
AS551 General Plasma Physics I
November 10, 2002

Homework #7, due Wednesday, Nov 20

1. Kinetic derivation of finite-temperature corrections to plasma oscillations. As-
sume the ions are stationary, while the electrons obey the Vlasov equation, which in the 1-D
electrostatic limit is
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In class I showed how to to derive the standard dispersion relation for electron plasma os-
cillations, ω2 = ω2

pe, from this Vlasov equation by linearizing (f = f0 + f1, etc.), Fourier-
transforming, and expanding a resonant denominator that appeared in an integral
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In class I only kept terms through first order in kzv in the expansion of the resonant denom-
inator, while you should keep terms through order (kzv)3 to find higher order corrections. At
this order, the dispersion relation can be written as a 4th order polynomial in ω, but it is
quadratic in ω2 and so can be easily solved. You should find 2 pairs of roots for ω. One pair
is the finite temperature correction to electron plasma oscillations. The other pair of solutions
are unphysical. Why? For the physical solutions, sketch the resulting ω vs. kz. What is the
maximum group velocity from this simple dispersion relation? What is the maximum phase
velocity?

2. Fluid derivation of finite-temperature corrections to plasma oscillations. In class
I showed how to derive the following 1-D fluid conservation laws from the 1-D Vlasov equation:
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You know how to set p = 0 and linearize these two equations for the electron density and
electron momentum to derive electron plasma oscillations (for high frequency electron plasma
oscillations, the ions are usually assumed to be a stationary background that just neutralizes
the equilibrium electron density ni0 = ne0). The energy-conservation/pressure equation (which
I will discuss more in the future and is discussed in the notes) can be written as
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where q‖ is the heat flux, though we will set q‖ = 0 for simplicity here. In the notes we show
that Γ = 3 appears to be the result for 1-dimension, though we will discuss later why one might
want to choose other values of Γ in some cases.

Keeping finite electron pressure, linearize these three equation (using n = n0 + ñ, u = 0 + ũ,
p = p0 + p̃, E‖ = 0 + Ẽ‖), and Fourier transform them and solve the resulting equations to find
a dispersion relation ω(k‖) for electron plasma oscillations. Compare with the kinetic result
you found in problem 1.

3. Deriving fluid equations. Some recent papers investigated the effects of the ionization
of neutrals on a certain class of plasma turbulence. (Motivational background: interactions
with neutrals are often justifiably ignored in the hot plasmas of fusion research, but they can



become important near the interface of a plasma with a solid wall, such as near the divertor
plates in a tokamak, or in plasma processing of semiconductor chips.) The essential features of
the equations used in those papers can be seen in the 1-dimensional limit, which can be written
as:
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where s = 〈σv〉 is the reaction rate for electron-impact ionization of the neutrals so that nn0s
is the particle source rate due to ionization. The ion particle density n, neutral density n0,
average ion velocity u, and pressure p are all functions of position z (along a magnetic field
line) and time t.

Unfortunately, there is an error in the above equations which led to the claim of a spurious
instability to drive turbulence. Your job is to to find this error by deriving the proper form
of the above fluid equations from first principles by starting with the 1-dimensional Vlasov
equation for the ion distribution function f(z, v, t), modified to include an ionization source:
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(Note that the reaction rate s = 〈σv〉 has already been averaged over the electron velocities,
and should be taken to be a fixed constant for your purposes.) The neutrals are very cold
compared to the plasma, and so are treated as having zero velocity (hence the δ function) on
the scale of the much hotter plasma ions.

You should discover a term which is missing from the above fluid equations. Give a brief
description of the physics of this missing term.

4. Phase-mixing. For a non-interacting neutral gas in 1-dimension, the kinetic equation for
the distribution function f(x,v,t) is
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Consider just a single Fourier component with the initial condition f(x, v, t = 0) = f0(v)eikx.

(a) Assume the initial velocity distribution is a Maxwellian, f0(v) ∝ exp(−v2/(2v2
t )). Calculate

the time history of the particle density n(x, t) =
∫

dvf .

(b) Now assume that f0(v) = H(v+v0)H(v0−v)/(2v0), where H is the Heaviside step function,
and calculate n(x = 0, t).

(c) Now assume that f0(v) is given as a sum of delta functions: f0(v) = ΣN
j=−Nδ(v−j∆v)/(2N+

1), and calculate n(x = 0, t) again.

(d) Plot the results for n(x = 0) vs. time which you got from part (c) for N = 1, 3, 10, and
compare with the plot of the results from part (b). The solutions in part (c) should be periodic
in time. What is the recurrence period τrepeat, and how does it scale with N? Discuss whether
or not this difference between the continuum approximation of (b) and the discrete result for
part (c) (which would seem more realistic for a real plasma with a discrete number of particles)
is important.

(The recurrence problem is an issue which numerical codes must face if they use a fixed grid in
velocity space. It is often treated by adding a small amount of velocity-space diffusion, either
explicitly or implicitly through the numerical method in use. Particle codes try to reduce this
problem by assigning random initial velocities to all particles, and not initializing the particles
to lie on a fixed velocity grid whose pattern repeats throughout real space.)


