in a torus �except at low order rational surfaces�� In �Cowley et al�� �����

it was emphasized that it is unlikely that the correlated volume wraps around the

torus and overlaps itself� When this is true� the physical periodicity of the full

torus is irrelevant� and the simplest approach is to simulate a �ux tube subdomain

that is several parallel correlation lengths long �just as it should be several perpen�

dicular correlation lengths wide�� As will be described in Section ��
� this can be
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di�erent from imposing periodicity at � 	 �� as is usually suggested for the bal�

looning representation �and which could lead to arti�cial correlations which modify

the results��

Another advantage of the �eld�line coordinates� in addition to the e�ciency

of a minimum simulation volume� is that it can easily implement radial periodicity

�which in regular coordinates is complicated by the shear of the magnetic �eld��

thus avoiding the problems of �quasilinear �attening� and allowing self�consistent

turbulence�generated �zonal� �ows ��ows which cause �ux surfaces to rotate�� The

�eld�line coordinates are also particularly convenient for gyro�uid simulations where

partially Fourier transformed quantities �in � of the 
 dimensions� need to be eval�

uated� such as j�d���j � jk� cos��� � kr sin���j�

We have carried out simulations with various sizes for the �ux�tube �box��

and veri�ed that the results are independent of the box size once it is larger than

the correlation lengths in each direction� thus justifying some of the assumptions

implicit in simulating a �ux tube subdomain rather than the full torus� This leads

to interesting questions regarding Bohm vs� gyro�Bohm scaling for the turbulence�

which we will consider in the Section ���

��� Flux Tube Simulations in General

If one wants to describe turbulence which is highly elongated along �eld lines and

narrowly localized across �eld lines it is natural to introduce coordinates which are

constant on �eld lines� A natural way to do this for any general magnetic �eld is

to use the Clebsch representation of the magnetic �eld �Kruskal and Kulsrud�

���� �since r �B 	 ���

B 	 r��r�� �����

Clearly B � r� 	 B � r� 	 � so that � and � are constant on �eld lines� Thus

� and � are natural coordinates for the �ux tube� A third coordinate� z� must

be de�ned that represents distance along the �ux tube� One obvious choice of the

third coordinate is the physical length along the �eld line� though this is not always

the most convenient choice� A complication of using � and � as coordinates is that

they are not unique� for instance if �� 	 � � g��� then B 	 r�� �r�� In many

applications toroidal �ux surfaces are de�ned and it is natural to take � to be the
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poloidal �ux� The choice of � is less obvious and may be optimized for a particular

calculation� A further complication is that � and � are typically not naturally

single valued and a cut must be introduced to enforce single values �Kruskal and

Kulsrud� ����� This issue will be discussed extensively below� Let us imagine

that a choice of �� �� and z has been made and that � 	 ��r�� � 	 ��r�� and

z 	 z�r� are known functions� This information can be obtained for instance from

the output of an equilibrium code� Thus� in what follows� the metric coe�cients for

the transformation to the �	�	 z coordinates are taken to be known� The Jacobian

of this transformation is J 	 �r��r� � rz����

Three spatial operators appear many times in the equations for the pertur�

bations� they are� B � r� r�
�� and B � r� � r� In the �� �� z coordinates we

have�

B � rA 	 �r��r� � rz�
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where A and � are any scalars� Eqs� ����������� are completely general�

We shall assume that the turbulence we wish to simulate has perpendicular

correlation lengths that are short compared to equilibrium scale lengths but a par�

allel correlation length of the same order as the equilibrium scale lengths� Let us

consider a simulation domain that is a �ux tube volume de�ned by ����� � � �

�� � ��� �� ��� � � � �� � ��� and �z� � z � z�� This volume is chosen to
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be several correlation lengths in all three directions� Of course one wants to make

this volume as small as possible to save computer time� Once the box volume is

larger than several correlation lengths the turbulence should be insensitive to the

size of the box� One tests whether the box size is adequate �in the usual way� by

increasing the box size and comparing the turbulence in the di�erent size boxes� or

by measuring the correlation functions in a given box and verifying that they go

to zero at the edges of the box� In this way we arrive at a minimum simulation

volume�

Since the simulation volume is narrow in � and � �compared to equilib�

rium variations� all equilibrium quantities �or gradients of equilibrium quantities

when they appear in the equations� are to lowest order functions of z alone� In

other words� the perpendicular scale of the equilibrium is much greater than the

perpendicular scale of the perturbations� and the box is chosen to be only slightly

larger than the largest scale perturbations� so across the box �i�e� in � and �� one

can ignore the variation of these equilibrium quantities� For example� the Jacobian

J 	 �r��r� � rz��� is to a good approximation constant across the box but not

along the box� thus J 	 J���	 ��	 z��

When A is a perturbed scalar �e�g� n� T � etc��� and � is the potential� we can

neglect the 
�
z terms in Eqs� ���
� and ����� since they are smaller by kk�k�� The

coe�cients in Eqs� ������ ���
�� and ����� �various elements of the metric tensor� are

again roughly constant across the box and therefore may be taken as functions of z

alone with � 	 �� and � 	 ��� Then Eqs� ���
� and ����� reduce to�

r�
�A 	 jr�j�


�A


��
� �r� � r�


�A


�
�
� jr�j�


�A


��
	 �����

B�r� � rA 	

�

A


�


�


�
�


A


�


�


�

�
B�� �����

Therefore� the equations to be solved in this �minimum simulation� volume

have no explicit dependence on � or �� which leads to great computational sim�

pli�cation� The E�B nonlinearity takes the simple form Eq� ������ and all other

coe�cients in the equations are only functions of z�

The perpendicular boundary conditions on the perturbations at � 	 �����

and � 	 �� � �� are taken to be periodic� If the box is more than a correla�

tion length wide the turbulence should be insensitive to the boundary conditions�
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although one set of boundary conditions that is not advisable is �xed boundary

conditions which prohibit energy and particle �uxes through the boundary� If �xed

radial boundary conditions without sources or sinks are used� then them 	 �	 n 	 �

component of the perturbations �where m is the poloidal mode number and n is

the toroidal mode number� will grow to eventually cancel the driving equilibrium

gradients ��quasilinear �attening��� thus turning o� the turbulence� In principle�

this problem can be overcome with a su�ciently large box so that the time scale

to �atten the driving gradients becomes much longer than the simulation time�

But periodic radial boundary conditions avoid �attening altogether and allow the

use of a more e�cient� smaller box� Past simulations have sometimes zeroed out

the m 	 �	 n 	 � components of perturbations to avoid this �attening� but that

prevents the turbulence from being able to generate sheared zonal �ows �resulting

from the m 	 �	 n 	 � component of the electrostatic potential� ����� which varies

only with minor radius�� which can be an important nonlinear saturation process

�Hammett et al�� ���
� Dorland et al�� ���
� Cohen et al�� ���
� Hasegawa

and Wakatani� ���� Carreras et al�� ����� Diamond and Kim� ������ Peri�

odic radial boundary conditions allow the self�consistent evolution of m 	 �	 n 	 �

perturbations such as the zonal �ows�

The assumption of radial periodicity in the small �ux�tube is not based

on actual physical constraints �that would require simulating the full tokamak to

include losses to the limiter� auxiliary heating of the tokamak core� and including a

vacuum region and a conducting shell�� Instead� we are assuming that the statistical

properties of the �uctuations at � � ��� are the same as at �� and that if the

simulation box width ��� is larger than the radial correlation length we can assume

that they are actually identical at every instant� This statistical radial periodicity

also serves as a model of the e�ect of turbulence in neighboring regions on the

simulated subdomain� This is illustrated by the contours in Fig� ���� which show

eddies that stick out of one side of the box and reenter on the other side of the box�

Periodic boundary conditions are often used in ��D plasma simulations �such as

Hasegawa�Mima� or in simulations of homogeneous Navier�Stokes Turbulence� but

are complicated somewhat in 
�D plasma simulations by the shear in the magnetic

�eld� Because the parallel dynamics are so much faster than the perpendicular

dynamics �so kk � k��� the �uctuations tend to be elongated along the direction

of the magnetic �eld� which points in di�erent directions at di�erent radii� In
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regular coordinates this requires the use of something like the �twist�and�shift�

radial boundary conditions suggested by �Kotschenreuther and Wong� ������

also discussed in �Dorland et al�� ���
� Dimits� ���
�� The �eld�line coordinates�

however� are already aligned with the magnetic �eld� so radial periodicity becomes

simply A�� � ���	�	 z	 t� 	 A��	�	 z	 t�� Some of the issues involved in radial

periodicity are discussed in more detail in �Dorland et al�� ���
� Dorland� ���
�

Cohen et al�� ���
��

For the same reasons� we can also assume statistical periodicity in the �

direction� A��	�����	 z	 t� 	 A��	�	 z	 t�� There is no explicit dependence of the

operators in Eqs� ��������� on � or �� so it is useful to expand in a Fourier series in

� and � �which also provides periodicity in those directions��

A��	�	 z	 t� 	
�X

j���

�X
k���

�Aj�k�z	 t�e
ij�����������ik����������� �����

The boundary conditions in the z direction will be discussed in the next section�

Note that while each term in the Fourier series is a plane wave in �� � coordinates�

the wavefronts in real space can be very distorted� Perhaps the most pronounced

distortion arises from magnetic shear� To understand this we �rst de�ne the angle�

�� between constant � and � surfaces�

cos � 	
r� � r�

jr�jjr�j
� ����

Magnetic shear makes � change as z changes�in real space the �ux tube is then

sheared and its cross�section goes from being rectangular where � 	 ��� to being a

parallelogram where � �	 ���� as shown in Fig� ���� The wavefronts of each term in

the Fourier series� Eq� ������ also get sheared� For example the j 	 �� k �	 � term has

wavefronts corresponding to the constant � lines� The individual terms in the series

Eq� ����� are therefore �twisted eddies� �Roberts and Taylor� ����� Cowley

et al�� ����� whose wavefronts twist as one moves along z�

Now let us discuss the choice of the coordinates � and �� A useful discussion

of this procedure can be found in �White� ����� As shown in �Greene and John�

son� ������ it is possible to choose �� �� and generalized �toroidal� and �poloidal�

angle variables  and � such that the �eld lines are straight in the ���� plane and

physical quantities are periodic over �� in both variables� This choice of coordinates
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Figure ���� Shearing of �ux tube cross section at di�erent positions along the tube�
Lines represent constant � �dashed� and constant � �solid� lines�

will simplify our discussion of periodicity in section ��
� For the general magnetic

�eld Eq� ������ we have �Kruskal and Kulsrud� �����

� 	 �� q����� ���	 �	 ��	 �����

where � 	 ������
R
V d�B � r� is the poloidal �ux� q��� 	 d�T�d�� �T 	 ������R

V d�B � r� is the toroidal �ux� d� is the volume element� and � and � are the

physical toroidal and poloidal angles� so physical quantities are periodic over ��

in � and �� The function � is also periodic in � and �� We now introduce a new

toroidal coordinate�

 	 �� ���	 �	 ��� ������

With this choice

� 	  � q����	 ������

and the magnetic �eld lines are straight in the ���� plane� Further� periodicity is

preserved in  and �� Often� � is also rede�ned to choose a speci�c form of the

Jacobian� An alternative to Eq� ������ would be to use  	 � and introduce a

new poloidal coordinate �� 	 � � ��q� In any case� we will make use of the fact

that a coordinate system can be chosen such that magnetic �elds lines are straight
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in the ��	 � plane� and are given by � 	  � q���� 	 constant� For our parallel

coordinate z we will use z 	 �� since this makes our description very close to the

usual ballooning mode formalism� Note that z is not restricted to �� � z � �� as

we may choose to simulate a �ux tube which follows a �eld line wrapping around the

torus several times in the poloidal direction� not just once� This will be discussed

further in the next section�

In summary� our �eld�line following coordinate system is given by ��	�	 z��

where �eld lines are labeled by constant � and �� One can think of � as a radial

coordinate� � 	 �q���� as a perpendicular�to�the��eld coordinate� and z 	 � as a

parallel�to�the��eld coordinate� Our notation simpli�es if we introduce the following

new variables�

x 	
q�

B�r�
�� � ���	 y 	 �

r�
q�
�� � ���	 z 	 �	 ������

where q� 	 q����� B� is the �eld at the magnetic axis� and r� is the distance from

the magnetic axis to the center of the box� Then Eq� ����� becomes�

A�x	 y	 z	 t� 	
�X

kx���

�X
ky���

eikxx�ikyy �Akx�ky�z	 t�	 ����
�

with kx 	 j���x� ky 	 �k���y� �x 	 q����B�r�� and �y 	 r����q�� The

rectangular computational box of �radial� width ��x� and �poloidal� width ��y�

and extended along the �eld line� �� is mapped onto a �ux tube� as shown in Fig� ����

for example�

These coordinates are similar to those used in �Waltz and Boozer� ���
��

Our �� �� and z are analogous to �q��� ��� and �� in �Waltz and Boozer� ���
��

respectively� since they have chosen to measure the distance along the �eld line

with ��� a �toroidal� angle� while we use �� A more signi�cant di�erence between

our representation and �Waltz and Boozer� ���
� is the treatment of periodicity�

though their more recent work �Waltz et al�� ����a� has adopted a similar treatment

to ours� described in the next section�

��� Periodicity and Parallel Boundary Conditions

The choice of parallel boundary conditions involves a number of subtle� yet im�

portant issues� The main concept is that of a statistically�motivated periodicity�
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Figure ���� The rectangular computational domain mapped onto a �ux tube in a
torus� with q� 	 ��� and shear� �s 	 ���� The ends of this �ux tube are cut o�
at poloidal angle �� and �� and the sheared cross�sections of the �ux tube in the
poloidal plane are indicated�
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as described in Section ��� for the � and � boundary conditions� For moderately

�ballooning� turbulence we might expect parallel correlation lengths �c � �� � ���

�though it might be longer than this�� The simulation box should have a length

�z� 	 ��N in the parallel direction which is several times the parallel correlation

length� In some cases a box length of �� might be su�cient� But an even longer

box may be necessary in many cases to ensure that one end of the box is su�ciently

decorrelated from the other end of the box to avoid arti�cially constraining corre�

lation e�ects� just as the box must be at least a few correlation lengths wide in the

� and � directions� For the cases simulated in Section ���� parallel box lengths of

at least �� were needed for good convergence�

One must be careful about which other coordinates are held �xed while

applying parallel periodicity� just as one must be careful to impose radial periodicity

in �eld�line coordinates ��	�	 z� �i�e�� impose periodicity in � while holding � and z

�xed�� As discussed in Section ���� trying to impose radial periodicity in the usual

��	 �	 � coordinates would miss the fact that �uctuations tend to be extended along

the magnetic �eld� which changes direction in the the ��	 � plane as � is varied�

Similarly� though the �ux�tube is rectangular in ��	�� coordinates� it twists into

a parallelogram in physical space as one follows the �ux�tube along z �Figs� ���

and ����� The �uctuations in the physical plane perpendicular to a magnetic �eld

line should be statistically identical at all places along that �eld�line with the same

poloidal angle �z 	 �	 ��	 ��	 � � ��� irrespective of the twisting of the �ux�tube which

increases without bound as z 	 
� Because of this� we will assume that the

�uctuations are periodic in z while holding ��	 � �xed� rather than holding the

�eld�line coordinates ��	�� �xed� The reader may �nd it easier to visualize this in

sheared slab geometry� as carried out in �Hammett et al�� ���
��

A related problem is that if we were to impose parallel periodicity as A��	�	

�z�� 	 A��	�	�z��� then every �eld line would e�ectively be a rational �eld line

that connected to itself� Field lines are labeled by constant ��	��� and such a

boundary condition causes any particles �owing out one end of the �eld line to

�ow back in the other end of the box on the same �eld line� This is unlike a real

sheared magnetic �eld where the set of irrational �eld�lines is dense� i�e�� most of

the �eld�lines are irrational and never connect to themselves�

So� we will impose periodicity in z while holding � and  �xed �rather than
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holding � and � �xed�� Speci�cally�

A��	���	 �	 z����
���
��N�

	 A��	���	 �	 z����
���
���N�

Rather than the form of a boundary condition in z� this can be stated as a more

general periodicity relation with period ��N �

A��	��� � ��N	 �	 z�� � ��N�� 	 A��	���	 �	 z���� ������

Physically� this is equivalent to considering two ��	 � planes cutting through the

�ux tube� at z 	 � and at z 	 � � ��N � and assuming that the turbulence is

�statistically� identical in those two planes� To evaluate this periodicity constraint�

�rst substitute � 	  � q����� z 	 � into Eq� ������ and take �� 	 � for simplicity

�it drops out�� to get

A 	
�X

j���

�X
k���

�Aj�k��	 t�e
ij�����������ik������ik�q�������� ������

For a thin �ux�tube� we can approximate q��� � q� � �� � ���q�� where q� �

�
q�
������� to get

A 	
�X

j���

�X
k���

�Aj�k��	 t�e
i��������j����kq�������ik������ik�q������ ������

Substituting this into Eq� ������ yields

�X
j���

�X
k���

�Aj�k�� � ��N	 t�ei��������j����kq������N������ik������ik�q������N����

	
�X

j���

�X
k���

�Aj�k��	 t�e
i��������j����kq�������ik������ik�q������ ������

In order for this to be valid at any arbitrary value of � the coe�cient of each

exp�ik����� term must be identical�

�X
j���

�Aj�k�� � ��N	 t�ei��������j����kq������N������ik�q������N����

	
�X

j���

�Aj�k��	 t�e
i��������j����kq�������ik�q������ �����
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We can make the coe�cients of �� � ��� identical by shifting the j index with the

substitution j 	 j� � �j into the left�hand side� where

�j 	 ��Nkq������ 	 ��Nk�q���	 ������

and where ��q 	 �q��� is the change in q from one edge of the box to the other�

Note that �j must be an integer� which quantizes the ratio �q���� as discussed

below� We now have

�X
j����

�Aj���j�k�� � ��N	 t�ei��������j
�����kq�������ik�q������N����

	
�X

j���

�Aj�k��	 t�e
i��������j����kq�������ik�q������ ������

For convenience� we can take the width of the simulation volume ��� to be ��n�

of the circumference in the toroidal direction�

�� 	 ��n�	 ������

where n� is a positive integer� Dropping the primes on j in Eq� ������� the parallel

periodicity condition now becomes

�Aj��j�k�� � ��N	 t�Ck 	 �Aj�k��	 t�	 ������

�j 	 kJ	 J 	 �n�N�q	 ����
�

where the phase�factor Ck 	 exp��i��Nkq�n��� Note that the requirement that j

be an integer quantizes the range of q spanned by the �ux tube ��q to be J�n�N �

where J is an integer� For q� �	 �� this then quantizes the radial box size since

�q 	 q���� One can treat shearless q� 	 � cases as well� then �j 	 J 	 �� and

the radial box size ��� is no longer quantized and just needs to be at least a few

radial correlation lengths wide� In the usual q� �	 � case� the radial position of the

simulation box can always be adjusted slightly �less than one radial box width� so

that q� 	 q���� is rational such that the phase�factor Ck 	 ��

Eq� ������ thus expresses a modi�ed periodicity condition on the mode am�

plitudes� the value of a coe�cient at one end of the box is speci�ed by the value

of another coe�cient �with the same k but a di�erent j� i�e�� a di�erent ��� as we

will describe below� at the other end of a box� This is represented graphically in
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Fig� ��
 �which uses notation introduced below�� Of course computer simulations

can not retain an in�nite set of j�s and k�s� Instead� enough j and k modes are

kept to be able to resolve up to a desired value of k��i� above which the coe�cients
�Aj�k are assumed to vanish� Note that �j 	 � for k 	 � modes� so the periodicity

condition for k 	 � modes simpli�es to �Aj���� � ��N	 t� 	 �Aj����	 t��

This completes the formal speci�cation of the boundary conditions� but we

go on to express it in terms of notation often used in the ballooning transformation�

It is common to introduce the �ballooning angle� ���j	 k�� such that the radial

derivative of an individual �j	 k� mode of Eq� �������





�

�����
���

� i��j��� � kq������	 ������

vanishes at � 	 ��� Note that this de�nition of �� employs a derivative with respect

to � while holding � and  �xed� not � and �� Clearly at � 	 ���j	 k� the wavefronts

of the j	 k�th term in Eq� ����� are perpendicular to the � surfaces� Eqs� �����������

yield

k���j	 k� 	
j��

��q�
	

j�

n��q
� ������

�� is discrete with spacing ��� 	 j��kn��q that is dependent on k� Only the

combination k�� ever appears and the limit k 	 � must be interpreted in terms of

the discrete j sum� In particular� the turbulence can generate k 	 � ��� 	
� modes

corresponding to zonal �ows which can be important in the nonlinear dynamics� so

the k 	 � modes must be allowed to evolve self�consistently� �Likewise� one must be

careful about the shearless limit q� 	 �� where �� 	 
� The �eld�line coordinates

are still useful� but it is then better to think about the j �or kx� label of the

mode� which remains �nite� rather than the �� label�� Using the de�nition of �� in

Eq� ������� we can express the shift �j in Eq� ������ as a shift in �� instead�

��� 	
�j�

kn��q
	 ��N� ������

Using the de�nition of �� to denote �Aj�k by a corresponding �A���k� and absorbing

a phase factor which is independent of the coordinates ��	 �	 � by using  Aj�k 	
�Aj�k exp��ikn��q����j	 k� � ����	 the parallel periodicity condition of Eq������� can

be written in a form related to the familiar ballooning representation�

 A�����N�k��	 t� 	  A���k�� � ��N	 t�� ������
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This form of the periodicity relation is illustrated graphically in Fig� ��
�

Figure ��
� Boundary condition for  A along the �eld line coordinate� Eq� ������� Dif�
ferent kx modes �i�e� ���s� with the same ky are connected at ��N � i�e�  A���k���N�
is connected to  A�����N�k��N��

Using Eqs� ������ and ������ and q��� � q� � �� � ���q� �or going back to

Eq� ����� and using q itself for the radial�like coordinate ��� we can rewrite Eq� ������

as

A��	 �	 	 t� 	
�X

j���

�X
k���

 Aj�k��	 t�e
ikn�	��q���������j�k��
	 �����

It should be emphasized that Eqs� ������ and ����� are merely the same equations in

di�erent notation� Eq� ����� bears a strong resemblance to the standard ballooning

representation� There are however important di�erences which we will discuss more

fully in Section ����

Eq� ������ when used with the periodicity relation in Eq� ������� is periodic

in � with period ��N � By setting N 	 �� this can satisfy physical periodicity

in �� achieving the same result as the �sum over p� in the standard ballooning

representation �see Eq� ���
���� Thus� we are able to recover physical periodicity

as does the quasiballooning approach �Dimits� ���
�� However� one should not

necessarily use N 	 �� Rather� one should use a large enough N so that the parallel

box length �z� 	 ��N is at least several times the parallel correlation length� as
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argued in the beginning of this section� This point may be confusing to those who

think that N 	 � regular periodicity in � should always be enforced because � is

a physical variable� This would be true if we were simulating the full torus with

n� 	 �� Indeed� Eq� ����� or ������ provides an expansion in a complete basis

set if n� 	 � and N 	 �� However� we are not trying to simulate the full torus�

but a thin �ux�tube whose width is only ��n� of the full toroidal circumference

�motivated by the short wavelengths and short perpendicular correlation lengths of

the turbulence�� Then Eq� ����� represents n� identical copies of the simulation

volume if one considers the full range of � �	 ��� The distance along the �eld line

in this simulation volume is parameterized by z 	 �� Following the �ux tube along

the �eld lines �at �xed � 	  � q����� from � 	 � to � 	 �� will not lead to the

same physical location �unless q is very close to an integer� but to one of the n�� �

identical copies of itself� Forcing periodicity at this point is undesirable �unless the

parallel correlation length is indeed signi�cantly shorter than ��� because it is a

�ction of simulating only ��n� of the toroidal direction with n� identical copies�

This is illustrated by Fig� ���� which shows a correlated volumewith a parallel

correlation length �c � 
�� and a perpendicular correlation length equal to half the

simulation box width� �c 	 �� 	 ���� If the simulation �ux tube has a parallel

length of only ��� then this correlated volume would be forced to overlap with

one of the n� images of itself� causing arti�cial interference e�ects� By extending

the simulated �ux tube to a length of ��� we allow the whole region to evolve

self�consistently�

Of course� at an integer q �ux surface� a simulation volume really does over�

lap itself within a distance � 	 �� and experience these interference e�ects� More

generally� a correlated volume will overlap itself when � increases by ��N if q��N

modulo �� is less than the perpendicular correlation length �c� This can be used

to de�ne a maximum parallel length �max which the �ux�tube can be without phys�

ically overlapping itself� �max is also the maximum correlation length a correlated

perturbation can have without �biting it�s tail� and experiencing coherent interfer�

ence e�ects� �max is plotted vs� q��� in Fig� ���� Note that if one simulates only

��n� of the toroidal direction� then a correlated perturbation is n� times as likely to

run into itself or one of its images� In this case we may need to extend the parallel

length of the simulated �ux�tube to avoid these arti�cial correlations� For most
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1 2 3 4 5 6

A

Figure ���� Illustration on a �ux surface of a possible correlated volume of the
point 
 �enclosed by the solid line� with parallel correlation length �c � 
��� and
a minimum simulation volume enclosed by the dashed line� The diagonal lines are
parallel to the �eld lines �here q 	 ����� In this case the simulation volume has a
toroidal width of one sixth the total toroidal circumference� i�e� n� in Eq� ������ is
�� If the potential is represented by Eq� ����� and � is made periodic in �� there
are six identical copies of the correlated volume centered at the points ���� The
correlated volume of point � �dotted line� partially overlaps the correlated volume
of point 
� at the point marked A� This is unphysical and can be avoided in this case
by making the system periodic over ��� ��� � � � ��� The minimum simulation
volume illustrated is for ��� � � � ���
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of the plasma� there is no di�culty in extending the simulated �ux�tube to be ��


times longer than ��� without having the �ux�tube physically run in to itself� Even

for a simulation �ux tube which spans a range of q values� for example ��q � ����

at worst the �ux tube might overlap itself brie�y near an integer or half�integer q

surface� As pointed out in �Cowley et al�� ������ these low�order rational surfaces

occupy a small fraction of a minor radius of a tokamak and so it is very infrequent

that a correlated perturbation will �bite it�s tail�� Furthermore� experimental evi�

dence �Zarnstorff et al�� ���
� on tokamaks indicates that there are no unusual

features near low�order rational surfaces �except when there are macroscopic MHD

instabilities��

Figure ���� Distance along the �eld line� �max� at which a correlated volume �with
perpendicular width ��� 	 ����� overlaps itself� for varying q� a� For n� 	 �� �max

is small only near low order q surfaces� b� For n� 	 �� the maximum correlation
length is reduced� since the correlated volume can hit copies of itself� In this case�
if the physical correlation length is longer than �max� the box must be extended and
the periodicity condition relaxed�

In practice we �nd that the �ux�tube length ��N doesn�t need to be ex�

tremely large� and N 	 � may usually be su�cient� For the particular cases used

in Section ���� �Figs� ���� and ���
�� we �nd that N 	 � simulations produce a �i

which is about 
�! low� while N 	 �� � are virtually indistinguishable� However�
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there may be other cases where an even larger N is required� In each case� one

should justify the value of N a posteriori� by verifying that the parallel correlation

functions from the simulations indeed fall o� signi�cantly in a distance ��N � and"or

by carrying out convergence studies with di�erent values of N �just as convergence

with the size of the box in the other � directions should also be studied�� Again�

the fundamental assumption in all of this is that it is probably su�cient �and most

e�cient� to use a simulation volume which is just a few correlation lengths in all 


directions�

��� Boundary Conditions for Particle Simulations

Particle simulations can also take advantage of an optimum �ux�tube simulation

volume using the �eld�line coordinates ��	�	 z� described in Section ���� Field

quantities such as the electrostatic potential can be represented by the Fourier series

Eq� ������ with the parallel boundary conditions given by Eq� ������� or equivalently�

Eq� �������

For the particles� we must specify the location where a particle will reenter

the box after passing through an edge of the box� The particle�s velocity should

not be changed� In the perpendicular directions � and �� standard periodicity

is used� In the parallel direction� z� periodicity is applied while holding � and 

�xed �rather than holding the �eld�line coordinates � and � �xed�� for the reasons

described at the beginning of Section ��
� To quantify this� �rst recall the de�nitions

� 	  � q����� and z 	 �� If a particle exits the box at the position ���	 ��	 z 	

��N�� where �� 	 � � q�����N � then it will reenter the opposite side of the box

at ���	 ��	 z 	 ��N�� where �� 	 ��� and �� 	 � � q�����N � Thus the particle

will be shifted in � by the amount

�� 	 �� � �� 	 q������N modulo ��� ������

Where the modulo operation accounts for the fact that if this shift in � causes �� to

fall outside the range of the box� ��� � � � ��� then the particle has fallen into

a periodic copy of the original box� and is simply shifted by a multiple of ��� back

into the simulation domain� Expanding q��� 	 q��������q�� using Eqs������� and

����
�� and introducing an integer K to reproduce the �K�� shift of the modulo



��� Chapter �� Field�aligned Coordinate System

function� we �nd that

�����

���
	 q�Nn� �K � J

�� � ���

���
� ���
��

As discussed after Eq� ����
�� q�Nn� can usually be assumed to be an integer� At

the outer edge of the box� � 	 ������ the box has twisted by J�� box lengths in

the � direction� and by �J�� box lengths at the inner edge of the box� � 	 ������

Thus J represents the integer number of box widths in � that the box has twisted

from one end in z to the other end� This is illustrated for J 	 � in Fig� ���� In this

�gure� q�Nn� is assumed to be an integer for simplicity� so the center of the box is

at the same physical point at � 	 ��N � In general� the ends of the box will overlap

with periodic copies of the original box� �It may be easier to visualize this in a box

which spans �� � � � �� � ���� rather then being centered around ��� Then the

inner edge of the box at �� is stationary� and the outer edge at �� � ��� will be

twisted by J box widths��

Figure ���� Boundary conditions in the parallel direction� At � 	 �� the simulation
box is rectangular in  and �� The twisted ends of the box at � 	 �N �solid� and
� 	 ��N �dashed� are shown� If a particle leaves the � 	 �N end of the box at
����� it reenters the � 	 ��N end of the box at ����� given by Eq� �������

To summarize� if a particle�
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leaves the box from then it reenters at
��� ���	�	 z� ��� ���	�	 z�
��	���	 z� ��	���	 z�
��	�	��N� ��	�� ��	��N�

The equivalent particle boundary conditions can also be stated for the �x�y�z�

coordinates of Eq� ������� If a particle leaves the end of the box at �x�	 y�	 z 	 ��N��

it reenters at �x�	 y�	 z 	 ��N�� where

�y 	 y� � y� 	 ��q�Nn���y � J�y x��x� modulo ��y	 ���
��

the analogue of Eq� ������� The integer J 	 ��N�s�x��y� �where �s � �r��q��

�
q�
r�r�r�� measures the number of twists of the box in the y direction from one

end in z to the other� Thus� if a particle�

leaves the box from then it reenters at
��x	 y	 z� ���x	 y	 z�
�x	�y	 z� �x	�y	 z�
�x	 y	��N� �x	 y � �y	��N�

Of course all of the above boundary conditions are reversible� i�e�� if a particle

leaves at ���x	 y	 z�� it will reenter at ��x	 y	 z�� etc�

��� The Ballooning Transformation and its Rela�

tion to Flux Tube Simulation

The linear theory of short perpendicular wavelength instabilities in tokamaks has

been developed largely in terms of the so called �Ballooning Transformation� �Con�

nor et al�� ����� Glasser� ����� Lee and Van Dam� ������ In this section we

will discuss the relationship of the �Ballooning Transformation� to our �ux tube

simulation scheme� In Ballooning theory a single eigenmode is represented as�

�n��	 �	 	 t� 	
�X

p���

e�i�t�in��inq�����������p� ��n��� �� � ��p	 ��	 ���
��

where �� 	 ����� and ��n�����	 �� depend on �� The toroidal mode number n is

any large integer� The variation in � and � of the exponential is large whereas

the variation of �� and �� is �nite� In lowest order in an expansion in ��nq one

obtains a di�erential equation in � for ��n��� ��	 ��� This equation is solved with ��
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a parameter and with the boundary conditions ��	 � as j�j 	 
� so the sum over

p can converge� Periodicity in � is recovered by the p summation in Eq� ���
��� A

lowest order approximation to the eigenvalue �n���	 �� is obtained on each surface�

In higher order the eigenvalue is quantized by solving radial di�erential equations�

Much has been written about this higher order procedure to �nd the radial behavior

and we cannot do justice to the subtleties here �Connor et al�� ���
� Taylor et al��

���
�� Let us consider instead a narrow radial annulus �� ��� � � � �� � ���

Let � be periodic in � over ��� at constant � 	  � q���� and �� then we can

represent the radial variation of � in a Fourier series in �� with n�� 	 l���q� i�e�

the � variation of ����� and ��n�����	 �� are combined into a discrete series in ���

Thus one could write for an arbitrary perturbation in this annulus�

���	 �	 	 t� 	
�X

n���

l�X
l��l���

�X
p���

ein��inq��������p��il������ ����  �n�l�� � ��p	 t�	

���

�

where we have rescaled eilq���q
��� ��n�l 	  �n�l� The p summation makes this expres�

sion manifestly periodic in �� Expanding q���� so exp��inq��p�il����������� 	

exp��inq���p � i��l� �pn�q��� � �������� it is clear that in this summation we

need only take jlj  l� 	 n�q since otherwise the p and l sums duplicate terms�

This restricts the bandwidth in � of the perturbations in ballooning space� and

makes the ballooning transformation unique �Hazeltine and Newcomb� ������

If we set n� 	 � in Eq� ����� and N 	 � in Eqs� ������ and ����
� we obtain

an exactly equivalent representation to Eq� ���

�� To see this we note that the j in

Eq� ����� and p and l in Eq� ���

� are related by j 	 l��pl� and �j 	 �l�� and we

set k 	 n� Thus the �� � � � � range of the  �n�l modes with jlj � l� correspond

to the  Aj�k modes with jjj � �j�� �de�ned only from �� � � � � for N 	 ��� The
 Aj�k modes with jjj � �j�� correspond to the �� � ��p � � � � � ��p range of

the  �n�l modes with p 	 �j � l���j� The boundary condition Eq� ������ makes this

series of  Aj�k modes �for all j� identical to  �n�l �for jlj � l�� de�ned on the extended

domain �
 � � �
 �when n� 	 N 	 ���

The boundary condition Eq� ������ simpli�es the evaluation of the E�B

nonlinearities compared to the usual ballooning representation� The simple form

Eq� ����� is easy to evaluate using a pseudospectral method� A fully spectral

method remains in k space at all times� so the nonlinear terms become convo�
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lutions in k space and require of order N�
xN

�
yNz � N� operations� By using Fast

Fourier Transforms �FFTs�� the pseudospectral method reduces the operations to

NxNyNz�log�Nx � log�Ny� � N� resulting in a very signi�cant savings for large N �

In the ballooning representation �i�e� using Eq� ���

� to represent the per�

turbations� the nonlinear terms involve sums over p �Frieman and Chen� �����

�vE � rA�n�l��� 	
c

�

X
n��n���n

X
l�

X
p��p��

e���iq��n
�p��n��p���n�n��q�����p�� � p�� � ��� � ������

���
��h
 �n��l��� � ��p��  An���l���� � ��p����  An��l��� � ��p��  �n���l���� � ��p���

i
	

where l�� 	 l� l�� ��q�n�p�� n��p��� and ���n	 l� 	 l��n�q� Again jl�j  jn�j�q and

jl��j  jn��j�q� and  A and  � are de�ned on an in�nitely extended � domain� without

the boundary condition Eq� ������� This expression di�ers slightly from earlier

literature since we are using a discrete representation in �� and have implicitly used

the inverse ballooning transformation �Hazeltine and Newcomb� ������ If the

mode width in � is less than �� the sums over p appear to be a small e�ect� and

are usually neglected in nonlinear calculations using the ballooning representation�

This conclusion may be misleading� Noting that in Eq� ���

� kx 	 j���x 	

�l��pl�����x and ky 	 �n���y 	 �nq��r�� we see that in the standard ballooning

representation� only a wedge of  �n�l�s in �kx	 ky� space are evolved��n�q � l � n�q

�for n �	 ��� and the rest of k space is �lled by the sum over p� For small n the range

of kx�s evolved is small� so it may take many terms in the p sum to reach moderate

kx�s� The wedge of modes evolved in the ballooning representation are the open

circles in Fig� ���� while our approach evolves a rectangle of modes in kx and ky�

up to ky�i � � and at least kx�i � � �both the circles and the dots in Fig� �����

This �gure corresponds to the mode arrangement of the runs in Fig� ���
� where

the shear is very weak ��s 	 ����� �x � ����y� kmax
y �i � �� and kmax

x �i � ���� so

J 	 N � The nonlinear interaction between a mode �kx	 ky� within the p 	 � wedge

and a mode outside the wedge �the square box in Fig� ���� for example� could be

strong� even if its linearly most unstable mode structure �of many eigenmodes in

�� is centered a long distance down the �eld line� For low ky and large kx one

would have to include many p�s to capture this interaction �in this case� nine�� In

our nonlinear simulations� we do see modes outside the p 	 � wedge excited to

signi�cant amplitudes�
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Figure ���� The wedge of kx	 ky modes evolved in the ballooning representation
�open circles�� and the rectangle of modes evolved in our approach �circles and
dots�� To recover the nonlinear interaction between the p 	 � modes and the mode
marked by the square box� nine terms in the p sum of Eq� ���
�� are needed� even
though kx�i � �� for this mode�

While the usual k�
� � k�

�� � �b nonlinearity can be e�ciently evaluated pseu�

dospectrally� it is not obvious that the ballooning nonlinearity� with its sums over p�

can be� However� since our representation is equivalent to the ballooning represen�

tation �if n� 	 N 	 ��� it automatically includes the sums over p in the nonlinearity�

Thus the most e�cient way to numerically evaluate the nonlinear terms using the

ballooning representation� if one were forced to� is probably to break the � domain

into segments of ��� �ll a rectangle in �kx	 ky� space with the sum over p� and apply

the pseudospectral method to Eq� ������ Our representation automatically accom�

plishes all of this� Our representation should also be more convenient for analytic

calculations� since the nonlinearity takes a simple form� and the choice of ���s� or

kx�s� is well de�ned�
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��� Axisymmetric Low�� Equilibrium

We now specialize to the case of a low��� large aspect ratio� axisymmetric torus with

circular concentric �ux surfaces� In the usual r� �� �� coordinates �minor radius�

poloidal angle� and toroidal angle�� � 	 ��qr�R�� sin � in Eq� ������� and

B 	 B��e	 �
r

qR�
�e��	 ���
��

where B 	 B�R��R� R is the distance from the axis of symmetry� and R� is the

major radius� The  de�ned in Eq� ������ is the usual toroidal angle� �� to lowest

order in r�R�� we will only keep terms to lowest order in r�R� here� Near ��� we

can expand � � �� 	
R r
r�
drB�r�q � �r � r��B�r��q�� Then Eq� ������ becomes�

choosing �� 	 ��

x 	 r � r�	 y 	
r�
q�

�q�r�� � �� 	 z 	 �� ���
��

In these variables� the parallel derivative becomes� using Eq� ����� with J�� �

q�R��B��

�b � rA 	
�

q�R�


A


�
	 ���
��

and the perpendicular gradient is�

r�A 	

�

A


x
� �s�


A


y

�
�er �


A


y
�e�� ���
�

The linear �� terms� arising from E � B convection of the equilibrium� using

Eq� ������ are�

vE � rA� 	
c

B�
B�r� � rA� 	 c


A�


�


�


�
	 �

c

B�


A�


r


�


y
� ���
��

The nonlinear E�B terms are�

vE � rA 	
c

B�

�

�


x


A


y
�


�


y


A


x

�
� ������

Using Eq� ������ with jr�j� � q���� � �s�����r��� r� � r� � �B���s� and jr�j �

B�r��q��

r�
�A 	


�A


y�
�� � �s���� � ��s�


�A


x
y
�

�A


x�
� ������
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Using the de�nition of �� in Eq� ������� kx 	 �ky�s���

r�
�A 	 �k�yA�� � �s��� � ���

��� ������

That this takes the usual ballooning form should come as no surprise� given the

discussion in Section ���� The combined rB and curvature drifts can be written�

vd 	
v�k � v����

#B�
B�rB �

��v�k
#B�

�b�rp	 ����
�

where the rp term is negligible in this low�� equilibrium� For an axisymmetric

B� 
B�
� 	 �� for our low�� equilibrium we also have 
B�
� � ��q��r�R��cos ��


B�
z � �B�r��R��sin �� B �r��rz � ��B�q��r
�
���s�� and B �r��rz � B�

��q��

Thus using Eq� ������

vd � rA 	 �
v�k � v����

#�R�

�

A


y
cos � �


A


y
�s�sin � �


A


x
sin �

�
	 ������

	 �ikyA
v�k � v����

#�R�
�cos � � �s�� � ���sin �� 	

for ky �	 � and vd � rA 	 ��ikxA�#�R���v�k � v�����sin �� for ky 	 �� Other terms

in the equations� such as r � vE and ��b � r�b� � vE can also be written in the form

Eq� ������� as shown in Section ����

��� Simulation Results

This coordinate system has been implemented in nonlinear toroidal gyro�uid sim�

ulations� Some simulation results are presented in this section to describe practical

computational issues and to test some the assumptions implicit in �ux tube sim�

ulations� These nonlinear results will be discussed more fully in Chapter �� This

chapter speci�cally focuses on testing the �ux tube simulation method� so for com�

putational expediency the less accurate four moment model is used �as opposed

to six�� and the electrons assumed to be adiabatic� For historical reasons� these

simulations used an older version of the four moment toroidal gyro�uid equations�

which are given in Appendix A for completeness�

There are two ways to implement the boundary condition Eq� ������� Because

our equations involve jkkj Landau damping terms �equivalent to a non�local integral
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operator in real space �Hammett and Perkins� ������� it is easiest to Fourier

transform from � to kk to evaluate the parallel terms� However� over the � domain�

each mode is not periodic with itself� but with a di�erent mode� This mode will in

turn be connected to another mode� etc� The most accurate way to implement the

boundary condition is then to line up all the j modes connected by the boundary

condition onto an extended � domain and Fourier transform in kk over this domain�

Because the computational grid is rectangular in kx and ky � the length in � of

this extended domain will be longer at lower ky� Then we evaluate the kk terms�

transform back to �� and extract each j mode from its position on the extended �

domain� An alternativemethod is to add equal length extensions in � to each �kx	 ky�

mode� as shown in Fig� ��
� and copy the part of �Aj��j�k��� within ��N � � � �N

onto the extension �j�j � �N� of �Aj�k before transforming to kk� Since we have a

�nite number of kx�s� not all modes will have a mode to connect to at j � �j� In

this case �Aj�k is zeroed in the extension� preserving periodicity� We have arranged

the box so the mode amplitudes are small where this is necessary �at large ky�� The

second approach ��the equal�length extension method�� is easier to implement and

to parallelize on computers� since all the FFTs in � have the same length� But it may

be linearly less accurate than the �rst method ��the multiply�connected method��

if there are low ky modes which extend much further along the �eld line than even

the extension region� �This is related to the fact that the minimum non�zero jkkj

which can resolved for the Landau�damping operator is given by ���Lk� where Lk is

the parallel box length including the extension region�� This di�erence is probably

less important in nonlinear runs where the relevant parameter for determining the

parallel box length is the parallel correlation length and not a linear mode width�

In practice� we have observed no signi�cant di�erences between these two methods

in the nonlinear simulations done to date� The issues of an extension region �or

the �ltering described next� are ignorable for a particle or Vlasov simulation� since

they do not require evaluation of kk and can directly use the boundary conditions

in Section ����

There is another implementation detail involving the parallel FFTs� Note

that the �� 	 ��N mode in Fig� ��
 has a large amplitude at the right�hand side

of the extended domain� and is not naturally periodic with itself at the left�hand

end of the �gure where it is zero� Fourier transforms assume periodicity� so there

is e�ectively a sharp discontinuity for this mode across the endpoints in � which
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introduces high�kk components into the solution� These high kk components are

Landau�damped� but a small amount of high kk oscillations can propagate from

the ends of the extended domain into the physical region �N� � � � N�� This

high kk noise is reduced as the extension region is made longer� but convergence

can be greatly accelerated by smoothly �ltering the modes to zero near end points

of the extended box� We use a �ltering window which is � in most of the domain�

and goes to zero smoothly near ends of the full �extended� domain as �x���� � x���

where x 	 ��� �end���width is a normalized distance from the end points� A �ltering

width �width of ��� to ��� of the width of the extension regions appears su�cient�

Thus a typical run with a physical � domain from ��� to �� might use a fully

extended domain of �
� � � � 
�� and the �lter begins to turn on within ��� of

the endpoints at �end 	 �
�� In practice� though the �ltering is useful for reducing

the small amount of high kk errors sometimes seen linearly �particularly for low

ky modes at low shear which are extended along the �eld line�� no statistically

signi�cant di�erences have been observed in the nonlinear runs with or without this

�ltering�

To test the small�scale assumption� we present two simulations� one with

perpendicular dimensions �Lx 	 ��i� Ly 	 ����i�� and one with double the box size

�Lx 	 ����i� Ly 	 ����i�� That these simulations give similar results indicates that

the small �ux tube may be capturing the essence of the turbulence� It is a necessary

but not su�cient test� as discussed in Section ��� The physical parameters are taken

from TFTR L�mode shot $��
��� �i 	 �� Ln�R 	 ���� �s 	 ���� q 	 ���� Ti 	 Te�

�i 	 ����cm� Ln 	 ��
cm� and the computational box is centered at r� 	 �
cm�

The box sizes then correspond to n� 	 �� for the small box and n� 	 � for the large

box� Both simulations use �� grid points along the �eld line coordinate �� Using

�� grid points along � gives essentially the same results� For these runs� N 	 ��

so the physical � domain extends from ��� to ��� The equal length ��� extension

method �for a total extended � domain from �
� to 
�� was used to implement the

parallel boundary condition�

We use a spectral representation in x and y� with � �� kx modes and �

�� ky modes for the small simulation and � �
 kx modes and � �� ky modes for

the large simulation� not counting additional modes added at high k for dealiasing�

The modes are evenly spaced such that kmax
y �i � � and kmin

x � kmin
y � making the
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Figure ��� Distribution of ���s for the small run� The solid lines denote the ends
of the computational domain in ��

computational domain roughly square in x and y� For N � �� it is necessary to

include more kx�s to include unstable modes localized near � 	 ���� ���� etc�� in

the bad curvature regions �i�e� modes with ���s near ���� ���� etc��� The modes

tend to be localized along the �eld line near ��� so ideally one would like to include

enough kx�s to cover the range ��N � �� � �N for all ky�s� This is very expensive

at high ky� where the spacing in �� gets small� since �� 	 �kx��sky� We arrange

our modes in k space so that the ���s cover the � domain for low ky�s� but not high

ky�s� as shown in Fig� �� for the smaller simulation� This implies kmax
x � kmax

y for

N � � and �s � �� Since most of the energy is at ky�i � ���� the missing ���s at

high ky have very little e�ect�

Fig� ��� shows contours of electrostatic potential in the �x�y� plane at � 	 �

�the outer midplane of the torus�� for both runs at saturation� It is apparent that

although the box was doubled� the dominant scale didn�t change� This is also evi�

dent from the spectra in Fig� ����� also at � 	 �� where j�j��kx� 	
P

ky �kx�ky�
�
kx�ky �

j�j��ky� 	
P

kx �kx�ky�
�
kx�ky � and the low resolution spectra are reduced by a factor of

two to account for mode density� Although the resolution has increased� the shape

and the location of the peak in the spectrum is roughly the same� These spectra

are similar to BES measurements on TFTR �Fonck et al�� ���
�� The large ky 	 �
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Figure ���� Contours of potential on the outer midplane for a� small run� and
b� large run� Doubling the perpendicular simulation domain did not change the
dominant scale of the �uctuations�

component is evidence of perpendicular E�B rotation� as discussed in �Hammett

et al�� ���
�� Though there are some small di�erences in the spectra� the two runs

agree within statistical �uctuations on global quantities such as the volume aver�

aged RMS �uctuation levels and transport levels� e��Ti 	 ���i�Ln � ����� and

�i 	 �����i vti�Ln� averaged from tvti�Ln 	 ��� � 
��� In these simulations� the

electron density �uctuations on the outer midplane of the tokamak are roughly two

times larger than those on the inner midplane� The evolution of �i for the two runs

is shown in Fig� ����� where the statistical �uctuations are approximately ��!� This

level of ion heat transport is near the experimentally measured �i 	 ���i vti�Ln�

but these simulations ignore impurities and beams �usually a stabilizing e�ect��

trapped electrons �destabilizing�� and use our old four moment model �Appendix

A� which gives lower transport than our more accurate six moment model� Nev�

ertheless� this level of agreement is encouraging� and suggests that toroidal ITG

turbulence is responsible for anomalous ion heat transport in tokamaks� More com�
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Figure ����� Time averaged potential spectra for both runs� a� Radial spectrum�
j��kx�j�� b� Poloidal spectrum� j��ky�j��

plete simulations are compared with experiment in Chapter �� The transport from

these toroidal simulations is about a factor of �� larger than sheared slab simula�

tions for the same parameters� demonstrating the importance of toroidicity� Our

toroidal simulations can be run in the sheared slab limit by taking Ln�R 	 � and

q��s 	 � so that Ln�Ls 	 Ln�s�qR remains �nite� We should point out that our

preliminary results� Fig� ���a of �Hammett et al�� ���
�� were high by a factor of

��"
 due to a numerical error in calculating �i� The remaining change is due to

increased resolution�

We have also performed tests varying the box length in the parallel direction�

For these tests we have used the fully connected method to implement the paral�

lel boundary conditions� for greatest accuracy� as described earlier in this section�

Fig� ����a shows the time evolution of the volume averaged �i for two runs with

box length N 	 � and �� i�e� �� 	 �� and ��� with n� 	 ��� and other parameters

as above� Fig� ����b shows the correlation function along the �eld line�

C��	 �� 	
h��x	 y	 ����x	 y	 � 	 ��i

h��x	 y	 � 	 ���i
	 ������

for the two runs� The averaging h i is over x� y� and time once the simulation has

reached a quasi�steady state� If this correlation function were not averaged in x and
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Figure ����� Evolution of �i for the large and small runs�

y �only taken along the �eld line passing through x 	 y 	 ��� it would return to

one at � 	 ��� for the N 	 � run� because of periodicity� The Fourier transform

of C��	 �� is the kk spectrum� As discussed in Section ��
� since n� � �� using a box

with �� � � � �� �N 	 ��� can arti�cially constrain the parallel correlation length�

There are signi�cant correlations at ��� for these parameters� indicating that this

is the case� and that the box should be extended� These additional correlations in

the �� box are in some way constraining the nonlinear dynamics and reducing the

�ux�

It is easier to test the scaling with box length at low shear� since the tur�

bulence at ���� ���� etc�� is not at such high kx� since kx 	 �ky�s��� This allows

us to increase the box length and resolve the turbulence all along the box with

fewer kx modes than at high shear� Also� at low shear the linear mode structure is

broader in �� leading to slightly broader parallel correlation functions� Fig� ���
a

shows the time evolution of �i in four runs with box lengths N 	 �	 �	 
	 � or

�� 	 ��	 ��	 ��	 �� The physical parameters are the same as above� except �s 	 ���

and q 	 ���� and the perpendicular box size is Lx 	 ����i� Ly 	 ����i� Again� the

�� 	 �� box gives slightly lower �ux� while the larger boxes all give the same �ux�

so the minimum box length is �� 	 ��� The correlation functions of electron den�

sity for these runs are shown in Fig� ���
b� and are noticeably broader than in the
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Figure ����� a� Evolution of �i for two runs with varying box length and �s 	 ����
q 	 ��� b� Correlation functions along the �eld line for the same two runs�

higher shear cases� Using ne in the correlation functions removes the kk 	 � compo�

nent present in the � correlation functions in Fig� ����b� since ne 	 � ���h�i� �see

Section ��
�� For these low shear runs� the poloidal spectrum peaks at ky�i 	 ��
��

so the perpendicular correlation length is smaller than in the high shear cases� This

may contribute to the slightly smaller change in �ux in going from �� 	 �� to

�� 	 ��� even though the parallel correlation functions are broader� The low shear

runs in Fig� ���
 are better resolved and are easier to run longer than the high

shear runs� so we expect that a 
�! change in �ux is typical for ITG turbulence�

where �c � ��� when the arti�cial correlations are removed by using a longer box�

We have also run with �s 	 ��� and q 	 ���� where �i 	 �����i vti�Ln for �� 	 ��

and �i 	 �����i vti�Ln for �� 	 ��� For �s 	 ���� and q 	 ���� both �� 	 �� and

�� 	 �� give �i 	 ���i vti�Ln� any change is within the statistical �uctuations�

��	 Discussion

To summarize� we are simulating a rectangular domain in �x	 y	 z�� and using the

transformation Eq� ������� this domain becomes a long� thin� twisting �ux tube

in a torus� The di�erential operators take the particularly useful forms Eq� ���
��
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Figure ���
� a� Evolution of �i for four runs with varying box length and �s 	 ����
q 	 ���� b� Correlation functions along the �eld line for �� 	 �� and ���

����� in the traditional tokamak model of concentric circular �ux surfaces� Our �ux

tube approach is also applicable to general magnetic geometry� using Eqs� ���������

���� for the di�erential operators� �In this case the metric coe�cients r�� r��

and rz need to be speci�ed�� The boundary condition Eq� ������ can make the

perturbations periodic in �� if N 	 �� which makes this representation equivalent

to the ballooning representation for a coarse grid in n� with spacing n�� However�

when n� � �� the box must be extended in � to avoid non�physical correlations if

the parallel correlation length is longer than ��qR� i�e� �c � ��� The fundamental

assumptions are that the correlation lengths �both parallel and perpendicular� are

smaller than the box size� that the equilibrium gradients vary slowly across the

small perpendicular extent of the box� and that the turbulence is local� i�e� driven

only by the equilibrium gradients within the box�

The assumptions implicit in simulating a thin �ux�tube subdomain should

always be checked a posteriori by verifying that the simulation box is indeed at least

a few correlation lengths long in each direction� so that the box is large enough for

the type of turbulence under consideration� One should also verify that the results

are independent of the size of the simulated �ux tube �and independent of the

particular choice of boundary conditions�� as the �ux tube is made larger than
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the correlation lengths� This chapter has demonstrated that both conditions are

met� at least for the particular cases considered in Section ���� Thus our results

show the existence of a gyro�Bohm scaling regime� at least for su�ciently small �� 	

�i�Ln� �Our gyro�uid equations have been scaled to the gyroradius �i� and the limit

�i�Ln 	 � taken� using the usual small�scale turbulence ordering assumptions��

While the turbulent heat conduction from our simulations is of the right

order�of�magnitude to explain experimental results from the main core region of

many tokamak experiments� they have a gyro�Bohm scaling while the actual ex�

periments have a Bohm scaling �Scott et al�� ���
� Perkins et al�� ���
�� �The

experiments have a Bohm�like scaling with magnetic �eld� though the magnitude of

the experimental �i is about two orders of magnitude smaller than Bohm�s original

formula D 	 ������cT�eB�� Several possibilities for this discrepancy exist� One is

that the experimental ��� while small �� ���� � ������ may be large enough that

the radial variation of equilibrium gradients� i�e� ������ �i���� etc�� or equilibrium

�ows� may be a�ecting the turbulence� For very small �� there is a scale separation

between the turbulence� with scales of order �i� and the equilibrium� with scale

Ln� but if �� is not small enough� the turbulence may begin to feel radial varia�

tions in the equilibrium� It is interesting to note that the BES measured �Fonck

et al�� ���
� correlation length �c � � cm is of order the geometric mean between

�i � ���� cm and the minor radius a � �� cm� Another possible explanation is that

the instabilities driving the turbulence may be near marginal stability� which can

mask gyro�Bohm scaling trends and� in some limits� tie the core transport scaling

to edge parameters �Terry et al�� ��� Biglari et al�� ���� Kotschenreuther

et al�� ���
�� The experiments have gone to great pains to keep other parameters

and pro�les as �xed as possible while studying the �� scaling� but a very sensitive

dependence on some parameters �some of which are hard to measure� could also

mask� at least partially� a gyro�Bohm scaling� Another possible explanation might

involve non�local turbulence� where �uctuations radially propagate a signi�cant dis�

tance from where they were generated by an instability� an e�ect which is currently

under debate �Garbet et al�� ���
� Mattor and Diamond� ������

Numerical studies of some of these e�ects do not necessarily require simulat�

ing the whole tokamak� Rather� one could consider a somewhat thicker �ux�tube

than usual� and include the radial variations of ������ �i���� and other plasma
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parameters over the simulated region in the governing gyro�uid �or gyrokinetic�

equations� Even if simulating the full torus radially� �eld�line coordinates are useful

to allow a coarser grid in the parallel direction� and a coarser grid in the toroidal

mode number n� When the equilibrium pro�les are assumed to be constant� so Ln�

LT � etc� do not vary radially �as assumed in our simulations�� the linear eigenmodes

are unbounded radially� In ballooning terminology� the solutions of the zeroth order

eigenmode equation in ��nq are independent of �� In a real tokamak� however� the

radial pro�le variation determines the radial extent of the linear modes� and this

radial structure is determined from a higher order equation in ��nq� Recently� there

has been renewed interest in the solution for this radial envelope� and the modi��

cations to the zeroth order eigenfrequencies �Connor et al�� ���
� Taylor et al��

���
�� For longer wavelength global modes� the linear radial mode structure is also

determined by the radial variation of equilibrium gradients �Tang and Rewoldt�

���
�� An alternative way to include these e�ects is to still use Eq� ����� to represent

the perturbations� but to include the radial variation of equilibrium pro�les� This �

dependence will linearly couple di�erent j modes in Eq� ������ which are uncoupled

when the pro�les have constant gradients� Then the superposition of di�erent j

�i�e� kx� modes will determine the radial envelope of the true linear mode� How�

ever� since the nonlinear E�B coupling of the various �Aj�k modes is usually much

stronger than this linear coupling� it is likely that the precise radial linear mode

shape is subdominant� and that the radial scale length of the turbulence is set by

nonlinear processes� as suggested by �Cowley et al�� ����� and �Mattor� ������

Comparing the order of magnitude of these e�ects in� for example� the density

equation� we have�
�

n�
vE � rn� � �ivtik

�
�
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Where L� is the scale length for the radial variation in Ln� and is typically of order

Ln� The nonlinear term is of the same order as the x independent linear term

�i�e� the ������ term� in the standard gyrokinetic ordering� where n��n� � �i�Ln

and k��i � �� As the linear mode widths get broader radially �in x�� the x�L�

terms become more important� While the linear modes are broad� the typical

turbulent eddy size is not much larger than �x � ���i� so it would seem that

the x�dependent term �� 
���
� � can safely be ignored� as long as �x � L��
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The e�ects of radial variations in the equilibrium may start becoming important if

�� 	 �i�L� is large enough� and could lead to a transition from gryo�Bohm to Bohm

behavior �Hammett et al�� ������ From the above arguments� it would seem that

experiments should have small enough �� to be in the gyro�Bohm regime� though

TFTR seems to be in the Bohm regime �Scott et al�� ���
� Perkins et al�� ���
��

Equilibrium sheared zonal �ows �ky 	 �	 kz 	 �	 kx �	 � �ows which cause

�ux surfaces to rotate� can be included in our representation in several ways �one of

which is presented in �Waltz et al�� ����a��� though we have not yet implemented

them in our simulations� Such sheared �ows can be important� particularly near

the plasma edge where they appear to be responsible for the H�mode transition

�Biglari et al�� ������ Though we are presently neglecting equilibrium�scale zonal

�ows� we do include the higher kr components of the zonal �ows which are generated

by the turbulence itself�

For typical tokamak parameters� our reduced simulation volume can rep�

resent large computational savings� We compare rough scalings with some other

methods� the results are only order of magnitude estimates� Perhaps the most

straightforward way to simulate a tokamak is with the �m	n	 r� representation�

���	 �	 � 	
X
m�n

ein��im� ��m�n���� ������

Since we are interested in simulating �ne�scale turbulence� we need to resolve per�

pendicular scales of order �i� If we are simulating a full torus� the range of m�s

must be m � ��	��	 � � � 	�a��i�� To resolve the long parallel structure� the range

of n�s must be n � ��	��	 � � � 	�a�q�i�� where q is a representative value� around ��

The radial grid for ��m�n��� must resolve �i and span the minor radius� so r 	 l�r�

where �r � �i and l � ��	 �	 � � � 	 a��i�� This gives the total number of grid points�

for a � ����i�

Nm�n�r �
�

q

�
a

�i

��

� ���

This is the same as expected from a computational grid in the physical r	 �	  space�

where the  grid can be ��q coarser than the r or � directions�

By simulating a thin toroidal annulus in r� but still going all the way around

in � and � the number of radial grid points is reduced by �r�a� which for our

simulations is typically �"��� Further� aligning the grid points with the �eld lines �or
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nearly aligning with the �eld� as proposed by �Dimits� ���
�� reduces the necessary

resolution in this direction� We have found that �� grid points along the �eld line

is adequate� so the number of grid points for a thin annulus with a �eld�aligned

coordinate is�

Nm�n�r � ��

�
a

�i

��
�r

a
� ����

The next level of reduction is to also exploit the small perpendicular corre�

lation length in the poloidal direction� which brings us to our twisting �ux tube�

N�uxtube � ��

�
a

�i

��
�r

a

�y

a
� ���	

so for the simulation in Fig� ���a� counting modes included for dealiasing� we used�

N � �� � �� � � � �� ����

�Kotschenreuther and Wong� ����� have proposed using the represen�

tation�

��r	 �	 � 	
X
j�l

eil�m���n���eij� ��j�l�r � r��	 ������

which has many similarities to our representation� It is periodic in  with period

���n� and in � over ��� and is therefore simulating a wedge of a toroidal annulus

when the r domain is small� Thus Eq� ������ is numerically as e�cient as the one

described in this chapter� however� if �c � �� false correlations along the parallel

direction will be introduced� as discussed in Section ��
� It is not obvious how to

remedy this problem with Eq� ������� but with our approach one simply uses a

longer box� i�e� N � ��

The �quasiballooning� approach of �Dimits� ���
� shares similar compu�

tational advantages to our method� Indeed� the quasiballooning �almost��eld�line

coordinates� method has many similarities to the �eld�line coordinates approach of

�Roberts and Taylor� ������ and �Cowley et al�� ������ upon which our repre�

sentation is based� though the quasiballooning method emphasizes the perspective

of a real�space radial grid while we use discrete Fourier transforms for the radial

direction which illustrate its relation to the usual ballooning transformation� We

have shown that physical periodicity in � can be also be implemented with our

approach� but that there are cases where one should forgo physical periodicity in
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favor of a longer box �i�e�� N � �� to avoid false parallel correlations� As described

in Section ��
� simulating only ��n� of the toroidal direction is often justi�ed by the

short perpendicular correlation lengths of the turbulence� but that makes a pertur�

bation extended along a �eld�line n� times as likely to �bite it�s tail�� which should

be compensated for by making the box longer than a parallel correlation length� In

principle� N 	 � simulations should eventually converge as the box is made large

enough in the perpendicular directions �so that n� 	 ��� but from the runs we have

done it appears that faster convergence is obtained by allowing the box to be longer

than a parallel correlation length as well� thus consistently following the principle

that the simulation domain should be longer than the correlation lengths in all three

directions�
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Chapter �

Nonlinear Results

T
HE EQUATIONS DEVELOPED in Chapters � and � provide a relatively

simple yet accurate model of the dynamics underlying electrostatic toka�

mak turbulence� Using the �ux�tube simulation geometry discussed in

Chapter �� we have developed high resolution nonlinear �D toroidal simulations to

investigate the nonlinear dynamics of tokamak turbulence via direct numerical sim�

ulations� Having demonstrated the e�cacy of this �ux�tube simulation geometry in

Section ���� this Chapter investigates the nonlinear dynamics in more detail� These

simulations have revealed several interesting features of toroidal microinstability

driven turbulence� including the importance of nonlinear generation and damping

of sheared E�B �ows� a nonlinear peak in the �uctuation spectrum at much longer

wavelengths than the fastest growing linear modes� similar to experimentalmeasure�

ments on TFTR 	Fonck et al�� 
���� also seen in full torus gyrokinetic particle

simulations 	Parker et al�� 
������ and much larger heat �uxes and �uctuation

levels than those observed in sheared slab simulations� Finally� using the bounce

averaged trapped electron �uid equations� toroidal simulation results are presented

which simultaneously retain the toroidal ITG drive and the TEM drive� allowing

calculation of both ion and electron heat transport and particle transport�

��� Fluctuation Spectra

One of the most interesting features of these toroidal simulations is the long wave�

length peak in the �uctuation spectra� consistent with BES measurements on TFTR


�
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	Fonck et al�� 
����� A contour plot of the linear growth rates vs� kx and ky is

shown in Fig� ��
 for the parameters� �s � 
��� q � �� �i � �� �n � ��� and Ti � Te�

using the four moment toroidal gyro�uid equations with adiabatic electrons� These

parameters are from TFTR L�mode shot ��
��� at r� � ��cm� and are the same

parameters used in the runs in Section ���� As described in Section ���� ky corre�

sponds to k� and kx corresponds to �� in the ballooning representation� There may

be several eigenmodes for a given kx and ky corresponding to di�erent mode struc�

tures along the �eld line� With the initial value toroidal gyro�uid code� the fastest

growing of these eigenmodes eventually dominates� and it is this largest growth rate

which is plotted in Fig� ��
� in normalized units� �Ln�vti� As discussed in Chapter

�� kx corresponds to the radial wavevector kr� and ky corresponds to the poloidal

wavevector k��� The anisotropy of the linear growth rate spectrum in kx and ky

arises from �good� and �bad� curvature e�ects� as discussed in Section 
��� At

poloidal angle � � �� � �kx�ky�s� k� is minimized� and FLR stabilization tends to

localize the mode near this poloidal angle through magnetic shear� If cos��� � ��

the modes are localized in the bad curvature region and are unstable� and modes

with cos��� � � are localized in the good curvature region and are stable� The

lines kx � �ky�s���� kx � �ky�s����� etc�� determine the boundary between modes

localized in the good and bad curvature regions� The wedge of unstable modes with

�ky�s��� � kx � ky�s��� are localized in the bad curvature region ���� � � � ����

There are also unstable wedges of modes with �ky�s���� � kx � �ky�s���� and

ky�s���� � kx � ky�s���� localized in the bad curvature regions farther along the

�eld line� at ����� � � � ����� and ���� � � � ����� The linear growth rate

spectrum peaks near ky	i � �����

In the nonlinear simulations� these modes grow linearly until the E�B non�

linearities are no longer negligible compared to the linear terms� At the beginning of

the nonlinear stage� the spectrum is dominated by the fastest growing modes� The

E�B nonlinearities transfer energy between di�erent k� modes until a statistically

steady but turbulent steady state is reached� The nonlinear �uctuation spectrum

is obtained by averaging in time over this saturated steady state� Averaging over

several di�erent realizations runs with di�erent initial conditions� is theoretically

more sound� but should be equivalent if the turbulence is stationary and the time

averaging is over many correlation times by the ergodic theorem�� Fig� ��� shows

contours of the energy spectrum in k� space� Ekx
 ky� �
D
n� � u�k � T �

k �� � T �

�

E
��
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Figure ��
� Linear growth rate spectrum for TFTR L�mode ��
��� at r� � ��cm�
The contours are at � � ��� ����� ��
� ��
�� ��� vti�Ln� with solid lines for � � �
and dashed for � � �� The peak growth rate is � � ���vti�Ln� at k�	i � �����

de�ned by Eq� ��
�� in the next section� averaged over the saturated state from

t � �� � 
��Ln�vt� for a run using the ��
��� parameters above� using the four

moment gyro�uid model and adiabatic electrons� The ��kx
 ky� spectrum is very

similar� as shown in Section ���� The nonlinear energy spectrum is concentrated at

k�	i � ��
�� By comparison with Fig� ��
� this is at signi�cantly longer wavelength

than the fastest growing linear modes� The nonlinear spectrum remains anisotropic

in kx
 ky�� but there is a tendency towards isotropy at high k�� compared to Fig� ��
�

��� Nonlinear Energy Balance

To investigate the nonlinear dynamics� it is useful to construct a quadratic energy�

like quantity for the �uctuations�

E �



�

D
n� � u�k � T �

k �� � T �

�

E

 ��
�
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Figure ���� Time averaged nonlinear energy spectrum for ��
��� parameters� Con�
tours are at �� ��
� ���� ���� ���� ���� 
� 
��� �� ���� �� and the E � 
 contour is bold
for reference�

where h i is an average over the simulation volume�

hABi � 


LxLyLz

Z
dxdydzAB�

for any �uctuating quantities A and B� For simplicity� we will use the ��
 model

in Section ��� to �nd the evolution of this energy� neglecting collisions and the

mirroring terms � � ��� Some terms in Eqs� ��
�����
��� vanish upon volume

averaging due to the periodicity of the simulation domain� hAv� � rAi � hA ��r
�

�v� �
rAi � �� leaving��

n
�n

�t

�
� �

�
n	




�
�r�

�v�� � rT�
�
� hnrkuki�

�
n
�

 �

��
�

�r�

�

�
i���

�
����

�
�
n
�
� �




�
�r�

�

�
i�d�

�
� i hn�dpk � p��i 
�

uk
�uk
�t

�
� �hukrkpki � hukrk�i � huk�i�duki � huk�j�dj�uki 
 ����

�
Tk
�Tk
�t

�
� �hTk�rkuki �

D
Tk
p
��kjkkjTk

E
� hTk�ki���i � hTk�i�d�i ����
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�hTki�d�pk � �n�i � hTk�j�dj�Tk � �T��i 
�
T�

�T�
�t

�
� �

�
T�	




�
�r�

�v�� � rn
�
�
�
T�
p
���jkkj

�
T� �




�
�r�

��
��

����

�

�
T�

�



�
�r�

� � ��
 �
��r
�

��

�
i���

�
�
�
T�

�

 � �r�

� � ��r
�

�

	
i�d�

�

�hT�i�d�p� � �n�i � hT��j�dj�Tk � �T��i �

Adding these together as in Eq� ��
�� some more terms cancel from periodic�

ity� hArkBi � �hBrkAi� hA�dBi � �hB�dAi� hA��Bi � �hB��Ai� andD
n	�

�

�r�

�
v�� � rT�

E
� �

D
T�	

�

�

�r�

�
v�� � rn

E
� For this de�nition of the �uctua�

tion energy� Eq� ��
�� all the nonlinear FLR terms cubic in perturbed quantities�

cancel� so the �nal energy evolution contains only quadratic quantities and is given

by�
�E

�t
� D� �Ddr �Dk �Ddi �Wu� � T� ����

The terms that a�ect the total energy evolution can be grouped into �ve classes�

drive from the equilibrium gradients� D�� reactive contributions from the real parts

of the toroidal terms� Ddr� parallel Landau damping� Dk� damping from toroidal

phase mixing from the imaginary parts of the toroidal terms�� Ddi� and parallel

electric �eld work� Wu��

D� � hn
 � ��
�

�r�

��i���i �
�k
�
hTki���i ����

�hT�	

�
�r�

� � ��
 �
��r
�

���i���i


Ddr � �hn� � 


�
�r�

��i�d�i � hTki�d�i � �i hTki�dT�i ����

��i hT�i�dTki � hT�
 � �r�

� � ��r
�

��i�d�i


Dk �

p
�

�
�k hTkjkkjTki �

p
���hT�jkkjT� �




�
�r�

���i
 ����

Ddi � ���r hukj�djuki � �r hTkj�djTki � �r hTkj�djT�i ��
��

���r hT�j�djTki � ��r hT�j�djT�i 

Wu� � �hukrk�i� ��

�

As a test of the numerical accuracy of the nonlinear simulations� we evaluate

these driving and damping terms and compare them to the actual time evolution

of the energy� The degree to which the simulations reproduce these conservation
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Figure ���� Energy conservation and time evolution of the various drive terms for
a nonlinear run at the ��
��� parameters�

properties of the equations is shown in Fig� ��� by plotting�

� error �
�E��t� T

E
� ��
��

The energy balance Eq� ���� is preserved quite well�

At saturation� where E � constant� it is interesting to look at the relative

nonlinear magnitudes of the �ve driving and damping terms in Eq� ����� The

time evolution of these terms for the ��
��� run is shown in Fig� ���� For these

parameters� the dominant drive is from equilibrium gradients� not from toroidal

terms� This is to be expected because �d is not by itself a free energy source for

instabilities� The local dispersion relation involves see Eq� �������

g � F�

� � �T
�

� � kkvk � �dv
J�
e�

T�

 ��
��

where �T
� drives instabilities� but �d only appears in the resonant denominator� The

dominant damping in the nonlinear simulations is from parallel Landau damping�

not from toroidal phase mixing� although the amount by which parallel damping

dominates can depend on the physical parameters of the run�
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Because the toroidal gyro�uid equations constitute a multiple �eld system

with many nonlinearities� constructing a simple nonlinear transfer function is more

di�cult than� for example� in the Hasegawa�Mima equation 	Hasegawa andMima�


����� Nevertheless� we can begin to investigate the nonlinear dynamics by looking

at the energy spectrum in kx and ky� obtained by averaging only over the parallel

direction�

Ekx
 ky� �



Lz

Z
dz




�

�
n� � u�k �




�
T �

k � T �

�

�
� ��
��

Similarly� k� dependent drive terms can be de�ned by integrating only over z�

T kx
 ky� � D�kx
 ky� �Ddrkx
 ky� � � � � 
 ��
��

where D�� Ddr� etc�� are as given in Eqs� ������

�� but with h i now representing

only integration over z� with a few additional terms which are not cancelled by

integration over y� The evolution of the k� dependent energy is now given by�

�

�t
Ekx
 ky� � T kx
 ky� �Nkx
 ky�
 ��
��

where Nkx
 ky� represents energy transfer from the nonlinear terms triple correla�

tion terms in the Ek�� energy balance�� Note that at saturation�
R
dxdy T x
 y� �P

kx�ky T kx
 ky� � � and
P

kx�ky Nkx
 ky� � �� The total drive� T kx
 ky� shows

where the energy is coming in linearly in k� space� The nonlinear terms convect

energy around in k� space to provide the balance �Ekx
 ky���t � � for each k�

at saturation� The total drive is plotted in Fig� ��� for the ��
��� run� The most

interesting feature of this plot is that the linear drive is coming in where the spec�

trum peaks� at long wavelengths� and not at the shorter wavelengths where the

linear growth rate is larger� This implies that at saturation� there is not a strong

nonlinear transfer of energy from modes with the largest linear growth rates to the

energy containing modes� Most of the nonlinear energy transfer in k��space is from

the energy containing range to longer wavelengths which are damped� However�

since T kx
 ky� is averaged in z� it only diagnoses the energy transfer in k��space�

The dominant energy transfer could very well be from low kk to high kk� since paral�

lel Landau damping is dominant� More detailed diagnostics are required to isolate

and identify these various possible cascade mechanisms� We can also construct a

nonlinear growth rate� T kx
 ky��Ekx
 ky� which is also plotted in Fig� ����
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Figure ���� Time averaged total linear drive spectrum T kx
 ky�� and T�Ekx
 ky�
spectrum� for the ��
��� run� Contours for T are at ���
� ������ �� ����� ���� �����

� and contours for T�E are at ����� ���
� �� ��
� ����

Clearly� much more work is need to understand the nonlinear dynamics in

more detail� beyond these cursory investigations� It is of great interest to understand

the processes which set the dominant nonlinear scale�

��� Nonlinear Generation and Damping of

Sheared E�B Flows

Both slab 	Dorland et al�� 
���� Dorland� 
���� and toroidal 	Beer et al��


���� Hammett et al�� 
���� simulations have revealed that an important nonlinear

saturation process for core tokamak turbulence is the nonlinear generation and

damping of sheared E�B �ows� The amplitude of these �ows is determined by

the balance between the nonlinear generation and linear damping of the poloidal

component of these �ows� The amplitude of these �ows is a sensitive control of

the turbulence levels and transport� In this section the e�ects of these �ows are

discussed� and the gyro�uid models of the linear damping processes are carefully

investigated�
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It should be emphasized that in these simulations� the sheared E�B �ows

are small�scale �ows generated by the turbulence� with kr	i � ��
� and evolve on

the turbulent time scales� This is in contrast to most theoretical and experimental

studies of the shear �ow stabilization� where the e�ects of large scaleE�B �ows are

considered� with krLn � O
�� The large scale �ows evolve on the slower transport

time scale� except right at the L�H transition� and are equilibrium �ows within

the gyrokinetic ordering� We have not considered the e�ects of equilibrium sheared

E�B �ows or sheared parallel �ows on our simulations� although these e�ects can

be incorporated�

����� Proper Treatment of Adiabatic Electron Response

When the electrons are assumed to be adiabatic or are nearly adiabatic� it is impor�

tant to use an expression for the perturbed electron density that allows consistent

evolution of sheared E�B �ows� A historical review of various assumptions about

the adiabatic electron response is given in 	Dorland� 
����� Adiabatic electrons

experience no net radial transport since the E�B convection of the perturbed elec�

tron density is zero E�B � r ne � r ��B � r � � ��� If the electrons are allowed

to respond to a potential perturbation which is constant on a �ux surface� this

implies net radial transport of electrons� which is unphysical unless the magnetic

�eld is stochastic� Thus for adiabatic electrons� it is essential to use 	Dorland and

Hammett� 
�����

ne � � � � h�i� 
 ��
��

where � � Ti��Te�� � has been normalized to e�Ti�� and h�i is a �ux surface average�

The e�ect of this proper adiabatic response on our toroidal nonlinear simula�

tions is shown in Fig� ���� These simulations used the six moment toroidal gyro�uid

equations and assumed adiabatic electrons� The parameters correspond to TFTR

L�mode shot ����
� at r�a � ����� � � ����� �n � ����� �i � ���
� �s � 
���

q � ����� and Ti�Te � 
�
�� Because this is near the edge� �s is relatively large�

When ne � e��Te is used� radially elongated structures form and grow� showing

no signs of saturating throughout the length of this run� When the k� � �� kk � �

components of � are arti�cially suppressed� so h�i � �� there is no E�B rotation�

It is curious that the simulations with ne � �� behave so di�erently from the those

with h�i � �� Using ne � � ��h�i� allows nonlinear generation of radially sheared
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Figure ���� E�ect of the proper adiabatic response in nonlinear simulations� When
ne � e��Te is used dashed line�� radially elongated structures form and grow
throughout the run� Using ne � e� � h�i��Te allows nonlinear generation of
radially sheared E�B �ows� which rip apart these radially elongated structures
solid line�� A saturated state is reached where the turbulence generated sheared
E�B �ows in turn regulate the turbulence� Also shown dotted line� is a run
forcing the �ux surface averaged � to zero� disallowing sheared �ows�

E�B �ows� which rip apart these radially elongated structures� A saturated state

is reached where the turbulence generated sheared E�B �ows in turn regulate the

turbulence� This interplay leads to lower �uctuation and turbulence levels than the

case with no sheared E�B �ows�

It is interesting to investigate why the adiabatic response ne � � � � h�i��
as opposed to ne � ��� has such a dramatic e�ect on the nonlinear evolution�

Consider a potential perturbation as shown in Fig� ���� which is constant on a �ux

surface� i�e� k� � kk � �� but is radially varying� In this �gure� r is a small fraction of

the minor radius of the tokamak� Since this perturbation has kk � �� if ne � �� were

used for the adiabatic electron response� the �ux surface averaged perturbed electron

density� ner�� would have radial variation� as shown below �r�� The perturbation

on the left of Fig� ��� could evolve into the perturbation on the right� and this would
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Figure ���� A possible evolution of the electrostatic potential� showing the necessity
of the form Eq� ��
�� for the adiabatic response� The potential perturbation on the
left could evolve into the perturbation on the right� implying nonphysical net radial
transport of adiabatic electrons if ne�ne� � e��Te� If ne�ne� � e�� h�i��Te� the
electrons do not respond to the �ux surface averaged component�

imply a net radial transport of electrons� which is unphysical if the electrons are

adiabatic� Thus� the electrons should not respond to the k� � kk � � component

of the potential� leading to Eq� ��
��� The electrons can respond to potential

perturbations with kk �� �� since in this case the �ux surface averaged perturbed

electron density is zero and there is no net radial electron transport� The form

Eq� ��
�� is essential to properly describe the evolution of radially varying potential

perturbations� which gives rise to sheared perpendicular E�B �ow� Assuming

ne � �� essentially allows the electrons to move radially� so they e�ectively short

out these components of the potential� Using Eq� ��
�� prohibits radial motion

of adiabatic electrons� and allows the self�consistent generation of sheared E�B

�ows�

The turbulence level is very sensitive to the damping of these �ux surface

averaged E�B �ows� as shown in Fig� ��� The damping of the k� � � modes is

dominantly due to the toroidal e�ects associated with magnetic pumping which

damp the large� poloidal component of this �ow� These e�ects are independent of

kr for small kr	i� and dominate over viscous e�ects which are proportional to iir�

��

The poloidal damping can be turned o� in the simulations by arti�cially setting
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Figure ���� E�ect of poloidal �ow damping on the nonlinear saturation level� At
t � ���Ln�vt� the poloidal �ow damping is arti�cially turned o� by setting �d � �
for k� � � modes dashed line�� Compared to the case with �ow damping solid line��
the E�B �ows grow to much larger amplitude and greatly reduce the �uctuation
levels and transport�

�d � � for these modes� which for k� � � is normally �d � �kr�n sin��� Fig� ���

shows a simulation with the proper treatment which was restarted at t � ���Ln�vti

with �d � � for the k� � � rotation modes� This allows the sheared rotation to

grow to much larger amplitude� and the turbulence level is greatly reduced�

The radial variation of the �ux surface averaged potential h�i and parallel

�ow huki are shown in Fig� ���� plotted at the end t � 
��Ln�vti� of the simulation

discussed in Sections ��
 and ���� i�e� for TFTR L�mode shot ��
��� at r�a �

��cm� Both radially sheared E�B �ow and sheared parallel �ow can enhance

the radial decorrelation of the turbulence� reducing the �uctuation levels 	Biglari

et al�� 
���� Hahm� 
����� Large equilibrium sheared �ows can also introduce a

Kelvin�Helmholtz type instability� see for example 	Waltz et al�� 
���a��� It is

interesting to compare the relative strength of the radial decorrelation from the

perpendicular E�B and the parallel �ows� This is measured by the perpendicular
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and parallel shearing rates� ��
s � !r �k�vE����r and �k

s � !r �kkuk���r� where

!r is the radial correlation length of the turbulence a typical eddy or blob size��

Using a perpendicular correlation length r�!� � 
�k� � the shearing rate from vE �

ikr	ivtie���Ti�� is�

��

s � !r
�

�r

�
kr	

�

i�

r�!�

	
vti
Ln

�

Recall that e���Ti� � �	i�Ln� and u��vti � uk	i�Ln� in our normalization�

Eq� ����� The shearing rate from parallel �ow� since kk � 
�qR� see Figs� ��
�b�

and ��
�b�� is�

�k
s � !r

�

�r

�
	iuk
qR

	
vti
Ln

�

The shearing rate from perpendicular E�B �ow is larger than that from parallel

�ow by

��
s

�k
s
� kr	

�

i�

r�!�

qR

	iuk
� kr	i�k�	i�

qR

	i
� 


�



in the gyrokinetic ordering� Using � � �uk from Fig� ���� kr	i � ��
� and k�	i �
	i�r�!�� � ��
� from the simulations� and the measured q � ���� 	i � ��
�cm�

and R � ���cm yields ��
s � ����k

s � indicating that perpendicular �ow shearing

dominates over parallel �ow shearing for the elongated turbulence kk 	 k�� in these

toroidal simulations� Note that this is true for the �ows generated by the turbulence�

but does not preclude the importance of large scale equilibrium toroidal mostly

parallel� �ows� In addition� since the radial scale of the �ows and the turbulence

are comparable� the parameters above lead to an estimate of the perpendicular

shearing rate� ��
s � ���vt�Ln� The measured turbulent decorrelation time from the

simulation is �c � �Ln�vti which can also be roughly estimated from the time scale

of the �uctuations in the time history plots in Figs� ��
�a� and ����� This leads to

an estimate for the turbulent scattering rate of �T � ���vti�Ln� The sheared �ows

should strongly in�uence the turbulence if �s
�� �T � which is satis�ed here� While

these are rough estimates� it is clear that the levels of sheared E�B �ow in the

simulations is large enough to have a signi�cant impact on the turbulence� Thus

the conventional theoretical picture of the stabilizing in�uence of sheared E�B

�ow 	Biglari et al�� 
���� on the turbulence seems consistent with the large e�ects

observed in these simulations�
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Figure ���� Flux surface averaged potential and parallel �ow at the end of the
simulation at the ��
��� parameters� The radial variation �rst derivative� of the
potential leads to a perpendicular mostly poloidal� E�B �ow� which is radially
sheared second derivative of ���
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����� Neoclassical Damping of Poloidal Flows

These sheared E�B �ows are damped primarily by toroidal e�ects� While clas�

sical� collisional damping would damp these �ows in sheared slab geometry� in a

toroidal system the strongest damping mechanism is neoclassical magnetic pump�

ing� Magnetic pumping damps the large� poloidal component of the E�B �ow

until the total �ow parallel �ow plus E�B �ow� is purely toroidal� Because this

process arises from the variation of B with major radius� we have termed these ef�

fects �neoclassical�� even though for turbulent time scales collisionless �transit�time

magnetic pumping� 	Stix� 
���� dominates over collisional e�ects� This damping

arises from collisionless phase mixing Landau damping�� which dominates for short

time scales� t � ���bi � and damps the �ows at a rate proportional to �ti� For these

short times� t � ���bi � trapped particles do not know that they are trapped� so

the plateau regime damping rates are applicable� After a bounce time the Landau

damping ceases because of trapping� and one then gets a slow decay due only to

collisions� This collisionless transit�time magnetic pumping can also be related to

the radial drifts of particle orbits in a tokamak in response to a changing radial

electric �eld� i�e� a kind of neoclassical enhancement of the polarization drift 	Stix�


���� Hinton and Robertson� 
���� Callen� 
�����

In this section damping rates for magnetic pumping are derived from the

toroidal gyro�uid equations derived in Chapter �� It is shown that in the banana

and plateau regimes the toroidal gyro�uid equations accurately capture transit�time

magnetic pumping� The damping rate in the P�rsch�Schl"uter is also shown to agree

with neoclassical theory� for completeness�

As discussed in Section ����
� the most important �ows are those with radial

scales on the order of the turbulence scale size or longer� We see kr	i � ��
 � ���

in our nonlinear simulations� so we will concentrate on the limit kr	i 	 
� where

magnetic pumping dominates over collisional viscous damping� Let us consider

the dynamics of a potential perturbation which is constant of a �ux surface� � �

�r�� The discussion closely follows 	Hassam and Kulsrud� 
����� but extends

their approach into collisionless regimes� The radially varying potential leads to a

perpendicular E�B �ow� vE � c�B��b�r�� Restricting the discussion to circular

concentric �ux surface geometry for simplicity� we have� �b � bz	e� � ��q�e���

� � r�R�� b��z �
q

 � ���q�� e� is the toroidal direction� and e� is the poloidal
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direction� The magnetic �eld strength is B � B�R��R� where B� is the �eld on

axis� at R � R�� In addition to the perpendicular �ow� there may be a parallel �ow

ukr
 ��� In the small kr limit which we consider here� � 
 p� so the diamagnetic

�ow contribution is negligible� Both the perpendicular E�B �ow and parallel �ow

have toroidal and poloidal components�

vE �
c

B

��

�r
bz

�
e� � �

q
e�

	

 ��
��

uk�b � ukbz

�
e� �

�

q
e�

	
� ��
��

The toroidal and poloidal components of the total �ow v � uk�b�vE � v�e� � v�e�

are�

v� � uk � �

q

c

B

��

�r
�bz
 �����

v� � uk
�

q
�

c

B

��

�r
�bz� ���
�

Let us consider the time evolution of these �ows� as described by the ��� toroi�

dal gyro�uid equations� given in Section ���� The quasineutrality constraint for

adiabatic electrons� Eq� ����� is � � � h�i� � #ni � $� � 
��� where � is normal�

ized to e�Ti� #ni to ni�� and � � Ti�Te� It is convenient to introduce the notation

h � R�R� � 
 � � cos �� so the �ux surface average is h�i � �����
H
d�h�r� � ��

For kr	i 	 
� #ni � n and $� � 
� k�r	
�

i � so�

h�i � hni
hk�r	�i i

� �����

We now normalize kr to 	i�� where 	i� � vtimc�eB�� so 	i � 	i�h and h�i �

hni �k�r hh�i� Since we have assumed circular concentric surfaces� kr is independent

of �� Now consider the evolution of the �ux surface averaged toroidal angular

momentum� hhv�i� Using Eq� ������

�

�t
hhv�i � �

�t
hhukbzi � �

�t

�
h
�

q

c

B

��

�r
bz

�

 �����

In the normalized units of Chapter � and Eq� ������ this becomes�

�

�t
hhv�i � bz

�

�t
hhuki � i

bz�

qkr

� hni
�t


 �����
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so we need to �nd � hhuki ��t and � hni ��t from the gyro�uid equations�

Considering perturbations with ky � �� so �� � �� but with slow parallel

variation so ���� �� � the y coordinate is perpendicular and � is the parallel

coordinate� as discussed in Chapter ��� the density and parallel velocity equations�

Eqs� ���
� and ����� become�

�n

�t
�Brk

uk
B

� �i�d� � i�dpk � p�� � �
 �����

�uk
�t

�Brk

pk
B

�rk� � p�rk lnB � i�dqk � q� � �uk� � �� �����

The parallel derivatives� rk � �b � r � bz�qR������� when normalized� become

rk � bz�n�q������ where �n � Ln�R�� Furthermore� in these variables� i�d �

cT�eB��B�rB � r � �ikrbz�n sin �
 and rk lnB � �n�bz�hq� sin �� Flux surface

averaging the density equation yields�

� hni
�t

� � 


��

Z
d�h

�
bz�n
q

B�

h

�

��

uk
B
� ikrbz�n sin ��� � pk � p��

�
� �����

The uk term vanishes on �ux surface averaging� leaving�

� hni
�t

�
ikrbz�n
��

Z
d� sin ��� � pk � p��� �����

Averaging the parallel velocity equation leads to�

�

�t
hhuki � � 


��

Z
d�h�

bz�n
q

�
�

��
pk � �� �

�

h
pk � p��� ikrq sin �qk � q� � �uk�

�
�

�����

Using the identity� Z
d�h�

�

��
pk � �� � �

Z
d�h� sin �pk � ��
 �����

Eqs� ����� and ����� can be combined� The kr independent terms cancel� and�

�

�t
hhv�i � ikrbz�n

��

Z
d�h� sin �qk � q� � �uk� � �
 ���
�

since we are considering the kr	i � � limit�

Similarly� we can �nd the time evolution of the �ux surface averaged parallel

�ow� huk�hi � hv �Bi� which to zeroth order in kr is given by�

�

�t

�
uk
h

�
� 


��

Z
d�
bz�n� sin �

qh
pk � p��� �����
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The parallel �ow is damped by the di�erence between pk and p�� In neoclassical

parlance� this expresses the fact that the parallel �ow is damped by the parallel

viscous stress B � r � � 	Hirshman� 
����� where the stress tensor has the CGL

form � � pk � p���b�b� I��� 	Chew et al�� 
����� Keep in mind that the density

and velocity gyro�uid equations are exact moments of the gyrokinetic equation

in this limit small k��� so these equations for the toroidal and parallel �ows are

capturing the true physics� In the six moment model closures are not introduced

until the pk and p� equations��

The evolution of �p � pk � p� is found by subtracting the parallel and

perpendicular pressure equations� Eqs� ����� and ������ Because kr 	 
� but

� � n�k�r � we keep �d� terms but drop �d terms involving the �uid moments�

yielding�

�

�t
�p � �Brk

qk
B

�B�rk

q�
B�

� �rkuk � ukrk lnB � i�d�� ii�p� �����

At this point it is convenient� but not necessary� to assume that the �ows are

incompressible� Incompressibility is enforced by setting �n��t � � in Eq� ������

which forces the divergence of parallel �ow to balance the divergence of E�B �ow�

r � vE � �i�d��

Brk

uk
B

� ��i�d�� �����

This removes the fast parallel sound wave time scale and simpli�es the analysis�

Using incompressibility in Eq� ������ some of the uk and �d� terms cancel� The

remaining uk and �d� terms can be written in terms of the poloidal �ow using

v� � uk�bz�q � ikrhbz�� from Eq� ���
�� The evolution of �p is then given by�

�

�t
�p � �Brk

qk
B

�B�rk

q�
B�

� �v�
�n sin �

h
� ii�p
 �����

Thus �p is driven by poloidal �ow and damped by ion�ion collisions and parallel

heat �ows� Collisions relax the distribution function toward a Maxwellian� which

causes isotropization of Tk and T�� damping �p� The physical mechanism by which

poloidal �ow drives �p is a bit more subtle� Consider a poloidal �ow which brings

plasma from the outer midplane to the inner midplane� where B is larger� Because

� � v����B is conserved� as B increases� T� increases� Similarly� from conservation

of canonical toroidal angular momentum� Tk decreases� so poloidal �ow drives a

di�erence between pk and p�� This �p in turn damps the parallel �ow� as shown by
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Eq� ������ Since the toroidal �ow is constant� this parallel �ow damping leads to

poloidal �ow damping� as follows� Again using incompressibility� hv� is independent

of �� Then with some manipulation� uk�h can be written in terms of hhv�i and hhv�i�

uk
h

�
q

�bz

��



h�

�
� b�z
hh�i

	
hhv�i � bz

hh�i hhv�i � �����

Evaluating the �ux surface averages to lowest order in �� hh�i � 
� �

�
�� and h
�h�i �


 � �

�
��� leads to�

uk
h

� 
 � �q��
�

q
hhv�i� hhv�i � �����

Since the toroidal �ow is constant� � hhv�i ��t � �� Eq� ����� becomes�

�

�t

�
uk
h

�
� 
 � �q��

�

q

�

�t
hhv�i � 


��

Z
d�
bz�n� sin �

qh
pk � p��� �����

In the P�rsch�Schl"uter regime easiest� but least relevant to present day

experiments�� collisions keep qk and q� small� Considering slow evolution compared

to the sound wave time scale� we can look at the average evolution of �p by ignoring

��p��t� Then �p in Eq� ����� is determined by the balance between the drive from

the poloidal �ow and the damping from collisional isotropization�

�p � ��v� �n sin �
iih

� �����

Plugging this into Eq� ������ using the fact that hv� is independent of �� and

integrating over � to lowest order in � yields�


 � �q��
�

q
h
�v�
�t

� ��hv�
�
bz�

�

n� sin
� �

qiih�

�

 �����

The �ux surface average on the right hand side can now be evaluated� which to

lowest order in � gives a poloidal damping rate of�

� � ��

�

��n

 � �q��ii

� ���
�

Here both � and ii have been normalized to vti�Ln� In dimensional form� this is�

� � ��

�

v�ti

 � �q��iiR�

� ��

�

��

ti

� � 
�q��ii

 �����
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where �ti � vti�qR� This expression matches the P�rsch�Schl"uter result of 	Hassam

and Kulsrud� 
���� exactly�

Now consider the less collisional plateau and banana regimes� Here the ii

term in Eq� ����� is negligible� and the dominant balance is between the heat

�ux terms� which damp �p� and poloidal �ow� which drives �p� In these �colli�

sionless� regimes� the heat �uxes primarily come from the Landau damping terms

in the gyro�uid equations� For low frequencies� Eq� ����� and ����� reduce top
�Dkjkkjqk � �� � �k�rkTk and

p
�D�jkkjq� � �rkT�� Using kk � 
�qR in our

dimensionless units� kk is normalized to Ln� so kk � �n�q�� this approximately leads

to�

�p � ��
r
�

�

v�q sin �

h
�����

Plugging this into Eq� ����� gives�


 � �q��
�

q
h
�v�
�t

� ��
r
�

�
hv�

�
bz�n� sin

� �

h�

�
� �����

Evaluating the �ux surface average to lowest order in � yields the collisionless

poloidal �ow damping rate from the toroidal gyro�uid equations�

� � ��

�

r
�

�

q�n

 � �q�


 �����

which in dimensional form is�

� � ��

�

r
�

�

�ti

� � 
�q��
� �����

This matches the plateau results of 	Hirshman� 
���� and 	Stringer� 
���� within

a factor of 
��� and also agrees with 	Stix� 
���� if 
 � �q�� is replaced by 
� since

he was working in slab geometry� with modulated B�

In the banana regime� the neoclassical calculation of the poloidal �ow damp�

ing rate is not as straightforward as in the plateau regime� Using the static values

for the parallel viscosity coe�cients� 	Hirshman� 
���� found�

� � � q�ii

�������
 � �q��


 �����

which is the same expression in dimensional and dimensionless form� This large

damping rate violates the assumption � 	 ii which calls the use of the static
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viscosity coe�cients into question� a point which 	Hirshman� 
���� emphasized�

Earlier works found � � �ii�� 	Stix� 
���� and � � �ii 	Rosenbluth et al��


��
�� Later neoclassical expressions for the poloidal �ow damping rate were de�

rived without using the static parallel viscosity coe�cients and found � � �ii
	Shaing and Hirshman� 
����� � � �ii����� 	Taguchi� 
��
�� and � � �ii��
	Hsu et al�� 
����� Since � is small� these results are extremely di�erent� These

last three works� instead of using the static parallel viscosity coe�cients� solve for

the time dependent distribution function� fi� However� when solving for fi they

order �fi��t � Cfi�	 �tifi� so these calculations miss any collisionless damping

processes which occur on a faster time scale� As 	Stix� 
���� argued� collisionless

transit�time magnetic pumping dominates for short time scales� t � ���bi � The an�

alytic damping rate calculated from the toroidal gyro�uid equations in the banana

and plateau regimes� Eq� ������ is consistent with this� Dimits% interpretation of

poloidal �ow damping in collisionless gyrokinetic particle simulations is also based

on Stix%s transit�time magnetic pumping picture 	Dimits� 
����� The gyro�uid

damping rates are compared to the neoclassical results of 	Hirshman� 
���� in

Fig� ���� The results agree in the plateau and P�rsch�Schl"uter regimes� In the

banana regime� transit�time magnetic pumping dominates for times t
�� ���ti 
 �

��
bi �

and at later times the damping is governed by collisional processes�

The analytic gyro�uid results for the �ow damping rates in Eqs� ���
� and

����� are now compared with numerical solutions of the full toroidal gyro�uid

equations without making any of the approximations used above� A �ow with both

toroidal and poloidal components is initially imposed and is linearly evolved in

time� The parameters used are kr	i� � ���
� � � ��
 and q � �n � 
� the scaling of

Eqs� ���
� and ����� with q and �n have also been checked� but are not shown here�

Fig� ��
� and ��

 show the linear damping of these �ows for the P�rsch�Schl"uter�

plateau� and banana regimes� Here incompressibility is not enforced� so there are

oscillations during the damping of the �ow� it is not a purely exponential decay�

The analytic gyro�uid expressions above compare favorably with the full numerical

solutions� In the plateau and banana regimes� after an initial rapid damping phase�

a �nite poloidal �ow is maintained which is damped on a slower collisional time

scale� In contrast to the neoclassical banana regime results valid only for longer

time scales�� no signi�cant di�erences are seen between the plateau and banana

damping rates in this initial strong damping phase�
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Figure ���� Poloidal �ow damping rates in various collisional regimes� The gyro�uid
results solid� match the neoclassical results in the P�rsch�Schl"uter and plateau

regimes� For short time scales t
�� ���ti 
 �

��
bi �� transit�time magnetic pumping

dominates in the banana regime� The neoclassical result of 	Hirshman� 
���� using
static parallel viscosity coe�cients� is also shown in the banana regime dashed��
Because the neoclassical calculations assume that the distribution function evolves
on a collisional time scale� they miss the rapid collisionless damping� and are only
valid for t
 ���bi �
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Figure ��
�� Poloidal �ow damping in the P�rsch�Schl"uter regime� ii��ti � 
����
The poloidal �ow solid� from simulations agrees with the analytic result Eq� ���
�
dotted�� The toroidal �ow dashed� is constant� demonstrating that toroidal an�
gular momentum is well conserved�
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Figure ��

� Poloidal �ow damping in a� the plateau regime� ii��ti � ��
� and b�
the banana regime� ii��ti � ����
� The poloidal �ow solid� from simulations agrees
with the analytic gyro�uid result Eq� ������ and the toroidal �ow dashed� is again
well conserved� Transit�time magnetic pumping dominates for short time scales
t

�� ���ti �
��
bi � and at later times the damping is governed by collisional processes�
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For the short time scales of the turbulence� transit�time magnetic pumping

is the dominant poloidal �ow damping process in the banana and plateau regimes�

The small scaleE�B �ows are randomly generated by the turbulence� and damped

according to Eq� ������ A bounce time later� when Eq� ����� is no longer valid�

the turbulence has evolved into a di�erent state� generating new �ows� Because

the turbulence is quite sensitive to balance between the nonlinear generation and

the linear damping of the poloidal �ow� it is important that the gyro�uid equations

accurately model this process� Things get slightlymore complicated for kr	i � O
��

and it is more di�cult to check our models in this regime� Future work is needed

to fully resolve this issue� but it appears that the toroidal gyro�uid equations are

accurately modeling this process�

��� Nonlinear Simulation Results with Trapped

Electrons

Although the adiabatic electron assumption may lead to a reasonable description of

ITG driven turbulence in some regimes e�g�� when the electrons are very collisional

so trapped electrons are wiped out� but not so collisional that the parallel dynamics

are a�ected�� in general� nonadiabatic electron e�ects should be taken into account�

It is conceivable that if �i 
 �e
D� the electrons could be passively advected

by toroidal ITG driven turbulence with little e�ect on the ion transport� but in

general �i � �e � D� Clearly when �e � �i� nonadiabatic electron e�ects will be

important� Further� electrons are typically in the banana regime �e � 
�� except

in the collisional extreme edge and in the extreme core where the trapped fractionp
� is small� indicating that collisions are usually not large enough to completely

wipe out the nonadiabatic electron response� Again� D
�e �� � guarantees that the

electrons are signi�cantly nonadiabatic�

In this section� the e�ects of nonadiabatic electrons are investigated with

nonlinear simulations� These results should be considered preliminary� The e�ect

of electron collisionality on the predicted transport is shown in Fig� ��
� for the pa�

rameters �i � �e � �� q � 
��� �s � 
� �n � 
��� � � 
�� and Ti � Te� corresponding

to the linear results in Fig� ���� For high collisionality� e�Ln�vti � 
� �e � ���

the electron response is nearly adiabatic� The ion thermal �ux� �i � �	�i vti�Ln�
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Figure ��
�� Fully nonlinear simulation results with trapped electrons� varying elec�
tron collisionality� for ITG driven turbulence at �i � �e � �� As �e is reduced� the
electrons become destabilizing� until �i � ��adiabatic

i in the collisionless limit�

is the same as obtained with adiabatic electrons and �e is very small� As e� is

reduced� the electrons become destabilizing� In the collisionless limit� �e � ������

�i � 

	�i vti�Ln and �e � �	�i vti�Ln� Although for these parameters the turbulence

is driven by toroidal ITG modes �i � �� LT i�R � ��
�� electrons increase �i by up

to a factor of three over simulations with adiabatic electrons�

Fig� ��
� shows results from another set of nonlinear simulations showing

the e�ect of rTi� Beginning with the reference case �i � �e � �� q � 
��� �s �


� �n � 
��� � � 
��� Ti � Te� and �e � ����� rTi is reduced by lowering �i

holding Lne � Lni and LTe �xed� These nonlinear runs correspond to the linear

results in Fig� ���� If the electrons are adiabatic� when �i is reduced below the

adiabatic �criti � the plasma is stable and the turbulent �ux vanishes solid squares in

Fig� ��
��� With trapped electrons at low electron collisionality� below the adiabatic

�criti the turbulence is driven by unstable trapped electron modes� The ion heat �ux

Qi � hvErpii drops below Qe for �i � �criti � consistent with the quasilinear ratios

where Qi � Qe for the toroidal ITG mode and Qi � Qe for the TEM 	Rewoldt
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Figure ��
�� Nonlinear simulations predict �i��e in experimental range even for
�i � �criti adiabatic at low electron collisionality� At �e � ����� as �i is reduced
holding �e � � �xed� Qi drops below Qe as the ITG mode evolves into TEM� but
sincerTi is getting weaker� �i stays above or comparable to �e� Lowering �e reduces
�i and �e weaker TEM drive��

and Tang� 
����� However� since Q � �rT � because rTi is decreasing� �i stays

above or comparable to �e� The relative magnitudes of �i and �e are within the

experimental range� where typically �i � �e� The parameters of this scan were

speci�cally chosen to investigate strongly driven TEM turbulence at �i � �criti � A

physically more realistic scan would not hold �e � � �xed� �e � �i is more likely�

When the scan is repeated decreasing both �e and �i simultaneously� both �i and

�e are reduced in the TEM regime� by roughly a factor of three�

These nonlinear results show that the most striking e�ect of trapped elec�

trons is to soften the �criti or Lcrit

T i �R threshold which exists with adiabatic electrons�

When the turbulence is driven by trapped electron modes� below �criti � Qi is reduced�

so in this sense there is still a threshold for the ion heat transport� but it is not a

sharp threshold at low collisionality� For the moderate �e of many L�modes� there

is marginal behavior� but at lower �e there may still be a fairly strong TEM drive

with less marginal features� Mapping out precisely when this happens is now pos�
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sible with our simulations with trapped electrons� As shown above� the TEM drive

can strongly a�ect both ion and electron transport� It is thus expected that both �i

and �e will depend on electron collisionality and electron density and temperature

gradients in low collisionality regimes� particularly when �i is low and the TEM

dominates�



Chapter �

Comparison with Experiment

D
IRECT COMPARISONS of the toroidal nonlinear simulations with ex�

periment are presented in this chapter� Recent comparisons between ex�

periment and a transport model based on simulations with our toroidal

gyro�uid code and linear fully kinetic calculations have shown good agreement in the

core �r�a � ����� of L�mode type discharges �Dorland et al�	 
���b Kotschen�

reuther et al�	 
���a�� These comparisons used an interpolation formula for �i	

parameterized to �t our toroidal gyro�uid simulation results with adiabatic elec�

trons� This formula also uses an interpolation formula for the marginal LT i�R

found from linear fully kinetic calculations with adiabatic electrons� �As discussed

in Section ���	 a critical LT i�R does not always rigorously exist with nonadiabatic

electrons	 but threshold like behavior may still occur in many cases�� This �t to �i

was then used in a predictive power balance code to predict temperature pro�les	

and Ti and �i from the �t �using the predicted Ti� were compared with experiment�

Many L�mode �� ��� shots were simulated in this manner	 �nding encouraging

agreement� In this Chapter	 a simpler	 more direct approach is taken� Measured

temperature and density pro�les are used as inputs for the toroidal gyro�uid sim�

ulations with trapped electrons	 and the resulting �i�s and �e�s are compared with

those inferred from power balance� This comparison is presented here to roughly

demonstrate where we stand	 and should be considered qualitative�

The speci�c shot chosen is TFTR L�mode ����
�	 and the input parameters

are taken from SNAP try �� This shot is very similar to ����
� in �Scott et al�	


����� The primary ion species is deuterium	 heated by 
�MW of deuterium neutral


��
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beam injection� The major radius is R� � ���cm	 the minor radius is a � ��cm	

and the toroidal �eld strength on axis is B� � ���T� The Shafranov shift is not

terribly large	 

��cm at the magnetic axis	 so the simulations use concentric circular

�ux surface geometry� In this shot the impurity concentration is small	 Ze� �


���� At r � �	 the beam density is nb�ne � ��
�	 and the hydrogen and carbon

impurity densities are nH�ne � ����
 and nC�ne � �����	 with carbon making

largest contribution to Ze� and to the impurity charge density� Metal impurities are

negligible� The calculated beam density decreases monotonically towards the edge�

Because of this relatively low impurity and beam concentration	 in the simulations

impurities and beams are neglected� The measured Ze� �assumed independent of

minor radius� is used to calculate the electron�ion collision frequency�

The pro�les taken from SNAP are shown in Figs� ��
����� Since �i � Lni�LT i

varies from 
�� to �	 the turbulence in this shot is driven by the toroidal ITG

mode� Several small �ux tube simulations	 centered at di�erent r�a	 are run using

the local measured parameters as input� The chosen numerical parameters vary

slightly with the physical parameters to ensure adequate resolution� In particular	

the simulations �nd a strong q dependence of the peak in the nonlinear �uctuation

spectrum� At the edge where q is large	 the spectrum peaks at lower k�	 so larger

simulation domains are required to resolve these long wavelengths� The results

from these nonlinear simulations are shown in Fig� ��� and compared against �i

and �e from power balance� Also shown is the predicted �i from �Biglari et al�	


����	 �i � �k��iq�
 � �i���� �s�� ��i vti�Ln� Since k��i is not determined from this

theory	 k��i � ��� is used� Using k��i found from the simulations would exacerbate

the di�erence between this theory and experiment	 since k��i from the simulations

decreases with increasing minor radius� In the core �r�a � ����	 all modes are

stable for the measured parameters	 but just barely a small increase in rTi would
destabilize the toroidal ITG mode and give a small �i� �This shot had sawteeth	

which might be complicating things in this region	 since the q � 
 surface is at

about r�a � ������

There is a tendency for the predicted � from the simulations	 �sim	 to over�

and undershoot �PB calculated from power balance� This is related to the depen�

dence of the ��s on rT 	 and the fact that the measured rT 	 as a gradient	 is more
susceptible to experimental uncertainties than local quantities� The experimentally




�


Figure ��
� Measured electron �solid� and ion �dashed� density and temperature
pro�les	 and beam density �long dashes� for ����
� from SNAP�

Figure ���� Electron �solid� and ion �dashed� density and temperature scale lengths�
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Figure ���� Safety factor	 q �solid�	 shear	 �s �dashed�	 electron �solid� and ion
�dashed� collisionality for ����
��

inferred heat �ux	 Qi	 is fairly smooth� Since �PB � Qi�rTi	 if the measuredrTi is
slightly lower than its actual value	 �PB a will be slightly higher than the actual �i�

The simulation �sim is proportional to rTi	 since the turbulence here is primarily
driven by the ion temperature gradient� Since the simulations use rTi as an input	
if rTi is slightly low	 �sim will be low� Therefore	 small errors in rTi push �sim

and �PB in opposite directions� Taking this into account	 Fig� ��� shows reasonable

agreement between the toroidal gyro�uid results and the experimental results in

the core region	 r�a � ���	 for both �i and �e� The heat transport is reduced in

the core where the toroidal ITG mode is more weakly driven than	 for example	 at

r�a � ����

Outside r�a � ���	 the predicted �i is clearly too low� There are a few

possible explanations which could make the predicted edge transport increase	

due to e�ects which are not included in these simulations� Increased damping of

the turbulence�generated sheared �ows near the edge would increase the �ux �see

Fig� ����� Increased �ow damping could possibly come from collisional friction with

impurities or from drag due to charge exchange	 although the latter is probably quite

weak� Another mechanism which would increase the edge transport is inverted im�




��

Figure ���� �a� Comparison of predicted and experimental �i�r�� �b� Comparison
of �e�r�� The dots are from the simulations and the solid lines without dots are cal�
culated from power balance �SNAP�� Also shown is the theoretical �i from �Biglari
et al�	 
�����
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purity density gradient drive	 as discussed in Section 
�� �Dorland et al�	 
���a��

The radial variation of impurity density is di�cult to measure it is probably easier

to �nd some signature of impurity density gradient driven turbulence in the sim�

ulations	 and then look for this signature in �uctuation measurements� Another

possibility is Kelvin�Helmholtz type drive from sheared equilibrium �ows	 but it

seems unlikely that the �ows in the edge are large enough to drive these instabili�

ties� Another possibility is that the large �uctuations at the edge are not generated

locally	 but are propagating into the edge from more strongly driven core regions

�Mattor and Diamond	 
����� Finally	 perhaps some increased drive at the edge

could come from the Shafranov shift� Near the edge the �ux surfaces are com�

pressed	 increasing the local gradient in the bad curvature region� Clearly all these

mechanisms are speculative at this point	 and should be studied in more detail�

The predicted electron heat �ux is in reasonable agreement with experiment

in the core	 r�a � ���	 but is too low in the edge� In the region ��� � r�a �

���	 where �i matches fairly well	 the predicted electron �ux may be low due our

approximate collision model� As discussed in Section ���	 we have approximated the

velocity dependence of �e�v�� Over most of the minor radius	 the collisionality for

this shot is near �e�Ln�vti � 
	 where our trapped electron model underestimates the

nonadiabatic electron response� �See the right hand side of Fig� ����� Incorporating

the velocity dependence of �e�v� could remedy part of this discrepancy�

Overall	 this seems to be a reasonable level of agreement� The gyro�uid

equations appear to be accurate enough to properly capture the small linear drive

in the core	 where the plasma is near marginality	 without resorting to fully kinetic

linear theory� Small changes in rTi and rTe could make the agreement virtually
exact for r�a � ���� To demonstrate this	 comparison of this shot with the IFS�

PPPL �i interpolation formula based on our toroidal gyro�uid simulations with

adiabatic electrons and linear fully kinetic calculations is shown in Fig� ����a�� This

interpolation formula for �i found by �Dorland et al�	 
���b��

�i �
��i vti
R

�
R

LT i
� R

Lcrit
T i

������

F � ���
�

is quite similar to the results with trapped electrons �Fig� ���� for this moderate

collisionality� In Eq� ���
�	 F � q��� � �s� � � �	 is a complicated function of lo�
cal dimensionless parameters	 and R�Lcrit

T i is determined from kinetic calculations




��

Figure ���� �a� Comparison of experimental �i�r� �solid� and and the IFS�PPPL
�i�r� �long dashes�� Also shown is the IFS�PPPL �i�r� using an LT i�r� pro�le ad�
justed so the predicted heat �ux matches the experimental heat �ux �short dashes��
�b� Measured �solid� and adjusted �long dashes� R�LT i� In the core	 the adjusted
R�LT i is only slightly above the critical R�Lti �short dashes��

�Kotschenreuther et al�	 
���b�� If LT i�r� is adjusted so the predicted heat �ux	

Qi	 matches the measured heat �ux	 �i�r� is in much better agreement	 as shown

by the �adj
i in Fig� ����a�� This is similar to the results which would be obtained

from the predictive transport code used in �Dorland et al�	 
���b�� Fig� ����b�

shows the measured R�LT i	 the adjusted R�LT i	 and R�Lcrit
T i � The adjusted R�LT i

is only slightly above marginal in the core	 since the measured heat �ux there is

small� Fig� ��� shows the Ti pro�le obtained by integrating the adjusted LT i�r�

inward	 using the measured Ti at r�a � ��� as a boundary condition� Thus	 only

a relatively small change in Ti�r� is needed to get the predicted �i to agree� This

is an example of usual marginal stability e�ects as emphasized again in �Dorland

et al�	 
���b�� A good sawtooth model might further improve the Ti �t in the core�

This encourages us to add more physics to these simulations to try to ex�

plain a wider range of experimental conditions� With nonadiabatic electrons	 at

su�ciently small ��e	 there is often no rigorous critical LT i beyond which the modes
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Figure ���� Ti pro�le obtained by integrating the adjusted LT i inward	 using the
measured Ti at r�a � ��� as a boundary condition� Only small changes from the
measured Ti pro�le are necessary to make the heat �uxes agree�




��

are completely stabilized	 but there can still be threshold�like behavior where the

modes are weaker� For the moderate ��e of many of the L�modes looked at in �Dor�

land et al�	 
���b�	 there is marginal behavior �as in Fig� ����a��	 but at lower ��e

there may still be a fairly strong TEM drive with less marginal features� Mapping

out precisely when this happens is now possible with our simulations with trapped

electrons	 and is important work for the future�

There are many experimental transport scalings which appear to contradict

microinstability based theories	 especially the scaling with current �Ip�	 B	 and ion

mass� There is some evidence	 however	 that the Ip and B scalings are not incon�

sistent with our results� The q dependence of Eq� ���
� can lead to Ip scaling� The

detailed comparisons in �Kotschenreuther et al�	 
���a� also compare favorably

with the current ramp experiments of �Zarnstorff et al�	 
��
�� Although our

simulations and Eq� ���
� are gyro�Bohm	 this gyro�Bohm scaling with B can be

partially masked by marginal stability e�ects	 leading to a more Bohm�like behav�

ior	 as seen in experiments� While the comparisons discussed in this chapter and

in �Dorland et al�	 
���b Kotschenreuther et al�	 
���a� seem to be on the

right track	 these issues must be carefully addressed�
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Chapter �

Conclusions

S
EVERAL ADVANCES toward an understanding of turbulent transport in

tokamaks are made in this thesis� The primary thrust of this work is the

development of nonlinear toroidal simulations which predict �uctuation and

transport levels that compare favorably with experiment� These simulations rely on

more accurate �uid equations for the ions and new bounce averaged trapped elec�

tron equations� Together	 these equations provide an accurate description of most

of the physics considered relevant for microinstability driven turbulence� This re�

duced �uid model is su�ciently simple to solve directly in high resolution numerical

simulations� These simulations implement a reduced �ux tube geometry for further

numerical e�ciency	 and fully incorporate toroidal e�ects� Toroidal e�ects are found

to signi�cantly enhance thermal transport and �uctuation levels over sheared slab

predictions	 bringing the predictions up to experimentally measured levels� In ad�

dition	 the nonlinear �uctuation spectrum is peaked at long wavelengths	 and is

anisotropic in kr and k� due to the ballooning nature of this turbulence	 in agree�

ment with experiment� Finally	 the trapped electron �uid equations provide the �rst

high resolution toroidal nonlinear simulations which simultaneously include toroidal

ITG modes and trapped electron modes	 and allow calculation of the full transport

matrix� ion and electron heat �uxes and particle �uxes�


��
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��� Summary

Toroidal ion gyro�uid equations are derived with improved models of the important

kinetic e�ects associated with toroidicity� Special care is taken to derive closure

approximations which	 though similar to those of �Waltz et al�	 
����	 are well

behaved in the mixed limit where both toroidal drifts and parallel free streaming

are important	 i�e� where both kk and 	d are non�zero� The four moment toroidal

gyro�uid model of �Waltz et al�	 
���� is extended to six moments	 including the


�b � rB mirroring terms� This keeps the parallel velocity equation exact	 impor�

tant for accurate poloidal �ow damping rates� Including the 
�b � rB terms also

incorporates trapped ion e�ects to some level of approximation �the growth rate

in the very low k��i trapped ion mode regime is within a factor of two of full gy�

rokinetics�� New toroidal FLR terms are treated which arise from the variation of

B �in the argument of J�� with major radius	 and generalize the FLR model of

�Dorland and Hammett	 
���� to toroidal geometry� An improved four moment

model is also presented	 which is simpler and numerically less demanding than the

six moment model� Impurity and �Maxwellian� beam dynamics are equally well

described by these toroidal gyro�uid equations	 and have been incorporated into

the code by Dorland�

New bounce average �uid equations for trapped electrons are derived	 incor�

porating sophisticated models of the trapped electron toroidal precession resonance

and pitch�angle scattering from collisions� Because these equations are bounce av�

eraged	 the fast parallel electron time scale is removed	 allowing high resolution

toroidal simulations simultaneously including drive from toroidal ITG modes and

trapped electron modes� Including nonadiabatic electron dynamics also allows pre�

dictions of electron heat transport and particle transport� Both the toroidal ion

gyro�uid and trapped electron equations are carefully benchmarked against fully

kinetic linear theory	 in the local limit and in fully nonlocal eigenmode calculations�

A reduced �ux tube coordinate system is presented which exploits the elon�

gated nature of microinstability driven turbulence� A slab gyro�uid code �Dor�

land	 
���� is extended to toroidal geometry using this coordinate system and the

comprehensive toroidal gyro�uid equations derived here� These simulations �nd

that the e�ects of toroidal geometry are quite important� The �uctuation levels

and transport are about �� times larger than sheared slab simulations	 bringing
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the predicted transport up to measured levels� The �uctuation spectra from these

simulations are peaked at k��i � ��
���� for typical parameters and are anisotropic
in kr and k�	 similar to BES �uctuation measurements on TFTR �Fonck et al�	


�����

The importance of turbulence�generated small�scale sheared E�B �ows on

toroidal ITG turbulence is demonstrated� The damping of the �large� poloidal

component of these �ows is shown to be a sensitive control of the turbulence level�

The damping of these �ows within the six moment gyro�uid model is carefully

investigated� For the relevant short time scales of the turbulence	 the toroidal

gyro�uid model is shown to be accurate�

Direct comparison of these toroidal simulation results with L�mode experi�

ments are found to be encouraging� The predicted ion and electron heat transport

in the core	 r�a � �������	 are in reasonable agreement with those calculated from
power balance� The transport in the edge	 r�a � ���� ���	 is too low	 and possible
mechanisms to explain this discrepancy are discussed�

��� Future Directions

The gyro�uid equations are an approximation to the full nonlinear gyrokinetic equa�

tion	 and break down in some regimes� For example	 the weak turbulence wave�

kinetic equation derived from the gyro�uid equations successfully reproduces the

gyrokinetic wave�kinetic equation in the limit 	 � kkvti	 but fails to recover the

ion�Compton scattering rate very near marginal stability	 in the limit � � 	 � kkvti

�Mattor	 
��� Dorland	 
����� The nonlinear validity of the gyro�uid equations

in strong turbulence regimes has not yet been unambiguously veri�ed on fundamen�

tal grounds� However	 gyro�uid simulations have been compared against technically

more accurate gyrokinetic particle simulations	 �nding similar behavior in a sheared

slab �Parker et al�	 
��� Dorland	 
����� The toroidal simulations developed

in this thesis have been benchmarked with toroidal gyrokinetic particle simulations

�though not as extensively as the sheared slab simulations�	 and �nd reasonable

agreement �Parker et al�	 
����� Very recently	 the toroidal gyrokinetic particle

simulations of �Dimits et al�	 
���� appear to predict lower transport by about a

factor of ���� While in principle gyrokinetic simulations are more accurate	 since
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they solve the more fundamental gyrokinetic equation directly	 there are a number

of issues which need investigation� particle noise	 particle �ltering	 resolution	 and

geometry �we implement �eld�line coordinates in a somewhat di�erent way than

�Dimits et al�	 
����	 which tends to emphasize resolution in di�erent parts of k�

space�� Detailed comparisons with gyrokinetics is worthy of further study	 to track

down the causes of this discrepancy�

Closing the �uid hierarchy with linear closures naively appears to introduce

an error of O��	NL�kkvti�	 which is typically O�
�� Here �	NL � vE � r is some

measure of the nonlinear decorrelation rate� In this sense it is very interesting that

gyro�uid models work as well as they do nonlinearly	 but there are physical reasons

behind this� Each gyro�uid equation	 as a moment of the gyrokinetic equation	 is an

exact nonlinear conservation law� closure approximations are introduced into higher

moment equations in a way which preserves the conservative form the equations� As

more moments are retained	 more details of the distribution function are accurately

described� Smith has demonstrated convergence in the number of moments for the

nonlinear plasma echo problem �Hammett et al�	 
����	 though it required many

moments in that case� In the strong turbulence limit	 it seems unlikely that many

moments need to be kept	 since the broad spectrum of modes should average out

sharp velocity space variations in the distribution function� Our equations retain

the dominant �E�B� nonlinearities and provide accurate physics based models of

the linear drive and dissipation� Future work should continue to test the validity

of the gyro�uid approximation	 both through comparisons with kinetic simulations

and through purely theoretical simpli�ed problems�

The toroidal ion gyro�uid equations and trapped electron �uid equations

presented here are both derived in the electrostatic limit� Recent work has begun

including electromagnetic e�ects �Waltz et al�	 
���b Hammett et al�	 
�����

The main di�culty here is that magnetic �uctuations are driven by parallel current

�uctuations	 and since trapped particles do not carry current	 passing electrons

need to be evolved �they can no longer be considered adiabatic�� Resolving the

fast electron parallel motion seriously slows down the numerical calculations� Some

trick analogous to bounce averaging would be useful�

The nonlinear simulation results in this thesis are in axisymmetric	 low�	

high aspect ratio magnetic geometry� Including the e�ects of general magnetic ge�
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ometry is a straightforward next step� It is of great interest to investigate the e�ects

of elongation and triangularity on the transport	 both to compare with existing non�

circular tokamaks and to optimize the design of future experiments� The derivation

of both the toroidal ion gyro�uid equations and the trapped electron �uid equations

is valid for general geometry� Further	 the �ux tube simulation geometry in Chapter

� is formulated in general geometry� All that is required is a pre�processor which

would take the equilibrium magnetic �eld described by Eq� ���
� and calculate the

metric coe�cients in Eqs� ����� and ������ These metric coe�cients would then be

used as further input for the toroidal gyro�uid code�

Although these toroidal gyro�uid simulations are relatively fast	 an analytic

formula for �i	 �e	 and D would be more desirable� In addition to aiding comparisons

with experiment	 analytic formulas �even if they are approximate� usually o�er

more insight than purely numerical results� Our focus to date has been to add

more physics to our equations and simulations until we are con�dent that they

are experimentally relevant� Now that it appears we are reaching this point	 it

would be very interesting to investigate the nonlinear dynamics in the simulations

in more detail	 to try to develop an analytic model for the transport� While the

interpolation formula for �i in �Dorland et al�	 
���b� represents a signi�cant step

towards a reduced description of the simulation results	 a model for the transport

in terms of a simpli�ed renormalized dispersion relation would be more satisfying�

�Dorland et al�	 
���b� have found that much of the variation in �i is captured by

max���k��� �di�erent from max����k�� because of the k� dependence of ��	 but the

residual variation is still described by a numerical �t to the simulation results� This

residual variation presumably includes physics involving sheared��ow generation

and damping	 and it would be nice to have an analytic model of this�

The electron equations have been implemented in the nonlinear simulations

only quite recently a more careful investigation of electron heat �uxes and particle

�uxes is clearly called for� Further study of TEM driven turbulence is required

to accurately describe supershots and ohmic plasmas� We can now study several

important questions� Why is the convective multiplier as low as ��� in supershots�

When are there particle pinches� What is the helium ash di�usion coe�cient� We

can also study advanced tokamak con�gurations with trapped electron mode sta�

bilization due to reversed shear or high�	 which are predicted to have improved
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con�nement� A complete transport model must be able to predict density as well

as temperature pro�les� Nonadiabatic electron dynamics are thus an essential in�

gredient�



Appendix A

Old Toroidal Gyro�uid Equations

The equations used in the nonlinear simulations in Chapter � are brie�y summarized

here	 since they are an earlier version of those derived in Chapter �� Since the aim

of the simulations in Chapter � is to test various assumptions implicit in �ux tube

simulation	 the simpler four moment model is used	 using adiabatic electrons and

ignoring collisions and particle trapping �i�e�rkB � ��� The four moment equations

here use less accurate toroidal closure coe�cients and FLR approximations than

those in Section ���� Using the normalizations and de�nitions in Chapter �	 the

dynamical equations are�

dn

dt
� rkuk �

�

 �

��
�
�r�
�

�
i	���

�



�
�r�
�v�

�
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duk
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� rk�pk ��� � ��i	duk � �i	d��iuk � �j	dj��ruk�
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dt
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p
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The total time derivative includes the main E�B nonlinearities� The parallel

closure coe�cients are �k � ��
p
� and �� � 
�

p
�� The toroidal closure coe�cients

have both dissipative and reactive pieces	 and written in the form � � ��r� �i� �


��
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�r � i�ij	dj�	d	 they are �� � �
���������	 �� � ����� 
����	 �� � ��
���� ����	
�� � ���
���
����	 and �� � �����������

The adiabatic electron response is given by ne � � � � h i�	 where h i��� �
�
R
d�dzJ jr�j �� �R d�dzJ jr�j� is a �ux surface average� In circular concentric

geometry	 this becomes h i � ���y z���� R dy dz�R�R�� �x� y� z�	 and is only non�

zero for the ky � � components� The gyrokinetic quasineutrality constraint is

ne � !ni � �"� � 
� 	 where the expression used for !ni is related to the ion guid�
ing center density and perpendicular temperature by the FLR closure relation in

�Dorland and Hammett	 
����	 yielding�

� � � h i� � "
���
�

D�b�

�
N�b�n�




�
�r�
�T�

�
� �"� � 
� �

Where � � Ti�Te	 and explicit forms for the functions N�b�	 D�b�	 are given in

�Dorland and Hammett	 
�����

Since this equation involves both  and h i	 it is woth noting the procedure
used to determine  	 given n and T�� In general	 the coe�cients in this equation

can be functions of the �eld line coordinate	 so writing  � h i � � 	 and solving

for � gives�

� �
!ni � �"� � 
�h i

� � 
� "� �

Averaging both sides	 since h� i � �	 and solving for h i gives�

h i � h !ni
� � 
� "� i�h

�
� "��
� � 
 � "� i�

Now that h i is determined	 we use this expression in the quasineutrality constraint
to obtain  �
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