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1 Background

1.1 General geometry

Our development closely follows that of Beer, et al.[1] Since the divergence of the
magnetic field is zero, one may use a Clebsch formulation:[2]

B = ∇α×∇ψ. (1)

To represent an equilibrium magnetic field composed of closed surfaces, it is sufficient
to define[2] α = φ − q(ψ)θ − ν(ψ, θ, φ) and ψ = Ψ. Here, θ and φ are the
physical poloidal and toroidal angles, respectively, Ψ = (2π)−2

∫

V dτB · ∇θ is the
poloidal flux, q(Ψ) = dΨT/dΨ, ΨT = (2π)−2

∫

V dτB · ∇φ is the toroidal flux, and dτ
is the volume element. The quantity ν should be periodic in θ and φ.

It is convenient to define a new angle ζ = φ − ν. With these definitions, Eq. 1
becomes

B0 = ∇Ψ ×∇(qθ − ζ),

where the subscript on B is included to emphasize that we are concerned with the
equilibrium, unperturbed magnetic field. The field lines are straight in the (ζ, θ)
plane, and are labeled by α. Useful coordinates are therefore (ρ, α, θ), where ρ(Ψ)
determines the flux surface, α chooses a field line in that surface, and θ measures the
distance along that field line.

In an axisymmetric system, one may also represent the magnetic field as

B0 = I(Ψ)∇φ+ ∇Ψ ×∇φ, (2)

where I(Ψ) = RBT . We will find it useful to take advantage of this representation,
although not necessary.

In the ballooning or field-line following limit, we assume that the perturbed quan-
tities vary as

A = Â(θ) exp (iS)
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where b̂ · ∇S = 0. This takes into account the fact that the perturbations tend to
be slowly varying along the field line, and allows for rapid variation across the field
line.[3]

The latter condition implies

(∇α×∇Ψ) · ∇S = 0

which, in turn, implies S = S(α,Ψ). To make contact with the ballooning approx-
imation and with field-line following coordinates, one may choose S = n0 (α + qθ0),
where n0 is some (large) integer, and θ0 is the familiar ballooning parameter which,
in field-line-following coordinates, determines kx through the relation kx = −kθŝθ0.
Here, ŝ = ρ/q(dq/dρ), and ρ is an arbitrary flux surface label.

1.2 Operators and arguments

In general, we wish to simulate the nonlinear electromagnetic gyrokinetic equation in
the ballooning, or field-line-following, limit. We choose a field-line-following represen-
tation,[1] which has the advantage that the nonlinear terms are easy to evaluate and
are independent of the details of the magnetic geometry. Further details may found
in Ref. ([1]). Below, we focus on the linear terms, which may be affected by the
geometry.

Effects of the magnetic geometry in this limit enter through only a small number
of terms, regardless of whether one proceeds with a moment-based approach,[1] a δf
approach,[4, 5] or a gyrokinetic approach.[6, 7] Consider, for example, Eqs. (23–24)
of Antonsen and Lane:[3]
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. (4)

Here, ωd ≡ ∇S · B0 ×
(

mv2
‖ b̂ · ∇b̂ + µ∇B0 + q∇Φ0

)

/(mB0Ω). The notation is ex-

plained in Ref. [3]. Note that the unperturbed magnetic field B0 = B0(θ).
These equations, together with Maxwell’s equations, describe the linear properties

of a wide range of microinstabilities. In the limit of large toroidal mode number
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n0, only the following components of these equations depend on θ: b̂ · ∇, |∇S|2,

B0 ×
(

b̂ · ∇b̂
)

· ∇S, (B0 ×∇B0) · ∇S, and B0(θ). To perform volume integrations
and flux surface averages in the nonlinear simulations, it is also necessary to have the
Jacobian J and |∇ρ| as functions of θ. We now consider the terms individually.

To make our normalizations clear, we treat the ω∗ term in detail. The ω∗ term
may be written as

−i
B0 ×∇S · ∇F0

B0mΩ
qχ̂ = −in0

c

B0
χ̂
[

b̂ ×∇ (α + qθ0) · ∇F0

]

where

χ̂ =
(

φ̂−
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c
ψ̂
)

J0 +
σ̂|∇S|v⊥

c
J1.

This, in turn, is

−in0
c

B0
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= −in0
c
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χ̂
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= −in0cχ̂
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∂Ψ
,

where we have assumed that F0 = F0(Ψ).
We now introduce normalizing quantities. Lengths are normalized to a, which we

choose to be half the diameter of the last closed flux surface (LCFS), measured at
the elevation of the magnetic axis. The magnetic field is normalized to the toroidal
field on the flux surface at Ra, (Ba = I(Ψ)/Ra) where Ra is the average of the
minimum and maximum of R on the flux surface and I(ψ) is as used in Eq. (2).

Time is normalized to a/vt, where vt =
√

T/mi. Thus, for example, ∇ = (1/a)∇N

and Ψ = a2BaΨN . Perturbed quantities are scaled up by a/ρia, where ρia = vt/Ωa

and Ωa = |e|Ba/(mic). The perturbed field is normalized by Ti/|e|, so that, for
example, χ̂N = (|e|χ̂/Ti)(a/ρia). [Here, we consider only the one-species problem.
The generalization to multiple species is straightforward.] Finally, we introduce an
arbitrary flux surface label ρ, normalized so that ρ = 0 at the magnetic axis and
ρ = 1 at the LCFS. Note that the Larmor radius ρi should not be confused with the
flux surface label ρ. Upon adopting these normalizations, one finds

−in0cχ̂
∂F0
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= −i
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a2

cT
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a
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dρ

dΨN
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ρiavt
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∂ρ
χ̂N

which serves to define kθ ≡ (n0/a)dρ/dΨN . In the high aspect ratio, zero β, circular
flux surface limit, kθ = n0q/r. For the case in which there is a background density
gradient, one finds

−ikθρia

ρiavt

a2

∂F0

∂ρ
χ̂N = i(kθρia)χ̂N

F0

(Ln)N

ρiavt
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a
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(
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)
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in which the dimensionless quantity (Ln)−1
N = −(1/n)dn/dρ, and may also be written

as Ln/a. With the specified normalizations for time, space, and perturbed quantities,
the factor ρiavt/a

2 scales out of the gyrokinetic equation. Compare, for example, the
ω∗ term with the first term in Eq. (4),

iωĥ = iωN ĥN

(

ρiavt

a2

)

.

The factor in parentheses is common to all terms in the equation, and does not appear
in any other form. It may therefore be considered to be arbitrary.

In the ω∗ term, note that kθ is multiplied by ρia, confirming that it is natural to
consider perpendicular gradients normalized by the gyroradius ρia rather than to the
minor radius a, as expected in the ballooning or field-line-following limit.

To summarize, upon adopting the above normalizations, the ω∗ term in Eq. (4)
in field-line-following coordinates becomes

−i
B0 ×∇S · ∇F0

B0mΩ
qχ̂ = iω∗N χ̂NF0

(

ρiavt

a2

)

= −ikθρia

1

F0

dF0

dρ
χ̂NF0

(

ρiavt

a2

)

(5)

Note that ω∗N = −kθρia(1/F0)(dF0/dρ) is dimensionless, independent of θ, and re-
lated to the dimensional ω∗ by ω∗ = ω∗Nvt/a.

We now turn to the b̂ · ∇ operator. We begin by using the B field in the form of
Eq. (1) to find α:

B · ∇φ = ∇θ ×∇Ψ · ∇φ
∂α

∂θ

which implies

α =
∫ θ

0
dθ

B0 · ∇φ

∇θ ×∇Ψ · ∇φ
. (6)

For an axisymmetric B field, this integral may be evaluated with the use of Eq. (2).
In this case, the b̂ · ∇ operator may be explicitly evaluated. It is

b̂ · ∇ĥ(θ) =
B0 · ∇θ

B0

∂ĥ

∂θ
= −

IN
aBN

(

∂α

∂θ

)−1

|∇Nφ|
2∂ĥ

∂θ
,

which serves to define

(

b̂ · ∇
)

N
= −

IN
BN

(

∂α

∂θ

)−1

|∇Nφ|
2. (7)

In the high aspect ratio, zero β, circular flux surface limit,
(

b̂ · ∇
)

N
= a/qR0, where

R0 is the major radius at the center of the flux surface.
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Next, we consider the ∇B part of the ωd operator. This term is given by

v2
⊥

2

ĥ

ΩB2
0

B0×∇B0·∇S =
(

ρiavt

a2

)

(
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2
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2
ĥN

[

2

B2
N

dΨN
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]

.

The module released here produces the factors in square brackets, i.e.,

ω∇B =
2

B2
N

dΨN

dρ
b̂ ×∇NBN · ∇Nα and ω

(0)
∇B =

2

B2
N

dΨN

dρ
b̂ ×∇NBN · ∇Nq. (8)

In the high aspect ratio, zero β, circular flux surface limit, ω∇B = 2a/R0 (cos θ + ŝθ sin θ),

and ω
(0)
∇B = −2 (a/R0) ŝ sin θ.

The curvature drift is nearly the same as the ∇B drift, except that v2
⊥ → 2v2

‖ , and
the fact that there is an additional component of the curvature drift given by

v2
‖

4πĥ

ΩB2
0

b̂ ×∇p · ∇S =
(

ρiavt

a2

)

(

kθρia

2

)

ĥNv
2
‖N

[

1

B3
N
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]

.

(9)
The module released here produces the factors in square brackets, i.e.,

ωκ = ω∇B +
1

B3
N

dΨN

dρ
b̂ ×∇Nβa · ∇Nα, ω(0)

κ = ω
(0)
∇B (10)

Here, βa = 8πp/B2
a. Note that a perpendicular gradient of βa gets no contribution

from the gradient of the magnetic field, since Ba is a constant.
We do not explicitly consider the remaining component of ωd, proportional to

∇Φ0. To the extent that the electrostatic potential is constant on a flux surface, this
term may be specified using the information provided by the module.

To summarize, in field-line-following coordinates, the term in Eq. (4) that is pro-
portional to ωd is given by

iωdĥ = i

(

kθρia

2

)

ĥN

(

ρiavt

a2

)

[

v2
⊥N

2

(

ω∇B + θ0 ω
(0)
∇B

)

+ v2
‖N

(

ωκ + θ0 ω
(0)
κ

)

]

The form of Eqs. (3–4) and of the gyrokinetic Maxwell’s equations[3] (not shown)
guarantees that |∇S| always appears as the square, |∇S|2. In general geometry, this
term may be written

|∇S|2 =
n2

0

a2
|∇N (α + qθ0)|

2 = k2
θ

(

dΨN

dρ

)2

|(∇Nα + θ0∇Nq) · (∇Nα + θ0∇Nq)| .

The module released here produces the factors (g1, g2, g3), where

|∇S|2 = k2
θ

∣

∣

∣g1 + 2θ0g2 + θ2
0g3

∣

∣

∣ = k2
θ

(

dΨN

dρ

)2
∣

∣

∣∇Nα · ∇Nα + 2θ0∇Nα · ∇Nq + θ2
0∇Nq · ∇Nq

∣

∣

∣ .

(11)
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In the high aspect ratio, zero β, circular flux surface limit, g1 = 1 + ŝ2θ2, g2 = −θŝ2,
and g3 = ŝ2. Note that |∇S|2 typically appears with a factor of 1/Ω2, which is not
included in Eq. (11).

The remaining quantities are straightforward. The variation of the unperturbed
magnetic field along the field line is reported by the module as BN , with

BN(θ) = B0(θ)/Ba. (12)

The quantity |∇Nρ| is also reported by the module, and is unity in the high aspect
ratio, zero β, circular flux surface limit.

For numerical applications, it is sometimes necessary to choose the field line coor-
dinate so that (b̂ ·∇)N is constant. This choice allows the straightforward evaluation
of terms proportional to |k‖| in the transform space. Thus, we use (ρ, α, θ′) coordi-
nates, where θ′ is the equal arc periodic coordinate defined by

θ′(θ) = 2πLN(θ)/LN(π) − π (13)

between −π and π, and LN(θ) =
∫ θ
−π dθ

(

b̂ · ∇
)−1

N
. In this coordinate system, the

coefficient of the parallel gradient operator of Eq. (7) becomes

(

b̂ · ∇
)′

N
= 2π/LN (π). (14)

The Jacobian is JN = (dΨN/dρ) (LN/2πBN) . With these definitions, the flux surface
average of a quantity Γ is defined to be

〈Γ〉 =

∫

ΓJN dθ
′ dα

∫

JN dθ′ dα
.

The normalized area of the flux surface is AN = 2π〈 |∇Nρ| 〉
∫

Jdθ′.

The field-line variation of the quantities ω∇B and ω
(0)
∇B [Eq. (8)], ωκ and ω(0)

κ ,

[Eq. (10)], (g1, g2, g3) [Eq. (11)], BN(θ′) [Eq. (12)], and
(

b̂ · ∇
)

N
[Eq. (14)], together

with the quantities |∇Nρ|, dρ/dΨN and dβ/dρ are the outputs of this geometry mod-
ule, available from bdorland@ipr.umd.edu or mtk@peaches.ph.utexas.edu. These coef-
ficients contain all of the geometric information necessary for numerical calculations
of high-n microstability and turbulence in axisymmetric toroidal configurations with
nested magnetic surfaces.

1.3 Module details

Input numerical equilibria may be specified in numerous ways, as documented in
the module. Interfaces to direct and inverse Grad-Shafranov equilibrium solvers are
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available. These include using output from several equilibrium codes in use in the
fusion community, such as TOQ,[8, 9] EFIT,[10] VMOMS,[11] JSOLVER,[12] and
CHEASE,[13] as well as the local equilibrium model of Miller, et al.[14]

Here, we describe our implementation of the Miller local equilibrium model[14] for
completeness. This model extends the usual zero-beta, high-aspect ratio equilibrium
to arbitrary aspect ratio, cross section and beta, and allows one to consider geometric
effects on microinstabilities in a controlled way.

The shape of the reference flux surface and its perpendicular derivative are spec-
ified in the (R,Z) plane by

RN (θ) = R0N (ρ) + ρ cos [θ + δ(ρ) sin θ], (15)

ZN(θ) = κ(ρ)ρ sin θ. (16)

Here, RN = R/a, etc., R0N (ρ) = R0N (ρf ) + R′

0N dρ, δ(ρ) = δ(ρf ) + δ′ dρ, κ(ρ) =
κ(ρf ) + κ′ dρ, and ρf denotes the flux surface of interest. In the remainder of this
section, the “N” subscripts will be dropped, since no ambiguities will arise.

As emphasized in Ref. [14], the actual shape of neighboring flux surfaces (ρ 6= ρf )
is not determined by Eqs. (15) and (16). Instead, this is determined by solving
the Grad-Shafranov equation in the neighborhood of ρf . As noted by Mercier and
Luc,[15] one may find this solution provided R(θ), Z(θ), Bp(θ), p

′(ρf ), and I ′(ρf ).
One additional piece of information is required to determine either the safety factor
q or dΨ/dρ. Finally, the normalization of the magnetic field determines I(ρf).

In our implementation, we take q to be an input parameter, and upon noting that
∮

α dθ = −2πq, use it to define dΨ/dρ from Eq. (6):

dΨ

dρ
=

I

2πq

∮

dθ

R2
(∇θ ×∇ρ · ∇φ)−1 . (17)

[For numerical equilibria, dΨ/dρ may be calculated directly, and this expression de-
fines the safety factor.] The poloidal magnetic field Bp(ρf) is specified by

Bp =
dΨ

dρ

|∇ρ|

R
,

where |∇ρ| may be found from Eqs. (15) and (16).
The remaining steps may be used with the Miller local equilibrium model or with

full numerical equilibria. We allow arbitrary values of dp/dρ and ŝ by using the
Mercier-Luc expressions to find ∇S.[14, 15, 16] As noted in Ref. ([14]), the result is
exactly equivalent to the generalized s − α analysis of Greene and Chance.[17] To
proceed, we define

A(θ) =
∫

dθ

∇θ ×∇Ψ · ∇φ





1

R2
+

(

I

BpR2

)2


 , B(θ) = I
∫

dθ

∇θ ×∇Ψ · ∇φ

[

1

(BpR)2

]

,
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C(θ) = I
∫

dθ

∇θ ×∇Ψ · ∇φ

[

sin u+R/Rc

BpR4

]

,

where u(θ) is the angle between the horizontal and the tangent to the magnetic
surface in the poloidal plane, and Rc is the local radius of curvature of the surface in
the poloidal plane. If we define Ā =

∮

· · ·, etc., it can be shown that

ŝ =
ρ

q

dq

dρ
=

ρ

2πq

dΨ

dρ

(

ĀI ′ + B̄p′ + 2C̄
)

(18)

where the primes denote derivatives with respect to Ψ. Thus, one may specify any
two of p′, I ′, and ŝ. This freedom is a direct consequence of the two free functions in
the Grad-Shafranov equation.

It can also be shown[16, 14] that the perpendicular component of the gradient of
α is given by

∇α · êΨ = |∇Ψ| (AI ′ +Bp′ + 2C) .

The parallel component of the gradient of α may be easily found from Eq. (6). With
∇α in hand, the remainder of the calculation is straightforward. We note that ∇B
may also be calculated using the Mercier-Luc formulas; our treatment is the same as
can be found in Refs. ([14]) and ([16]). To wit, the perpendicular component is

∇B · êΨ =
Bp

B0

(

Bp

Rc

+Rp′ −
I2 sin u

R3Bp

)

,

and since B(ρf ) does not depend on p′ or I ′, the component of ∇B along the field
line depends on neither quantity.

The expressions for ŝ and the gradients of α and B make it clear that once the
safety factor, the shape of the flux surface, and Bp are determined (either from a
numerical equilibrium or from the local equilibrium), one may vary p′ and ŝ indepen-
dently to find a family of solutions, all of which satisfy the Grad-Shafranov equation.
This flexibility allows one to carry out the Greene-Chance kind of analysis for microin-
stabilities. Such an analysis simplifies the interpretation of the numerical calculations,
since all other parameters can easily be held fixed.

Within the context of the local equilibrium model,[14] one may also vary individual
shape parameters one at a time, to explore the dependences in a controlled fashion.

The eleven dimensionless parameters that determine the local MHD equiliibrium
in this implementation of the Miller model are summarized in Table I.
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*Minor radius ρf

*Safety factor q
Magnetic shear ŝ = (ρ/q)dq/dρ
Elongation κ
dκ/dρ κ′

Triangularity δ
dδ/dρ δ′

Center of LCFS RgeoN

Center of flux surface R0N

dR0/dρ R′

0N

*dβ/dρ β ′

In addition to these eleven parameters, there are two normalizing dimensional
parameters, a and Ba. In all, there are two more parameters than are found in Miller,
et al.[14] We include the additional parameters to allow a somewhat more natural
correspondence between reported equilibria and the input variables. We emphasize
that there is nothing “extra” in our implementation of the model as result; it is
only modestly easier to use for some applications. For example, our choice of the
normalization of the magnetic field (Ba) is the vacuum magnetic field at Rgeo, the
center of the LCFS. This quantity is the most commonly reported magnetic field
value. By allowing R0 to be specified separately, we also make it conceptually easier
to separate the effects of Shafranov shift from the derivative of the Shafranov shift.
The inclusion of the normalized minor radius as a separate variable is a natural choice
as soon as one allows for separate specification of R0 and Rgeo.

The starred quantities (ρf , ŝ, and dβ/dρ) may be specified when reading in numer-
ical equilibria. Values of the latter two quantities that are different from the actual
equilibrium values are incorporated by using Eq. (18) to define I ′.

Finally, when using numerically generated equilibria, the module allows one to
choose from the most common definitions of ρ, such as the normalized poloidal or
toroidal fluxes, the horizontal minor radius, etc. The user may also provide his or her
own definition of ρ by supplying a simple function.
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