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Abstract

T
URBULENCE IN MAGNETIZED PLASMA in the presence of density�

velocity� and temperature gradients is studied numerically and analyti�

cally with an extended �uid model� Interactions between plasma waves

and plasma particles are considered in the low�frequency limit �� � eB�mic��

The unique feature of the model is a set of �uid closure relations for the moments

of the electrostatic gyrokinetic equation� The resulting set of �gyro�uid	 equa�

tions contains approximate models that describe Landau damping and its inverse

�� � kkvti�� the usual 
nite�Larmor�radius e�ects �k��i � ��� and a new� nonlinear

perpendicular phase�mixing e�ect �� k��j�k
�k � �k�j� due to the 
nite Larmor radii�

The equations are investigated linearly both locally and nonlocally� analytically

and numerically� Nonlinearly� a local weak�turbulence calculation is carried out

for electron drift�wave turbulence� A nonlinear� three�dimensional gyro�uid code

is described for the study of the turbulent transport resulting from pressure gradi�

ents in a plasma embedded in a strong� sheared magnetic 
eld� Thermal transport

properties are measured and compared to existing particle simulation results and

to modern magnetic fusion tokamak experiments� It is found that the gyro�uid

model compares favorably with gyrokinetic particle simulations� lending credence

to the various approximations employed� Physics results from gyro�uid simulations

indicate that the thermal transport associated with pressure gradients in a simple

�sheared but without curvature� magnetic�
eld geometry is not su�cient to explain

the anomalous transport observed in magnetic con
nement fusion devices� How�

ever� it is found that the interaction between the �uctuations and the self�generated

�ows often dominate the nonlinear dynamics� even when the �ows themselves are

not large compared to the turbulent �uctuations� It is expected that this interplay�

previously ignored for turbulence characteristic of the core plasma in a thermonu�

clear fusion reactor� will persist in the presence of curvature and magnetic drifts�

Finally� it is noted that the inclusion of toroidal drift resonances could destabilize

the system further� making this turbulence relevant to existing experiments�
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Chapter �

Introduction

U
NDERSTANDING THE ROLE OF TURBULENCE in thermonuclear

plasma dynamics has been the goal of much research in the magnetic

con
nement fusion �MCF�� community� Many approaches to the subject

have been suggested and investigated� with widely varying degrees of sophistica�

tion and e�ectiveness� In this thesis� I propose and begin to explore extended �uid

models for plasma turbulence that �given the essential insights found in Hammett

and Perkins� ����� are straightforward� e�cient� and capable of producing results

immediately relevant to present and future MCF experiments� Their unique utility

ultimately rests on two pillars$ economy and accuracy� Accordingly� most of this

thesis is dedicated to deriving the models in detail �so the numerous approxima�

tions are clearly spelled out� and to benchmarking the resulting predictions and

performance with accepted references and techniques from the literature� After

making the case for the speed and reliability of this extended �uid approach rela�

tive to accepted techniques� I attempt to illuminate the importance of the interplay

between turbulent �uctuations and larger�scale plasma �ows �enhanced by the cor�

rect adiabatic electron response  Dorland et al�� ����!� in a strongly turbulent�

three�dimensional system�

Advances in technology often lead directly to advances in scienti
c under�

standing� Today� the explosion of computational power available to scientists is

�For readers interested in learning more about the current problems and recent progress in
MCF� good references include Cordey et al�� ����� Callen et al�� ����� Wesson� ���	� and
Lidsky� ���
� For an easy�reading� optimistic description of MCF research� I suggest Heppen�
heimer� �����

�



� Chapter �� Introduction

making possible direct simulations of problems long thought unassailable� Work�

stations now on the market are as fast as the 
rst Cray supercomputers� and

massively�parallel tera�op computers are just around the corner� Nevertheless�

three�dimensional simulations of turbulence characteristic of magnetized thermonu�

clear plasma remain su�ciently intransigent to force one to take advantage of im�

proved physics algorithms� For example� the gyrokinetic equation  Frieman and

Chen� ����! allows one to eliminate super�uous fast time scales without compro�

mising the description of the low�frequency turbulence� Gyro�uid models �pre�

sented here� allow one to replace the remaining two dimensions of velocity space

with a few moments� so that numerical realizations of the turbulence are less time�

consuming to produce� Finally� e�cient coordinate systems  Roberts and Taylor�

����� Cowley et al�� ����� Beer et al�� ����! allow one to simulate the smallest

relevant volume of real space by taking advantage of the short perpendicular� corre�

lation lengths observed in tokamak turbulence while still allowing for long parallel

wavelengths and rapid parallel motions� By thus reducing the required numerical

computations as much as possible� one may contemplate performing realistic simu�

lations of tokamak turbulence� However� whenever one reduces one�s description of

a physical phenomenon� one must carefully check to make sure that the new model

continues to describe the important physical e�ects�

We  Dorland and Hammett� ����! have spent much time working out

FLR models that would be generalizable to toroidal geometry and studying the

validity of the �uid closures for drift�type turbulence� Many nonlinear simulations

were performed and presented over the three�year period  Dorland et al�� �����

Dorland et al�� ����c� Hammett et al�� ����b� Dorland and Hammett� �����

Dorland et al�� ����a� Dorland et al�� ����b� Hammett et al�� ����a� Beer

et al�� ����� Dorland et al�� ����a� Beer et al�� ����! with variations of the models

presented here providing us with a fair amount of experience and insights relevant

to plasma turbulence simulations in general� The remainder of this chapter and

Chaps� �%� draw heavily from Dorland and Hammett� ����� Chapter � and

App� D build upon work 
rst presented in Dorland et al�� ����a� Chapter � is

largely taken from Dorland et al�� ����b� much of the material in Chap� � was

presented 
rst in Dorland et al�� ����b�

�Here perpendicular� and parallel� refer to spatial directions with respect to the strong
magnetic �eld�
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Nonlinear problems in plasma physics have been investigated numerically with a

tremendous variety of techniques� These techniques may be very broadly classi
ed

into particle simulations� in which many particle trajectories are evolved in time

according to simple physical laws� and �uid simulations� in which a few moments of

the distribution function are evolved according to somewhat more complicated rela�

tions� The conventional wisdom was that problems that intrinsically involve wave�

particle interactions and&or 
nite�Larmor�radius �FLR� e�ects� often referred to as

kinetic e�ects� could not be adequately addressed with �uid techniques� since for

these processes the details of the distribution function seemed to matter a great deal

in the analysis  Kotschenreuther et al�� ����!� However� as has been recently

shown  Kadomtsev and Pogutse� ����� Hazeltine et al�� ����� Hammett and

Perkins� ����� Aydemir� ����� Hammett et al�� ����c� Chang and Callen�

����a� Chang and Callen� ����b� Dorland and Hammett� ����!� many kinetic

e�ects can be included in �uid theories when derived with such details in mind� Fur�

thermore� many authors  Hasegawa and Mima� ����� Dupree and Tetreault�

����� Lee and Diamond� ����� Cowley et al�� ����! often utilize �uid theories in

nonlinear analyses because of the relative simplicity and occasional insights a�orded

by the reduced dynamics described by �uid equations� Finally� numerical solutions

of �uid equations may be found by using the relatively vast and well�understood

array of simulation techniques developed in the computational��uid�dynamics and

plasma�physics communities�

Even in the long mean�free�path limit� �uid equations provide solutions to

initial�value problems that are as accurate as nth�order Taylor�series approxima�

tions in time where n is the number of �uid moments �
R
dv fvn� being evolved�

that is� a given solution is accurate for a 
nite time T � p
n� Kinetic models

such as those found in Hammett and Perkins� ���� provide the correct long�time

�low�frequency� behavior� In this context� the correspondence between nth�order

Hermite expansions and n �uid moments discussed in Smith and Hammett� ����

and Hammett et al�� ���� strongly suggests that the solutions one obtains con�

verge to the exact solutions in the limit of increasing numbers of �uid moments�

though the convergence may be slow for certain problems �such as the nonlin�

ear plasma echo problem  Davidson� ����� O�neil and Gould� ����� Hammett
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et al�� ����� Smith and Hammett� ����! and the ultra�marginal stability limit of

ITG turbulence  Mattor and Diamond� ����� Mattor� ����!��

The long�term goal of this work is to derive �gyro�uid	 equations �so called

because they are derived by taking moments of the gyrokinetic equation and in�

clude models of kinetic e�ects� that are missing from traditional �uid equations�

with su�ciently accurate models of kinetic e�ects to simulate the general class of

plasma �microturbulence	 that is believed to be responsible for anomalous trans�

port in tokamaks� In this class of microturbulence one 
nds a broad range of insta�

bilities that are covered by the gyrokinetic ordering  Frieman and Chen� ����!�

This includes not only the usual trapped�electron�driven drift waves and variants�

but also the ion�temperature�gradient �ITG� instability  Rudakov and Sagdeev�

����� Coppi et al�� ����! or longer wavelength modes with magnetohydrodynamic

�MHD��type e�ects� such as the drift�resistive�ballooning mode  Guzdar et al��

����!�

The goals of this thesis� however� are to develop e�ective �uid models of

important �kinetic	 e�ects� to test the performance of these models �against the

more fundamental particle simulations and analytic theory� in a simple geometry�

and to use the gyro�uid equations to investigate realistic problems� It is thus

su�cient to look at electrostatic perturbations in a sheared slab geometry and

assume that the electron dynamics are adiabatic�  A nonadiabatic electron model

is presented in App� F and has been implemented in the gyro�uid code described

in Chap� ��! Linearly� these equations contain only slab ITG instabilities and stable

electron drift waves� but will eventually be extended to encompass the broader

range of turbulence spanned by the gyrokinetic ordering� The extension to include

the toroidal drift resonance necessary for the toroidal version of the ITG instability

has been carried out  Waltz et al�� ����� Beer and Hammett� ����!� and we

 Hammett et al�� ����! have plans to extend these equations to include the e�ects

of collisions� trapped particles� and fully electromagnetic perturbations�

�Sometimes these equations are called gyro�Landau��uid� equations to emphasize the wave�
particle e�ects as well as gyroradius e�ects�
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��� Relation to Previous Work

Many authors have considered the ITG instability with a variety of approaches and

assumptions� I do not attempt to review the literature on the subject here in detail�

Instead� I follow a few threads that lead to the work presented here through the

tangle�

����� FLR Models

Many authors have considered the problem of including FLR e�ects in �uid equa�

tions for ITG studies� Hamaguchi and Horton  Hamaguchi and Horton� �����

Hamaguchi and Horton� ����b! developed a �minimum	 FLR model and inves�

tigated its behavior analytically and numerically using a three�dimensional sheared�

slab code that I have used as a starting platform for my numerical studies� Lee and

Tang  Lee and Tang� ����! presented �uid equations with a more complete set of

FLR e�ects for analytical investigations of nonlinear conservation properties and

mode coupling� but like the equations of Hamaguchi and Horton� they are valid

only in the long�wavelength limit �k�� � �� where k� is a typical wavenumber

perpendicular to the magnetic 
eld and � is the ion gyroradius� and in the absence

of magnetic shear� Brizard  Brizard� ����! has gone quite a bit further� deriving

a set of gyro�uid equations in general geometry and including 
nite�� e�ects �� is

the ratio of the plasma pressure P to the magnetic pressure� B������ though he as�

sumed that the total distribution function may be considered to be bi�Maxwellian�

leading him to overestimate the FLR averaging e�ects �see Sec� ���� and to leave

higher moments such as the heat �uxes unspeci
ed� The higher moments� however�

are in general non�neglible� and must be carefully handled� by neglecting these heat

�uxes� one neglects wave�particle e�ects such as phase mixing�

Similon  Similon� ����! developed better FLR models that� unlike the afore�

mentioned formulations� are linearly exact to all orders in k�� for a shearless slab

geometry� However� his formulation neglected the e�ects of temperature gradients

�because he was concentrating on the electron drift wave� and contained inaccura�

cies of order �k���� in the nonlinear and shear terms �see Sec� ����� below�� The FLR

model employed by Waltz et al�� ���� has some similarities to Similon�s work �ex�

tended to include temperature gradients and the toroidal curvature drive�� though
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it also contains inaccuracies of order �k���� from E�B nonlinearities and shear�

The FLR models developed in this thesis regain second�order accuracy for small k��

even when nonlinearities and magnetic shear e�ects are included� They are also all

well behaved at large k��� much as the Pad�e approximation exp��x�� � ���� � x��

is both second�order accurate for small x and well behaved for large x  unlike the

Taylor�series approximation exp��x�� � ��x�!� The improved accuracy for nonlin�

earities and shear is gained at the expense of losing rigorous higher�order accuracy

for the shearless linear limit� unless an equal number of parallel velocity moments

and perpendicular velocity moments are kept  such as in the ����	model presented

in App� A!� My model is related to Similon�s� except that I have taken advantange

of the signi
cant simpli
cation of the nonlinear terms obtained if one takes guiding�

center �uid moments �in guiding�center coordinates�� rather than attempting to

transform the gyrokinetic equation back to particle coordinates 
rst �also noted

independently by Brizard  Brizard� ����!��

����� Nonlinear Phase Mixing

A unique feature of the FLR model presented here is its inclusion of a nonlin�

ear FLR�induced phase�mixing e�ect that arises from the FLR�corrected nonlinear

J��k���E�B drift�  After deriving a �uid model of this e�ect� the work of Lehn�

ert� ���� came to my attention� Lehnert� ���� pointed out that this phase

mixing is present in the original kinetic equation in �higher�order orbit theory	

than he had so far considered� but did not describe a way to include the e�ect

in �uid equations�! One may understand the origin of the nonlinear phase�mixing

with a simple physical picture� High�energy particles gyroaverage gradients in the

potential more strongly than low�energy particles and hence drift more slowly� This

spread in drift velocities leads to phase mixing� a collisionless damping process�

Nonlinear gyrokinetic particle simulations automatically include this e�ect� but its

signi
cance has not been widely appreciated �excepting Lehnert�s work� and its ef�

fect has been ignored in previous �uid simulations� This �FLR phase mixing	 leads

to a hyperviscosity�like damping approximately proportional to k��j�k
�k � �k�j� Be�

cause it is proportional to � it only appears nonlinearly� It provides a physics�based

collisionless damping mechanism at high k�� that is potentially just as important
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as the usual �polarization�drift	 nonlinearity�� It may provide an important sink

for saturation in a nonlinear� turbulent system�

����� Related Advances

A more complete gyro�uid plasma model would merge the FLR and kinetic models

presented here� the toroidal resonance models of Waltz et al�� ���� and Beer and

Hammett� ����� the fully electromagnetic� general geometry results of Brizard�

���� along with the electromagnetic generalizations of the �uid�kinetic closures

that have been linearly investigated by Chang and Callen  Chang and Callen�

����a� Chang and Callen� ����b! and by Hedrick and Leboeuf  Hedrick and

Leboeuf� ����!� and the collisional e�ects considered by Chang and Callen  Chang

and Callen� ����a� Chang and Callen� ����b!� Such a model would allow one

to understand better the nonlinear dynamics of fusion plasmas by making possible

comprehensive numerical simulations within this extended �uid paradigm�

����� Particle Simulations

Gyro�uid simulations are complementary to gyrokinetic particle simulations  Lee�

����� Lee� ����� Parker and Lee� ����!� as each method will likely prove to

have di�erent strengths and weaknesses� Already� it has proven tremendously use�

ful to cross�check and benchmark the gyrokinetic and gyro�uid codes� Because

the gyro�uid equations are derived from the gyrokinetic equation� gyrokinetic par�

ticle simulations are more fundamental and potentially more accurate� On the

other hand� the reduced dimensionality of the gyro�uid equations �from 
ve to

three� makes numerical solutions less recalcitrant� Though it is too early to make

quantitative statements concerning the relative e�ciency of the two methods for

the general case� the comparisons described in Chap� � indicate that the gyro�uid

equations yield predictions for the saturation level and thermal �ux comparable

�FLR phase mixing terms appear at the same order in k�� as the polarization nonlinearity�
However� the mode�coupling coe�cients are quite di�erent� FLR phase mixing equalizes �uc�
tuations on surfaces of constant potential and therefore represents a previously unnoticed type
of coupling in Fourier space� In concrete terms� one may consider the di�erences introduced by
the appearance of the absolute values by inspecting the FLR phase�mixing operator presented in
Chap� ����
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to gyrokinetic particle simulations using about �����' of the total CPU time for

a turbulent� three�dimensional� sheared�slab simulation� This estimate may vary

depending on the number of particles used and the grid resolution desired� Also�

optimization of either code could change this result signi
cantly�� For simulations

of sheared�slab turbulence in which sheared�velocity �ows are suppressed� the gy�

ro�uid approach presently produces comparable results in about �' of the total

CPU time�

����� Velocity�Space Nonlinearities

As they stand� �uid models of kinetic e�ects may not be e�cient for some types

of problems� especially those in which strongly non�Maxwellian features character�

ize the distribution function� For such problems� it is necessary to keep a large

number of �uid moments to describe the detailed shape of the distribution func�

tion� in which case the �uid approach may lose its e�ciency advantages  Hammett

et al�� ����!� For example� Smith and Hammett� ���� have recently found that

the standard nonlinear plasma echo phenomenon can be reproduced with the �uid

equations using the phase�mixing closure of Hammett and Perkins� ���� if the

parallel nonlinearities are retained in a fairly large set of equations  Hammett

et al�� ����!� It was found that ten parallel velocity moments are needed even for an

echo that occurs fairly quickly� Non�Maxwellian features could also result in a given

problem if particle trapping in a single electrostatic wave were important� or if �as

in the usual quasilinear theory� velocity�space plateaus were created� However� one

ordinarily does not expect such e�ects to be important in ITG turbulence or for

most other types of tokamak microturbulence� The relevant velocity�space nonlin�

earity  � EkF��vk in Eq� �����! is smaller by a factor of � 	 ��L �the gyrokinetic

expansion parameter� than the other nonlinear term in Eq� ������ That is�
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The ordering assumes that the velocity�space gradients of the distribution function

are of order ��vt� and consequently that terms of this size are small� In a strongly

�It is worth noting that the particle code with which I am most familiar �Santoro and Lee�
����� multitasks very e�ciently on the Cray C���� so that very good wall�clock turnaround times
may be achieved when the machine is dedicated to one user�
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turbulent plasma with many interacting modes� each with di�erent resonant particle

velocities� it is unlikely that stronger velocity�space gradients can persist� Horton

et al�� ���� found in an early numerical investigation of ITG turbulence that �within

a simple �uid model� the associated �uid terms were small compared to the E�B
nonlinearities and could be neglected� Thus� the present general approach may be

broadly applicable to many outstanding problems in plasma physics�

One may legitimately question the validity of this ordering� however� The

consequences of the velocity�space nonlinearity for the predicted heat �ux in the con�

text of existing gyro�uid simulations �that do not include terms that follow from the

velocity�space nonlinearity� should be carefully investigated� A straightforward nu�

merical test might employ gyrokinetic particle simulations� since it is easy to switch

o� the velocity�space nonlinearity for the purposes of comparison� Recently� just

such a study was carried out by Sydora� ����� In this study� �good	 to �excellent	

agreement was found between gyrokinetic simulations performed with and without

the velocity�space nonlinearity� However� the diagnostics reported measured the

saturation level and the thermal �ux of two� and three�dimensional electrostatic�

sheared�slab ITG turbulence� and not the rate of entropy production� The full role

of the velocity�space interactions has not yet been de
nitively demonstrated� I have

made no attempt to include velocity�space e�ects in the gyro�uid models presented

in this thesis� If particle simulations show that the velocity�space nonlinearity plays

an essential role in the dynamics� this point will have to be revisited�

����� Sheared Rotational Flows

Nonlinear numerical studies have found evidence for robust sheared��ow generation

in turbulence characteristically found in the edge of tokamak plasmas  Hasegawa

and Wakatani� ����� Carreras and Lynch� ����� Guzdar et al�� ����!� Two

mechanisms have been put forth to explain this generation$ the turbulent Reynold�s

stress  Diamond and Kim� ����!� and a toroidal e�ect pointed out by Stringer�

���� and Winsor� ����� Furthermore� results such as these are often invoked to

explain the �L%H	 transition to regimes of improved con
nement widely observed in

tokamak discharges� However� little attention has been paid to the possibility of the

generation of sheared velocity �ows in the core of the tokamak� Indeed� Diamond

and Kim argued that Landau damping would likely restrict the spectral width of the
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turbulence to scales small compared to the typical scale lengths of the plasma and

thus not generate sheared �ows except near the edge of the device where steeper

gradients or limiter interactions could play a decisive role  Diamond and Kim�

����!� In Chap� �� I discuss the role of nonlinearly generated sheared�velocity �ows

in ITG turbulence in conditions characteristic of the core of a tokamak discharge�

Related Simulations� Hasegawa and Wakatani� ���� reported the self�ge�

neration of a radial electric 
eld �with the associated velocity shear� in their sim�

ulations of electrostatic turbulence� By using a basic model applicable to resistive

drift�wave and resistive interchange instabilities� they were able to explain the �self�

organization	 by the conservation of potential enstrophy and angular momentum�

Carreras and Lynch� ���� investigated resistive pressure�gradient�driven turbu�

lence and also found the strong generation of sheared velocity �ows� which played

a signi
cant role in determining the level of the resulting turbulence� They argued

that a broad spectrum of modes would on average cancel one another out with

respect to the generation of large�scale structures and therefore could not generate

sheared �ows except near the limiter� where the unique edge conditions break the

overall symmetry� Guzdar et al�� ���� have investigated nonlinear drift�resistive�

ballooning modes� and report signi
cant sheared��ow stabilization driven by both

Reynolds stress and the Stringer%Winsor terms�

Sheared �ows have not been widely discussed in the particle�simulation com�

munity for about a decade� In general� the importance of kk � � modes was noted

in very early three�dimensional equilibrium particle simulations� Over time� how�

ever� their estimated importance was discounted until eventually it has become a

widespread practice to suppress such modes altogether� The more detailed chronol�

ogy of ideas presented below supports this interpretation of the literature�

Twenty years ago� Okuda and Dawson� ���� observed kk � �� zero�fre�

quency modes generated nonlinearly in three�dimensional particle simulations� The

plasma they studied was in thermal equilibrium �no density or temperature gradi�

ents� in an unsheared magnetic 
eld� They noted that these modes were damped

only by collisional e�ects and that �since this zero�frequency motion can always ex�

ist in a plasma� it is clear that this mode can play a very important role for plasma

transport�	 However� their attention was focused primarily on radial convection as�
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sociated with these modes rather than on rotational modes associated with gradients

in the poloidally and toroidally symmetric electrostatic potential �r� �sometimes

referred to as �ambipolar modes	�� Later �D studies  Cheng and Okuda� ����!

also emphasized the radial convection aspect of the zero�frequency modes� termed

�convective cells	� Cheng and Okuda� ����b noted that convective cells were not

observed in the presence of strong magnetic shear� although this was attributed to

the stabilization of the electron drift�wave turbulence that would have otherwise

generated the convective cells� Small�amplitude convective cells were observed in

the �D toroidal particle simulations of Cheng and Okuda� ����a� generated by

charge separation associated with the bounce motion of trapped particles�

Interest in zero�frequency modes waned as it became widely felt that con�

vective cells would be less relevant in the presence of magnetic shear� which limits

the radial extent over which kk � � for most modes� However� the poloidally and

toroidally symmetric �ky � �	 kz � �� component of  has kk � � everywhere�

While it is true that �r� does not cause radial transport� it can produce sheared

perpendicular rotation that can interact strongly with the turbulence� This impor�

tant role of the only remaining component of  that satis
es kk � � globally was

not widely appreciated at that time�

At least one study did note this possibility� Soon after the work of Cheng

and Okuda� ����� Lee et al�� ���� found in ��
�
�dimensional simulations of electron�

drift�wave turbulence that nonlinearly self�generated� sheared rotational �ows were

the principal nonlinear stabilization mechanism� In that paper� the importance of

the radially�dependent Doppler shift was noted and an estimate of the saturation

level based on this consideration was presented� Drift�kinetic electrons were pushed

along with the full�dynamics ions� �No further assumptions were made about the

nature of the electron response�� In later papers this early unambiguous result in�

dicative of an important role for ambipolar modes in the presence of magnetic shear

was not properly generalized to three�dimensional simulations with an assumed

adiabatic electron response�

A model of adiabatic electrons was put forth by Okuda et al�� ���� and

elaborated upon by Lee et al�� ����� The original model consisted of replacing

the electron dynamical equations with the assumption of a Boltzmann response in

Poisson�s equation� without explicit consideration of the electron response for the
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case when kk � �� In the latter expanded �D model� two electron responses were

allowed for the kk � ky � � mode� the high� and low�electron�mobility models� In

the high�electron�mobility model� the electron contribution to Poisson�s equation

was taken to be equal to the �ux�surface�averaged total ion density� The authors

reported that this model e�ectively suppressed the ambipolar modes� The low�

electron�mobility model� in which ne�x	 ky � �	 t� was taken to be ne�x	 ky � �	 t �

��� was reported to allow charge buildup and the ambipolar modes� Thus� there

was some awareness of the importance of the kk � � modes for nonlinear saturation

along with some ambiguity about how to treat the adiabatic electron response in

only two dimensions� where ky � � implies kk � ��  In three dimensions kk �

kz�ky�By�Bz�� so there are many ky � � modes with kk �� �� Only in this setting can

one consistently treat the ky � � part of the adiabatic electron response� including

many components with kk � � and the one component with kk � ��!

A few years later� in a �D gyrokinetic particle�simulation study  Lee et al��

����!� the practice of systematically removing the �x	 ky � �� modes that give rise

to sheared E�B �ows surfaced� The authors explained their reasons$ �We have

also suppressed all the ky � � potentials in the code by letting �ky � �� � �	

in order to eliminate the nonlinearly generated ambipolar drifts  Lee et al�� ����!�

This is because they exist only in the region where kk � �� and therefore are not

expected to play a dominant role in tokamaks�	 However� this reasoning does not

apply to the poloidally and toroidally symmetric component of � Later studies

 Lee and Tang� ����! continued to suppress the ky � � components of � perhaps

in part due to the ambiguity of whether ky � � should really mean kk is exactly

zero in the two�dimensional systems �as discussed in the previous paragraph��

In three dimensions� one must consider the �ky � �	 kz � �� mode sepa�

rately  rather than just the �ky � �� component!� In this setting the ambiguity

with respect to the purely adiabatic electron response is removed �assuming one is

not considering stochastic magnetic 
eld lines�� However� the practice of suppress�

ing the �ky � �� component used in the �D simulations has apparently evolved

into the present practice of suppressing �ky � �	 kz � �� in �D ITG simulations

with the tautological result that sheared �ows are not observed  Lee et al�� ����!�

The intuition behind this practice is partly valid� in the sense that the strong domi�

nance of sheared rotation otherwise observed in sheared�slab simulations is probably
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non�representative of the dynamics in a toroidal device� Two points may be made

here� First� rather than suppress the sheared �ows arti
cially� one should inves�

tigate the physical mechanisms that would damp sheared rotational �ows in the

geometry of interest� One such neoclassical mechanism �termed �banana�orbit av�

eraging	� has been identi
ed in the toroidal gyro�uid simulations of Beer et al��

���� and described in more detail by Hammett et al�� ����� Second� there is a

consistent way of treating the �D strictly adiabatic electron response and that is

to take �ne�x	 ky � �	 kz � �� � �� One then 
nds radially varying electric 
elds

related to the ion polarization drift� Until after the 
rst presentation of our gy�

ro�uid equations  Dorland et al�� ����!� which contained this adiabatic electron

response �described in more detail in Chap� ��� no one emphasized the critical role

of the correct adiabatic electron response in generating shear �ows in microturbu�

lence simulations� Recently� however� several presentations on this topic have been

made  Wong et al�� ����� Dorland et al�� ����b� Beer et al�� ����� Dimits�

����� Waltz� ����!�

��� Motivation and Outline

One of the early proposed reasons for the improved con
nement of the Supershot

regime  Bell et al�� ����! was the reduction of Ln�LT 	 �i� with a commensu�

rate reduction of ITG turbulence� Here Ln is the scale length of the background

density gradient and LT is the scale length of the background temperature gradi�

ent� However� analysis of the Tokamak Fusion Test Reactor �TFTR�  Hawryluk

et al�� ����! density perturbation experiments and other TFTR transport studies

brought into question the reigning concept of marginal �i stability and showed that

existing transport estimates based on �uid models of slab ITG turbulence were

too high by a couple of orders of magnitude  Zarnstorff et al�� ����� Horton

et al�� ����!�  Recently� Kotschenreuther has shown that impurity e�ects can signif�

icantly reduce the linear growth rates even when �i is large  Kotschenreuther�

����!� reviving interest in the marginality assumption�! At about the same time�

Kotschenreuther pointed out that existing gyrokinetic  Kotschenreuther et al��

����! and �uid  Hamaguchi and Horton� ����! estimates of ITG heat transport

di�ered by at least an order of magnitude  Kotschenreuther et al�� ����!� The

gyro�uid model presented below can resolve this disagreement� as one can recover
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Kotschenreuther�s gyrokinetic results by retaining kinetic e�ects and the results of

Hamaguchi and Horton by neglecting them� The kinetic e�ects addressed are phase

mixing �parallel and perpendicular� and FLR averaging� Although the slab ITG

mode is now understood to be probably too weak to explain the measured ther�

mal transport� it appears that the addition of toroidal drive to the ITG mode may

raise it back to a level consistent with the core measurements� The theoretically

predicted thermal transport rate is probably still too small in the outer half of the

plasma where other instabilities presumably dominate  Horton et al�� ����!� Ulti�

mately� one would prefer to simulate the nonlinear ITG dynamics in a more realistic

geometry� Waltz et al�� ���� and Beer and Hammett� ���� employed models

similar to the present model in a toroidal setting� Beer�s toroidal ITGC code  Beer

et al�� ����� Beer et al�� ����� Hammett et al�� ����! is a modi
ed version of the

code presented in Chap� ��

The derivation of the gyro�uid equations is presented in Chap� �� Section ���

is a brief review of the gyrokinetic Vlasov�Poisson system� the starting point of

the gyro�uid derivation� The basic parallel phase�mixing model is described in

Hammett and Perkins� ���� and in Hammett et al�� ����c� This physically�

motivated phase�mixing model includes wave�particle e�ects such as Landau damp�

ing and its inverse� processes that are very important in drift�wave physics� In

Sec� ��� I generalize the closure to describe the e�ects of anisotropic temperature

�uctuations� so as to include FLR e�ects �linear and nonlinear� more easily� Two

gyro�uid models of FLR averaging that are more useful than the usual Taylor�series

expansions of the gyroaveraging operators for numerical investigations are developed

in Sec� ���� These models remain robust approximations for k�� � �� where the

Taylor�series expressions fail� The more accurate �(
���
� 	 model �Section ������ may

be easily added to existing spectral codes� while the �Pad�e	 model �Sec� ������ could

improve the accuracy of 
nite�di�erence codes� Both models take into account the

gyroaveraging of the shear pointed out by Bakshi  Bakshi et al�� ����! and Linsker

 Linsker� ����! and recover the adiabatic ion response in the k��  � limit� A

new� nonlinear FLR phase�mixing model is described in Sec� ����

Linear results are presented in Chaps� � and �� The problem of deciding

how many moments it is necessary to retain for the present problem is discussed�

in the local limit �Chap� �� and in the presence of magnetic shear �Chap� ��� I
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have utilized the gyrokinetic integral eigenmode code of Linsker  Linsker� ����!

extensively to benchmark the linear performance of the kinetic models�

In Chap� �� I compare the nonlinear gyrokinetic and gyro�uid equations

analytically� Weak�turbulence analyses show that the agreement is very good in

the drift wave limit� where the most unstable modes are non�resonant� but the

resulting beat waves are resonant� The comparison is less favorable in the regime

characterized by resonant unstable waves�

In Chap� � I describe the numerical code ITG that simulates sheared�slab ITG

turbulence using gyro�uid equations� In addition to describing some of the details

of my particular code� I discuss issues related to boundary conditions and geometry

generic to microturbulence simulations� Then� in Chap� � I show comparisons be�

tween my gyro�uid simulations and R� A� Santoro�s gyrokinetic particle simulations

 Santoro and Lee� ����! in a variety of settings� A simple two�dimensional system

�without magnetic shear and with a single kk� that may be described by a straight�

forward three�mode�coupling theory is studied� Then� two� and three�dimensional

simulation results in the presence of magnetic shear are compared� The agreement

is in general good� lending credence to the general gyro�uid method�

The simulations described in Chap� � do not allow sheared E � B �ows�

The implications of the inclusion of the self�consistent evolution of sheared E�B
�ows are examined in Chap� �� It is shown that these �ows are very important and

should not be neglected� although their e�ects in a simple sheared�slab geometry

are probably greater than in a toroidal system where natural damping mechanisms

exist to regulate the �ows more strongly�

Chapter � contains a summary of the results presented in this thesis and a

discussion of useful related work that needs to be undertaken� In the appendices

several extensions to the basic gyro�uid model derived in Chap� � are presented� in�

cluding non�adiabatic electrons� imposed sheared velocity �ows� multiple ion species�

and higher�moment representations� Also� the numerical convergence of the code

and models is investigated� Finally� sample input 
les that generate gyro�uid dis�

persion relations �using a symbolic algebra program Maple  Char et al�� ����!� and

control my code ITG are presented�
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Chapter �

Derivation of the Gyro�uid

Equations

T
HE STARTING POINT OF THE DERIVATION of the gyro�uid equations

is the nonlinear electrostatic gyrokinetic equation  Frieman and Chen�

����� Lee� ����� Dubin et al�� ����� Lee� ����!� Fluid equations are gen�

erated by taking velocity�space moments of this equation directly� Conceptually�

one could begin with the Vlasov equation� generate a set of moments including

the stress tensor� heat��ux tensor� and so on� and then take the low�frequency

�� � eB�mic� limit of the �uid equations� However� since the turbulence of inter�

est is well characterized by the gyrokinetic ordering� it is natural to take advantage

of the strong magnetic 
eld to simplify the kinetic equation 
rst and then to take

the moments� This course has the sizable advantage of retaining the FLR e�ects

�k�� � �� relatively easily� �Gyroviscous cancellations	 are recovered automatically

with comparatively little e�ort� even for k�� � �� Also� parallel and perpendicular

dynamics �linear and nonlinear� naturally separate� as is appropriate for a colli�

sionless system� The resulting equations are similar to the CGL double�adiabatic

equations  Chew et al�� ����!�

In this chapter� I shall consider turbulence in the electrostatic limit and

ignore the e�ects of non�adiabatic electrons� If electromagnetic perturbations are

retained in the derivation below� the reduced MHD equations can be recovered

 Hahm et al�� ����� Brizard� ����! by taking k�� � � and ignoring the kinetic

phase�mixing model� It is straightforward to add non�adiabatic electrons� velocity

��
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gradients� or toroidal e�ects to the present model� thereby extending the class of

instabilities that can be modeled beyond the sheared�slab ITG mode�

��� The Gyrokinetic�Poisson System

The usual gyrokinetic ordering  Frieman and Chen� ����! is ��) � ��L � kk� �
F��F� � e�Te � � � � and k�� � �	 where � is a typical frequency of the

�uctuation spectrum� ) is the ion cyclotron frequency �eB�mic�� � is the ion Larmor

radius� L is a typical scale length of the system� kk and k� are typical parallel and

perpendicular wavenumbers of the �uctuation spectrum� and  is the electrostatic

potential�

The nonlinear� electrostatic gyrokinetic equation  Frieman andChen� �����

Lee� ����� Dubin et al�� ����� Lee� ����! governing the dynamics of the ion dis�

tribution function may be written in conservative form as$�

F

t
�r 


�
F �vk�b � J�vE�

�
� 

vk

� e

m
F�b 
 rJ�

�
� �	 �����

where F �R	 vk	 v�	 t� is the gyrophase�independent part of the distribution function�

that is� it is the density of guiding centers at position R with parallel velocity vk

and perpendicular velocity v�� The distribution function F includes both the equi�

librium F� and �uctuating F� components� but excludes the gyrophase�dependent

part of the distribution� given �to the same order in �� by

�f �R	 vk	 v�	 �	 t� � �
�
e�X	 t�

Ti
�
�
e�X	 t�

Ti

�
�

�
F�	 �����

where the particle position X 	 R� � is related to the guiding�center position R

and the gyroradius vector � �that depends on the gyrophase ��� Averaging over

the gyrophase angle � �while holding R 
xed� is denoted by h
 
 
i�� The total

distribution function f�R	 vk	 v�	 �	 t� � F � �f � where �f represents an adiabatic

response around the gyro�orbit and is related to the polarization drift  Dubin and

Krommes� ����!�

The E�B velocity is given by vE 	 �c�B� �b �r� J� is a linear operator

that carries out the gyro�averaging operation� It is simply a Bessel function in

�A brief derivation of Eqs� ����� and ����� is presented in App� C�
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Fourier space$

J��
k�v�

)
� �

�

��

Z ��

�

d� exp

�
i
k�v�

)
cos�

�
�

�X
n��

�

�n"��

�
i
k�v�
�)

��n

�

�X
n��

�

�n"��

� v�
�)

��n
r�n

� � �����

In real space� the Bessel function is an operator that may not commute with other

operators that appear in the analysis� It is therefore important to keep track of

what has been gyroaveraged �and therefore what is being operated upon by a given

J�� at each point in the derivation� J� operates only on  in Eq� ������

Note that this ordering retains the physics of strong turbulence even though

the �uctuating quantities are ordered small� since their derivatives may be O����

That is� although F��F� � �� �r�F����r�F�� � �	 thus retaining the dominant E

�B nonlinearity�

This equation is closed by the quasineutrality constraint ni�x� � ne�x��

which when written in terms of the guiding�center quantities becomes

*ni � ni���� (��
e

Ti
� ne	 �����

in which (n�b� � In�b�e�b and In�b� � i�nJn�ib� is the modi
ed Bessel function�

The contribution to the local particle density� *ni�x�� comes from the gyrophase�

independent part of the guiding�center distribution function F �

*ni�x� �

Z
d�v J�F �

Z
d�v �F� � J�F��� �����

In this expression� J� operates on the distribution function �though F� is slowly

varying so J�F� � F��� The second term on the left�hand side of Eq� ����� �usually

called the �polarization density	� is the contribution to the local particle density

from �f � the gyrophase�dependent part of the distribution function�

One can use the same �uid equations derived below for the ions to describe

the electron dynamics� usually also assuming k��e � �� However� in this chapter I

shall consider only the adiabatic part of the electron response� so Eq� ����� becomes

*ni � ni���� (��
e

Ti
� ne�

�
� �

jej
Te

�� hhii�
	
� �����
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The hhii term on the right�hand side represents the �ux�surface average of the

electrostatic potential� and must be included to prevent non�physical radial par�

ticle transport� as discussed in more detail in Chap� �� Throughout this thesis�

these equations are studied in the commmonly used �sheared�slab	 approximation

described in more detail in Chaps� ��� and �� It is su�cient at this point to note

that the sheared�slab model is essentially a right parallelepiped� in which the x di�

rection corresponds to the radial direction in a torus� the y direction corresponds

to the poloidal direction� and the z direction corresponds to the toroidal direction�

Therefore� the �ux�surface average of a quantity �such as the potential� is given by

hhii 	 �

LyLz

Z Ly

�

dy

Z Lz

�

dz �

��� General Gyro�uid Equations

Because the moment averages are performed in guiding�center coordinates� n is

the density of guiding centers� mnuk is the momentum of guiding centers� etc�

Speci
cally�

n 	
Z

F d�v	

nuk 	
Z

Fvk d
�v	

pk 	 m

Z
F �vk � uk�

� d�v	

qk 	 m

Z
F �vk � uk�

� d�v	

Rk 	 m

Z
F �vk � uk�

� d�v	 �����

p� 	 �m���

Z
Fv�� d

�v	

q� 	 �m���

Z
Fv���vk � uk� d

�v	

R� 	 �m���

Z
Fv���vk � uk�

� d�v	

s� 	 �m���

Z
Fv���vk � uk�

� d�v�
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Upon using these de
nitions and the relations pk�� 	 nTk��� one may de�

rive the following general �uid equations by taking various integrals of the formR
d�v v�j� v

�
k � � � over Eq� �����$

n

t
�r 


�
nuk�b� n hJ�ivE

�
� �	 �����

�nuk�

t
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�
�
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m
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�

�
e

m
�b 
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t
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�
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t
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where h
 
 
i 	 R
d�v F 
 
 
 � R d�v F� These equations are the exact� nonlinear evolu�

tion equations for the 
rst few moments of the electrostatic gyrokinetic equation in

the collisionless limit� They express the conservation of density� parallel momentum�

parallel and perpendicular energy� and so on� However� their utility is limited un�

less closure approximations are speci
ed� In this case� one must make two distinct

closure assumptions�

First� one must close the usual �uid hierarchy that results from the linear

parallel convection term  r 
 �Fvk�b� in the gyrokinetic equation!� Because of this

term� the time evolution of each �uid moment is driven in part by the gradient

of the next�higher parallel velocity moment� It has been shown  Hammett and

Perkins� ����� Hammett et al�� ����c! that collisionless phase mixing �and thus

Landau damping� may be modeled by approximating this single term in the highest

moment equations retained �e�g�� Rk	 R��� Note that in the present case one 
nds

expressions for Rk and R�� which appear in Eqs� ������ and ������� respectively�

No dissipation is introduced by this closure into the evolution equations for the
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lower moments� which therefore remain exact nonlinear expressions� Later in this

particular derivation� however� I do neglect the higher�order parallel nonlinearities�

as noted above�

Second� one must close each of the FLR terms h
 
 
J�i that arise from the

gyroaveraging process� The gyroaveraging operator J� depends in general upon all

even powers of v�� as is evident from Eq� ������ Thus� hJ�i is in general a function

of all v�j� moments of the distribution function� I shall approximate these higher

moments in terms of lower moments whose time evolution is followed� Furthermore�

the nonlinear part of the J�vE 
r term in Eq� ����� is responsible for perpendicular

FLR phase mixing analogous to the parallel phase mixing that arises from the vkrk

term� The closure approximations for the various h
 
 
J�i terms may be chosen

to model this collisionless damping process� To my knowledge� all previous �uid

closure approximations for the FLR terms have missed this e�ect�

Closure approximations for the various parallel and FLR terms are discussed

in the next several sections� The 
nal gyro�uid equations are given in Chap� ����

��� Parallel Phase�Mixing Closure

The parallel phase�mixing model outlined in Hammett and Perkins� ���� is im�

mediately appropriate for the parallel �uid moments �such as Rk�� but does not

directly address the e�ects of anisotropic temperature perturbations� which for

k�� � � are as important as the parallel temperature �uctuations and should be

treated on an equal footing� Note that T� appears linearly in Poisson�s equation

and nonlinearly in the density equation at the same order as each of the other terms

retained� Rather than using only one equation to express the evolution of the total

temperature T � ��T� � Tk��� and trying to correct for the di�erence between T�

and Tk with an approximate stress tensor� I choose to evolve two separate equations

for the parallel and perpendicular temperatures� This route allows one to 
nd the

nonlinear FLR corrections �� T�� easily and bypasses the tedious algebra associated

with the gyroviscous corrections� Because the perpendicular temperature evolution

equation includes the same kind of parallel resonance term as is found in each of

the other equations� one expects to 
nd a similarity in the parallel phase�mixing

closures� In fact� the underlying kinetic equation guarantees the connection between
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the parallel moments �n	 uk	 Tk and qk� and the perpendicular moments �T�	 q�	 R�

and s�� that we exploit in Chap� ����

The closure prescription in Hammett and Perkins� ���� is to approximate

the highest moments that occur in the �uid hierarchy with the Maxwellian part of

each plus a small correction due to the perturbed part of the distribution function�

chosen to reproduce the linear response function R��� � ��n��n�e�T�� �where

T� is the background temperature� in the low� and high�frequency limits� However�

examination of Eqs� ����%����� reveals that linearly when k��� � the perpendicular

moment �uctuations are decoupled from the density perturbations� Rather than

trying to solve for the closure of the FLR terms and the phase�mixing terms all

at once� one may take advantage of this decoupling and consider the problem in a

slightly di�erent light�

����� Linear Propagator

Consider a simple one�dimensional� homogeneous system in the absence of particle

interactions� Linearly� the perturbed distribution function evolves according to

F�

t
� v

F�

z
� ��t�g�z	 v�	 ������

where g is a perturbation assumed to occur at time t � �� It is convenient to de
ne

the kinetic linear propagator L� whose inverse can be represented in Fourier space

as

L��k 	 �i� � ikv	 ������

so F�k � Lkgk �one must use the Landau prescription for the singularity on the

real axis�� For the moment� consider the case in which gk�v� is Maxwellian with

a perturbation only in the density� Previously  Hammett and Perkins� ����!�

the case in which g � vFM�v� � EkFM�vk was considered� as is appropriate

for an electric�
eld term in the usual Landau�damping problem� Here I show that

one 
nds the same closure coe�cients for the case in which the initial perturbation

g � FM�v��  The correspondence between the two viewpoints in both the �uid and

kinetic descriptions is discussed in more detail in Hammett et al�� ����c�! This is

not a coincidence� rather� it is related to the fact that the solution to Eq� �������

F�k � FM�v�eik�z�vt	� contains products of FM and all powers of the velocity vn as
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time goes on$

FM�v�e�ikvt � FM�v� �� ikvt� �kt��
v�

�
� 
 
 
!�

The density response in the frequency domain� is simply

n�k
n�

�
�

n�

Z
d�v F� �

�

n�

Z
d�v FMLk � �i�

�
Z���	 ������

in which � 	 ��
p

�jkkjvt� vt 	
p
T�m and Z��� is the usual plasma dispersion func�

tion  Fried and Conte� ����!� One may recast the closure scheme in Hammett

and Perkins� ���� in terms of the lowest moments of the linear propagator� From

this viewpoint� the generalization to anisotropic temperature �uctuations will be

simple�

For simplicity� consider a two�moment �uid model� n and uk� of the same sys�

tem� The linearized �uid equations written in nondimensional units  see Eqs� ������

and ������! are
n

t
�rkuk � ��t�S�z�	 ������

uk
t

�rkpk � �	 ������

in which S�z� 	 R
dv g�z	 v��

In linearized� nondimensional variables �indicated in this paragraph with

tildes for clarity�� �pk � �n� �Tk� That is� in dimensional units pk � nTk so that upon

linearizing

pk� � pk� � n�Tk� � n�Tk� � n�Tk� � n�Tk�	

one is led to

�pk 	 pk�
pk�

� �n � �Tk�

If one does not wish to solve equations for higher moments to describe non�Maxwel�

lian perturbations� one may approximate their e�ects by allowing �Tk to be non�zero�

Thus�

�pk � �n � �Tk	 �Tk � ��rk�uk	 ������

�In the time domain� a density perturbation initially proportional to eikz evolves according to

n��z� t� � n��t � ��
eikzp
��v�t

Z
dv e�ikvte�v����v�

t
� � n��z� t � ��eikze�k�v�

t
t����

The density perturbation rapidly phase�mixes away� even though F��t� remains �nite�
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and kinetic theory is to be used to 
nd the appropriate closure relation for ��

 In general� �Tk could also be a function of �n� but in comparing to kinetic theory

one 
nds that the coe�cient analogous to � is zero�! With the insight gained

from Hammett and Perkins� ����� one may assume the form of the collisionless

�di�usion	 coe�cient � for this simple �uid model to be

� 	 ��

p
�

jkkj
in Fourier space� which corresponds to an integral operator in real space  Hammett

and Perkins� ����!� The dimensionless parameter �� is O��� and remains to be

determined�

Upon using Eq� ������ to 
nd uk and substituting the result into Eq� �������

one is led to �
�i� �

ik�k

� � i��
p

�jkkj

	
n � S�

One may use this to de
ne the linear propagator for density� n � LnS� The quan�

tity Ln may be rewritten in the form

Ln �
i�

�

�
� � i��

�� � i��� � ���

�
	 �i�

�
Z����� ������

The closure coe�cient �� is determined by requiring that this expression match the

zeroth moment of the kinetic propagator  Eq� ������! in the �adiabatic	 �� � ��

limit� One 
nds that �� �
p
���� In this closure scheme� one 
nds that the ��uid	

limit ��  �� of the �uid approximation to the propagator is automatically well�

behaved since the closure term is neglible in this limit� The resulting function Z����

is a two�pole approximation to the plasma dispersion function Z���� as shown in

Fig� ������
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Figure ���$ � � �Z��� for one� and two�pole models of parallel phase mixing�
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����� Anisotropic Temperature Fluctuations

Since this formalism makes no reference to the presence of the electric 
eld� it

generalizes easily to the case of �uctuations of the perpendicular temperature �which

are decoupled from the potential �uctuations in the k��� � limit�� To isolate the

closure terms for the perpendicular moments� it is useful to consider the case in

which g�z	 vk	 v�� in Eq� ������ is bi�Maxwellian with a perturbation in T� only� not

in n� That is�

g�z	 vk	 v�� � Fm�vk	 v��

�
� �

�
mv��
�T��

� �

�
S��z�

	
�

Upon taking the v�
�

and vkv
�
�

moments of Eq� ������� one is led to equations describ�

ing the perpendicular pressure and parallel �ow of perpendicular temperature �q��

 c�f� Eqs� ������ and ������!� Upon linearizing� transforming to non�dimensional

variables  Eqs� ������ and ������!� and using Eqs� ������ and ������ �but ignoring

the initial density perturbation� to eliminate several terms� one is led to expressions

that describe the evolution of perpendicular temperature and q�$

T�
t

�rkq� � ��t�S��z�	 ������

q�
t

�rkT� �rk�R� � �� ������

 To obtain these equations� I took

�R� � �n � �T� � �Tk � � �R�

and noted that the parallel temperature has been taken to be isotropic so that

the third term on the RHS is identically zero�! As before� one approximates the

irreducible component of the highest moment in terms of the lower moments� That

is�

�R� � ��rkq�� ������

The quantity of interest is now the linear propagator for the perpendicular

temperature �uctuation �written here in the transform space��

L��T 	 �i� �
ik�k

� � i��
p

�jkkj
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which may be expressed as

LT � �i�

�
Z�����

It is now easily shown that one should choose � exactly as before� Since the kinetic

linear propagator L is independent of v�� the second perpendicular moment of L��
is exactly the same as was found in Eq� ������ �in non�dimensional units�� This is

not surprising� since the underlying kinetic resonance is the same for the hierarchy

of parallel moments �n	 uk	 � � � � as for the hierarchy of perpendicular moments

�T�	 q�	 � � � �� Equation ������� with � �
p
����jkkj� provides the closure for R� in

Eq� �������

Keeping the evolution equations for n coupled moments leads in this way to

n�pole Pad�e approximants for the plasma dispersion function� For analytic inves�

tigations� it is usually convenient to keep an equal number of parallel and perpen�

dicular moments� as all of the Z�function approximations that appear are then the

same� allowing greatly simpli
ed bookkeeping�

����� Moment Reduction Scheme

In Hammett et al�� ����c we presented a ��moment model� �the simplest possible

�uid model of phase mixing	� That model was Eq� ������ with the closure approxi�

mation uk � �����jkkj�rkn and �� �
p

���� Note that this same expression for uk

can be obtained by taking the kkvt  � limit of Eq� ������  with the closure for pk

given by Eq� ������!� One may use this fact to generalize the ��moment model to

include some additional adiabatic and FLR e�ects�

In its current form� the ��moment model makes no reference to the electric


eld� so it will not recover the adiabatic limit �� � kk� where the density should

be proportional to � n � �� The problem is that  appears explicitly only in

the uk�t equation� so a closure approximation in a lower moment equation will

not include the e�ects of  unless the closure is modi
ed in some way� One way

to do this is to go back to Eq� ������ and include the electrostatic potential on the

right�hand side� With Eq� ������� Eq� ������ then becomes

uk
t

�rkn � ��
p

�jkkjuk � �rk�
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Taking the large kk limit of this equation leads to a new closure approximation

for uk that includes the e�ect of the electric potential� uk � �����jkkj�rk�n � ��

Inserting this closure into Eq� ������ causes the density to relax to the adiabatic

limit� This mends the de
ciency with a result that might have been anticipated�

since one expects to recover the adiabatic response in the zero�frequency limit�

This procedure can be generalized to derive an n � � moment closure from

an n�moment closure� The basic idea is that by taking the high�kk limit of the nth

�uid moment equation� the �t becomes negligible and one obtains a frequency�

independent closure approximation for the nth moment that can be used in the

n� � moment equation� Physically� this is related to the fact that phase mixing is

most important for � � kkvt� which is where the closure can be determined� The

opposite limit� �  kkvt� is the cold�plasma limit where the highest moment can be

ignored and the choice of closure is not too important�

For example� the ��moment closure for pk in Eq� ������ can be derived by

taking the large kk limit �kkvt  �	 ��� of the ��moment equation for Tk� Eq� �������

In turn� the ��moment closure for qk used in Eq� ������ can be derived by taking the

large kk limit of the ��moment equation for qk� Eq� ������� Likewise� upon taking

the high kk limit of Eq� ������� one is led to the closure approximation

q� � � �p
�D�jkkj

rk

�
T� �

�

�
�r�
�+

�
	

where �r�
�+ � r�

� includes FLR�related adiabatic terms in the T� dynamics de�

scribed in detail in Sec� ���� This closure for q� is used in the ����	 model of

Eqs� �����%������ which uses � parallel moments but only � perpendicular moment�

In App� A� I present an ��moment gyro�uid model� which I refer to as the ����	

model since it contains � parallel moments �n	 uk	 Tk	 and qk� and � perpendicular

moments �T�	 q�	 R�	 and s��� Each of the lower�moment models can easily be

obtained from this ����	 set�

One caveat should be mentioned� The n � n � � moment reduction pro�

cedure outlined in this section is apparently not general� In particular� I have not

been able to generate an n�moment closure with this reduction property valid for

n � ��



�� Chapter �� Derivation of the Gyro�uid Equations

����� Parallel Phase�Mixing Closure Summary

It is convenient to collect together the results obtained thus far for the ��� gyro�uid

model and to write them in dimensional units� One implements the parallel phase�

mixing closure in Eqs� ������ and ������ by approximating the highest two full

moments� Rk and R�� in terms of the lower moments� It is useful 
rst to write each

in terms of its reducible components plus an irreducible correction$

Rk 	
�p�k
mn

� rk and R� 	 pkp�
mn

� r�� ������

One then linearizes� and approximates the irreducible part so as to reproduce the

low� and high�frequency limits of the lowest moments of the linear propagator� The

closure approximation has a simple form in wave�number space� That is�

rk 	 �Dk

p
�vt
jkkj ikkqk � �k

pk�
m

Tk� and r� 	 �D�

p
�vt
jkkj ikkq�� ������

The constants Dk	D�� and �k are

Dk 	 �
p
�

�� � �
	 �k 	 �� � ��

�� � �
	 D� 	

p
�

�
	 ������

exactly as found in Hammett and Perkins� ���� and Hammett et al�� ����c�

Figs� ����� and ����� show the real and imaginary parts of the local kinetic response

function for a Maxwellian F�	 R��� � � � �Z��� compared with the gyro�uid ap�

proximations�

In these 
gures� the argument of the plasma dispersion function is real�

The approximations to the collisionless response in all but the one�pole models

are reasonable� improving as more moments are kept� Each reproduces the most

important qualitative features of the response� The one�pole model is the roughest�

for while it is correct at � � � and � � � and gives damping for intermediate values

of �� the real part of the response function has the wrong sign for � � ��

Most importantly� this approach eliminates the singularities that are present

at resonances in the collisionless limit of most previous �uid equations� These clo�

sure relations are linearly exact for some distribution that is close to Maxwellian

 Hammett and Perkins� ����! �but only approximate in the case that the equilib�

rium distribution function is Maxwellian�� It is therefore not surprising that Landau

damping and its inverse� ion Compton scattering� and other �kinetic	 phenomena

are described reasonably well by these few equations�
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Figure ���$ � � �Z��� for three� and four�pole models of parallel phase mixing�
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��� Finite�Larmor�Radius E�ects

I shall now investigate the conventional �nondissipative� FLR e�ects buried in the

various integrals involving J� in the �uid equations� Eqs� ����%������ �Collisionless

dissipation induced by FLR gyrations will be considered in Sec� ����� These integrals

are of the form Z
d�v v�j� v

�
kFJ� � n



v�j� v

�
kJ�

�
� ������

Note that an exact� fully nonlinear �arbitrary F � evaluation of hJ�i would require

an in
nite set of velocity�space moments� since J� contains all even powers of v��

approximations are therefore necessary�

Figure ���$ Comparison of FLR approximations to hJ�i�

The standard second�order Taylor�series expansion of J� yields hJ�i � � �
b��� in which b 	 ��ik

�
� and ��i 	 hv��i ���)� � T���m)�� This approximation is

equivalent to assuming that each of the perpendicular moments higher than hv��i is

identically zero� In addition to the various J� integrals in the �uid equations where

J� operates on � one must also evaluate Eq� ������ in which J� operates on F itself�
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A Taylor�series expansion of the J� in Eq� ����� yields

*n 	
Z

d�v J�F � n �r�
�

�
n

T�
m�)�

�
�

Upon expanding nT� in the last term into equilibrium and perturbed components

in the gyrokinetic ordering �where� for example� n� � n� but r�n� � r�n��� one

is led to

*n� �

�
� � b�

�

�
n� � n�

T��

b�
�
T��	 ������

where b� 	 k�
�
T����m)��� The Taylor�series approach provides the simplest second�

order accurate model� It is useful for developing analytic understanding in the

k��� � limit� but should be used cautiously because of the large errors introduced

for k�� � �� The errors are particularly important in numerical simulations� since

the typical grid needed to resolve the dynamics introduces large k�� values into the

system� That is� the grid spacing in the direction of the background gradient must

be �x � �� which implies that the maximum kx� present is � �� The Taylor�series

approximation is egregiously wrong for such wavenumbers� since � � b�� � ���

while J� is bounded between ���� and �� In Fig� ������ di�erent expressions for hJ�i
are compared� The error in the Taylor�series approximation for the hJ�i FLR terms

is unacceptably large for k�� �
p

�� The Taylor�series expansion of (��b� � � � b

 which appears in the quasineutrality constraint� Eq� �����! goes awry even sooner�

as it is negative for k�� � �� whereas (��b� is always positive� This can cause

signi
cant errors in the linear growth rates and eigenmode shapes� as demonstrated

in Figs� ����%����� which will be discussed in Chapters � and ��

Another way to carry out the various J� integrals  Hammett and Dorland�

����� Brizard� ����! is to assume that the total guiding�center F �including F�� is

always bi�Maxwellian �with perturbations in n� T�� uk� and Tk�� This would imply�

for example� that

hJ�i � e�b�� � � �
T�

�m)�
r�

� �
T �
�

�m�)�
r�

� � 
 
 
 ������

and so on� where b � b� � b� � T�� � T�� contains both equilibrium and perturbed

parts of the T�� The r�
� operators above operate only on  in Eqs� ����%������

Upon applying the same assumption that F is always bi�Maxwellian to Eq� ������

where J� operates on F itself� one is led to

*n� �

Z
d�v J�F � n� � e�b���n� �

n�
T��

���
�
e�b���r�

�T���
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This �Maxwellian�total�F	� or hJ�i � exp��b���� approximation reduces to the

second�order Taylor�series approximation in the small�k�� limit� but it is better

behaved for large k��� That is� it gives the reasonable result that hJ�i � � as

k�� � �� However� this approach does not match the kinetic linear dispersion

relation very well for k�� � � or larger  e�g�� see Fig� �����!� The reason is that

although the equilibrium F� is Maxwellian� the linear perturbation F� is quite non�

Maxwellian in v�� Indeed� the standard linear solution of Eq� ����� in an unsheared

slab gives F� � F�J����v����� Upon inserting this into Eq� ������ one obtains a lin�

ear dispersion relation with terms proportional to
R
d�v �F��n��J�

� � hJ�
� i� � (��b���

This is very di�erent from the case in which the total F �including F�� is assumed

to be Maxwellian� where the hJ�i � exp��b��� in the �uid equations combines

with another factor of exp��b��� in the *ni calculation to give terms proportional to

exp��b�� Since the correct kinetic result� (��b�� has a much weaker b dependence at

large b �asymptotically proportional to ��
p
b�� the �Maxwellian�total�F	 approxi�

mation results in too much gyroaveraging at large b� This major di�erence between

hJ�i� and hJ�
� i is part of what motivated the hJ�i � hJ�

� i��� � (
���
� model consid�

ered below� which is linearly correct to all orders in k�� in the absence of magnetic

shear and nonlinearly second�order accurate in its presence� Further motivation was

provided by Similon�s approach�

����� Similon and the Particle�Space Approach

Similon  Similon� ����! derived a set of �uid equations for the nonlinear electron

drift�wave problem� Since the quasineutrality constraint depends directly on the

particle density *n �
R
d�v J�F �plus the polarization part� and not on the guiding�

center density n �
R
d�v F � he chose to perform the velocity averages in particle

space rather than guiding�center space� That is� he operated on the gyrokinetic

equation with J� before evaluating the moment integrals� This approach has the

advantage of easily reproducing the proper kinetic linear dispersion relation in an

unsheared slab� The primary disadvantages lie in the complexity of the nonlinear

and shear terms evaluated in particle space�

Upon operating on Eq� ����� from the left with J� and keeping only the E�
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B nonlinearity� one is led to

�J�F��

t
�r 


�
vkJ��F�

�b� � F�J
�
�vE � J��F�J�vE�

�

� 

vk

� e

m
F�J���b 
 rJ��

�
� �� ������

One may then take moments of this equation� using the de
nitions

*n� 	
R
d�v J�F�	 *n�*uk� 	

R
d�v J�vkF�	

and so on� Deferring the discussion of magnetic shear for the moment �so that �b � �z

and J�rk �rkJ� � ��� one may carry out the velocity�space averages by assuming

that the equilibrium F� is Maxwellian with density and temperature gradients in

the x direction� Upon utilizing the normalizations given in Eqs� ������ and �������

one 
nds the linear evolution equation for the particle�space perturbed density *n$

*n

t
� �rk*uk �

�
(� � �i�(� � (��r�

�

 

y
� ������

Note that by operating on the gyrokinetic equation with J� before taking velocity�

space integrals� one 
nds terms � (��� from integrals such as
R
d�v F�J

�
� � and thus

reproduces the proper kinetic FLR behavior� unlike the �Maxwellian�total�F	 model

of the previous section� It is shown below how the guiding�center approach repro�

duces Eq� ������ with the appropriate transformations from guiding�center quanti�

ties n	 T�	 uk	 q�	 � � � to particle quantities *n	 *uk	 � � ��

Unfortunately� the nonlinear term in Eq� ������ is quite complicated� since

the leftmost gyroaveraging operator J� now operates on both the distribution func�

tion and the electrostatic potential� and

J��F�J�vE� �� F�J
�
�vE�

Similon approximated this term �on page �� of his dissertation� by assuming that

the v� dependence of F� was proportional to F�J��k�v��)�� allowing him to de�

velop a simple �uid model of FLR e�ects in the nonlinear E�B terms� However�

errors of order k���
� are introduced by this approximation� As is shown in the next

section� one 
nds that by taking �uid moments in guiding�center space �delaying

the second gyroaveraging operation to Poisson�s equation� one can avoid having to

take moments of quantities such as J��F�J�vE�� and thus can regain k���
� accuracy�
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A second complication in the particle�space approach arises from the fact

that the gyroaveraging operator J� and the parallel derivative operator �b�x� 
 r do

not commute when the magnetic 
eld is sheared� This introduces a gyro�averaging

of kk that may be important for some modes� as pointed out by Bakshi et al�

 Bakshi et al�� ����! and Linsker  Linsker� ����!� In the usual sheared�slab model�

where �b�x� � �z � �yx�Ls� one 
nds

J���b 
 r� � �b 
 r�J�� �
��

�Ls

�

xy
� O�k���

��	

upon using the small�b approximation for J�� The fastest�growing modes typically

have k�� � ��� and an average kk of order ky��Lt� so the shear�correction term is

typically smaller than the lowest order kk term by a factor of order LT�Ls� which is

usually small� However� as Linsker  Linsker� ����! has shown� this gyro�averaged

shear e�ect can be quite important for other modes� particularly for narrow modes

localized near the rational surface� where kk � �� Since there are modes with

signi
cant growth rates that satisfy this criterion� it is necessary to treat the gyro�

averaging of the shear as accurately as other FLR corrections�

Similon noted the di�culty presented by the shear and pointed out that the

expression Z
d�v F�J��b 
 rJ� � n�

D
J��b 
 rJ�

E
�

 � (���
�

�b 
 r(���
� 

remained valid in the presence of shear�  This is proved most easily in Fourier space�

where the x in �b�x� becomes �i�kx�! Though he used this identity for moments

of the last term in Eq� ������� Similon ignored the e�ects of shear when taking

moments of the J���b 
 rvkF�� term�

My approach is motivated in part by Similon�s insights� though I improve

upon his approach by taking moments of the gyrokinetic equation in guiding�center

space� and also extend it to allow the presence of equilibrium and perturbed temper�

ature gradients� The details of this approach are outlined in the next two sections�

����� Guiding�Center Approach

Equations ����%����� were derived by taking moments of the gyrokinetic equation

directly� without 
rst operating on it with a second J� as was done in the previous
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section� The transformation from guiding�center �uid quantities to particle �uid

quantities will be considered in the next section� Here� the focus is on how to

approximate terms such as hJ�i and to show how they lead to various linear and

nonlinear FLR e�ects�

As an example� consider the following term from Eq� �����$

r 
 �n hJ�ivE�� ������

From Eq� ������ one sees that in general hJ�i is a function of all v��� moments of the

guiding�center F � The following closure approximation allows one to express this

in terms of just the lowest hv��i � T��m moment�

hJ�i � (
���
� �b� � NLPM	 ������

where NLPM represents a model of nonlinear� FLR�induced phase mixing to be

discussed in Chap� ���� This (���
� �b� approximation was motivated by the contrast

between the �Maxwellian�total�F	 model� which led to hJ�i � exp��b���� and Sim�

ilon�s real�space approach� in which �at least linearly in a shearless slab� two Bessel

functions are combined before taking moments� leading to hJ�
� i � (��b�� In some

sense� the hJ�i � hJ�
� i��� � (���

� �b� approximation anticipates the second gyroaver�

aging operation that will occur for the Poisson equation� Note that it is rigorous

through second order in k�� �i�e�� it matches the second�order Taylor series result

hJ�i � � � b���� and therefore agrees with the exp��b��� model through second

order� while imposing less gyroaveraging than the exponential model for large b�

The (
���
� model has the added advantage of exactly reproducing the FLR e�ects in

the local� linear �unsheared slab� kinetic dispersion relation�

Both the equilibrium and �uctuating components of the perpendicular tem�

perature are �hidden	 in the argument to the Bessel function� since b � T�� � T���

Upon using the chain rule to carry out the divergence� one is led to

r 

�
n(���

� �b�vE
�

� �rn� 
 (���
� vE

��
�n�rb�(���

�

b

 vE

��
�n(���

� �r 
 vE�

��
� ������

Although T�� � T��� r�T�� � r�T��� Thus� while b may be replaced with b� in

terms �� and ��� the gradient in �� produces two terms� proportional to rb� and

rb�� Because (
���
� operates unambiguously on � de
ne + 	 (

���
� �b�� and v
 	



�� Chapter �� Derivation of the Gyro�uid Equations

(
���
� �b��vE� For notational convenience� I now introduce two modi
ed Laplacian

operators �r�
� and

��r
�

�$

�

�
�r�
�(���

� 	 b
(���

�

b
	

��r
�

�(���
� 	 b



b

�
(���
� � b

(���
�

b

�
� ������

Note that as b� �� the operators �r�
�	

��r
�

� � r�
�	 as shown in Fig� ������

Figure ���$ Fourier�transformed gyro�uid FLR operators compared to the usual

Laplacian� Shown are �� �r�
��b�� �� ��r

�

��b�� and ��r�
��b�� The gyro�uid operators are

much less sti� than the Laplacian operator for large b�

In slab geometry� the divergence of vE vanishes from Eq� ������� leaving

r 

�
n(���

� �b�vE
�

�

�
n�
x

�x �rn�
�

 v
 �

n�
T��

�
T��
x

�x �rT��
�



�r�
�

�
v
	

in which n and T� have been separated into equilibrium and �uctuating parts as

before� The last term on the right�hand side is a nonlinear FLR correction that

appears quite naturally� In the small�k�� limit� (
���
� � � � k���

���� these terms

reduce to the familiar Taylor�series expansion� However� in the large k�� limit�
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since �r�
� ������ this expression is much less sti� than the Taylor�series expansion�

Upon using the normalizations given in Eqs� ������ and ������� one 
nds the equation

for n�t  Eq� ������!�

Consider now the h�mv�����J�i term that appears in the perpendicular pres�

sure equation� Eq� ������� If the v� dependence of F is close to Maxwellian �which

is true at least for the linear F� component�� then one can use the Maxwellian iden�

tity �mv�����FM � T��T�FM��T� to rewrite this in a form in which one can use

Eq� ������$

n

�
mv��

�
J�

�
� T�



T�

�
T�

Z
d�vFJ�

�
� p�



b
�b(

���
� � � NLPM�

�Again� NLPM represents a model of nonlinear� FLR�induced phase mixing to be

discussed in Chap� ����� In slab geometry� hv��i enters only through FLR correc�

tions� so to maintain overall second�order accuracy it is only necessary to keep the

lowest�order contribution h�mv�����J�i � T�� The more robust expression above

may be used to obtain higher�order accuracy in the linear limit �where F � F�

is Maxwellian� along with an approximate treatment of nonlinear e�ects consis�

tent with the form of the closures used in other terms�  The situation in toroidal

geometry is more complicated� There� the hv��i moment enters through the rB
drifts as well� so that the number of



v���
�

moments kept a�ects the accuracy of

both the toroidal drift�resonance model  Waltz et al�� ����� Beer and Hammett�

����! and the FLR model�! Upon inserting this expression for h�mv�����J�i into

Eq� ������ and expanding in the gyrokinetic ordering as was done for the density

equation� one arrives at the linear and nonlinear FLR terms found in Eq� �������

Finally� I should also explicitly state how I approximate terms like hvkJ�i
and



v�kJ�

�
� My reasoning is as follows$

hvkJ�i � h�uk � �vk � uk��J�i
� �uk � �

�q�
�r�
��(���

� 	 ������

where the heat �ux q� results from the h�vk � uk�v��i moment and I have approxi�

mated the terms higher�order in k�� by analogy with Eq� ������� Similarly�

v�kJ�

�
�


�
�vk � uk�

� � �ukv
�
k � �u�kvk � u�k

�
J�
�

� �qk � �ukpk�(
���
� � higher�order nonlinear terms�
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����� Guiding�Center � Particle�Space Transformation

It is not surprising to 
nd that the simplicity gained in the evolution equations

by writing the evolution equations in guiding�center space is somewhat o�set by a

more complicated quasineutrality condition� Next� the transformation from guiding�

center moments �n	 T�	 � � �� to the particle moments �*n	 *uk	 � � �� is developed� This

is necessary because the quasineutrality equation� Eq� ������ depends directly on *n�

not n� Along the way� one 
nds that this transformation shows that particle �uid

equations  such as Eq� ������! are linearly equivalent to the guiding�center �uid

equations� Eqs� �����%������

The �non�polarization part of the� perturbed particle density  de
ned in

Eq� �����! is *n� 	
R
d�v J�F�� It is important to note that here� unlike in the

evolution equations� the Bessel function operates on the distribution function�

Note that any linear solution of Eq� ����� in the absence of shear may be

written as

F��x	 vk	 v�	 t� � F��x	 vk	 v��J��
v�
)
k��

�
��x	 vk	 t� �

�
mv��
�T��

� �

�
��x	 vk	 t�

	

� F�J�� � T��
F�

T��
J��	 ������

in which F� is the equilibrium distribution function� J� operates on � and �� and

� and � are functions independent of v�� The moments of � and � are determined

self�consistently from the de
nitions of the guiding�center �uid quantitiesZ
d�v F� 	 n	

Z
d�v �

�mv�
�
F� 	 p�� ������

Upon substituting Eq� ������ into Eqs� ������ and using the normalizations given in

Eqs� ������ and ������� one 
nds two equations in two unknowns$

n � hJ�i h�i � b
 hJ�i
b

h�i 	

p� �

��
� � b



b

�
hJ�i

	
h�i �

��
� � b



b
�



b

�
b�



b

�	
hJ�i

�
h�i �

Given the Ansatz in Eq� ������� the transformation from the density of guiding

centers to the density of particles is thus de
ned by hJ�i  Eq� ������!� The result of
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the algebra is

*n �
(���
�

D�b�

h
N�b�n � �

�
�r�
�T�

i
	 ������

in which

N�b� 	 � �
��r
�

� � �
�

�r�
� ������

and

D�b� 	 N�b� � �
�

�r�
�� ������

Note that D�b� � �� Upon expanding Eq� ������ for small b� one can verify that it

reproduces Eq� ������ and is therefore second�order accurate in k��� The guiding�

center quasineutrality condition  Eq� ������! may now be found by noting that ne� �

ni�� substituting Eq� ������ into Eq� ������ and operating on the resulting equation

from the left with (���
� �

For the purpose of comparison� an equation describing the evolution of *n

must be found� To accomplish this� one combines Eq� ������ and the linear parts of

Eqs� ������ and ������� yielding

*n

t
� � (���

�

D�b�
rk

�
N�b�uk � �

�
�r�
�q�

�
� �

(� � �i�(� � (��r�
�

 

y
� ������

Note that the coe�cients of �y in Eqs� ������ and ������ are exactly the same� A

comparison of the parallel convection terms suggests that the transformation given

in Eq� ������ may be generalized� This is the case� as the transformations

*uk 	 (
���
�

D�b�

�
N�b�uk � �

�
�r�
�q�

�
	 ������

*pk 	 (
���
�

D�b�

�
N�b�pk � �

�
�r�
�r�

�
	 ������

*qk 	 (���
�

D�b�

�
N�b�qk � �

�
�r�
�s�

�
������

are consistent with the observation made in Chap� ��� that the parallel phase�

mixing closure for perpendicular temperature �uctuations had the same form as

the closure for parallel temperature �uctations �i�e�� a ��moment closure for pk

has the same form as the ��moment closure for r�� and can be combined by the

above transformations to give the same form for a ��moment closure for *pk�� If one

ignores the nonlinear terms� which are unfortunately very complicated in particle
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space� these transformations provide an alternate route to Eqs� �A��%A��� once

Eqs� �����%����� are known� Speci
cally� one can 
nd the linear ��� gyro�uid model

by repeating the procedure in Sec� ����� for the parallel particle�space moments

*n	 *uk	 *Tk and *qk� closing the resulting four equations as outlined in Hammett and

Perkins� ����� and utilizing the transformations  Eqs� ������ ����%�����! along

with Eqs� �����%������ The moment�reduction scheme outlined in Sec� ����� then

uniquely determines the closures for models that retain fewer moments� While this

gives one con
dence that the linear FLR and parallel phase�mixing models have a

degree of internal consistency� the complicated form of the nonlinear moments that

arises in the particle�space derivation precludes one from taking full advantage of

this route� It is more straightforward to develop accurate models of nonlinear terms

by taking moments in guiding�center space�

����� Alternative FLR Models

It is perhaps not obvious why such an elaborate FLR model is necessary� Fig� �����

compares di�erent approximations for hJ�i� Clearly� though valid in the small�

b limit� the Taylor�series approximation is disastrously inaccurate for b � �� other

approximations are better� In particular� I have investigated the equations resulting

from the hJ�i � e�b�� and ���b����� approximations and from an isotropic pressure

model� each described brie�y below�

��� Model� In our 
rst foray  Dorland et al�� ����! into �uid FLR models�

we considered an �even more� heuristic model that neglected the nonlinear FLR

e�ects entirely and ignored the T�	 q�� etc� �uctuations� The idea was to assume an

isotropic temperature �background and �uctuations�� so that T� � Tk� Since there

are no equations for the evolution of the perpendicular moments� I refer to this

model as either ����	 or ����	� depending upon the number of parallel moments

retained� It must be stressed that this model is not directly related to the rest of

the FLR models derived in this thesis and is not even second�order accurate in k��i�

On the other hand� of all the models shown in this thesis� the ����	 most strongly

favors the �uid equations typically found in the literature and may be obtained

from the ��� model by using the method outlined in Sec� ������ Some nonlinear

results �and de
ciencies� from this type of model are presented in Sec� ���� The
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model equations are

dn

dt
�rkuk �

�
� � �i �r�

�

� +

y
� �	 ������

duk
dt

�rk �n � T � +� � �	 ������

dT

dt
�rk�qk � �uk� � �i

+

y
� �	 ������

dqk
dt

�rk�� � �k�T �
p

�jkkjDkqk � �� ������

Here d�dt� �t�v
 
r� v
 � �b�r+� and + � (�� No justi
cation is o�ered

for these equations other than to note that in the absence of magnetic shear these

equations approximate the proper linear response with multipole approximations

to the plasma dispersion function� they are presented to make contact with models

found in the literature� In particular� the factor�of�two coe�cient of the uk term

in the temperature evolution equation does not correspond to the usual ��� asso�

ciated with the collisional Braginskii equations� In this model� the quasineutrality

constraint is simply

�� � �� (��  � n� ������

Total Maxwellian Model� One may recover the sheared�slab� electrostatic limit

of Brizard�s gyro�uid equations  Brizard� ����! from Eqs� �����%����� by leaving

qk and q� unspeci
ed� taking N� � N�� � N�� � �	+ � e�b��	 N�b� � D�b� � ��

rede
ning

�
�

�r�
�e

�b�� 	 b
e�b��

b
	

��r
�

�e
�b�� 	 b



b

�
e�b�� � b

e�b��

b

�
	

and replacing the (� in term ��	 of Eq� ������ with e�b�

Pad�e Model� There also exists a simpler FLR model that is second�order accu�

rate� well�behaved at large b� and straightforward to implement in a 
nite�di�erence

code� Though I solve Eqs� �����%����� with a spectral method that handles the

expressions involving the (
���
� functions easily� it may be advantageous for some

problems to use the Pad�e approximation hJ�i � �� � b������ I refer to this model
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as the �Pad�e	 model for this reason� though it should be noted that the (
���
� model

is also a Pad�e�like approximation to the full FLR e�ects in the presence of mag�

netic shear� The Pad�e model may be obtained from Eqs� �����%����� by taking

+ 	 �� � b�����	 N�b� � D�b� � �� rede
ning

�

�
�r�
��� � b����� 	 b

�� � b�����

b
	

��r
�

��� � b����� 	 b


b

�
�� � b����� � b

�� � b�����

b

�
	

and replacing the (� in term ��	 of Eq� ������ with �� � b����� and the (� in

term ��	 of Eq� ������ with �� � b���� Results from this approach are presented in

Chap� ����

��	 FLR Phase Mixing

The phase�mixing process that underlies Landau damping is fundamentally due

to the distribution of velocities of the particles freely streaming along the 
eld

lines� This spread in velocities causes neighboring particles to move apart� mixing

away �damping� any density perturbations that arise� even in the asymptotically

collisionless limit� In addition to the spread in parallel velocities of particles� there is

also a spread in the gyro�averaged E�B drift velocities� which leads to phase mixing

in the perpendicular direction� Physically� high�energy particles with large gyroradii

will have a slower E�B drift than low�energy particles with small gyroradii� this

spread in drift velocities leads to mixing� This process does not appear to be simply

related to the usual stochastic perpendicular heating normally associated with large

amplitude �uctuations  Ching� ����� Dupree and Tetreault� ����� Krommes�

����� Hirshman� ����!� Nonlinear FLR phase mixing is a complicated process

that is di�cult to reproduce accurately with �uid models� but the models presented

below reproduce its essential qualitative features� providing a nonlinear damping

process important at large k�� and mixing�length levels of �

To illustrate the essence of this e�ect� consider 
rst a simpli
ed ��dimensional

problem� where a given electrostatic 
eld varies in only one direction �such as would

be the case for a long� thin eddy in the region away from one of the two regions of
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curvature�� Upon taking  � �y�� so vE � vE�y��x� and assuming no gradients in

the equilibrium F� and no parallel gradients� one can reduce Eq� ����� to

F�

t
� J��

kyv�
)

�vE
F�

x
� �� ������

Concentrate on a single Fourier mode of � so the ky in J� can be considered to be

a 
xed number and consider the response of this equation to an initial perturbation

of the form F��t � �� � exp�ikxx�FM�v�� where FM is a Maxwellian� The solution

is

F� � eikx�x�J��kyv���	vE tFM�v��

Although F� oscillates in time� all velocity moments of F� will decay in time� just

as in the parallel phase mixing discussed earlier� For example� consider the density

response

n�k�t� � e�ikxx
Z

d�v F� �

Z
d�v e�ikxJ��kyv���	vE tFM�v�� ������

Upon expanding J� in the small�k�� limit� one can evaluate this integral analytically$

n�k�t� � n�
v�t
e�ikxvE t

Z �

�

dv� v�e
ikx�k�yv

�

����
�	vE te�v

�

����v
�

t 	

� n�e
�ikxvE t

�

�� ikxbvEt��
	 ������

where b 	 k�yv
�
t �)

� in this ��D problem�  One could 
nd an asymptotic represen�

tation of this integral without expanding in k�� by using the method of stationary

phase� However� the Riemann%Lebesgue lemma  Bender and Orszag� ����! guar�

antees that the integral goes to zero as t��� since the �uid equations generate an

exponentially damped approximation� which is too strong in any case� greater detail

is unnecessary�! From Eq� ������� one sees that the density decays in time though

it has a long tail that decays like ��t� unlike the parallel phase�mixing case  Ham�

mett et al�� ����c! where initial density perturbations decay as exp��k�kv�t t�����

faster than exponential� The full J� e�ects on n�k�t� can be found by numerically

integrating Eq� ������� The results are shown in Figs� ����%����� For b � �� there is

a rapid initial decay followed by a long tail containing several harmonic components

with slowly decaying amplitudes�

Because of the details of the long tail� the temporal Fourier transform of the

kinetic response is logarithmically divergent as � tends to zero� Hence one is not
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able to match the kinetic and �uid results in frequency space as before� However�

one may choose the closure coe�cients so that the qualitative features of the true

solution are preserved� and can check the resulting estimate numerically for a wide

range of parameters�

����� A ��moment	 ��D Fluid Model

The �uid model of parallel phase mixing was based on a closure approximation for

the vkrk kinetic term that introduced a damping rate of order

�k � jkkjvt � jkkj


�vk � hvki��

����
�

Likewise� a �uid model of perpendicular FLR phase mixing comes from making a

closure approximation for the J�vE�x term that introduces a damping term of

order

�� � jkxj


�J�vE � hJ�vEi��

����
� jkxvEj (��b�� e�b!���	 ������

upon evaluating the averages h
 
 
i over a Maxwellian� For small k��� this reduces

to �� � jkxvEjb��� which reproduces the initial decay rate in Eq� �������

This is illustrated by 
rst developing a ��moment �uid model of FLR phase

mixing� Upon taking the density moment of Eq� ������� one obtains

n

t
�



x
�n hJ�i vE� � ��

Upon using a small�ky� approximation for the Bessel function� one 
nds

n

t
�

�
� � b

�

�
vE

n

x
� k�x

�m)�
nvE

T�
x

� �� ������

At this point a closure approximation must be introduced for the unknown highest

moments �T�� in terms of the known lower moments �n�� If one were to neglect

T��x� then one would just get n�t� oscillating at a frequency � � kxvE�� � b���

with no damping� For short times� this actually is similar to the kinetic result

n�k�t� � exp��ikxvEt��� � ikxvEbt��� � 
 
 
� but it misses the long�time damped

behavor of Eq� ������� To correct this� one follows the same procedure used for

parallel closures and includes a dissipative term in the closure approximation for

T��
n

t
�

�
�� b

�

�
vE

n

x
� ��� b

�
jvEkxjn� ��

b

�
vE

n

x
� ������
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The absolute value that appears in the 
rst term on the right�hand side guarantees

that that term is always dissipative� The second �reactive� term allows one to match

the phase of the �uid approximation to that of the kinetic solution� The matching

coe�cients �� and �� are expected to be O���� Upon de
ning a relative squared error

� � �
R
dt jnf �t��n�k�t�j����

R
dt jn�k�t�j��� where nf is the �uid approximation from

Eq� ������ and n�k is the kinetic result from Eq� ������� one 
nds that a minimum

value of � � ���� can be achieved with ���	 ��� � ����	 �����

One may extend this model to larger k�� by analogy with the results of

Chap� ���� replacing the b�s that appear in the closure terms on the right�hand side

of Eq� ������ with the operator � �r�
�(���

� � �The �� � b��� factor on the left�hand

side becomes (���
� in accordance with Chap� ����� A one�pole FLR phase�mixing

operator N� operating on some moment M is de
ned by

N�M 	 ��

����
�

�

�
�r�
�v


	

 r

����M � ��

�
�

�
�r�
�v


	

 rM	 ������

where ���	 ��� � ����	 ���� as found in the small�b limit� The comparison between

the ��moment �uid model employing this N� operator and the exact kinetic result

from numerically integrating Eq� ������ is shown in Figs� ����%����� For small b�

where the damping rate is small� the comparison is quite good� For b of order

unity or larger� the agreement is not as good� Nevertheless� this is a signi
cant

improvement over past �uid models that ignored FLR phase mixing altogether and

would have oscillated in Figs� ���%��� without any damping� Some �uid models in

the past employed an ad hoc linear hyperviscosity term to provide damping at large

k��� This model provides a physics�based nonlinear damping term with at least the

proper qualitative scaling with � b� and kx�

����� Extension to more moments and ��D

Rather than making a closure approximation for T� in Eq� ������� one can follow

the dynamics for T� by taking the v�� moment of Eq� ������� This requires a closure

approximation for hv��J�i� or at least of hv��i if the small�k�� expansion of J� is

used� Upon following a path similar to that used to derive the ��moment �uid

model above� one 
nds the following two�moment model of FLR phase mixing$

dn

dt
�

h
�
�

�r�
�v


i

 rT� �N��T� � �	
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dT�
dt

�
h
�
�

�r�
�v


i

 rn�

�
��r
�

�v


	

 rT� �N��T� � �	

using the non�dimensional units of Eqs� ������������ where N�� and N�� are given

by

N�� � ��
���

���h�� �r�
�v


i

 r

���� �
���

h
�
�

�r�
�v


i

 r	

������

N�� � ��

���h�� �r�
�v


i

 r

���� ��

h
�
�

�r�
�v


i

 r�

Choosing ���	 ��� � ����	 ���� gives a relative squared error in the small�b limit of

� � �
R
dt jnf �t� � n�k�t�j����

R
dt jn�k�t�j�� � ����� somewhat better than the ����

achieved by the ��moment model� N�� represents closure approximations for higher�

order terms in hJ�i of order k���
�� A comparison with the numerical kinetic solution

of Eq� ������ for general b is shown in Figs� ���%���� Although the ��moment model

is formally more accurate than the ��moment model for small b �and it recovers

O�t� accuracy for the initial relaxation of a perturbation�� one 
nds that in practice

it is of accuracy comparable to that of the ��moment model for general b� An

improved model employing additional moments could probably be found at the

cost of additional complexity�

So far I have been considering the FLR phase mixing caused by a given�

static� ��D �y�� The kinetic equation is reversible� and if at some time �y�

changed sign  or if  � �y� cos�t were oscillatory!� then F� would begin to �un�

phase�mix	 and eventually reconstruct the original density perturbation�  In fact�

notice that the FLR phase�mixing model provides damping only nonlinearly and

does not introduce any damping into the linear equations since the linear J�vE 
rF�

terms are known and do not require any closure approximations�! In a turbulent

nonlinear ��D system� it seems unlikely that the ��D convection paths given by the

equipotential lines of J��x	 y� would ever exactly reverse to reconstruct the initial

perturbation� This is even less likely in a turbulent ��D system where the vk of

the particles would also have to be reversed to reconstruct the initial conditions�

Nevertheless� the FLR phase�mixing process is very complicated� and it may be

that in some cases �perhaps involving a few isolated modes� the model presented

here may overestimate the amount of FLR phase mixing that is actually occuring�

In nonlinear simulations one should therefore check the decorrelation times and
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lengths� and also check the sensitivity of the simulations to the choice of � and �

coe�cients in the N�� N��� and N�� operators�

Brie�y� I now outline one way to approximate terms like j �r�
�vE 
 rjM in

general geometry� First� note that �r�
� operates only on vE� so one can de
ne an

averaged velocity 
eld v � �r�
�vE using standard FFT�s since the �r�

� operator is

evaluated most easily in k space� Since this is already a crude model of a fairly

complicated process� it may be su�cient to approximate

jv 
 rjM � jvxjj 
x
jM � jvyjj 

y
jM � hjvxjj 

x
jM � jvyjj 

y
jMi ������

where the volume average is subtracted o� to ensure that the NLPM operators do

not violate the conservation laws� Alternatively� one may rearrange this to be in

explicitly conservative form$

jv 
 rjM � � 

x

�
jvxj �

jkxj
M

x

�
� 

y

�
jvyj �

jkyj
M

y

�
� ������

The basic idea is to provide a fast numerical approximation by evaluating terms like

���jkxj�M�x in kx space where they are most easily evaluated� and then transform

back to real space to multiply by jvxj�  I use Eq� ������ in the ITG code� though

I have tried both and found that the two approximations give almost the same

answer�! This rough approximation will overestimate the FLR phase�mixing e�ect

since it does not include �interference	 terms inside the original absolute value� In

the original kinetic equation� the J�vE 
 rF� nonlinearity vanishes if both  and

F� have cylindrical symmetry �or� less restrictively� if r�F�kr�J��� which may

be related to the formation of long�lived coherent structures� The nonlinearity in

Eq� ������ no longer satis
es this property exactly� though the nonlinear damping

will be reduced for regions of the plasma that satisfy a kind of �square symmetry	

where the two terms in Eq� ������ separately vanish� If a more accurate numerical

implementation of NM is needed� one would probably have to map M onto a grid

that followed the convection contours� use FFT�s along each convection contour to

evaluate the phase mixing from jv 
 rjM � and then map the phase�mixed M back

to the regular grid where the rest of the terms in the �uid equations are advanced

in time�

FLR phase mixing is a di�cult process to model accurately with �uid equa�

tions� The nonlinear simulations presented in later chapters are insensitive to the
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exact details of the damping mechanism at high k��� especially if the turbulent

spectrum is peaked at longer wavelengths with k�� � �� Furthermore� the model

presented here does capture the essential qualitative features of FLR phase mixing

with the proper physics�based scalings� providing nonlinear damping important at

high k� and large �
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Figure ���$ One� and two�pole FLR phase�mixing models� for b � ����
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Figure ���$ One� and two�pole FLR phase�mixing models� for b � ��
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Figure ���$ One� and two�pole FLR phase�mixing models� for b � ���
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��
 Normalized Gyro�uid Equations

With the closure approximations speci
ed� one may now complete the derivation of

the nonlinear gyro�uid equations easily� The moments and the potential are sepa�

rated into equilibrium and �uctuating components  n � n��n��t�� � � � ! and the nor�

malizations used in Chap� ��� are utilized again� Speci
cally� the non�dimensional

perturbed variables ��n	 �uk� � � � � are given in terms of the dimensional perturbed

variables �n�	 uk�	 � � � � by�
n�
n�
	
uk�
vt
	
Tk�
Ti

	
T��
Ti

	
qk�
vtpk�

	
q��
vtp��

	
e�

Ti

�
�

�i
Ln

��n	 �uk	 �Tk	 �T�	 �qk	 �q�	 ��� ������

Upon normalizing �x	 y	 z	 t� according to

�x �
x� x�
�i

	 �y �
y

�i
	 �z �

z

Ln

	 and �t �
tvt
Ln

	 ������

one is led to a simpler set of equations� The quantity x� is the position of a reference

rational surface� taken to be at the center of the simulation domain� The following

de
nitions are useful$ L��n 	 � lnn��x	 vt 	
p
T�i�mi and �i 	 vt�)i� For

convenience� the tildes over the linearized non�dimensional variables are dropped

except where confusion might otherwise be generated� Thus� throughout most of

this thesis �n	 uk	 � � � � are the same as the non�dimensional variables ��n	 �uk� � � � �

in Eq� ������ and should not be confused with the original dimensional moments

de
ned and used in Eqs� ����%������

The model is set in the usual sheared�slab geometry� In dimensionless units�

this stipulation leads to

r� 	 �x


x
� �y



y
	 �b 
 r 	 

z
� sx



y
	 s 	 Ln�Ls�

Upon denoting the gyroaveraged potential (���
� �b�� 	 +� one may make further

useful de
nitions$

d

dt
�



t
� v� 
 r	 v� � �z �r+�

If one neglects the parallel nonlinearities �which are higher�order in �� but

retains the E�B nonlinearities and the nonlinear FLR terms� one obtains a ���
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gyro�uid model$

dn

dt
�
h
�
�

�r�
�v


i

 rT�� �z �

�

�N��T�� �z �
�

��b 
 ruk �
h
� � �i�

�
�

�r�
�

i +

y
� �	 ������

duk
dt

�
h
�
�

�r�
�v


i

 rq�� �z �

�

�N��q�� �z �
�

��b 
 r �Tk � n � +� � �	 ������

dTk
dt

�N�Tk� �z �
�

��b 
 r��uk � qk� � �ik
+

y
� �	 ������

dqk
dt

�N�qk��z�
�

��b 
 r�� � �k��z�
�

�Tk �
p

�jkkjDkqk� �z �
�

� �	 ������

dT�
dt

�
h
�
�

�r�
�v


i

 rn�

�
��r
�

�v


	

 rT�� �z �

�

�N��T�� �z �
�

� �b 
 rq� �

�
�
�

�r�
� � �i��� �

��r
�
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+

y
� �	 ������

dq�
dt

�
h
�
�

�r�
�v


i

 ruk �

�
��r
�

�v


	

 rq�� �z �

�
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Poisson�s equation �assuming quasineutrality and adiabatic electrons� is

� �+� hh+ii��z�
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D�b�

�
N�b�n � �

�
�r�
�T�

�
� �z �

�

� �(� � ��� �z �
�
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In these equations� � 	 Ti��Te�� �i 	 Ln�LT � and L��T 	 � lnT��x� The argument

of the Bessel functions is b 	 �k�x � k�y�� The modi
ed perpendicular Laplacian

operators �r�
� and

��r
�

� are de
ned in Eqs� ������� The origins of the terms marked

with underbraces are noted below�

��� Nonlinear FLR terms that arise from the divergence of hJ�i� The usual nonlin�

ear terms are included in the de
nition of d�dt�

��� The non�dissipative part of the Rk closure� �k 	 ��� � ������� � ���
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��� The dissipative part of the Rk closure� Dk 	 �
p
����� � ���

��� The R� closure� D� 	 p����

��� A model of nonlinear phase mixing� The operators are de
ned in Eqs� ������

and �������

��� In the absence of non�adiabatic electrons� the �ux�surface�averaged potential

must be explicitly subtracted to prevent non�physical electron transport across

rational surfaces�

�	� With ���� the expression for the perturbed particle�space density� N�b� and

D�b� are de
ned in Eqs� ������ and �������

�
� The usual ion polarization density�

A simpler �but still reasonably accurate� set of equations consists of evo�

lution equations for the density� parallel velocity� and parallel and perpendicular

temperatures �the ����	 model�� In this model� the FLR phase mixing of the par�

allel velocity is modeled with a one�pole model rather than a two�pole model� and

the closures for qk and q� are found by taking the kkvt  �	 �� limit of Eqs� ������

and ������ respectively� The result is
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Poisson�s equation is not changed in this simpler model�
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Local Linear Analysis

I
T IS USEFUL TO CONSIDER the local �shearless� limit as a partial check of

the foregoing derivation� One can derive the local dispersion relation for the

��� model by Fourier transforming the linearized versions of Eqs� �����%������

The result is a polynomial in � that may then be solved numerically� However�

if equal numbers of parallel and perpendicular moments are kept� the dispersion

relation may be factored into a form very similar to the familiar kinetic dispersion

relation� For example� in dimensionless units� the dispersion relation for the ���

model �see App� A� is

� � � � (�

��
�� ky

�

�
�� �ib��� I�

I�
�

�	
�Z� ���

�ky
�
�i
�
�� � ��� � �

���Z� ���
�

� �� �����

The only approximation to the usual kinetic result is Z����� given in Hammett

and Perkins� ����� It is a four�pole approximation to the plasma dispersion func�

tion Z���� In the local limit� the (���
� FLR model is exact to all orders in k�� for

n�n models  in the presence of temperature gradients� n � �!� With the aid of

Mathematica  Wolfram� ����! and Maple  Char et al�� ����!� I have derived the

dispersion relations for each of the intermediate models �from ��� to ����� For

example� one may use the Maple script in App� H to generate the ��� gyro�uid

dispersion relation� including numerical roots for the parameters of interest� Except

for the n � n models� the dispersion relations cannot be easily factored into recog�

nizable terms� Rather than delve into much unpleasant algebra here� I will instead

rely upon Figs� ����%���� to show a few important features of the local limit�

��
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In Fig� ����a�� the ��� and ��� models are compared to one branch of the

local linear dispersion relation for �i � �� kkLn � ���� and Ti � Te� Note that the

agreement is good even for ky�i � �� where linear FLR e�ects are important� The

improvement that may be obtained with additional moments is shown in Fig� ����b��

This kind of improvement� especially from the ��� to the ��� model� is quite typical

of the local gyro�uid dispersion relations�

In Figure ����� I compare the gyro�uid model to kinetic results shown in a

previous paper  Dong et al�� ����!� The parameters are k�� � ����� kkLn � ������

and Ti � Te� Above � � ���� the kinetic analysis predicts no instability� The

��� gyro�uid dispersion relation closely matches this kinetic result� since Eq� �����

di�ers from Eq� ���� of Dong et al�� ���� only in the plasma dispersion function�

The limitations of the less accurate ��� gyro�uid model are made more apparent�

While the ��� model reproduces the kinetic frequency with reasonable accuracy

near �i � �� the real frequency does not match as well as �i increases� and the

second branch of the dispersion relation is overdamped�  For clarity� above �i � ���

I show the branch of the ��� dispersion relation that corresponds to the marginally

stable branch of the exact dispersion relation� There is another ��� branch that

remains very slightly unstable� with a di�erent real frequency�! Based on this high�

k��� low�kkLn example� one might expect to see the shortcomings of the ��� model

in the sheared system at high k�� near the rational surface� However� if one 
nds

surprising results with the ��� model� one may easily check them with a more

accurate gyro�uid model�

By considering the real and imaginary parts of the local dispersion separately�

one may derive the ITG marginal stability curve ��i vs� ky�i�� The quantities �

and � are purely real exactly at marginal stability so the only imaginary terms in

Eq� ����� at marginal stability result from Z� �the approximation to the plasma

dispersion function�� Upon requiring the real and imaginary parts of Eq� ����� to

vanish independently� one is led to a marginal stability relation �crit�b	 ��� that is

independent of the details of Z� as long as Im Z�! exists� This relation is

�crit �
��p

� � g���	 b	 � �

� � �b�� � I��I��
	

where

g���	 b	 � � �
� � � �b�� � I��I��! � � � ! � � � � (�!

���(���
�



��

The quantity g is smallest for large ��� Thus� the ��� and ��� (
���
� gyro�uid models

recover the exact kinetic result  Galeev et al�� ����� Kadomtsev and Pogutse�

����!

�crit�b� �
�

� � �b �� I��b��I��b�!
�

Other FLR models perform less well� as evidenced by Fig� ������ Shown are

marginal stability curves derived from the ��� (
���
� and e�b�� models and the ���

model with Taylor�series approximations to hJ�
� i� The latter involves only three

equations� for *n	 *uk	 and *Tk� For k�� � � the Taylor�series curve crosses the � axis�

an unphysical result�

It is clear that the (
���
� models more faithfully represent the linear physics

than does the e�b�� model� Given the roughly comparable complexity of the two

models , they are equally demanding to implement numerically , there is no

reason to choose the less accurate FLR model� The Pad�e approximation� on the

other hand� represents a clear improvement over the Taylor�series model� and is

just slightly more di�cult to implement in a 
nite�di�erence code� requiring only a

standard tridiagonal solver�
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Figure ���$ Unstable branch of the local dispersion relation for �i � �� kkLn � ����
and Ti � Te� Di�erent curves represent results from retaining di�erent numbers of
moments�



��

Figure ���$ Local dispersion relation for k�� � ����� kkLn � ������ and Ti � Te�

Figure ���$ Marginal stability curves for di�erent FLR models�
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Chapter �

Comparison with Linear

Gyrokinetic Integral Code

In Chap� � I showed that in the absence of magnetic shear� the FLR and Landau�

damping models yield dispersion relations that compare well with gyrokinetic the�

ory� Here I include the e�ects of magnetic shear and show that the ITG code recovers

gyrokinetic integral�code predictions  Linsker� ����! for the linear eigenmodes and

eigenfrequencies�

��� Improper Gyroaveraging of the Shear

In Fig� ����� I compare the gyro�uid and gyrokinetic predictions for the fastest

growing mode for the parameters �i � �� Ls�Ln � ��� ky�i � ���� and � � ��

in each case ignoring the proper gyroaveraging of the shear  Linsker� ����!� In

Fig� ����� I show the corresponding eigenmodes for the various moments� The

frequency �normalized to vt�Ln� found with the gyrokinetic eigenvalue code is � �

������ � ������i� The gyro�uid model predicts � � ������ � ������i� In this case�

complete inclusion of the magnetic shear alters the eigenmode only slightly and

causes the frequency to shift to � � �������������i� Modes that are more strongly

localized to the rational surface �e�g�� for smaller �i or smaller Ls�Ln� are more

strongly a�ected  Linsker� ����!� As indicated in Chap� ���� it is not di�cult to

derive linear gyro�uid equations �describing the evolution of the real�space density�

momentum� and so on� that neglect this gyroaveraging� the corresponding nonlinear

��
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terms are in general intractable �see also the discussion in Chap� ������� The chief

complications� however� are nonlinear FLR terms that may be negligible in the

long�wavelength limit� Thus� if nonlinear simulations or analyses that include the

full FLR e�ects indicate that the low�k� modes dominate the dynamics� it may be

possible to use this simpler set of equations �*n	 *uk	 *Tk	 and *qk�� which agrees well

with the corresponding linear kinetic theory� as a rough model of the physics�
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Figure ���$ Electrostatic potential �arbitrary units� of the fastest growing mode for
�i � �� Ls�Ln � ��� ky�s � ���� and � � �� Numerical results from �a� gyro�uid
initial�value code� and �b� gyrokinetic eigenvalue code� each ignoring Linsker�s shear
e�ect�
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Figure ���$ First four real�space moments �arbitrary units� of the fastest growing
mode for �i � �� Ls�Ln � ��� ky�s � ���� and � � ��
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��� Pad�e FLR Model

While the Pad�e model �described in Chap� ������ does not perform quite as well

as the hJ�i � (���
� model in the large k�� limit  Fig� �����!� it is nevertheless well�

behaved and has the advantage that it may be easily incorporated into existing


nite�di�erence codes� In Fig� ����� I compare the linear eigenmode obtained with

Figure ���$ Electrostatic potential �arbitrary units� of the fastest�growing mode for
�i � �� Ls�Ln � ��� ky�i � ���� and Ti � Te� �a� Gyrokinetic model� �b� Gyro�uid
�Pad�e ���� model� �c� Taylor�series model�

this model �including Linsker�s shear e�ect� to the exact kinetic solution and to the

��� Taylor�series result for a typical case� The parameters are �i � �	 Ls�Ln �

����	 ky�i � ���� and Ti � Te� The Taylor�series approximations for the FLR e�ects
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predict a much wider mode than linear gyrokinetic theory� The gyrokinetic code


nds � � ������ � �����i� and the ��� Pad�e model gives � � ������ � �����i�

This level of error is typical of the Pad�e model� By way of comparison� the Taylor�

series model yields � � ������ � �����i� While the Pad�e FLR model misses the

real frequency by a sizable amount� it is nevertheless a substantial improvement

over the Taylor�series equations� Again� if simulations or analysis show that the

long�wavelength modes tend to dominate the saturated spectrum� the errors for the

short�wavelength modes may be tolerable for the hJ�i � ��� b����� approximation�

��� Full Kinetic Model

One may improve upon the results of Sec� ��� by employing the more complicated

(
���
� FLR model� which is easily implemented in a spectral code� Here I compare

this gyro�uid description of the linear dynamics to the corresponding gyrokinetic

integral�code description  Linsker� ����!�

����� Single�Mode Comparison

Several years ago� Bakshi  Bakshi et al�� ����! and Linsker  Linsker� ����! pointed

out a �kinematic term	 related to the gyroaveraging of kk in systems with magnetic

shear� All of the gyro�uid results presented below include this e�ect to second order

in k��� su�cient accuracy to allow one to recover Linsker�s Mode II  Linsker�

����!� which he showed to exist only in the presence of the kinematic e�ect and

to be unstable for ky�i � �� I have found� however� that in practice this e�ect

is usually not signi
cant for the majority of linear ITG eigenmodes� as the radial

modi
cations do not extend beyond a very few gyroradii from the rational surface

and the frequency shifts are usually small�

Typical sheared�slab results from the ��� model are shown in Figs� �����

and ������ The parameters are �i � �� Ls�Ln � ��� ky�i � ������ and Ti � Te�

The frequency found with Linsker�s gyrokinetic integral code is � � ������� �

������i � the ��� gyro�uid model yields � � ��������������i � Evolving the heat�

�ux moments as well �the ��� model� improves the frequency prediction to � �

��������������i� In Fig� ����c� I show the result from a widely�used� particle�space
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�uid model  Hamaguchi and Horton� ����!� The eigenmode is much broader

than that found by either the gyro�uid or gyrokinetic codes� though qualitatively

similar� The frequency predicted by this model� which uses a term � r�
k to model

Landau damping and Taylor�series expansions for the FLR e�ects� is � � ����� �

����i�
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Figure ���$ Electrostatic potential �arbitrary units� of the fastest�growing mode
for �i � �� Ls�Ln � ��� ky�i � ������ and Ti � Te� �a� Gyro�uid result� �����
�b� Gyrokinetic result� �c� Previous �uid model�
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Figure ���$ Gyro�uid moments of the fastest�growing mode for �i � �� Ls�Ln � ���
ky�i � ������ and Ti � Te�
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This comparison clearly indicates that Landau damping and FLR e�ects can

dramatically a�ect the dynamics of the ITG mode� I have found that both kinetic

e�ects a�ect the linear ITG eigenmodes strongly� even in the small ky� limit or

away from marginal stability� This may be understood by investigating the ITG

instability in the ��uid regime	 ��  ��� For example� consider Eq� ����� in the

long�wavelength �b� ��� �at�density ��i  �� limit� Upon expanding

Z���� � ��

�

�
� �

�

���

�

and taking �i��  �� one is led to the dispersion relation

�� �
�i��k

�
kv

�
t

��
�

This equation has three roots� one of which must have Im �! � �� However� the

growth rate is an increasing function of kk�

� � k
���
k 	

so the fastest�growing modes challenge the �uid ordering �  kkvt� Thus it appears

that the fastest�growing modes satisfy � � kkvt in this limit� This trend remains

in the presence of magnetic shear� where I 
nd that fastest�growing eigenmodes

tend to arrange themselves so that the volume�averaged �uid parameter hkkvt��i is

never small� A good FLR model is needed even in the long�wavelength limit� since

as ky�i � � the linear eigenmodes develop more radial structure� so that b � ��

This tendency may be noted in Figs� ����%����� as the unstable modes for small ky�i

tend to have the character of l � � or l � �� where l is the radial mode number�

����� Spectral Comparison

Primarily as a vehicle for showing the agreement between the gyro�uid and gyroki�

netic codes for a range of the wave�number spectrum� here I discuss some simple

linear estimates of the thermal di�usivity 
i� de
ned by Eq� �B���� Often attention

is focused on the l � � mode in linear mixing�length� studies� However� there is no

�An excellent introduction to �and indictment of� mixing�length estimates of turbulence char�
acteristics may be found in Bowman� ����� He points out that mixing�length estimates of mi�
croturbulent saturation levels essentially predict that in a saturated state the E � B velocity
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physical or mathematical reason to exclude other eigenmodes from a mixing�length

type estimate� particularly if the fastest�growing or �largest	 modes are not the

l � � modes� For most of the parameter space in which I have benchmarked my

code �low �i and � � ��� I have found that other eigenmodes with comparable or

larger average radial mode widths �despite the higher radial mode number� often

have signi
cantly larger growth rates than the fundamental mode� Figs� ����� and

����� illustrate this point�

First� a note on how to interpret these 
gures is in order� Since I solve the

gyro�uid equations as an initial�value problem� the resulting eigenmode corresponds

to the fastest�growing mode as long as the equations are evolved long enough to

allow that mode to dominate� Thus� for each value of ky�i the gyro�uid model

yields a single solution� I have not recovered the other branches of the dispersion

relation by performing a Fourier transform of the time series data�

Fig� ����� shows all of the branches of the linear dispersion relation for �i �

�	 Ls�Ln � ��	 and Ti � Te that are at some point �for ��� � ky�i � ���� fastest�

growing for the ��� gyro�uid model or the integral gyrokinetic code  Linsker�

����!� The gyro�uid equations successfully resolve the mode with the largest growth

rate in each case� The l � � mode is not the fastest�growing mode until ky�i � ��

for most of the parameter space� the fastest�growing mode is of odd parity with an

l � � character�

For ky�i � ���� the fastest�growing mode in Fig� ����� is odd� with average

radial mode width of �x � ���� where the average radial mode width �x is de
ned

should equal the diamagnetic velocity �Kadomtsev� ����� �which is O��� in my units�� In prac�
tice� mixing�length� estimates of thermal transport for plasmas often boil down to an argument
that goes as follows� The temperature �uctuations are assumed to obey an equation that may be
schematically represented as

�T

�t
� vE � rT � �LT � ��

where �L represents the linear instability� The E�B nonlinearity is approximated as a di�usive
term proportional to j�j� with a di�usion coe�cient D� In steady�state� the time derivative
vanishes� as noted above� j�j� � �� leaving

D � h
�L
k�
�

i�

where the details of the averaging procedure denoted by h� � �i are more or less re�ned and the
di�usion coe�cient �i is assumed to correspond to D�
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Figure ���$ Linear dispersion relation for the 
rst few radial eigenmodes for �i �
�	 Ls�Ln � ��	 and Ti � Te�

by  Hamaguchi and Horton� ����!

��
x 	

h�i
h��x�i� � �����

Here the angle brackets indicate a volume average� For the same parameters� the

l � � mode has �x � ���� Given the additional di�erence in growth rates� a simple

mixing�length estimate ����
x� of the transport from these two modes di�ers by a

factor of three� At lower values of ky�i� for which the l � � growth rate is much

smaller� the discrepancy can be greater than an order of magnitude� Even worse�

an analysis that focused only on the l � � mode would incorrectly conclude that

the system was only weakly unstable for ky�i � ����

Figure ����� shows the same information for the same parameters� except

that �i � � and the ��� model is included� Also� the even� and odd�parity modes

are shown on di�erent panels for clarity� Again� the fastest�growing mode is odd for

much of this region of parameter space� with the l � � mode becoming important

only at high ky�i� There is no single dominant radial eigenmode structure for
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the entire range of ky�i� Fig� ����a� shows that the l � � mode has the largest

average radial mode width� yet the mixing�length estimate of 
i given by �� hk��i
is largest for the l � � mode for most values of ky�i in this region of parameter

space  Fig� ����b�!� Again� I emphasize that my gyro�uid code picks out the fastest�

growing mode for each set of parameters� it should be clear that all of the radial

eigenmodes are present from Figs� ����� and ������

One may also see from Figs� ����� and ����b� that for these parameters the

peak of the mixing�length estimate of 
i �at k��i � ���� is downshifted ��' from

the peak of the growth rate� which is at k��i � ���� The downshift is more or

less pronounced for di�erent parameters� but indicates that the longer�wavelength

modes are probably more important to transport than the simplest mixing�length

arguments would suggest�

At least two others factors complicate a linear mixing�length estimate� First�

there may be even longer�wavelength modes that are linearly damped or weakly un�

stable yet which nevertheless play an important role in determining the nonlinear

thermal transport� Second� fundamentally nonlinear processes  Cowley et al��

����! may determine the relevant scales� regulating small regions with steep gra�

dients that could control the transport  Bowman� ����!� Previous authors have

commented at length on the shortcomings of mixing�length estimates of transport

coe�cients �for example� Bowman� ���� or Hamaguchi and Horton� ������

Thus� I do not wish to emphasize the mixing�length estimates here� I present them

primarily to show that the gyro�uid equations compare very favorably with linear

gyrokinetic theory and to point out the potential hazards of concentrating one�s lin�

ear analysis on a single unstable radial eigenmode� Having seen that the gyro�uid

model performs satisfactorily in the linear regime� one may explore the nonlinear

physics with more con
dence�
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Figure ���$ Linear dispersion relation for the 
rst few radial eigenmodes for �i �
�	 Ls�Ln � ��	 and Ti � Te� �a� Odd parity� �b� Even parity�
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Figure ���$ Mode widths and mixing�length estimates for �i � �� Ls�Ln � ��� and
Ti � Te� �a� Average mode width �x� �b� Mixing�length 
i� ��hk��i�
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Chapter �

Weak Turbulence Analysis

T
HE CLOSURE APPROXIMATIONS introduced for collisionless parallel

dynamics in Hammett and Perkins� ���� and generalized in this thesis

are chosen to match the linear kinetic response function� In the gyrokinetic

regime� the terms that are approximated are linear� nevertheless� the equations can�

not reproduce arbitrary nonlinear processes with a 
nite number of moments� For

example� one can imagine a physical system in which the nonlinear E�B convec�

tion of heat �ux �e�g�� qk� plays an important role in the dynamics� a three�moment

gyro�uid model that approximated the heat��ux response in terms of density� mo�

mentum and temperature would describe such dynamics poorly� That is� even the

description of the density evolution would be lacking� despite the fact that the

density equation itself would have no terms re�ecting the closure approximations�

Similarly� if �as for ITG modes very near marginal stability� a linear instability sat�

is
es kkvt  �� the structure of the �uid hierarchy results in greater emphasis on

the nonlinear convection of the higher�order moments� as shown below� Nonlinear

scattering or absorption of energy that results from the interactions of high�order

moments of the distribution function can probably be described with �uid equations

only if a large number of moments are retained�

On the other hand� much of the intuition developed in the plasma�physics

community regarding the turbulent behavior of plasma has derived from �uid mod�

els� which inevitably employ closure assumptions� Many nonlinear processes may

be described rather well by a few moments of the distribution function� Physi�

cally� 
ne�scale velocity�space striations and structures probably play a minor role

��



�� Chapter �� Weak Turbulence Analysis

in many systems of interest� since even a very weak collision rate is ampli
ed by

the di�usion�like part of the collision operator�  See� for example� the discussion in

Chapter �� of Stix� ���� and references therein�! Turbulent scattering of particles

tends to amplify this e�ect rather than to diminish it�

In this chapter� well�known properties of electron drift�wave turbulence are

investigated with both gyrokinetic and gyro�uid equations with a weak�turbulence

approach  Sagdeev and Galeev� ����!� In each approach� I consider the simple�

shearless slab geometry with an adiabatic electron response� Rather than exploring

new physical regimes� the emphasis is on showing the areas of improved agreement

with kinetic theory �compared to previous �uid theories  Horton� ����� Similon�

����!�� as well as the limitations of the gyro�uid approach� It is shown that the

gyro�uid equations reproduce essentially nonlinear processes� such as �ion Comp�

ton scattering	 �also known as nonlinear Landau damping� well in the drift�wave

limit� For example� the gyro�uid equations correctly reproduce the shielded and

bare components of ion Compton scattering� leading to a near �but not complete�

cancellation of the scattering at long wavelengths� Furthermore� plasmon number

is properly conserved and the transfer of energy from short to long perpendicular

wavelengths is predicted� The more demanding �deeply resonant	 limit  Mattor�

����! of ITG turbulence is also discussed� The limitations of the gyro�uid approach

are made more apparent by his calculation� In particular� the importance of the

nonlinear convection of high�order moments in this regime is demonstrated� An

estimate  Hammett et al�� ����! of the nonlinear accuracy a�orded by a given

number of moments is reviewed�

In Sec� ���� the assumptions and starting equations for these test problems

are listed and brie�y described� In Sec� ������ the kinetic version of the drift�

wave calculation is reviewed to establish the context for the gyro�uid calculation

described in Sec� ������ Then� the opposite limit �ITG turbulence very near marginal

stability� is discussed in Sec� ����

	�� Starting Equations

Throughout this chapter the gyro�averaged potential is indicated with the same

abbreviated notation as the gyro�averaged and velocity�space�averaged potential
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when the context makes it clear which quantity is intended� That is�

+ � J�	 and + � hJ�i 	 (���
� �

Similarly� h
 
 
i can imply either velocity�space averages or gyro�averages� Finally�

the units and normalizations employed here and throughout this thesis are consis�

tent with Eqs� ������ and ������� Where confusion would otherwise be generated�

the full� unambiguous expressions are used�

Because I have assumed the electron response to be adiabatic� there is no

positive growth rate in the electron drift�wave limit� Since my goal is to investigate

the nonlinear response of the gyro�uid equations� this is not signi
cant� Including

a linear growth rate would change the principal result  Eq� ������! only by mod�

ifying the linear growth rate �k� Furthermore� I have not included the nonlinear

phase�mixing terms in Eqs� ����%����� This is not a signi
cant approximation in

the weak�turbulence limit� since the nonlinear terms are ordered small and any

dynamics described by the nonlinear phase�mixing terms may therefore be safely

ignored� Hammett  Hammett� ����! has shown that just as Landau damping is

exponentially small for �  jkkjvt� nonlinear phase mixing is exponentially small

for �  k 
 vE�

Gyrokinetic Description� Consider the electrostatic gyrokinetic equation in the

unsheared slab  Frieman and Chen� ����� Lee� ����� Dubin et al�� ����!$

f

t
� vkrkf �

e

m
hEki f�

vk
� hvEi 
 rf� � �hvEi 
 rf �����

Upon assuming f� � fM and the usual slab geometry� one may allow for background

density and temperature gradients by writing

f�
x

�

�
�

Ln
� �

v�

�v�t
� �

�
�

�

LT

�
f��

It will be useful later to have labels for the terms that arise from the temperature

gradients� Hence� de
ne

�k 	
�
v�k
�v�t

� �

�

�
	 �� 	

�
v��
�v�t

� �

�
�
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The pressure gradients are then succintly described by �P
� $

�P
� 	 �ky  � � �i��k � ���! �

The gyrokinetic quasineutrality constraint is�Z
d�v J�f � �(� � �� � �	 �����

where I have assumed the electron response to be purely adiabatic� The proper self�

consistent evolution of modes for which kk � � is ignored� in keeping with the usual

weak�turbulence analysis  Sagdeev and Galeev� ����!� It should be stressed that

this oversight overlooks a potentially important physical mechanism for saturation

discussed in more detail in Chap� �� Also� nonlinear terms appear at the next�order

expansion of Eqs� ����� and ����� that could appear at second order in the weak�

turbulence theory  Krommes� ����!� These terms were not considered here� and

should be investigated further�

Gyro�uid Description� The gyro�uid analysis begins from the lowest six mo�

ments of Eq� ������ ignoring nonlinear phase mixing� For clarity� the starting equa�

tions are explicitly listed here$

n

t
�rkuk �

h
� � �i�

�
�

�r�
�

i +

y
� �v
 
 rn�

h
�
�

�r�
�v


i

 rT�	 �����

uk
t

�rk�n � Tk � +� � �v
 
 ruk �
h
�
�

�r�
�v


i

 rq�	 �����

Tk
t

�rk�uk � �i
+

y
� �
jkkjTk � �v
 
 rTk �

h
�
�

�r�
�v


i

 rr�	 �����

T�
t

�rkq� �

�
�
�

�r�
� � �i�� �

��r
�

��

	
+

y

� �
�
�� �

��r
�

��v


	

 rT� �

h
�
�

�r�
�v


i

 rn	 �����

q�
t

�rk

�
r� � T� � �

�
�r�
�+

�
� �

�
�� �

��r
�

��v


	

 rq� �

h
�
�

�r�
�v


i

 ruk	 �����

r�
t

�rk�q���i
�
�

�r�
�

+

y
� �
jkkjr� � �

�
�� �

��r
�

��v


	

rr��

h
�
�

�r�
�v


i

rTk� �����

�A brief derivation of Eqs� ����� and ����� is presented in App� C�
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The closure parameter �
 was found in Chap� � and is given by

�
 	 � � �kp
�Dk

� �

r
�

�
�

The gyro�uid quasineutrality constraint is$

*n � �(� � �� � �� �����

The particle density *n is de
ned in Eq� �������

It is instructive to compare these equations with the �uid model used by Lee

and Diamond� ���� to investigate ITG turbulence� Several improvements found

in these equations could modify their results signi
cantly� First �and foremost��

Lee and Diamond� ���� used a viscosity�based model for Landau�damping that

has been shown to lead to di�culties of interpretation  Hammett and Perkins�

����!� Lee and Diamond� ���� correctly note the importance of the existence and

form of the Landau�damping model with respect to their theory� They note that

the saturation mechanism in their theory is the coupling of unstable pressure �uc�

tuations to the stabilizing Landau�damping terms in the momentum equation� One

would expect that the Landau�damping models used here would signi
cantly mod�

ify this 
nding� since the damping appears in the temperature equations� Second�

Eqs� ����%���� allow for anisotropic pressure �uctuations� shown to be important

for describing the thermal �ux in Chap� �� Third� one may use Eqs� ����%���� along

with Eq� ������ to describe the e�ect of ITG �uctuations and the associated self�

generated sheared rotation in one self�consistent model� Finally� the present model

consistently retains FLR e�ects to the same order and gives reasonable results for

k�� � ��

The equations that follow are made particularly transparent by introducing

gyro�uid equivalents of �P
� 	 vk� etc�� to be indicated by a tilde� Thus� it is convenient

to introduce the gyro�uid averaging operator G$

G�
 
 
� 	
Z

d�v
�
 
 
�J�

�f�
� � kkvk � i��

�Z
d�v

J�
�f�

� � kkvk � i��

���

� ������

The needed quantities �for an n�n gyro�uid model� are then obtained by replacing

the plasma dispersion functions that appear in G�
 
 
� with the multipole approxima�

tion Zn� For example� Eqs� ����%���� �n � �� yield the gyro�uid quantity �vk��	 kk�
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as follows$

G�vk� �
�

kk�

�
� � �Z���

Z���

�
where � 	 ���

p
�jkkj�� implying

�vk 	 �

kk�

�
� � �Z����

Z����

�
�

In the same fashion�

��k 	 � � ��� � �
�
�Z����

Z����
	 ��� 	 �b

�
�� I�

I�

�
	 ��b	

��P
� 	 �ky

h
� � �i���k � ����

i
� ������

The three�pole approximation Z���� is given by

Z� 	 �
p
�i � �� � �

p
�i��

� � �
p
�i� � ��� � �

p
�i��

� ������

Fourier Representation� One may represent the various 
elds as

f��x	 t� �
X
�k

Z
d� f�k��e

i��k��x��t		

v
��x	 t� �
X
�k

Z
d� �b�r+�k��e

i��k��x��t		

with + 	 J� and +��k���� 	 +�
�k��

� f��k���� 	 f��k�� to ensure reality�

Following the standard approach� one Fourier transforms �and symmetrizes�

the equations� For example� Eq� ����� becomes

�i�f�k�� � ikkvkf�k�� � ikkvk+�k��f� � i�P
� +�k��f�

� �
X
�k�

Z
d�� ��k� � �k 
 �b�

�
+�k����f�k��k������ �+�k��k� �����f�k����

�
� ������

I shall investigate these equations in two limits$ the drift�wave limit� in which I

shall consider �i � � and �	 � �  �� and the �deeply resonant	 ITG limit� in which

�	 � �	 � �� � � � ��	 �
�
�	 �

��
� �
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	�� Drift Waves

����� Gyrokinetic Analysis

Linearly� one may ignore the RHS of Eq� ������� The solution of this equation is

f
��	
�k��

� � �P
� � kkvk

� � kkvk � i��
+��	
�k��

f�� ������

The linear dispersion relation is obtained using Eq� ������ and may be used to de
ne

the dielectric function ���	��k	 ��$�
�� � �� (�� �

Z
d�v J�

�

�
�P
� � kkvk

� � kkvk � i��

�
f�

	
�k�� 	 ���	��k	 ���k�� � �� ������

Virtual Modes Note that in Eq� ������ one needs expressions for f�k��k� ����� and

+�k��k������ � One may proceed to second order by treating the nonlinearity on the

RHS of Eq� ������ as a source term� That is� a beat wave is caused by linear modes

at �k and �k� interacting$

f
��	
�k��k�

t
� 
 
 
 � �

�
v
�k


 rf��k� � v

��k�

 rf�k

�
�

Upon using the convention that �k�� � �k � �k�� one 
nds that the distribution

function at second order is given by

f
��	
�k������

� � �P
�
�� � k��kvk

��� � k��kvk � i��
+
��	
�k������

f�

� i
��k� � �k 
 �b�

��� � k��kvk � i��

�
+��	
�k��

f
��	

��k�����
�+��	

��k�����
f
��	
�k��

�
� ������

The expression for ��	
�k������

may be found by enforcing the quasineutrality

constraint at second order$

���	��k��	 ������	
�k������

� i

Z
d�v J ���

��k� � �k 
 �b�

��� � k��k vk � i��

�
+��	
�k��

f
��	

��k� ����
�+��	

��k�����
f
��	
�k��

�
�

Upon substituting in for f ��	 from Eq� ������� one 
nds

���	��k��	 ����
��	
�k������

� �i
Z

d�v J�J
�
�J

��
�

��k� � �k 
 �b�

��� � k��k vk � i��
f�

��	
�k��


��	

��k� ����
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�
�

�P
�
� � k�kvk

�� � k�kvk � i��
� �P

� � kkvk
� � kkvk � i��

�
� ������

The induced potential in the drift�wave limit can be explicitly evaluated$

���	��k��	 ����
��	
�k�� ����

� �i hJ�J ��J ��� i ��k� � �k 
 �b�

�
���
��
� ��

�

�

��	
�k��


��	

��k�����

Z
f�dvk

��� � k��k vk � i��
� ������

This expression matches the usual kinetic result  Sagdeev and Galeev� ����!  c�f�

also Eq� ���� of Chen et al�� ���� in the appropriate limit of 
e � �!� One further

useful approximation for this expression may be derived by noting that the resonant

denominator in the drift�wave limit implies that � � ��� Accordingly� one may use

the de
nition of ���	 in Eq� ������ �upon noting that the resonant term is dominant�

to 
nd

���	��k��	 ���� � �����
���

� ��Z�� ���(���� ������

Third Order� One may now complete Eq� ������ at third order$

�i�f ��	�k��
� ikkvkf

��	
�k��

� ikkvk+
��	
�k��

f� � i�P
� +��	
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X
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f
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f
��	
�k����

�
�

The solution is

f
��	
�k��
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� � kkvk

� � kkvk � i��
+��	
�k��

f�

�i
X
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f
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�
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�
�

Upon substituting into the third term on the RHS for f ��	 and enforcing quasineu�

trality at third order�

�� � � � (��
��	
�k��

�

Z
d�v J�f

��	
�k��
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one is led to

���	��k	 ����	
�k��

� �i
Z

d�v
X
�k�

�k� � �k 
 �b
�� � kkvk � i���

J�+
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��
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� ������

Eq� ������ is general� in the drift�wave limit� one can ignore the terms proportional

to kkvk and k�kvk� The 
rst term of Eq� ������ � +��	 is the �shielded	 response�

and the second term is the �bare	 response� Upon combining the two parts using

Eq� ������� one 
nds

���	��k	 ��
��	
�k��

� �
X
�k�

��k� � �k 
 �b��

�
��

hJ�J ��J ��� i�
(���

�
D
J�
�J

�
�
�
E� � ��

���
Z�� ���

�

�

�
���
��
� ��

�

��
��	
�k��
j��	

�k� ���
j�� ������

The shielded contribution therefore cancels the bare contribution in the b � � limit�

The generalization of this expression for �i �� � may be found in Hahm and Tang�

�����

����� Gyro
uid Analysis

Upon ignoring the RHS of Eqs� ����%����� one 
nds the linear dispersion relation�

which in turn may be used to de
ne the dielectric function ���	��k	 ��$

�
�� � � � (�� � (�

�
��P
� � kk�vk
� � kk�vk

�	
�k�� 	 ���	��k	 ��

��	
�k��

� �� ������

Note that �vk is complex and so there is no singularity in Eq� ������� This expression

is equivalent to Eq� ������
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Virtual Modes� At this point in the gyro�uid version of the calculation� the alge�

bra for the general case becomes somewhat tedious� Retaining all of the nonlinear

FLR terms obscures the comparison unnecessarily� hence� for �only� the nonlin�

ear terms� I will take N�b� � D�b� � � in the quasineutrality constraint� This is

not a serious compromise� since the original equations are only rigorously valid for

k�� � � anyway� Other terms� if dropped� will be noted explicitly�

With this caveat in mind� one may 
nd the induced potential +
��	

k
�� following

exactly the same steps as in the kinetic calculation� The virtual density perturbation

�corresponding to
R
d�v J ���f

��	
�k������

� is

*n
��	
�k������

� �
�

��P ��

� � k��k �v��k
��� � k��k �v��k

�
(���
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�k�� ����

� i
��k� � �k 
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��� � k��k �v��k
(
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�� ��+
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+
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�	 ����

�
��P �

� � k�k�v
�
k

�� � k�k�v
�
k

�
�i�

�
�

�

��� � ����� � ����
�� � k�k�v

�
k

�

�A���	 �
���

�
��P
� � kk�vk
� � kk�vk

�
�i��

�

���� � ����� � ���
� � kk�vk

��
� ������

Several new de
nitions have been used to keep the expression from becoming too

unwieldy� The quantity � is used to refer to the frequency and wavenumber of a

given mode� or put another way� � � f�	 ��kk�g� where ��x� 	 x�jxj� The quantity

A���	 ��� keeps track of the contributions from the various nonlinearities� It has the

form

A���	 �
��� 	 � � �vk�v

��
k � ���k����k �

The 
rst term indicates the relative strength of the contributions from the nonlin�

earities in the density and perpendicular temperature equations� The second term

is associated with the uk and q� nonlinearities� and so on� As � ��� A���	 ���� � ��

In this limit� only the nonlinearities in the n and T� equations contribute signif�

icantly� Previous authors  Similon� ����� Horton� ����� Mattor� ����! have

noted similar simpli
cations� In general� the quantity An has n terms� where n is

the number of parallel and perpendicular moments� Finally� �� keeps account of the

FLR corrections$
����k�	 �k

�
�� 	 � � �

��
������� � �������� � ����

�������

Appropriately� � ����� is positive de
nite and symmetric with respect to interchang�

ing �k	�k��



���� Drift Waves ��

In the drift�wave limit� with �i � �� a simple expression for 
��	
�k������

may be

found by enforcing the quasineutrality constraint at second order$

���	��k��	 ������	
�k������

� �i���(�(
�
�(

��
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��� ��k� � �k 
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��� � k��k �v��k
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�

�
� ������

This expression compares favorably with Eq� ������� As noted above� a useful

approximation to ���	��k��	 ���� is

���	��k��	 ���� � �����
���

� ��Z���
���(����

ThirdOrder Response� Again� the gyro�uid calculation parallels that of the

gyrokinetic calculation very closely� The gyro�uid expression corresponding to

Eq� ������ �the drift�wave limit� is$

���	��k	 ��
��	
�k��

�

X
�k�

��k� � �k 
 �b��
�h

(�(
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���� ���

i � ��
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Z���
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�
���
��
� ��

�

��
��	
�k��
j��	

�k����
j�� ������

Note that ��� ��� � � in the b � � limit� recovering the kinetic cancellation between

the bare and shielded contributions at long wavelengths� This level of agreement

between �uid and kinetic theory is a new result� presented here for the 
rst time�

WaveKinetic Equation� One may now 
nd the wave kinetic equation following

the standard procedure  Sagdeev and Galeev� ����!� First� de
ne the plasmon

number N�k�t� by

N�k �
�

��	
r ��k	 ��

��k
j�k��j��

The wave�kinetic equation  Drummond and Pines� ����! is found by making the

random�phase approximation� multiplying Eq� ������� by 
��	

��k���
exp i��� � ��t� in�

tegrating over d� d�� and taking the imaginary part$

�

�

N�k

t
� ��kN�k �

X
�k�

���k	�k��N�kN�k� � ������

�Because I am only trying to show the correspondence between the gyro�uid and gyrokinetic
descriptions� I have ignored some contributions to the wave�kinetic equation� In a more complete
calculation� one should include terms proportional to �������� that can be found by multiplying
Eq� ������ by ���� and treating it in a fashion similar to the terms retained in the present analysis�
With this correction� Eq� ������ can be made energy�conserving�
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The real part of Eq� ������ determines the eigenmode and the real frequency� The

coupling coe�cient � is given by

���k	�k�� 	 ���k� � �k 
 �b��

��
(�(

�
�

H��k�H��k��
�� � ���

�
� ��

���
Im Z���

���!����

�
	

where H��k� 	 ��k�
��	
r ��k	 �����k � �����(�� and ��k is the linear growth rate� This

expression compares very well with Eqs� ��� % ��� of Chen et al�� ����� upon noting

the approximation made there that � � ��� In particular� two important features

of this gyro�uid wave�kinetic equation should be noted� First� since ���k	�k�� �

����k�	 �k�� the number of plasmons is conserved by the nonlinear term� That is�

since the phase velocity of the drift waves is much larger than the ion thermal

velocity� the ions do not absorb an appreciable fraction of the wave action� Instead�

the action is scattered� The direction of the scattering in ky may be determined

from Eq� ������� Rather than integrating this equation over wave�number space�

note only that since � � � for ky � k�y� the wave action tends to be scattered

to longer wavelengths� A more complete calculation �described in the preceding

footnote� would allow a similar conclusion to be drawn for the wave energy�

In the regime of validity of this nonlinear analysis� solving Eqs� ����%���� for

the saturated spectrum is equivalent to solving Eq� ������� Of course� more informa�

tion �such as the resulting thermal �ux� is immediately available from solving the

primitive equations� However� direct solutions of Eq� ������ may be more desirable

for some applications �and budgets�� Finally� note that since the approximations

made in the gyro�uid approach do not seriously compromise the results from the

more complete kinetic calculation� numerical simulation of an instability such as this

one using the computationally e�cient gyro�uid equations should provide reliable

insights into the corresponding turbulent behavior�

	�� �Deeply Resonant Limit

The agreement between the gyro�uid and the gyrokinetic results in the narrow

weak�turbulence regime of ITG modes 
rst studied by Mattor and Diamond�

���� is not as good as in the drift�wave limit  Mattor� ����!� The di�culty lies

in the �	 � �	 � �� � � limit� where Eqs� ����%���� underestimate the damping due to
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ion Compton scattering compared with the kinetic prediction� The implication for

thermal transport is that the kinetic equations predict a 
i that is smaller than the

gyro�uid prediction by a factor of �� in this regime� Because this limit has received

less attention in the literature� I shall 
rst brie�y review a few aspects of the linear

theory�

����� Linear Properties�

The integral in Eq� ������ may be performed in terms of the plasma dispersion

function� The ordering � � O���	 � � �c�b� � o���� and ���� � O��� then allows

one to solve the dispersion relation for the frequency and growth rate$

� � ��� � � �

(����
k�k 	 � �

p
��jkkj� � �c

��c
� ������

Upon comparing the magnitudes of these expressions� one 
nds that

�

�
�
p
�(��b�

� � �

� � ���

���
��	 ������

where I have used the fact that �c � ���� According to this expression� there exists

a narrow region of parameter space within which ��� � �� possibly permitting a

perturbation expansion� The window is quite narrow� however� For example� for a

given set of physical parameters ��i	 � � and for a given ky� one may estimate from

this expression the value of kkLn for which the growth rate is equal to the frequency�

One 
nds for �i � ����	 � � �	 ky� � ���� the crossover point is kkLn � ������� The

full linear dispersion relation yields for the same parameters kkLn � �������

In Fig� ����� I examine this point more closely� Shown in Fig� ����a� are

the real frequency and growth rates for the unstable modes for the parameters

�i � ����	 ky� � ���	 � � � as kkLn is varied� Lower values of ky� are generally stable�

higher values of �i do not satisfy the basic ordering� This is the regime indicated

by Mattor�s ordering  Mattor� ����!� The curves are taken from solutions of the

full dispersion relation� However� Eqs� ������ and ������ capture the fundamental

features fairly well� As kkLn increases� the growth rate increases linearly at 
rst �as

expected� but turns over around kkLn � ������ Note that the growth rate curve is

fairly �at over a wide range� The real frequency behaves as expected throughout

this range of parameters� The validity of the weak�turbulence approximation is
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Figure ���$ The validity of the weak�turbulence expansion for ITG turbulence is
limited for �i � ����	 ky� � ���	 � � ��

especially doubtful in light of the curve in Fig� ����b�� One sees that although

the fastest growing modes do satisfy the weak�turbulence ordering ��� � �� there

are nearby modes with comparable growth rates that strongly violate the ordering�

One may understand this scaling from Eq� ������ easily� as the factor of �� causes

the divergence as kkLn � �� What might not have been clear without solving the

full dispersion relation is that the growth rates for these modes are not as small

�compared to the fastest growing modes� as one might have thought from the 
rst�

order expression for the growth rate� The warning here is that although some of

the �uctuations have long growth times compared to their phase velocities� there

are other �uctuations with comparable growth rates that spend a long time in

phase with one another� As pointed out clearly in Kadomtsev� ����� one should

consider a strong turbulence approach if this is the case� To date� strong turbulence

theories of ITG turbulence  Lee and Diamond� ����! have not recovered the kinetic

reduction factor discussed by Mattor� �On the other hand� to my knowledge no

attempt to include wave�particle e�ects such as ion Compton scattering has been

made in a strong�turbulence theory of ITG turbulence��

The strongest restriction imposed by the ordering assumed here is probably

�i � ��� � �� Numerical solutions of the gyrokinetic �or gyro�uid� equations show
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Figure ���$ The validity of the weak�turbulence expansion for ITG turbulence is
limited for �i � �	 Ls � ��Ln�

that for experimentally interesting parameters still somewhat near marginal stabil�

ity �� � �	 � � ��� the fastest growing modes have either � � � or � � � for a

wide range of the ky spectrum� For example� Figs� ����� and Fig� ����� together

tell a typical story� For ky�i � ���	 the growth rate is smaller than the frequency�

Thus� one might expect that the results from the weak�turbulence analysis might

be relevant� However� in this regime� h�i � *xky�Ls � �� where *x is de
ned by

*x 	
R
dxxj�jR
dx j�j �

Since the predicted reduction in 
i from the kinetic analysis is proportional to

h�i� � �� the di�erence between a gyro�uid and a gyrokinetic calculation of 
 will

probably be small except very near marginal stability� Comparisons with gyrokinetic

particle codes for parameters of experimental interest presented in Chap� � support

this conclusion and at the same time provide a method to test the predictions of

Mattor� ���� directly� It would be interesting to compare nonlinear gyrokinetic

and gyro�uid simulation results in the extreme marginal�stability limit to test the

predictions of Mattor� ���� numerically�

In any case� the analysis of Mattor� ���� remains interesting� since many

strong�turbulence theories begin with a weak�coupling expansion of the dynamical

equations� Furthermore� the wave�particle interaction is a major source of wave

dissipation within the present model �along with nonlinear phase�mixing�� hence�
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the details of the interaction between the nonlinear scattering and the dissipation

are of interest�

����� Nonlinear Properties

Virtual Modes� Previously  Mattor� ����!� the shielded contributions to the

ion Compton�scattering rate were ignored on the grounds that the e�ect would

be of order unity for the modes of interest� since in that analysis it was assumed

that k�� � �� However� simulations indicate that the �uctuation spectrum has

an appreciable component for k�� � �� where substantial cancellation between the

shielded and bare potentials occurs� In fact� in a scenario in which the ion Compton

scattering is predominant� its reduction at long wavelengths by turbulent shielding

would actually determine the peak of the turbulent spectrum� Nevertheless� because

I am interested primarily in examining the shortcomings of the gyro�uid equations�

I shall follow Mattor and consider only the �bare	 potential in this section�

As discussed in Mattor� ����� the essential di�erences between the kinetic

and �uid approaches are not related to FLR e�ects� Hence� in what follows I have

taken b � ��

The appropriate second�order density perturbation may therefore be found

from Eq� ������ by neglecting ��	 and integrating over velocity space�

n
��	
�k�� ����

�

Z
dv f

��	
�k������

� �i
Z
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��k� � �k 
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�
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�P
�
� � k�kvk
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�
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This integral may evaluated in terms of plasma dispersion functions� In the limit

�	 � �	 � �� � � � ��	 �
�
�	 �

��
� � one 
nds
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The comparable expression for the second�order perturbed guiding�center

density obtained from the gyro�uid equations may be found from Eq� ������ in the
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long�wavelength limit �so that *n � n��

n
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�k������

� �i��k� � �k 
 �b���	
�k��

��	
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�
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���� � k��k �v��k ��� � kk�vk�
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In the present limit� this expression reduces to
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Finally� upon expanding the A� functions in this limit� one is led to

n
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Upon comparing Eqs� ������ and ������ one may understand the shortcom�

ings with the gyro�uid model in this limit  Mattor� ����!� If the primary and

beat waves are aligned so that ��kkk��k � � ��k�kk
��
k � � �� the gyro�uid approximation

does not err badly since the expression

Z�� ���� Z���

� �� � �
� O����

However� for any other alignment of the wave vectors� the gyro�uid prediction is

too small by a factor � ����

The essential problem is that in this limit� all of the nonlinear terms con�

tribute strongly to the second�order perturbation� This may be seen by examining

the A� factors$

A���
�	 ���� � �� �

�
��k�k���k��k � �

�

�
�

The terms are all O���� Including more moments extends this series� it nevertheless

probably does not converge in the �	 � �	 � �� � � limit for a 
nite number of moments�

In Sec� �������� I showed that in the high�frequency ��	 � � ��� limit the gyro�uid

model performs adequately� One would like to know for what order of � the gyro�uid

approximation begins to perform well� In this context it is instructive to compare

the corresponding expressions for the doubly�resonant integral$

IGF��	 ��� 	 A���	 �
��Z����Z���

�� � A���	 ���

�� � kk�vk���� � k�k�v
�
k�
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IGK 	
Z���� Z�� ����kkk�k�

� � � � ��k�kkk�
�
Z

dv
f�

�� � kkvk���� � k�kv
�
k�
	

for ��kkk�k� � ���

Figure ���$ Comparison of gyro�uid and gyrokinetic second�order nonlinear re�
sponse vs� � for � � � ���� In this limit� the agreement is as good as the ��pole
approximation to the Z�function�
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Figure ���$ Comparison of gyro�uid and gyrokinetic second�order nonlinear re�
sponse vs� � for � � � ���� Note the discrepancy at low frequency� especially in the
imaginary part�

Figure ���$ Comparison of gyro�uid and gyrokinetic second�order nonlinear re�
sponse vs� � for � � � ����� The discrepancy at low frequency is large as the
doubly�resonant limit is approached�
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Figure ���$ Comparison of gyro�uid and gyrokinetic second�order nonlinear re�
sponse vs� � for � � � ����� The ��� equations do not agree as well for large
��

Figure ���$ Comparison of gyro�uid and gyrokinetic second�order nonlinear re�
sponse vs� � for � � � ����� The ��� model is reasonable for large ��
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Figure ���$ Comparison of gyro�uid and gyrokinetic second�order nonlinear re�
sponse vs� � for � � � ����� The error for small �	 � � is very large�
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In Figs� �����%����� I show a few slices of the IGK and IGF functions� In

general� it is di�cult to see clear improvement as one retains more moments with

this primitive approach� However� one may see that even if � � � �� the agreement

between the gyro�uid and gyrokinetic expressions is reasonable above � � �� More

study is needed to quantify the de
ciency in the low�frequency limit� and to estimate

its impact in a sheared� three�dimensional setting� As noted by Mattor� ����� the

error in the third�order response is larger�

Additional Moments� I have carried through this analysis with two�� four�� six�

�shown here�� and eight�moment models to check to see if adding moments improves

the agreement with the kinetic result� The quantity A� in the � � � limit is

A���
�	 ���� � �� �

�
��k�k���k��k � �

�

�
� ��� � ��

��
��k�k���k��k ��

Smith and Hammett� ���� have studied the one�dimensional nonlinear plasma�

echo problem and have made further progress in interpreting the terms represented

by the An functions and in understanding the relationship between linear Landau

damping and the nonlinear coupling of the �uid moments� It would be interesting

to apply their insights to the ion Compton�scattering problem� In particular� they

found that one must retain roughly �kkvtt��� moments to reproduce the plasma echo�

where t� is the time between the initial perturbations� Based upon Figs� �����%������

one might expect that a similar result could be found for the ion Compton�scattering

problem�

For example� one could perhaps replace the quantity t� with the inverse fre�

quency of the beat wave �������� which roughly measures the time two primary

waves remain in phase and therefore interact strongly� Thus� one might conjecture

that the number of �uid moments required for an accurate description of the non�

linear dynamics scales like �k��kvt��
�����  This conjecture would be consistent with

the results of Mattor� ���� con
rmed here� that the nonlinear response of a few�

moment �uid model is poor in the large k��kvt��
�� limit�! On the other hand� for

k��k vt��
�� � O���� one might expect to be able to show analytically that the agree�

ment between the few�moment��uid and kinetic results would be reasonable� This

conjecture could be checked quantitatively using the expansions for the nonlinear

�uid response given above�
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Finally� note that the kkvt�� �� limit is probably not a relevant limit in

the presence of weak collisions� Because Coulomb interactions in real space lead

to velocity�space di�usion� the sharply resonant denominators in Eq� ������ would

be wiped out in the presence of collisional dissipation characterized by a collision

frequency � in a time t � �kkvt����������  Stix� ����!� Thus� one might expect that

the appropriate number of moments N needed to model the physical phenomena

might scale like N � �kkvt�������
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Chapter �

Numerical Integration Scheme

E
QS� �����%����� WERE DERIVED WITH AN EYE toward numerical ap�

plications� In this chapter� the algorithms that were chosen for the ITG

code are presented� and issues such as boundary conditions and the aspect

ratios of the simulation domain �a right parallelepiped� are discussed�

ITG is a �exible Fortran code that presently runs on several platforms� in�

cluding Sun workstations� Vaxes� and the National Energy Research Supercomputer

Center �NERSC� Crays� Only the maximum system size is 
xed at compile time� all

other decisions are deferred until run time� The choices then available include the

dimensions and resolution of the simulation domain� the boundary conditions� the

physical parameters �such as Ln�LT 	 Ln�Ls	 etc��� the number of moments evolved�

the time�stepping algorithm� the FLR model employed� spatial 
ltering options�

and whether or not to produce color movies for later viewing� The nonlinear terms

may be ignored if desired �for linear benchmark studies� and an X�window interface

written by Q� P� Liu may be invoked to provide real�time feedback and control�

Restart capabilities from periodically saved datasets ensure that unforeseen or in�

advertent operating events do not result in the complete loss of data from a given

simulation� An example input 
le is provided in App� G�

���
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�� Time�stepping Algorithm

The default time�integration algorithm used in the ITG code is a standard two�step

Runge%Kutta method�� To integrate the model equation

d�

dt
� f��� �����

using this algorithm� one would solve 
rst for � at the half time�step

�j���� � �j � �
�
�t f��j�

and then use this information to 
nd � at the full time�step$

�j�� � �j � �t f��j������

For example� if f��� � �i���� then

�j�� � �j � i�� �t �j��� �
�i�� �t� �

�
� � i���t� �

�����t��
�
�j �

Note that this is the second�order expansion of the exact solution �j�� � �je�i���t�

For real �� the exact solution is oscillatory with j�j��j � j�j j� However� the numer�

ical approximation introduces spurious growth� The arti
cial ampli
cation at each

time step is

j�j��j�
j�jj� � � � �

���� �t��	

corresponding to a spurious numerical growth rate �N � ��
���t����� One must

choose the time step and spatial grid so that this numerical growth is small compared

to the physical growth rates in which one is interested� If f��� � vE 
 r�� this

condition is related to the Courant condition �tvE��x � �� In our runs� we

typically adjust �t at each time step� requiring

�tMax Max�vEx��x�	Max�vEy��y�! � ������

�Other second�order accurate schemes exist that are stable� It may be worth investigating
improvements in the time�stepping algorithms I use at present� In addition to the method pre�
sented here� I have tried a �rst�order accurate semi�implicit scheme� However� no results using
this scheme are presented in this thesis so I will not discuss it further�
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�� Pseudospectral Representation

At various points in the time�stepping algorithm� the potential and the moments are

represented in real space �evaluating nonlinear terms�� spectrally �evaluating deriva�

tives perpendicular to the magnetic 
eld � kx	 ky� and in mixed form �evaluating

derivatives parallel to the magnetic 
eld � xky�� This general technique  Orszag�

����!� often referred to as the pseudospectral or collocation spectral method� reduces

numerical di�usion associated with 
nite�di�erence methods and is faster than di�

rect convolutions for large systems� The clearest and consequently most useful

description of this method in the literature I searched was Crotinger� �����

Our implementation of the pseudospectral technique varies somewhat from

the standard �uid implementations because of the appearance of the parallel deriva�

tives �including the Landau�damping terms� that are most easily evaluated in the

mixed�form space� The mixed�form representation �the default representation in

the code� is �for a 
eld W �$

W �x	 y	 z	 t� �
X
n

X
m��

�
Wc�x	m	 n	 t� cos �

��my

Ly
� ��nz

Lz
�

�Ws�x	m	 n	 t� sin �
��my

Ly
� ��nz

Lz
�

	
�

Equations for Wc�x	m	 n	 t� and Ws�x	m	 n	 t� are advanced in time as follows$

W �x	 ky	 kz� Beginning of time step�
�

W �kx	 ky	 kz� �x	 �y terms evaluated�
�

W �x	 y	 z� Nonlinear terms evaluated�
�

W �kx	 ky	 kz� Nonlinear terms dealiased�
�

W �x	 ky	 kz� kk terms evaluated and time step taken�
�

W �kx	 ky	 kz� Quasineutrality constraint equation solved for �
�

W �x	 ky	 kz� End of time step�

From this diagram� it is clear that improvements are available� For example� one

could begin each time step in the transform space and eliminate two sets of Fast



��� Chapter �� Numerical Integration Scheme

Fourier transforms� In general� de�aliasing in a given direction is accomplished by

keeping twice as many grid points in real space in that direction as Fourier modes

whenever the real�space representation is used��


�� Geometric E�ects

ITG modes are naturally localized around a rational surface in this geometry be�

cause they are damped for kkvt  ��� Thus� if the driving temperature gradient

relaxes nonlinearly in the vicinity of the rational surface� the instability is e�ectively

stabilized� Because two�dimensional sheared�slab simulations have only a single ra�

tional surface� this stabilization mechanism plays an especially important role in

single�helicity simulations� as noted previously  Horton et al�� ����� Dimits et al��

����!�

Figure ���$ Heat �ux vs� x for a simulation with rational surfaces spread too thinly�

�One may avoid aliasing errors with only ��� times as many grid points in real space in a given
direction as associated Fourier modes� Thus� there is room for an improvement of about a factor
of two ��	��� in the speed of ITG�
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In a realistic plasma� the relaxation of the temperature gradient around one

rational surface leads to a steeper gradient at another nearby rational surface� It

is important to include this e�ect in three�dimensional simulations� That is� if the

rational surfaces corresponding to unstable modes occupy a small region of the

simulation domain� or if they are spaced too far apart� the transport rate predicted

may be signi
cantly misleading�

Consider the simulation in Fig� ������ The parameters are Lx � ���i� Ly �

���i� Lz � ��Ln� �i � �� Ls�Ln � ��� and Ti � Te� The nonlinear terms were

evaluated on a grid with �nx	 ny	 nz� � ���	 ��	 ��� grid points� The linear terms

are advanced in �x	 ky	 kz� space with ky � ��m�Ly	 m � �	 �	 � � � 	M	 M � � and

kz � ��n�Lz	 n � �	��	 � � � 	�N � N � �� Radially periodic boundary conditions

were used� as described in Sec� ����

A fair amount of information is included in this 
gure� First� the �ux�surface�

averaged� time�averaged heat �ux




*Q
�� 	 �

TLyLz

Z
dy dz dtQ

is measured by the scale on the left axis and is shown as a solid line at the bottom

of the 
gure� The quantity Q is de
ned in App� B� The time average is taken only

over the nonlinear phase� Next� the imposed background temperature gradient

�normalized to the density gradient� is shown as a dashed line at a constant value

of �i � �� The dotted line is the temperature gradient averaged over the nonlinear

phase of the simulation� Finally� the triangles represent the positions of the rational

surfaces located within the simulation domain� with the corresponding ky�i on the

right axis�

The paucity of rational surfaces �and hence unstable modes� in this exam�

ple allows the temperature gradient to �atten until �i � � at two points in the

box without causing signi
cant steepening at the neighboring rational surfaces� A

volume�averaged thermal di�usivity 
  de
ned by Eq� �B���! would be misleading

in this case� since the thermal �ux is actually con
ned to a small region of the sim�

ulation domain and the driving temperature gradient varies widely over the box�

In this example� a signi
cant amount of perpendicular �y� rotation is occuring as

well �not shown�� Few conclusions can be drawn from such a simulation� since the

resolution is simply inadequate� The lesson to be learned is that even though the
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average temperature gradient across the entire box remains 
xed at �i � �� as it

should� the �ux is suppressed because of local modi
cations of the temperature

gradient� Hence� a prediction of 
 based on such a low�resolution simulation should

not be trusted� Nothing prevents this behavior from also occurring in low�resolution

particle simulations �even if the multiple�scale expansion  Lee� ����! is used��

The same problem occurs in the simulation shown in Fig� ������ but for

di�erent reasons� In part� the problem is again the spacing of the rational surfaces�

as the outer regions of the simulation domain have no rational surfaces� This follows

directly from the choice of Lz� the size of which causes the rational surfaces to be

con
ned to the center of the box� Because this case is also an example of the e�ect

of the boundary conditions� it is discussed further in the next section�


�� Boundary Conditions

The usual sheared�slab simulation domain is periodic in y and z� The radial �x�

boundary condition has been treated in several ways in the past� The most com�

mon approach is to require all perturbed quantities �n	 uk	� etc�� to be zero at the

edges of the box �with re�ecting boundary conditions for particles in kinetic simula�

tions�� This approach is followed in kinetic and gyrokinetic simulations if the entire

distribution function is being evolved� with strong gradients ���LT � ����� across

the radial direction� A multiple�scale expansion technique  Lee� ����! is employed

to separate the evolution of the background gradient from the simulation scales�

With the advent of �partially linearized	  Dimits and Lee� ����! or �f techniques

 Kotschenreuther� ����� Parker and Lee� ����!� it is possible to separate the

background and �uctuating scales asymptotically in particle simulations by scaling

�f and  as in Eqs� ������� Fluid simulations have long made this separation by

using scaled �uid quantities  Horton et al�� ����! that make use of the ordering

�� L��

�I have not investigated the question of the evolution of the 
K � � mode� While conservation
of total energy� momentum� and density place constraints on the evolution of this mode� it is
not implausible to assume that higher moments could evolve or that the background parallel and
perpendicular temperatures could become di�erent� If the latter possibility were observed� the
fundamental equations would need to be rederived� since it was assumed in the derivation of
Eq� ����� that Tk� � T�� �see App� C��
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One must treat the �ky � �	 kz � �� mode with care in any case� Because

the gyrokinetic ordering allows r�F� � r�F�� the �uctuating quantities generate

gradients in the �ky � �	 kz � �� mode that can e�ectively cancel the driving back�

ground gradients and help to saturate the turbulence� This is a physical saturation

mechanism that should be included in a microturbulence simulation� however� if

the �ky � �	 kz � �� component of the pressure is handled inappropriately  as in

Fig� ������ where there were too few rational surfaces!� this mechanism can com�

pletely dominate the dynamics� which is probably not physical� Conversely� if the

�ky � �	 kz � �� modes are simply removed from the system� an important source

of stabilization may be lost�

In particular� �F�	� � � radial boundary conditions do not adequately

model the e�ects of heat sources and sinks that give rise to the overall gradient�

For these boundary conditions� heat is not allowed to cross the radial boundaries of

the box� and the background temperature gradient is gradually steepened near the

edges of the box where the drive is intrinsically reduced by the boundary conditions�

As in a low�resolution simulation� the gradients in the bulk of the simulation domain

can relax� reducing the predicted thermal �ux nonphysically� Fig� ����� shows the

heat �ux vs� x and the background temperature gradients for a nonlinear run

with this geometry� The parameters for this run were chosen to compare with the

weak�shear case of Sydora et al�� ����� Hence Lx � ���i� Ly � ����i� Lz �

����Ln� �i � �� Ls�Ln � ��� and Ti � Te� The time at the end of the simulation

corresponds to a point just beyond the initial nonlinear saturation� The nonlinear

terms were evaluated on a grid with �nx	 ny	 nz� � ���	 ���	 ��� grid points� In

this run� the nonlinear phase�mixing terms were included and � � ���� vt�Ln� A

Gaussian 
lter exp ����k����� with � � ��� was included in Poisson�s equation

to simulate the e�ect of 
nite�sized particles� For the purposes of comparison� the

adiabatic electron response of ne � e�Te was used in the quasineutrality constraint

�allowing nonphysical electron particle transport� as described in Ch� ���

The curves are the time� and �ux�surface averaged quantities obtained from

the gyro�uid simulation� Several features can be noted� First� even though many

rational surfaces are included� their distribution is uneven� In addition� the role of

the boundary conditions is evident� despite the fact that nonlinear saturation is just

occurring� the temperature gradients are strongly modi
ed� steepening is evident
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Figure ���$ Heat �ux� rT�� and rational surfaces vs� x using  � � radial boundary
conditions�

near the boundaries where the �ux is forced to zero� and �attening is evident in the

center of the domain� The 
 predicted from the simulation is di�cult to interpret on

these grounds� and an improved gyro�uid simulation will be shown after a discussion

of radial periodicity conditions� �In the strong shear cases of Sydora et al�� �����

this e�ect is more pronounced and is under further investigation  Sydora� ����!��

The volume�averaged peak �because this is soon after nonlinear saturation� heat

�ux within this simulation domain implies 
i � ������i vt�Ln� yet the value at the

center of the domain is two times higher� Sydora et al�� ���� found a peak 
i �
������i vt�Ln for these parameters and with this same simulation domain�

A boundary condition that removes this uncertainty and models the heat

sources and sinks naturally is periodicity in the radial direction� which maintains

the average temperature gradient everywhere in the simulation domain� Heat that

�ows out of the cold side re�enters on the warm side� mimicking a heat source�

Because the simulation domain is typically very much smaller than the background

gradients� the actual temperature and density di�erences between the edges of the

domain are negligible� The di�culty lies in how to handle the sheared magnetic



���� Boundary Conditions ���


eld lines�

Because of the fast parallel motion of particles and the strong ion Landau

damping that occurs if kk is too large� the turbulent structures are highly elongated

along the 
eld line and thus tend to be aligned with the pitch of the local magnetic


eld� It is not su�cient simply to enforce periodicity by requiring any variable W

to satisfy

W �x � Lx	 y	 z� � W �x	 y	 z�

as a result� For example� Fig� ����a� shows the electrostatic potential from a typical

simulation in the linear phase in the y� z plane at �x � �� The e�ect of the sheared

magnetic 
eld is clearly evident� especially when compared to Fig� ����b�� which

shows the potential at the other side of the box �after periodicity has been enforced

as described below�� The periodicity constraint used here is 
rst to untwist the

magnetic 
eld so as to take into account the geometric e�ect� and then to enforce

periodicity�
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Figure ���$  in the y � z plane at �a� �x � � and �b� �x � Lx�
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Mathematically� one transforms the periodic variables to a new coordinate

system �x�	 y�	 z�� that is aligned with the magnetic 
eld� These twisting coordinates

 Roberts and Taylor� ����� Cowley et al�� ����! are given by

x� � x	

y� � y � sxz	

z� � z	

so that �x�	 y�� labels a 
eld line and z� measures the distance along a 
eld line� In

the new coordinates� the periodicity constraint is stated as

W ��x� � Lx	 y
�	 z�� � W ��x�	 y�	 z��� �����

One then maps Eq� ����� back into the untwisted coordinates  using W ��x�	 y�	 z�� �

W �x�	 y� � sx�z�	 z��� then dropping the primes! to 
nd

W �x� Lx	 y � s�x � Lx�z	 z� � W �x	 y � sxz	 z��

Upon Fourier�transforming in the y and z directions according to

W �x	 y	 z� �
X
m�n

Wmn�x�eikyy�ikz z

and using the de
nitions of ky and kz from above� one is led to

X
mn

Wmn�x� Lx� exp

�
i��

�
m

Ly
 y � s�x� Lx�z! � z

n

Lz

��

�
X
mn

Wmn�x� exp

�
i��

�
m

Ly
�y � sxz� � z

n

Lz

	�
�

Upon shifting and matching the indices one is led to the twisting periodicity condi�

tion �similar to that 
rst used by Kotschenreuther� �����$

Wm�n��nrat�x � Lx� � Wm�n�x�	 �����

where

nrat�m� 	 m

�

LxLz

Ly

Ln

Ls
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is constrained to be an integer� One of the dimensions of the simulation domain

is quantized by the magnitude of the magnetic shear and the number of twists

enclosed in the box� Also� many rational surfaces are forced to lie at the edge of the

simulation domain to allow their periodic continuation elsewhere� For example� the

position xrat�m	n� of the rational surface of the �m	n� mode lies where �b 
 r � ��

This may be written as

xrat�m	n� � �� � n

nrat
�
Lx

�
�i	

using Eq� ������� The rational surfaces of modes with n � �nrat lie exactly at the

edge of the box�

Returning to the simulations� I now show an example with the same physical

parameters as the simulation of Fig� ������ but with periodic boundary conditions

and the correct adiabatic electron constraint  i�e�� Eq� ������!� The nonlinear res�

olution is given by ����������� and the box dimensions are ����i	 ���i	 ��Ln�� The

arti
cial dissipation parameter � � ������ As a result of the periodic boundary

Figure ���$ Heat �ux vs� x for a simulation with periodic boundary conditions and
reasonable resolution�

conditions� the temperature gradients are now roughly constant across the box�
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While there remains a region of reduced thermal �ux� there is no clear correlation

of this region with the edge or with a region of low resolution� The predicted 
i

from this simulation is ������i vt�Ln� in agreement with the mixing�length estimate�


ML � ���k���max � ������i vt�Ln and without the ambiguity caused by the param�

eters used in Fig� ������ In passing� note that the addition of toroidal drive would

increase the heat �ux� perhaps to experimentally observed values�

�For these parameters� the stated maximumof ��	k��� occurs around ky� � ���� The maximum
growth rate is found around ky� � ��� but for this mode the mixing�length estimate is smaller�
��	k��� � �����
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Chapter 	

Comparisons with Gyrokinetic

Particle Simulations

U
LTIMATELY� ONE IS INTERESTED in a reduced description of plasma

turbulence to the extent that it is economical and accurate� Accuracy

a�ords one predictive power� Equally importantly� a computational tool

that allows one to test many ideas quickly and inexpensively allows rapid innovation�

the resulting physical and numerical insights can be widely bene
cial� Developed

over the last decade� gyrokinetic particle�simulation techniques  Lee� ����� Lee�

����! representing a tremendous improvement over full�dynamics descriptions for

tokamak microturbulence research have made possible increasingly realistic kinetic

simulations of tokamak discharges  Parker and Lee� ����� Parker et al�� ����!�

Nevertheless� the computational demands inherent in the kinetic approach remain

very high� The economy inherent in gyro�uid simulations makes possible about

an order of magnitude increase in productivity  depending upon the physical sys�

tem under consideration� it may be possible to realize much more� as discussed

in Sec� �����!� given equal computational resources� Already� the impact of this

increase in �tinkering time	 has a�ected the plasma�simulation community posi�

tively� In this chapter� I address the question of accuracy by showing that the

gyro�uid description outlined in the foregoing chapters retains su�cient physics

content to allow excellent agreement with gyrokinetic particle simulations for three�

dimensional microturbulence characteristic of existing magnetic con
nement fusion

devices� Though I have tackled neither the complicated question of electromagnetic

disturbances nor the di�cult problem of including toroidal e�ects� that a convincing

���
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comparison may be made in the three�dimensional� sheared�slab geometry stands

as one of the most important contributions in this thesis�

��� Three�Mode Coupling

In general� fully developed ITG turbulence is di�cult to describe analytically� In

the absence of analytic insights� it is di�cult to know how well one�s numerical

code is performing� especially when the number of lines of code is large� One

may employ energy conservation diagnostics� various spectral plots� and so on to

ensure that one�s code is behaving at least reasonably� but one would like to have

more con
dence in the accuracy of the results� When this problem was 
rst tackled

with pioneering gyrokinetic particle�simulation techniques  Lee and Tang� ����!� a

highly simpli
ed test problem was designed to test the numerical nonlinear coupling

and saturation� This problem may be described as follows� Parameters were found

�no magnetic shear� large �i� conducting walls in the x direction� and a single kk�

for which long�wavelength instabilities existed� By carefully choosing the simulation

domain so that only two allowed complex Fourier modes with �ky were unstable�

Lee and Tang� ���� could then focus on the nonlinear coupling of these two

modes to the background gradient� The theory they developed features two linearly

unstable Fourier harmonics that couple together to relax the driving temperature

gradient� resulting in a nonlinearly saturated state� This simple system is not

turbulent and does not test many features of one�s code or� in my case� of my

model� Nevertheless� it is a excellent place to begin�

Linear analytic studies have shown that the kinetic models employed in the

gyro�uid equations should perform well  Hammett and Perkins� ����� Dorland

and Hammett� ����!� The linear performance of the ITG code is also reasonable

and has been documented in Chaps� � and �  Dorland and Hammett� ����!�

Below� I investigate the three�mode�coupling problem with ITG� comparing the re�

sults with both analytic theory  Parker� ����! and gyrokinetic particle simulations

 Santoro and Lee� ����!� I also compare the transient heat �ux generated during

the saturation process in each simulation� 
nding that better agreement between

the �uid and particle codes is obtained with two�temperature �Tk	 T�� model equa�

tions rather than the usual single�temperature approach� despite the fact that FLR
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e�ects are very weak� First� however� the three�mode�coupling �TMC� theory using

the gyro�uid equations 
rst carried out by Parker� ���� is presented�

����� Three�Mode�Coupling Theory

I begin with Eqs� ������ ����%����� in the long�wavelength limit� Thus� FLR e�ects

are completely unaccounted for� Furthermore� I shall consider a two�dimensional�

radially bounded system in which the allowed� unstable modes are the longest wave�

lengths in the simulation domain� The beginning equations are therefore

�


t
�rkuk �



y
� �	 �����

duk
dt

�rk  Tk � �� � ��! � �	 �����

dTk
dt

� �rkuk � �i


y
�

r
�

�
jkkjTk � �� �����

In this section� kkLn is taken to be proportional to ky�� the constant of propor�

tionality is �� 	 �Ln��� where � 	 kk�ky � By�Bz is the notation used in Lee

and Tang� ����� Note that I have used the b � � limit of the quasineutrality

constraint �ni � �� to eliminate the ion density from the equations and that the

FLR corrections to the nonlinear terms have also been dropped� In this limit� the

polarization drift drops out� and the continuity equation is thus linear� I tested the

e�ect of retaining the polarization drift in the simulations and found that for these

parameters its e�ect was quite small�

Following Lee and Tang� ���� and Parker� ����� I assume no��ux bound�

ary conditions in x �equivalent to assuming conducting walls exist at x � � and

x � Lx� and periodicity in the y direction� One may then expand the 
elds into

Fourier components

�x	 y� �
X
�K

�k sin �Kxx�eiKyy �����

using the de
nitions

�K � �Kx	Ky� � �mkx	 nky� � �
�m

Lx
	
��n

Ly
�	

�The Fourier representation for the electrostatic potential will be truncated beyond the longest
wavelength in the box�
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for m � ��	��	 � � � and n � �	��	��	 � � �� There is no m � � mode since

the sine terms vanish and the cosine terms are excluded to satisfy the bound�

ary conditions� Furthermore� the �m modes are not linearly independent since

sin ��mx� � � sin �mx�� One may determine the m � � modes from the symmetry

�m�n � �m�n�

In this basis� the reality condition leads to the additional symmetry condition

m��n � �
m�n�

The complex modes with �m � �	 n � �� are the fundamental modes and the rest

may determined from the symmetry conditions� Eq� ����� may rewritten in terms

of the conventional eiKxxeiKyy basis�

�x	 y� �
X
�K

 �K

�
eiKxx � e�iKxx

�i

�
eiKyy	

� �i
X
�K

 �K ei
�K��x	 �����

using the �m�n � �m�n symmetry assumption� Note that there is factor of �i
di�erence from the conventional form of the Fourier expansion�

Using this same �i convention in the Fourier expansion of the 
elds� the E

�B nonlinearity may be written as

duk
dt

� �iuk
t

�
X

�K� �K�� �K��

�
K �

xK
��
y �K �

yK
��
x

�
 �K�uk �K���

The ��	 �� mode is ignored in the analysis and systematically removed from the

simulations �preventing self�generated perpendicular velocity�shear �ows� following

Lee and Tang� ����� Since the ��	 �� mode �and its symmetric counterparts� have

the dominant linear growth rates� the focus is on the nonlinear coupling among

these modes and the modes they generate directly�

The reduced equations describing the evolution of the ��	 �� mode �denoted

by the subscript ��	� may therefore be written

�
�

t
� ikku� � iky� � �	 �����
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u�
t

� ikk T� � �� � ���! � �ikxky�u� � �	 �����

T�
t

� �ikku� � �iiky� �

r
�

�
jkkjT� � �ikxky�T� � �� �����

Because the modes with �m � �	 n � �� are the fundamental modes and kk is intrin�

sically positive for these modes� one may drop the absolute value that appears in

Eq� ������ The ��	 subscripts refer to the ��	 �� modes whose evolution corresponds

to the relaxation of the driving background gradients� They evolve according to

u�
t

� �kxkyIm��
�u��	 �����

T�
t

� �kxkyIm��
�T��� ������

Note that here n� is identically zero� In keeping with the physical intuition behind

this model� I will 
rst calculate the linear dispersion relation for the unstable modes�

I will then 
nd the amount of relaxation generated by the nonlinear interaction of

these two modes� Finally� I will substitute this expression into the evolution equa�

tions of the linearly unstable modes to 
nd the level of  necessary to turn o� the

linear growth� This �quasilinear	 level �so called because linear solutions are sub�

stituted into the evolution equations for the nonlinear terms to get an approximate

nonlinear dispersion relation� will then be compared to the simulation results�

Linear Growth� The linear dispersion relation in this limit is the b � � limit of

Eq� ����� with Z���� replaced by Z����� The quantity Z���� is de
ned in Eq� �������

I will refer to the linear frequency obtained from this dispersion relation with the

notation � � �� � i���

Nonlinear Relaxation� Some properties of the nonlinearly driven ��	 �� mode

may be estimated by inserting the linear expressions for u� and T� into the latter

evolution equations$

u�
t

� �kxkyIm

�
�
�

�
��� � i��� � ky

kk

�
�

	

� �
kxky
kk

j�j����	
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since only the imaginary part of the expression in square brackets contributes� One

may go one step further and get

u� � �
k��
kk
j�j�

where k�� 	 �kxky� and the time dependence of � allows one to cancel the linear

growth rate with the contribution from the time derivative� Similarly�

T� �
k��
kk

�
����
kk

� ky
kk

�
j�j��

SelfQuenching� Combining the results from the previous two sections allows

one to 
nd a nonlinear dispersion relation involving the real parts of the linear ����

and nonlinear ��NL� frequencies$

��
�NL
kk

� ��i � ��
ky
kk

�
k��
k�k

���� � ky
kk

j�j�

� �
�NL
kk

� i

r
�

�
�

�
��
NL� � �NLky

k�
k

� �� � � �� �k��
k�
k

j�j�
	
�

At the time of nonlinear saturation� the imaginary part of the nonlinear frequency

must vanish� Thus� the coe�cient in square brackets on the right�hand side must be

identically zero� allowing one to 
nd an expression for the initial saturation level��

j�j� �
��
NL� � �NLky � �� � � �k�k

�k��
�

Note that the factor of i
p

���� which is critical to the determination of the linear

frequency and therefore of the saturation level� comes directly from the Landau�

damping model� Finally� upon substituting this expression into the real part of the

nonlinear dispersion relation� one can solve for the nonlinear frequency� completing

the calculation�

�In the later comparisons of this analysis with the numerically obtained saturation level� I have
ignored the di�erence between the initial saturation level and the steady�state level�
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����� Three�Mode�Coupling Simulations

Overview

Before proceeding to the actual comparisons� it is useful to outline exactly what is

to be compared and what can be learned from each comparison� I will compare four

descriptions of this simple system$

I� The three�moment quasilinear TMC theory outlined in Sec� ������

II� Numerical simulations of the three�moment� three�mode gyro�uid model used

in the TMC theory  Eqs� ����%�����!�

III� Numerical simulations of more complete gyro�uid models  e�g�� Eqs� �����%

�����!� and

IV� Gyrokinetic �and drift�kinetic� particle simulations�

The level of agreement obtained between the 
rst two items will be a measure of

the validity of the quasilinear estimate presented in Sec� ����� but can provide no

evidence regarding the validity of the Landau�damping model used in the original

equations� Comparing I� II� and III allows one to understand the role additional

moments play in a simple nonlinear problem� just as comparing the linear response

function for di�erent �uid models  see Figs� ����� and �����! allows one to understand

their role in the linear dynamics� Items III and IV contain three essential elements

missing from I and II$ ��� FLR e�ects� which should be weak since the instabilities

being studied have k�� � � but which could drive sheared velocity �ows in the y

direction if the �x	 ky � �� mode were not suppressed� ��� anisotropic temperature

�uctuations� which should not a�ect the predictions of the TMC theory �since

k��� �� but which may dramatically alter the heat transport characteristics� and

��� a more complete Fourier representation for the moments&distribution function�

The last point is potentially important� and should be explained carefully�

The TMC theory allows only the ��	 �� Fourier component of the tempera�

ture to evolve� This places a limit on the amount of �attening of the background

gradients that can occur� On the other hand� both the gyrokinetic particle simula�

tions and the full gyro�uid simulations allow higher Fourier harmonics to appear in

their respective descriptions of the perturbed distribution function� This allows� for

example� the temperature gradient to �atten over a wider region of the simulation
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domain�  This behavior is observed in both simulations�! At low resolution� the

resolution of the grid in the x direction determines the maximum extent of this

�attening� since the boundaries are felt by the plasma throughout the simulation

domain� The nonlinear interactions that couple the potential to the �m	 �� compo�

nent of the temperature involve the �m � �	 �� component of the temperature and

the ��	 �� component of  and are therefore not forbidden by the truncation of the

Fourier representation of � Because the amplitude of the ��	 �� Fourier component

of the temperature partially determines the saturation level in the TMC theory� it

would not be surprising to see discrepancies arise between I and III or I and IV�

Good agreement between I and IV would constitute a demonstration of the

validity of the Landau�damping model in at least one nonlinear scenario� Finally�

agreement between the full gyro�uid simulation �III� and the gyrokinetic particle

simulation would lend some credence to future results obtained using the kinetic

models presented here �and to those produced by the ITG code in particular��

Results

For the simulations carried out to compare the �uid and particle codes to the theory�

the basic parameters were kx�i � ky�i � ���� �i � ��� � � �� and kkLn � ky�i� A

scan of � �kkLn at 
xed ky�i� was also performed� The gyro�uid simulations� were

performed on de�aliased �nx	 ny� � ���	 ��� grids with �Lx	 Ly� � ������i	 �����i��

�Because of the potential for confusion in comparing di�erent simulation results� I describe
here three ways to implement zero��ux boundary conditions� In the �rst method� one performs a
simulation with a box width of Lx� However� one �nds that in order to make use of standard FFT�s
one must double the real�space box length �and the number of real�space grid points� whenever
a Fourier transform is to be evaluated� If a quantity f�x� de�ned from � � x � Lx is continued
into the interval Lx � x � �Lx with odd symmetry�

f�x � Lx� � �f�Lx � x�� �	����

the Fourier transform of the extended function is the desired sine transform� This method is often
used in particle simulations �along with a re�ection condition for the particles��
A second method is to simulate a domain twice as large� L�x � �Lx� with the odd symmetry

condition enforced as in Eq� �	����� In this case� one should distinguish between the physical
simulation domainLx and the simulation box width L�x� Finally� one may also use the conventional
Fourier decomposition �Eq� �	��� without the factor of �i� in a simulation domain of width Lx and
force all the �elds to be zero at the edge� For large enough systems� I have found that these three
methods yield the same result�
In this section� I used the �rst method�
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In each case� all but the longest�wavelength Fourier components of the electrostatic

potential were suppressed at every time step� Also� �x	 ky � �� was suppressed �as

in the theory��

According to the preceding analysis� the linear frequency should be �Ln�vt �

�����������i� Note that this implies that the Landau resonance is important� since

� � �� The predicted saturation level is j�j � ��� and the nonlinear frequency is

predicted to shift ��' to �Ln�vt � ������

Figure ���$ ��� three�mode simulation results �without FLR e�ects� for the three�
mode�coupling calculation� Shown are �a� ��kx�i � ���	 ky�i � ���� vs� time� and
�b� the volume�averaged thermal �ux vs� time for the parameters �i � ��� Ls � ��
� � �� and kkLn � ����

Results from a three�mode� three�moment �uid simulation of Eqs� ����%����

are shown in Fig� ������ Only the Fourier modes retained in the TMC theory were

kept in this simulation� The saturation level �jj � ���� and the nonlinear frequency

shift � � ����� agree reasonably well with the estimates from the TMC theory

�though the saturation predicted by the numerical code is smaller than expected��

Thus� one can have some con
dence that the TMC theory contains an element

of the nonlinear dynamics in the most basic system� The volume�averaged radial

heat �ux  de
ned� in Eq� �B���! is shown in Fig� ����b� for comparison with more

�Actually� because the perpendicular temperature is not evolved in this simplest model� I have
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Figure ���$ ��� gyro�uid simulation results �with full FLR e�ects� for the three�
mode�coupling problem� Shown are �a� ��kx�i � ���	 ky�i � ���� vs� time� and �b�
the volume�averaged thermal �ux vs� time for the parameters �i � ��� Ls � ��
� � �� and kkLn � ����

complete models below� It clearly does not agree very well with the particle�code

result shown in the same panel� More sophisticated simulations of the same physical

system are now discussed to put into perspective the e�ects of the various kinetic

models�

Saturation level� In Fig� ����� I show the results from a ��� gyro�uid simulation

of Eqs� �����%����� for the same physical parameters and simulation domain as

the previous case� There are three important di�erences between this model and

Eqs� ����%�����$ FLR e�ects� anisotropic temperature �uctuations� and a larger

Fourier basis set for the moments� As expected� the greatest impact on the initial

saturation level was generated by the latter addition� Including additional Fourier

modes in the moments retained caused the saturation amplitude to rise � ��'�

increasing to jj � ��� if the full resolution of the basic simulation domain is retained

for the moments� Doubling the grid resolution in each direction to �nx	 ny� � ���	 ���

resulted in no further shift� Including additional moments� FLR e�ects� and the

taken Q�	� � 
Q to account for the full temperature�
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Figure ���$ ��� gyro�uid simulation results for the three�mode coupling problem�
Shown is the volume�averaged thermal �ux�

NLPM models caused no signi
cant changes in the saturation amplitude�

Thermal �ux� As one employs increasingly complicated gyro�uid models� the

dominant corrections to the thermal �ux come from retaining the perpendicular

moments �T�	 q�	etc��� For example� one observes from Fig� ����� that retaining

an equation for T� gives somewhat better agreement in the volume�averaged heat

�ux� The further improvement observable in Fig� ����� may be attributed entirely

to the additional moments and con
rms that retaining additional moments allows

one to mimic the kinetic result more closely� Nevertheless� the gyro�uid thermal

�ux damps out more rapidly than the gyrokinetic thermal �ux� I tried reducing

the time step by a factor of two in both simulations and got the same answers�

The particle�simulation �ux appears to be getting noisy after tvt�Ln � ���� but the

low�frequency oscillations in the �ux remain clearly discernible�

Complete gyro�uid model� The thermal �ux predicted by full gyro�uid model

results �item III above� are shown in Fig� ������ The ��� gyro�uid run shown here

used the (
����	
� FLR model and included all of the Fourier modes in the moments�

The NLPM model was used in this run� but its e�ect is very small since the dominant
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Figure ���$ Gyrokinetic particle�simulation results for the three�mode�coupling cal�
culation� Shown are �a� ��kx�i � ���	 ky�i � ���� vs� time� and �b� the volume�
averaged thermal �ux vs� time for the parameters �i � ��� Ls � �� � � �� and
kkLn � ����

modes are long�wavelength modes� The nonlinear frequency shift persists at a lower

level in the full gyro�uid simulations$ �NL � ������ The fact that the addition of

FLR e�ects and anisotropic temperature �uctuations did not change the saturation

amplitude or the frequency signi
cantly compared to the three�mode� three�moment

�uid model is easily understood� since the dominant modes are long�wavelength

modes �k�� � ����� and are therefore una�ected by the order �k���� corrections�

Gyrokinetic particle simulation� Nonlinear particle�code results �representing

the most fundamental and complete approach tried in this study for this prob�

lem� are shown in Fig� ������ The saturation level� jj � � is smaller than the

numerically�obtained obtained TMC result  Fig� ����a�!� On the strength of the gy�

ro�uid results� one might have expected to 
nd a level ��' higher� since no 
ltering

of the perturbed distribution function is undertaken in the particle simulation� The

nonlinear frequency shift is small or non�existent� However� one may observe non�

�The gyro�uid and gyrokinetic simulations use opposite conventions for forward Fourier trans�
forms� causing the real and imaginary parts of � to be reversed� as may be seen by comparing
Figs� �	��� and �	��a��
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Figure ���$ Linear frequencies and growth rates predicted by various models for
the three�mode�coupling problem as a function of kk�ky with �i � ��� Ti � Te� and
kx�i � ky�i � ����

linearly generated beat waves in the particle simulation with frequencies comparable

to the E�B rotation frequency that are not observed in the gyro�uid simulations�

Based on this comparison� one might conclude that the three�moment Lan�

dau�damping model performs adequately in this very simple nonlinear system� cap�

turing at least enough information to estimate the saturation level within a factor

of two despite the fact that � � �� However� in the next section� I show that the

agreement between the gyro�uid and the gyrokinetic simulations is not as good as

these results suggest for this highly simpli
ed problem�

An Important Discrepancy�

Here� a possibly important shortcoming of the gyro�uid model is emphasized� A

scan of � � kk�ky was undertaken to check the scaling of the saturation level with

the amount of Landau damping compared to the linear drive� All other parameters

remained the same as in the basic case� No FLR e�ects were retained in any

of the simulations completed for this scan� Four di�erent methods were used to

obtain results$ ��� the analytic TMC theory� ��� numerical simulations of the TMC
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Figure ���$ �a� Time�averaged saturation amplitude of j��kx�i � ���	 ky�i � ����j
vs� kk�ky for several di�erent models of the three�mode�coupling problem with
�i � ��� Ti � Te� and kx�i � ky�i � ���� �b� Simple quasilinear estimate for the
saturation level observed in the particle simulations�

equations� ��� ��� gyro�uid numerical simulations� and ��� gyrokinetic particle

simulations in the zero�gyroradius limit� The most important di�erence between ���

and ��� is again the number of Fourier components kept for the description of the

distribution function&moments� The linear frequencies and growth rates predicted

by these methods are shown in Fig� ������ The agreement is generally very good�

Each of the models predicts that the most unstable modes have moderate kkLn

and that the marginal stability point for modes with a short parallel wavelength is

roughly kkLn � ����� The nonlinear results shown in Fig� ����a� do not agree as

well�

From this 
gure� one may see that the simple TMC theory agrees with the

numerical solutions of Eqs� �����%������ for a range of values of kk� Recall that

the TMC calculation of the saturation level was based upon the notion that the

nonlinear �attening of the driving temperature gradient would serve to saturate

the linear mode� The discrepancy between the curve labeled ����	 and the curve

labeled ���� TMC num�	 may be accounted for almost entirely by the fact the

��� simulations included a more complete Fourier description of the moments�
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Figure ���$ Peak thermal di�usivity vs� kk�ky for ��� gyro�uid and gyrokinetic
simulations for the three�mode�coupling problem with �i � ��� Ti � Te� and kx�i �
ky�i � ���� The thermal di�usivities agree better than the saturation levels of �

That is� the e�ect of including the -qk equation is small� Thus� the TMC theory

appears to describe the �uid simulation results reasonably well� However� there is

a discrepancy between the gyro�uid and particle�simulation results that is possibly

important� For large enough kkLn� each of the methods correctly predicts that the

saturation amplitude decreases with the linear growth rate� yet for �Ln�� � �� the

particle code predicts a lower saturation level than both the TMC theory and the

�uid simulation�

In Fig� ����b� I show an interesting result related to the particle�code satu�

ration level� It appears that the variation of the saturation amplitude with kk may

be described by the simple formula �involving only linear quantities��

ejj
Ti

� �

��T

�

k�LT
	

where ��T � �i�� and the constant of proportionality is roughly ���� The TMC

theory presented in Sec� ����� fails to predict this scaling� since the TMC prediction

for the saturation level does not depend on the linear growth rate� It is surprising

that such a simple relation describes the nonlinear saturation level so well since the

nonlinear behavior observed in the particle�code simulations appears complicated�
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Physically� one could interpret this formula as implying that nonlinear saturation

occurs in the particle code when the eddy turnover time �E is comparable to the

linear growth rate� or

k�� � �

in the dimensionless units used throughout this thesis�  A similar relation has been

noted previously by Lee et al�� ���� for the related electron drift�wave problem�!

This interpretation is consistent with observed large�amplitude nonlinear oscilla�

tions of the electrostatic potential with �NL � �E� If this interpretation is correct�

then one must conclude that the particle and �uid simulations have di�erent non�

linear saturation mechanisms for this highly constrained case�

Although this is not a turbulent problem� it is possible that the discrepancy

is related to the failings of few�moment gyro�uid models noted by Mattor� �����

Because � � � and � � kkvt in this region of parameter space� one might expect

a few�moment �uid model to predict the saturation level poorly� That is� when the

growth rate of the instability is slow compared to the frequency� information travels

up the �uid hierarchy rapidly and feels the e�ects of the closure more strongly�

This can result in a distortion of the slower nonlinear dynamics  Hammett et al��

����!�  One way to investigate this problem further would be to utilize the n�

moment closures �where n is large� of Smith and Hammett� ����� Because there

are no complicating FLR e�ects in this simple problem� one would need only to

add the E � B nonlinearities and the driving terms to the equations of Smith

and Hammett� ���� to proceed�! However� Mattor� ���� also noted that the

heat �ux predicted by the gyro�uid equations di�ered from the kinetic prediction

by a factor of ���
p

�kkvt�� in the problem he was investigating� In the present

problem� one may see from Fig� ����� that j�j � kkvt for the entire range of kk

considered in this scan� Thus� one might expect the thermal di�usivities observed

in the two simulations to be in better agreement than the saturation level� This is

in fact the case� as may be seen in Fig� ������ The initial� peak thermal di�usivities

observed for di�erent values of � are shown here� The simulations used for this 
gure

included FLR e�ects� the gyro�uid model used was the ��� model without NLPM

terms� As before� the saturation levels do not change if one includes the FLR e�ects

for these parameters because k�� � ���� for the dominant modes� Including the


As in the cases shown in Figs� �	�
�� the gyro�uid thermal �ux decays more rapidly than is
observed in the particle simulation for these parameters�
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perpendicular moments does change the thermal �ux signi
cantly for the reasons

outlined above�

The overall impact of the discrepancy noted in Fig� ����a� may be smaller

in a �more realistic� three�dimensional setting for four reasons� First� in this highly

constrained problem there is only one eddy in the simulation domain� In a strongly

turbulent problem� eddies are formed and destroyed rapidly so that particles are

unlikely to become trapped long enough to signi
cantly a�ect the dynamics� Sec�

ond� there is a much stronger nonlinear saturation mechanism available if one allows

the kk � � component of the potential to evolve� as discussed in Chap� �� Neither

quasilinear pro
le �attening nor particle trapping is likely to be relevant if veloc�

ity shear is allowed to develop naturally� Third� the �more interesting� heat �ux

predicted by the two simulations agrees reasonably well even though the satura�

tion mechanisms are apparently di�erent� Finally� the modes likely to dominate

in a system with a range of parallel wavenumbers are the modes with the largest

growth rates and the largest saturation amplitudes� For the parameters used here�

the agreement between the �uid and particle simulations is not bad in the region

around � � �� where the growth rate is largest� In particular� the predicted heat

�ux agrees well� The gyro�uid model overestimates the saturation level in general�

but correctly predicts stabilization above kkLn � ��

Overall� the agreement found between the particle�code simulation and the

full gyro�uid simulations is encouraging� I now turn to a more turbulent� sheared

system�

��� Sheared Slab� Single Helicity

To date� published results from sheared�slab particle simulations have not employed

radially periodic boundary conditions� although Kotschenreuther has described this

scheme publicly  Kotschenreuther� ����!� Thus� an important factor in deter�

mining the character of the saturated state of these simulations is the coupling

of the pressure �uctuations to the background gradients� as discussed above� For

the reasons outlined in Chap� �� the coupling of the potential �uctuations to the

background electric 
eld is usually suppressed� so that the comparable dynamics

involving gradients in the electric 
eld are not present� In the interest of compari�
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son I adopt these conventions� and extend the comparison to include the e�ects of

magnetic shear�

Basic Parameters� The basic gyro�uid run for these comparisons used the fol�

lowing parameters$ �i � �	 Ls�Ln � �	 � � �	 Lx � �����i	 Ly � �����i� The

nonlinear terms were evaluated on a grid with �nx	 ny� � ���	 ��� grid points� The

linear terms were advanced in �x	 ky� space with lower resolution in ky �because of

the de�aliasing described in Chap� ��� They were calculated with ky � ��m�Ly	

m � �	 �	 � � � 	M	 M � �� Sine transforms were used in the x direction whenever

no��ux boundary conditions were employed  �x � �� � �x � Lx� � �!� They

were implemented by using a box of width �Lx along with Eq� ������ to evaluate the

FFT�s� The highest kx retained �not suppressed�� was nx����Lx�� In accordance

with the particle simulations� �x	 ky � �� � � was enforced� The time step was

�t � ����Ln�vt� and the equations were advanced explicitly in time� No special ac�

tion was taken with respect to the �x	 ky � �� component of the pressure� which was

consequently allowed to relax� The nonlinear phase�mixing model was employed�

and numerical dissipation �when noted� was introduced into the equations by letting

dW

dt
� W

t
� v
 
 rW � �r�

�W

in each equation except for the density� where the added term is taken to be

��r�
�n to re�ect the fact that there is no particle di�usion introduced by clas�

sical collisions between like particles� Typically� for two� and three�dimensional

runs� � � �����vt�Ln�

The particle code  Santoro and Lee� ����! is a partially linearized� or �f

gyrokinetic code� The physical parameters ��i	 Ln�Ls	 � � and the simulation domain

�Lx	 Ly� were chosen to match the �uid code� The grid used was �nx	 ny� � ���	 ���

grid points� The potential  was 
ltered exactly as in the �uid code� That is� during

the 
eld solve� Fourier components of  that correspond to kx � nx����Lx� or

ky � �M��Ly � �M � �� were zeroed out� The grid spacing� time step� and boundary

�Zeroing the highest kx�s of the grid �de�aliasing� is described in more detail in Chap� � and
is carried out for all of the �elds� Note that this implies that higher radial grid resolution would
be required in the gyro�uid simulation to do a rigorous comparison� since the particle simulation
distribution function is not �ltered at every time step� To check this� I did some runs with twice
the resolution using the gyro�uid code and obtained similar �though quieter� results� For more
details� see App� B�
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conditions were exactly as in the �uid code� Also� �x	 ky � �� � � was enforced�

Gaussian�shaped 
nite�size particles were tried� but slowed the convergence in the

number of particles� This may be related to the fact that the linear eigenmodes

for these physical parameters are highly localized around the rational surface� see

Fig� ������ The linear eigenmodes in transform space are therefore broad� One

needs good resolution above kx� � � to resolve the linear physics and a 
lter of

the form exp f��k�a�ng makes this di�cult� Nonlinearly� the ��k�� spectrum

is narrower but still non�negligible for k�� � �� For these parameters� I found

that ���K particles yielded a reliable answer �no discernible di�erence in the heat

�ux from a �M particle run� with eight�point averaging  Lee� ����!� More than

thirty runs were carried out to test the convergence of the particle simulation in the

number of particles� radial resolution �determined by the particle shaping for the

given number of grid points�� and the time step� Neither the aspect ratio �Lx�Ly�

of the simulation domain� nor the resolution in the y direction� nor the number of

radial grid points was altered for this study�

Figure ���$ �a� Fastest�growing linear eigenmode for the physical parameters �i �
���� ky�i � ���� � � �� Ls � �Ln� Because the mode is localized in x space� the
Fourier transformed potential is broad in kx��
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Figure ���$ Thermal �ux for single�helicity simulations with �i � �� � � �� Ls � �Ln�
Particle simulation compared to ��� and ��� gyro�uid simulations with � � ������

Results� Qualitatively� the results from the particle and �uid simulations are

similar� Fig� ����� compares the time traces of the volume�integrated heat �uxes

�de
ned below� from the two codes� The units between the two codes are consistent

with the normalizations and units used throughout this thesis�  I took �i � Ln

in the partially linearized particle code� e�ectively changing the usual �)c� time

normalization used in particle simulations to my �vt�Ln��! Both codes show phases

of exponential growth and saturation� Although the gyro�uid models fail to recover

the initial peak in the thermal �ux� the average thermal �uxes are generally the

same level�

The initial peak is an artifact of the resolution used in the x direction� and

is indicative of a nonlinear process that occurs at high kx�� Support for this claim

is provided by Figs� ����� and ������� The former 
gure indicates that the linear

physics for these parameters may be described with a maximum kx� of at least ��

Thus� further increases in resolution should not change the linear results� On the

other hand� the latter 
gure indicates that as one increases the resolution in the

x direction by a factor of four� from a mesh with �kx��Max � ��� to a mesh with

�kx��Max � ����	 the initial peak disappears� The nonlinear process responsible for

the saturation in this case in the �attening of the background temperature gradient
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Figure ����$ Thermal �ux for single�helicity simulations with Max�kx�� � � ��Basic
run	� and Max�kx�� � �� ��Converged run	�� ��� Gyro�uid model with �i � ��
� � �� Ls � �Ln� and � � ������

through the evolution of the Tk���x	 ky � �� modes� 
rst in the region of the rational

surface and later across the majority of the simulation domain� The high�resolution

mesh allows the gradient to �atten more rapidly in the region of the rational surface�

reducing the initial peak� The resultant steepening of the gradient near the edges of

the domain� does not destabilize the system since there are no rational surfaces in

this region� Because the dynamics of this system are dominated by the e�ects of the

relaxation of the temperature pro
le �as argued in more detail below�� comparisons

of the heat �ux vs� time are di�cult to interpret� More detailed comparisons of the

pro
le�relaxation dynamics should instead measure the time�integrated heat �ux

vs� time�

The level of thermal �ux observed after the initial transient eventually falls to

approximately zero in the gyro�uid simulation� I did not investigate the 
nal state

of the gyrokinetic particle simulation because of time constraints� For reference�

the particle result �through t � ���Ln�vt� used ��� hours on the NERSC C��� Cray

A�machine� while the equal�resolution ��� gyro�uid run �through t � ���Ln�vt�

�As in Chap� ���� the average temperature gradient is not observed to change� although the
local temperature gradient does vary�
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required ���� CPU minutes on the same machine �approximately �� times faster��

Allowing the background pro
les to relax thus allows for �quasilinear	 sat�

uration �though this is potentially confusing nomenclature� it is the standard way

of referring to the relaxation of the driving gradients and possibly can be traced

back to Galeev and Sagdeev� ������ rather than �nonlinear	 saturation� While

this argument is borne out by more detailed diagnostics in the gyro�uid simula�

tion� the easiest way to show the impact of the quasilinear �attening is to force the

�x	 ky � �	 kz � �� components of each of the moments to be zero at every time

step� For these parameters� one 
nds that the thermal �ux reaches a steady�state

level approximately 
fty times larger than if the temperature pro
les are allowed

to relax� as shown in the next section�

��� Single Helicity� Turbulent Saturation

The �uid representation allows one to model the e�ects of strong sinks and sources

trivially� For example� if one assumes that the heat source is strong enough to keep

the background gradient 
xed� then one can mimic this e�ect by suppressing the

�x	 ky � �	 kz � �� component of the pressure at every time step  Hamaguchi and

Horton� ����!� To be consistent� one should also suppress the �x	 ky � �	 kz � ��

component of the remaining 
elds as well� Surprisingly�� one is thus able to recover

the saturation level and thermal di�usivity predictions of a three�dimensional simu�

lation without retaining multiple rational surfaces� The implications of this 
nding

are perhaps profound and certainly useful� First� however� I present some evidence

for this claim� There is one important caveat$ the results of this section are very

recent and consequently not as well documented as the results in the remainder

of this thesis� nor as well understood� More investigation in this area is needed�

especially in light of the possible savings in computational resources�

Simulation parameters� The physical parameters used in the basic simulation

were �i � �� Ln�Ls � ����� and Ti � Te� Runs with two di�erent grids are shown

here� The 
rst �lower resolution� grid was �nx	 ny� � ���	 ��� and the second

It is surprising in the sense that it is a simple and powerful �nding that to my knowledge has
not been reported in the literature�
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�higher resolution� grid was ���	 ����� The simulation domains had dimensions

�Lx��	 Ly��� � �����	 ����� and �����	 ����� respectively� The maximum ky� compo�

nents of  retained were ky� � ���	 ��� respectively� The maximum kx� components

of  retained were kx� � ��� in each case� Sine transforms with ��� grid points

were used over the �Lx domain whenever Fourier transforms were utilized in the

radial direction� No��ux boundary conditions were used� Finally� the ��� model

was used with and without the NLPM terms� and the numerical di�usion coe�cient

was � � ������

The particle simulation used a three�dimensional grid with �nx	 ny	 nz� �

����	 ���	 ��� and �M particles� Four�point averaging  Lee� ����! was utilized� The

simulation domain had dimensions �Lx��	 Ly��	 Lz�Ln� � �����	 ����	 ������ The

highest kx� components of  retained were those with kx� � ����

Figure ����$ Thermal �ux vs� time for �D gyrokinetic and �D ����� gyro�uid
simulations with �i � �� � � �� Ls � �Ln� In the gyro�uid simulations� the �ky � ��
components of all 
elds were suppressed to prevent �attening of the background
gradients� In the gyrokinetic simulation� the �ky � �	 kz � �� component of the
electrostatic potential was suppressed�

In the �D gyro�uid simulation� the steady state is characterized by E�B
coupling of unstable modes to modes stabilized by Landau damping �large kkLn��

since the relaxation of the background gradients is explicitly prohibited� The ther�
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Figure ����$ A comparison of the spectra of � from a �D� ��� gyro�uid simulation
�with the ky � � components of all 
elds suppressed to prevent �attening of the
background gradients�� and a �D� gyrokinetic simulation with the same physical
parameters and with the �ky � �	 kz � �� component of the electrostatic potential
suppressed� The fastest�growing modes have ky� � ��� and are responsible for the
�knee	 visible in the spectrum� Note the di�erence in the overall level�

mal �ux predicted by the di�erent simulations is shown in Fig� ������� There is a

factor of two di�erence in the thermal �ux level between the two gyro�uid simu�

lations� attributable to the di�erence in y resolution� Thus� one should take these

results with a grain of salt until full convergence studies are shown� In addition

to the resolution in the y direction� there are di�culties of interpretation in the

x direction� That is� since there is only a single rational surface with a band of

turbulence that does not extend inde
nitely� one can make the volume�averaged

heat �ux as small as one wishes simply by taking the simulation domain to be very

large in the x direction� It does not appear to be true� however� that one can make

the �uxes larger by making the simulation domain smaller� there is an upper limit

to the thermal �ux transported across the rational surface� realized for a box size

comparable to the linear mode widths for the parameters one is investigating�

In Fig� �����a� I show the scaling of the �D thermal di�usivity with the shear

parameter Ln�Ls� The error bars indicate the range of values I have obtained� I



���� Single Helicity� Turbulent Saturation ���

have not rigorously shown that the �D simulations converge as the resolution is

increased� That the trend is comparable to that shown in Fig� ������ below is

encouraging� however�

These results  summarized in Fig� �����b�! indicate that the principal dif�

ference between conventional two� and three�dimensional sheared�slab simulations

of ITG turbulence is in the nonlinear saturation mechanism� and that one may

recover three�dimensional results with a two�dimensional simulation by disallowing

quasilinear �attening of the driving gradients� That is� ITG turbulence in a sheared

magnetic 
eld �without curvature� is perhaps fundamentally two�dimensional� If a

similar result holds in a curved magnetic geometry� one could conceivably simulate

a tokamak discharge with an order of magnitude less computational resources than

presently estimated� However� there are reasons to doubt that this will come to

pass� Most importantly� the e�ects of local modi
cations to the background gra�

dients are important to the determination of the evolution of sheared �ows� which

may be an important source of stabilization in a toroidal con
guration  Beer et al��

����!�
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Figure ����$ �a� Thermal di�usivity 
 from �D� ��� gyro�uid simulations with
�i � �� � � �� Ls � �Ln� The ky � � components of all 
elds suppressed to prevent
�attening of the background gradients� �b� Thermal �ux of �D and �D simulations
compared�
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��� Sheared Slab� Multiple Helicity

The most relevant benchmark presented in this chapter is the nonlinear� fully three�

dimensional� sheared�slab comparison below� Two�dimensional simulations with

and without magnetic shear are quickly saturated by quasilinear �attening of the

driving gradients unless sources and sinks are included� While this is a relevant local

e�ect� it is not characteristic of the evolution of tokamak plasmas in general� That

is� one does not observe �attening of the pressure pro
le across the entire minor

radius of a tokamak discharge in the presence of �what may be� ITG turbulence�

With enough rational surfaces to 
ll one�s simulation domain� one can begin to sim�

ulate the more realistic features of the turbulence problem� As noted in Chap� ��

one may enforce radial periodicity to overcome the problems associated with pro
le

modi
cations that extend across the entire simulation domain� Here� this re
ne�

ment is not pursued� Measurements of the di�usivities are taken before signi
cant

�attening across the majority of the domain occurs� Furthermore� sheared�velocity

�ows are suppressed� Nevertheless� the results are indicative of general convergence

in the physical description of turbulent saturation� Three�dimensional simulations

of more relevant geometries have been undertaken�  Beer et al�� ����� Hammett

et al�� ����� Waltz� ����� Parker et al�� ����! but the question of the accuracy of

the gyro�uid techniques in strongly turbulent settings remains unanswered� Here

I present the 
rst concrete evidence of the relevance of gyro�uid simulations of

tokamak microturbulence�

The physical parameters used for these comparisons are �i � �� � � �� and

a varying magnetic shear length� The gyrokinetic simulation used �nx	 ny	 nz� �

����	 ���	 ��� with �Lx��i	 Ly��i	 Lz�Ln� � �����	 ����	 ������ Fourier harmonics of

the electrostatic potential characterized by ky�i � � or kx�i � ��� were suppressed

along with the �x	 ky � �	 kz � �� component� No��ux boundary conditions were

used� and sine transforms �with �nx grid points� over a domain of width �Lx were

employed in the x direction� The time step was �tvt�Ln � ������

Nonlinear terms in the gyro�uid simulations were evaluated on a grid with

�nx	 ny	 nz� � ����	 ��	 ���� The lower resolution in the y direction should not be

important� since there is little �uctuation energy above ky� � �� and since the

potential is resolved equally well in the two simulations� The physical dimensions

of the box� 
lters for � and boundary conditions were the same as used for the
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Figure ����$ Comparison of 
 from ��� gyro�uid and particle simulations with
�i � � and � � �� �Each simulation with the �ky � �	 kz � �� components of 
suppressed to prevent velocity�shear damping��

particle simulation� The average nonlinear time step was �tvt�Ln � ����� The

���� (
���
� model was used for all of the �D simulations� For these runs� � � ������

In Fig� ������ I compare the predicted thermal di�usivity �
i� from the two

simulations as the magnetic shear length is changed� The agreement is excellent de�

spite the fact that hkkvt��i � �� hk��i � � and �Ln���e�T � �� Either of the 
rst

two conditions is considered su�cient to render the straightforward �uid approach

inapplicable� The 
nal two conditions imply that the nonlinear phase�mixing terms

may be signi
cant� however� if they are ignored the resulting predictions for 
 di�er

only by ���'  see Fig� ������!� This may be attributed to the strong 
ltering of

the potential at each time step� In an un
ltered system� nonlinear phase�mixing

reduces the high�k�� oscillations most strongly� There is somewhat less noise when

the NLPM terms are retained �as expected� but it is not clear from these compar�

isons if the additional time required to compute the NLPM terms is cost�e�ective



���� Sheared Slab� Multiple Helicity ���

Guiding center chi

time

  0.20

  0.18

  0.16

  0.14

  0.12

  0.10

  0.08

  0.06

  0.04

  0.02

  0.00

    0.    50.   100.   150.   200.   250.   300.   350.   400.

Wed 23rd Jun 1993 00:13:28.000     26  

Guiding center chi

time

  0.25

  0.20

  0.15

  0.10

  0.05

  0.00

    0.    50.   100.   150.   200.   250.   300.   350.   400.

Sun  1st Aug 1993 17:01:39.000     36  

Figure ����$ Gyro�uid thermal di�usivity �a� with NLPM and �b� without NLPM
vs� time for 
ltered multiple�helicity simulations with �i � �� � � �� Ls � �Ln�

in this setting� In particular� the scaling of the thermal heat �ux with the mag�

netic shear length does not appear to depend strongly on the NLPM terms� The

thermal di�usivity varies by a factor of seven as the shear length varies between

Ln�Ls � ���� and Ln�Ls � ������� This variation is recovered by both simulations�

The spectra of the potential �uctuations are shown in Fig� ������� Note that

the peak in the spectrum occurs for ky�i � ��� even though the fastest�growing mode

is located at ky� � ���� For longer simulations� one may 
nd that the peak of the

spectrum shifts to the longest �poloidal	 wavelength �ky�i � ���� in this case� in

the box� As a function of kx�� the �uctuations in general have shorter wavelengths�

as may be seen from Fig� ������� Some contour plots of the 
elds at the end of the

weak�shear �Ln�Ls � ������� gyro�uid run are shown in Figs� ������%������� One

may see evidence of �attening of the temperature gradient across the system from

Fig� ������� indicating that one should consider periodic boundary conditions�
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Figure ����$ Gyrokinetic thermal di�usivity vs� time for multiple�helicity simulation
with �i � �� � � �� Ls � �Ln�

Figure ����$ ��ky�i� for multiple�helicity simulations with �i � �� � � �� Ls � �Ln�
Shown are gyro�uid and gyrokinetic simulation results with the �ky � �	 kz � ��
components of  suppressed to prevent velocity�shear damping� In each case� the
time average was performed over the nonlinear phase of the simulation� Note the
di�erence in overall level�
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Figure ����$ ��kx�i� from the gyro�uid simulation with �i � �� � � �� Ls � �Ln�
The truncation of the potential above kx�i � ��� may be clearly seen�

Figure ����$ Contours of �a�  and �b� density for multiple�helicity simulation with
�i � �� � � �� Ls � ��Ln� From a ��� gyro�uid simulation with the �ky � �	 kz � ��
component of  suppressed to prevent velocity�shear damping�
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Figure ����$ Contours of uk for multiple�helicity simulation with �i � �� � � ��
Ls � ��Ln� From a ��� gyro�uid simulation with the �ky � �	 kz � �� component
of  suppressed to prevent velocity�shear damping�

Figure ����$ Contours of �a� Tk and �b� T� for multiple�helicity simulation with
�i � �� � � �� Ls � ��Ln� From a ��� gyro�uid simulation with the �ky � �	 kz � ��
component of  suppressed to prevent velocity�shear damping�



Chapter 


Nonlinearly Generated Velocity

Shear

T
HAT PLASMA TURBULENCE may generate sheared �ows that tend

to be stabilizing is not a new concept�� However� the simulation results

presented in this chapter �and previously  Dorland et al�� ����b!� were

among the 
rst  Beer et al�� ����� Dimits� ����! to show that turbulence character�

istic of the core �as opposed to the edge� of a tokamak discharge could likely behave

in this way� Before showing the results� a short description of correct treatment of

the quasineutrality constraint is presented �including the likely rami
cations��

��� Adiabatic Electrons

An adiabatic electron response of the form ne� � n�e�Te is often assumed for many

types of tokamak instabilities  Dimits and Lee� ����!� This form is usually incor�

rect for the �ky � �	 kz � �� component of the �uctuations� which can make a big

di�erence in nonlinear simulations� The adiabatic electron response is derived from

the linearized parallel�force�balance equation for electrons� which in the kkvte  �

limit is rk�pk� � en�� � �� Upon assuming that the electrons are isothermal �so

that pk� � ne�Te��� one 
nds

rkne� � n�rk

e

Te�
� �����

�I have reviewed some of the relevant literature in Chap� ��

���
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Thus� only the parallel gradient of the electron density is determined� the constant

of integration in

ne� � C � n�
e

Te
�����

must be determined from some other constraint� In the usual case of electrostatic

waves in a plasma with good magnetic �ux surfaces� there is no net radial transport

of particles if the electrons are exactly adiabatic �the radial particle �ux nevEx �
ne�y vanishes when averaged over a �ux surface�� This means that the number

of electrons on each �ux surface must be constant� thus determining the constant

of integration in Eq� ������

ne� � n�
e

Te
�� hhii� 	 �����

so that the �ux�surface�average hhne�ii � �� For convenience� I will also use the no�

tation hhii � �m�n� where �m�n is an operator in Fourier wave�number space that

is unity for the m � �	 n � � component and zero for all other Fourier components�

To demonstrate the importance of this� consider the solution of Eq� ������ for +�

+ �
*ni

� ��� �m�n� � �� (�
	 �����

where *ni is the non�polarization part of the ion density� i�e�� the 
rst term on the

right�hand side of Eq� ������� Upon expanding the Bessel function in the long�

wavelength limit� one may reduce this expression to

+ �
*ni

� ��� �m�n� � k���
�
i

� �����

For m �� � or n �� �� this gives the familiar form + � *ni��� � k���
�
i �� But for the

m � n � � component �the part representing poloidal �ows � +����x�� this gives

+��� �
*ni���
k�x�

�
i

	 �����

which at long wavelengths �k�x�
�
i � �� gives a very large enhancement in the poloidal

�ow over the usual formula that ignores the �m�n term� In physical terms� the

usual ne� � n�e�Te formula allows electrons to move radially across �ux surfaces

and short out the radial electric 
eld responsible for the poloidal �ow� while the

expression ne� � n�e��hhii��Te prevents this radial current� �Actually� it should
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be pointed out that the usual form may be acceptable if the magnetic 
eld lines

are fully stochastic and space�
lling rather than forming good �ux surfaces� Radial

electric 
elds will then have a component parallel to this stochastic magnetic 
eld�

allowing the electrons to �ow radially as well� However� in the more conventional

case where good �ux surfaces are assumed� one should include the hh�ii term so

that the electrons do not respond to a potential that is constant along a 
eld line��

Finally� note that this e�ect will continue to be important even if weak non�adiabatic

e�ects �such as collisions or trapped electrons� are included� As long as the electron

response is still close to adiabatic� the adiabatic component should not respond to

a potential that is constant along a 
eld line� These considerations apply equally

to particle and �uid simulations when the electrons are modeled adiabatically�

��� Simple Theoretical Aspects of Flow Evolution

Having clari
ed the role of the adiabatic electron constraint� we may make a

�guiding�center� correspondence with Diamond�s physical picture  Diamond and

Kim� ����! of the turbulent momentum �ux driving the mean shear �ow� In the

long�wavelength limit� the quasineutrality constraint �Eq� ������� is approximately

� �� hhii� � �� �
�

�
r�

��n �
�

�
r�

�T� �r�
��

The �ux�surface average of this equation produces an equation for the perpendicular

velocity shear �ow �since the left�hand side vanishes�$

E�
x � hh�r�

�ii � hhn �
�

�
r�

��n � T��ii

Upon employing this identity  and neglecting terms of order �k����!� one may write

down an equation for the time evolution of the sheared perpendicular �ow �ignoring

the nonlinear phase mixing for the moment�$

E �
x

t
� �hh��� � �

�r�
��v


 
 rn �
�r�

�v

 
 rT�ii

� �hh���� �
�
r�

��v

 
 rnii � hh�r�

�v

 
 rp�ii�

Diamond and Kim� ���� discuss the general momentum�evolution equation� iden�

tifying the Reynold�s stress or turbulent momentum �ux as the drive for sheared
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�ows� Because I am using guiding�center variables� the corrections due to the po�

larization and diamagnetic drifts are more visible� However� the underlying idea

is the same� Typically� the two terms on the right�hand side are the same size�

Via the polarization drift� the local transport of guiding centers and of the guiding�

center perpendicular pressure drives a mean sheared �ow� Angular momentum is

conserved in this process� as can be seen by integrating this expression over the x

direction� the right�hand side vanishes� The important qualitative point is that this

mean sheared �ow can suppress the linear growth rates� as shown in App� D� and

thereby reduce the thermal �ux in the region around the rational surface �where

the ITG mode is localized by Landau damping�� The �ows need not have a large

radial extent to impact the turbulence signi
cantly� since the most unstable modes

are typically only several to a few tens of gyroradii in radial extent� Nor need the

�ux be large to begin to have an e�ect� since the velocity gradients that stabilize

the linear modes are only �vy�vt��LT�Lv� � LT�Ls�

From this simple picture� it is clear that the velocity shear and the nonlinear

thermal �ux are intimately related� To simply suppress the kk � � component of

 at every time step without a solid rationale for doing so is probably inadvisable�

Furthermore� most simulations to date have taken no special action with regard to

the kk � � components of pressure� momentum� etc�� singling out the potential for

di�erent treatment is inconsistent�

If the resulting shear �ows were tied to the box size �always largest for the

longest x wavelengths� for example�� the implications for the scaling of the turbu�

lence would be quite important� one need not expect to 
nd gyro�Bohm scaling�

On the other hand� if the shear �ows were strongly related to the grid resolution

�through the thermal transport due to the relatively widely spaced low�order ra�

tional surfaces� for constant box�size� the e�ect could be spurious� and may not be

observed in a physical system with densely packed rational surfaces� More study

is called for in this regard� Two examples are shown in Figs� ����� and ������ In

the 
rst case� there are probably not enough rational surfaces in the simulation

domain� because the dominant wavelength of the sheared �ow in the x direction

is comparable to the box size� In the second case� with much higher resolution�

the dominant wavelength of the sheared �ow is much smaller than the simulation

domain� The peak values in the two cases are comparable� These examples suggest
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that the shear �ow e�ect is real�

One might argue for the practice of suppressing sheared �ows in simulations

by noting that in the limit of densely packed rational surfaces� it is unlikely that

signi
cant gradients in the electric 
eld could build up� That is� with a very large

number of modes in the box� each at a given time driving a sheared �ow with arbi�

trary sign� the mean 
eld should be very close to zero� According to this argument�

the observation of mean sheared �ows in simulations is a relic of the small number of

modes� To address this argument� one should increase the resolution of one�s simu�

lation to the computational limit in such a way as to increase the density of rational

surfaces while keeping their distribution as even as possible� and look for changes in

the answers� There is no obvious reason to assume that the answer one gets from a

highly resolved simulation will be the same as if one continues low�resolution runs�

selectively removing a few Fourier components of electrostatic potential��

��� Simulation Results

Here I show the importance of the self�generated velocity shear in the gyro�uid

simulations� The parameters for the run shown in Figs� ���%��� were Lx � ���i	 Ly �

���i	 Lz � ��Ln	 nonlinear resolution �x	 y	 z� � ���	 ��	 ���� Ln�Ls � ������ �i �

���� Ti � Te� � � ���� no nonlinear phase�mixing� and twisting periodicity in the

radial direction� Thus� this is a low�resolution simulation with a high value for

�� Fig� ����� shows 
i vs� tvt�Ln� The initial peak is quickly quenched by the

nonlinearly generated sheared perpendicular �ow whose time�averaged radial pro
le

is shown in Fig� ������ In Fig� ���� the kinetic energy



u�k � �r���

��
for each

�ky	 kz� pair is plotted vs� tvt�Ln� The mode that is dominant over most of the

time of the simulation is the �ky � �	 kz � �� mode� This mode has no linear drive�

and hence is a product of �kx	 ky	 kz� � �k�x	�ky	�kz� types of terms from the E

�B nonlinearities� The only direct damping it sees in this simulation is � �r�
��

since the nonlinear phase�mixing terms are not included� Since � � ��� and the

dominant wavelength �� � ��� implies kx�i � ���� one would expect a damping

�To be fair� it seems that a very similar argument is correct with respect to quasilinear �attening
of the driving pressure gradient� As shown in Chap� 	�
� one observes the same thermal �ux in
a �D simulation with the gradient �xed as is obtained from a large� 
D simulation with closely
packed rational surfaces�
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Figure ���$ Heat �ux vs� tvt�Ln for a simulation with proper adiabatic electron
response and with arti
cially large viscous damping�

rate � � ��� � ����� This is consistent with the kinetic energy� which falls roughly

���e�foldings between tvt�Ln � ��� and ����
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Figure ���$ Time�averaged perpendicular velocity shear�

Figure ���$ Kinetic energy for each �ky	 kz� pair vs� tvt�Ln� The dominant mode is
�ky � �	 kz � ���
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When the �ky � �	 kz � �� mode is su�ciently damped� the remaining

modes begin to grow again� driving the perpendicular rotation that again damps

all competing modes� This recurring process shows no sign of diminishing over very

long times� If � is taken to be small� the �ky � �	 kz � �� mode does not decay

signi
cantly� and the turbulent heat �ux is usually eventually suppressed to very

low levels� even for �i large�

This may be seen in the simulation shown in Figs� �����%������ The pa�

rameters for this simulation were Lx � ���i	 Ly � �����i	 Lz � ����Ln	 nonlinear

resolution �nx	 ny	 nz� � ����	 ��	 ���� Ln�Ls � ������� �i � ���� Ti � Te� � � ������

no nonlinear phase�mixing� and twisting periodicity in the radial direction�

Fig� ����a� shows the arrangement of the rational surfaces and their relative

importance� The vertical axis is the mode number m for ky�i � ��m�Ly� The

horizontal axis is the radial position �measured in units of �i�� There are four

vertical lines that mark the boundaries of the �real	 simulation domain and of the

total simulation domain� The real simulation domain is the domain over which the

twisting periodicity conditions outlined in Chap� � are enforced� and is bounded by

the inner two vertical lines� which intersect the x axis at x � ����i and x � �����i�

Because ITG is a spectral code for the purposes of evaulating derivatives in the

x direction� it is necessary to include a few extra grid points on the edges of the

periodic domain� That is� before each time step� a small strip of data between

x � ����i and x � �����i is copied into the region between x � �����i and x � �����i

according to the twisting periodicity condition� Eq� ������ Similarly� a strip of data

between x � �����i and x � �����i is copied into the region between x � � and

x � ����i� The Fourier transforms are then continuous across the boundaries of the

periodic domain� and do not cause noise problems there� After calculating the x

derivatives� the data in the edge regions is thrown away� The height of each oval

is proportional to the logarithm of the amplitude of the mode at the end of the

simulation� The width is proportional to the quantity �x� de
ned in Eq� ������

It is apparent from this 
gure that many of the modes have rational surfaces

that lie outside the periodic domain� They are therefore strongly damped inside

the domain� and provide a source of stability� Most of the modes have rational

surfaces inside the domain� The modes 
ll the domain as uniformly as possible�

Nevertheless� in the long�time limit of this simulation� a region of strong sheared
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�ows �with substantial curvature� forms on the left�hand side of the periodic domain�

as may be seen in Fig� ����b�� From Fig� ����� one may observe that the thermal

�ux is very small through this region� and the temperature gradient is steepening

signi
cantly� The average temperature gradient remains 
xed at �i � �� but there

are some regions where it is less than �i � � and other regions where it is greater

than �i � �� The thermal di�usivity reaches a peak value of 
 � ���� in the early

stage of the simulation �not shown�� and then steadily decreases as the gradients in

the radial electric 
eld act on the turbulence� In the 
nal state� the di�usivity is

very small� 
 � ����  Fig� �����!�
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Figure ���$ Despite �a� a dense arrangement of rational surfaces� one observes
�b� sheared �ows �Ex�x� that quench the thermal transport� The dashed lines
represent one standard deviation in the time�average of the sheared �ow�

In Fig� ����� I show results from a run in which the velocity shear does

not quench the turbulence� The parameters for this run were Lx � ���i	 Ly �

�����i	 Lz � ����Ln	 nonlinear resolution �nx	 ny	 nz� � ����	 ��	 ���� Ln�Ls � �����

�i � ���� Ti � Te� � � ������ no nonlinear phase�mixing� and twisting periodicity

in the radial direction� These parameters are comparable to the parameters used

in the �D comparisons with the particle simulations presented in Chap� ���� Note

that the thermal di�usivity predicted is a factor of two smaller in this case �
i �

������i vt�Ln�� The drop may be attributed to the correct treatment of the adiabatic
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Figure ���$ Time�averaged �a� thermal �ux and �b� total temperature gradient�

electron response� and was con
rmed by the gyrokinetic particle simulation �results

from the particle simulation not shown��

The controlling di�erence between the run shown in Figs� �����%����� and

this run is the level of magnetic shear� As the shear length Ls increases� the linear

modes are wider radially�  Typical linear results that show this trend are shown in

Figs� ����� and ������! Wide modes are more easily stabilized by sheared �ows than

are narrow modes� Thus� simulations with lower magnetic shear are observed to be

stabilized by velocity shear more easily�

The diminishing e�ects of these �ows in the sheared�slab geometry are su��

ciently pervasive as to render parameter scans quite boring� In a toroidal con
gura�

tion� there are physical e�ects that limit the shear �ows� and therefore control the

transport according to this model� In future work� one should include these e�ects

in simulations such as the ones shown here to systematically map out the thermal

transport properties of the nonlinear ITG mode�
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Figure ���$ Thermal di�usivity is small in 
nal state compared to peak value of

i � ���� �not shown�� for the parameters of Figs ����� and ������
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Figure ���$ �a� Time�averaged perpendicular velocity shear and �b� volume�averaged
thermal �ux observed in high�shear simulation�
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Chapter �

Conclusions

M
Y GOAL HAS BEEN to derive a �uid description of plasma that re�

tains as much of the unique kinetic physics as possible� to benchmark

the model equations and numerical codes with existing� well�developed

gyrokinetic theory� and to investigate the role of ion�temperature�gradient driven

turbulence in a sheared slab� Within the extended �gyro�uid	 paradigm� I have de�

veloped a three�dimensional plasma microturbulence simulation program �ITG� that

successfully reproduces linear and nonlinear gyrokinetic particle�simulation predic�

tions for thermal transport characteristics of thermonuclear plasma embedded in a

strong� sheared magnetic 
eld� Gyro�uid simulations complement gyrokinetic par�

ticle simulations� which are more fundamental and potentially more accurate� by

providing a relatively inexpensive but physically relevant computational tool� For

example� ITG is both fast enough to run in a workstation environment and �exi�

ble enough to permit the addition of realistic toroidal e�ects� Nonlinear gyro�uid

simulations on a ��� grid can be completed in one or two hours of Cray C��� CPU

time �on a single processor� without introducing signi
cant 
ltering� that is� with a

large range of the spectrum accurately simulated�

On a general note� the �uid approach� while certainly not appropriate for all

problems� is probably adequate for the investigation of tokamak turbulence� since

��� the nonlinear �uid equations express fundamental conservation laws that the

turbulence must satisfy �conservation of particles� parallel momentum� parallel and

perpendicular energy� and more if higher moments are retained�� ��� they contain

fairly accurate multipole Pad�e models of the kinetic linear propagator� and are

���
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able to produce the proper linear frequency and wavenumber spectra� and ��� they

contain the dominant nonlinearities �E�B and the related FLR nonlinearities� that

couple these linear modes together to provide the nonlinear saturation mechanism

for the turbulent� nonlinear system�

��� Highlights from this Thesis

Several issues were addressed as the results of Hammett and Perkins� ���� were

extended from the shearless� drift�kinetic limit  their Eqs� �����! to the sheared

slab� gyrokinetic limit� First� the previous Landau�damping closure was generalized

to include new perpendicular�velocity moment equations� I derived eight guiding�

center moment equations �for n� uk� Tk� qk� T�� q�� r�� and s�� and showed how

to reduce them to as few as may be needed for a particular application� It was

shown that for the ITG instability� a ��� model �n� uk� Tk and T�� is su�cient to

recover the linear eigenmodes and eigenfrequencies  Linsker� ����! with reasonable

accuracy in the sheared�slab limit�

Second� I discussed how to approximate the velocity�space averages of gyro�

averaged quantities� The usual Taylor�series approximations to these terms are

inappropriate for numerical studies of ITG turbulence� as the radial grid spacing

required to resolve the dynamics intrinsically involves modes with k�� � �� for

which the Taylor�series approximations are inadequate� I presented several FLR

models of varying complexity and utility� All except the ��� and ��� models are

second�order accurate in k�� and well�behaved for k�� ��

The most satisfactory model presented� the (
���
� model� is linearly exact in

the absence of magnetic shear if an equal number of parallel and perpendicular

moments are kept� It can be easily implemented in existing spectral codes� as it

requires only simple modi
cations of the perpendicular Laplacians and of Poisson�s

equation� These modi
cations also reduce the sti�ness of the system� as the modi
ed

Laplacian operators are bounded by� ��� as k����� With this FLR model in the

gyro�uid equations� good agreement is found with the linear gyrokinetic predictions

 Linsker� ����� Dong et al�� ����! of frequencies� growth rates and mode structures

even near marginal stability� where the ITG mode is known to be strongly a�ected

by kinetic e�ects�
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I also outlined an FLR model more suitable for 
nite�di�erence applications�

the Pad�e model� This model reproduces the kinetic growth rates to within only

� ��' accuracy in the regime in which we benchmarked its performance� However�

I showed that with it one may recover linear gyrokinetic eigenmodes with good

accuracy� Like the (���
� model� the Pad�e model reduces the sti�ness of the system�

Next� I described a new nonlinear� FLR phase�mixing e�ect� This perpendic�

ular phase�mixing process is analogous to parallel phase mixing� deriving from the

r 
 �J�vEF�� term of Eq� ����� just as Landau damping derives from the rk�vkF��

term� It may be as important as the Hasegawa%Mima  Hasegawa and Mima�

����! polarization�drift nonlinearity when Ti � Te� as it is � k��j�k
�k � �k�j� It pro�

vides an FLR�induced hyperviscosity�like sink of turbulent energy for k�� � � in

a �uid description� A gyro�uid model that captures the qualitative features of the

resulting nonlinear gyrokinetic response was presented� though it was noted that

it is a di�cult e�ect to model accurately with �uid equations� I noted that this

e�ect tends to reduce the noise in nonlinear gyro�uid simulations� and can reduce

the thermal di�usivity if the spectrum is not truncated around k�� � ��

In carrying out the derivation of the new nonlinear gyro�uid terms� I showed

a fairly general way to proceed when trying to model kinetic e�ects with �uid equa�

tions� For example� using the same method one could 
nd �uid models of the

precessional drift resonance� cyclotron resonances� or the toroidal drift resonance�

The latter has already been accomplished  Waltz et al�� ����� Beer and Ham�

mett� ����!� Additional physics e�ects �such as non�adiabatic electrons� sheared

equilibrium �ows� and multiple species of ions�� which may have important impacts

for experimental parameter regimes� have been added to this model �and to the ITG

code� with no signi
cant complications and are discussed in the appendices�

I showed a few of the many linear� numerical benchmarks I have carried

out� Utilizing the kinetic models described above� excellent agreement with linear

gyrokinetic theory was found� Previous �uid estimates of the linear frequencies

and mode widths were generally too large by factors of � � and overestimated

the nonlinear thermal �ux by a factor of ten  Kotschenreuther et al�� ����!�

Nonlinear simulations using the full gyro�uid models showed very good agreement

with particle simulations� From the evidence presented here� one may conclude

that the ���� (
���
� model is probably su�ciently accurate for the study of ITG
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turbulence� In any event� I showed that our gyro�uid systems that retain more

moments do become more accurate� Thus� one may �for example� use the ���

model to check nonlinear results obtained from the ��� model for consistency�

While comparing the linear performance of the ITG code with linear gyroki�

netic theory� I pointed out that concentrating on a single radial eigenmode is likely

to be misleading� I noted that mixing�length estimates can vary widely depending

upon which mode is selected� making such estimates �which loosely represent only

an upper bound on the transport� uncertain unless a reliable selection criterion can

be developed�

A weak�turbulence analysis of electron drift�wave turbulence was carried

through to show the correspondence between the gyro�uid and gyrokinetic descrip�

tions of the nonlinear physics� The FLR and Landau�damping models derived here

and elsewhere  Hammett and Perkins� ����! allow one to 
nd a gyro�uid wave�

kinetic equation that is an excellent approximation to the gyrokinetic wave�kinetic

equation in the drift�wave limit� In particular� both the beat�wave�resonance damp�

ing and the sharp reduction of ion Compton scattering in the long�wavelength limit

were reproduced for the 
rst time using �uid equations�  Mattor� ���� indepen�

dently noted the former with a simpler set of �uid equations but did not emphasize

the degree of agreement with kinetic theory�! As noted by Mattor� ����� very

near marginal stability� the ��� gyro�uid equations fail to recover the kinetic ion

Compton�scattering rate� This conclusion is true also for all gyro�uid models de�

scribed here� i�e�� up to the ��� model� It was conjectured that a larger system of

�uid equations closed with the generalized many�moment Landau�damping closures

of Smith and Hammett� ���� and Hammett et al�� ���� would perform better

in this limit� Some numerical evidence was presented in support of this claim� but

more work is needed to understand this limit better�

Nonlinear results from ITG were benchmarked with gyrokinetic particle simu�

lations and three�mode�coupling theory� In general� excellent agreement was found�

even in regimes where � � kkvt� k��i � �� and the nonlinear terms were order unity�

This level of agreement has never before been shown between �uid and particle sim�

ulations� and is a principal result of this thesis� Three problems were investigated$

��� the unsheared� single�kk� local limit� ��� the sheared� �D system �with a single

rational surface�� and ��� the �D sheared�slab with no allowed perpendicular shear
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�ows� The nonlinear saturation mechanism for each case was described� It was

argued that in cases ��� and ���� quasilinear �attening of the background gradient

was responsible for the nonlinear saturation� For case ���� a theory was presented

 Parker� ����! to support this claim� and for case ���� numerical evidence was

presented� Finally� the �D simulations were su�ciently large to allow turbulent

saturation� although some �attening of the temperature gradient in the bulk of the

simulation domain was observed�

In light of these 
ndings� a novel �D simulation scheme was presented and

shown to produce reasonable results in a small fraction of the time required by

�D simulations� By freezing all of the kk � � components of the moments and of

the potential with strong sources and sinks  numerically equivalent to suppressing

the �x	 ky � �	 kz � �� components at every time step  Hamaguchi and Horton�

����!! I showed that it is possible to regard ITG turbulence as otherwise two�

dimensional�

The role of the aspect ratio of one�s simulation domain was discussed in

connection with the rapid roll�over of thermal �ux often previously reported� In

particular� it was noted that if one does not choose one�s domain so that rational

surfaces are distributed evenly and densely throughout the entire domain� rapid local

�attening of the driving gradient can reduce the nonlinear heat �ux� Di�culties

associated with boundary e�ects can be overcome by allowing for periodicity in

each direction� A scheme for implementing radial periodicity in the presence of

magnetic shear was outlined�

The correct adiabatic�electron response �for a magnetic con
guration with

good �ux surfaces� was shown and its e�ect on the nonlinear turbulence described�

On a more mundane level� numerical convergence of ITG was demonstrated in the

appendices for an interesting set of physical parameters� The roles of spatial and

temporal resolution� the number of moments� and arti
cial dissipation were dis�

cussed�

Having established that the physics is largely correctly described and that

ITG is working properly� I presented the principal result to date from nonlinear

gyro�uid sheared�slab simulations$ the observation of self�generation of sheared

velocity �ows that strongly reduce the turbulent heat �ux� Because there are no

natural damping mechanisms for this rotation in a collisionless sheared�slab� one



��� Chapter �� Conclusions


nds that the thermal transport perpendicular to the magnetic 
eld is much weaker

than expected� This illuminates the very interesting possibility that toroidally�

induced sheared��ow damping could control anomalous transport by acting as a

�valve	 for the thermal di�usivity� even far from the edge�

��� Future Work

FLR e�ects play a critical role in the development of low�frequency microturbulence

since the ion gyroradius provides the fundamental small�scale length for collisionless�

electrostatic systems� Along with Landau damping� FLR e�ects determine the linear

mode structure and localize the mode around the rational surface� Because the most

unstable modes typically have perpendicular wavelengths such that k�� � �� one

will always need FLR models such as those developed here if one wishes to perform

direct numerical simulations of microturbulence using �uid equations� In addition

to FLR e�ects� the ultimate gyro�uid model would include models to account for

toroidicity� multiple species� non�adiabatic �bounce�averaged� electrons� collisions�

and possibly electromagnetic e�ects� Progress has already been made on several of

these fronts� further development and the task of integration remain�

The most interesting follow�up to the work presented here is well underway

 Beer et al�� ����� Hammett et al�� ����a� Waltz� ����� Beer et al�� ����� Ham�

mett et al�� ����!� That is� a careful nonlinear investigation of the ITG instability

in toroidal geometry including self�generated sheared �ows could possibly be ex�

tremely relevant to magnetic con
nement fusion experiments� If it can be deter�

mined that the interaction of sheared �ows and turbulent �uctuations continues to

be important to the evolution of the ITG instability in the core region of the toka�

mak� one could then perhaps follow the lead of Diamond  Diamond and Liang�

����! and LeBoeuf  Leboeuf et al�� ����! and reduce the problem to a simpler

predator�prey paradigm� However� one would require comprehensive simulations to

determine the proper parameters for such a reduced description� Even if a reduced

predator�prey model is not su�ciently accurate� this thesis has established the im�

portance of turbulence�generated sheared �ows and shown that it is important to

model the generation and damping mechanisms accurately� In particular� with the

inclusion of toroidicity� neoclassical damping mechanisms may introduce poloidal
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eld dependence into the scaling for 
i through the self�generated E�B �ows�

In addition to toroidal e�ects� one should consider the role of impurities and

possibly of non�adiabatic electrons in ITG turbulence� For di�erent reasons �dis�

cussed in the appendices�� each might play a role in the generation or dissipation

of sheared �ows� or in the linear stability of the mode  Kotschenreuther� ����!�

Of more interest� however� might be the e�ect of full ITG turbulence on these com�

ponents of the plasma  Cowley� ����!� One might discover signatures of sheared

�ows or of microturbulence in the dynamics of the minority species that could be ex�

ploited to understand the dynamics of the plasma as a whole� More optimistically�

one might 
nd a convenient �knob	 with which one could a�ect the turbulence�

Along these lines� Hassam� ���� has suggested using o��axis neutral�beam injec�

tion to drive di�erential poloidal rotation to reduce microturbulence� One would

hope to be able to simulate such ideas numerically within the gyro�uid paradigm�

One might include the e�ects of trapped electrons with �uid moments of

a bounce�averaged kinetic equation  Perkins and Hammett� ����!� With the

proper precession�resonance model� one could then recover the collisionless trapped�

electron mode� With the further inclusion of collisional models  Chang andCallen�

����a� Chang and Callen� ����b! one could include turbulence due to the dis�

sipative trapped�electron mode and the e�ects of classical di�usion� If simulations

with this level of complexity fail to explain the observed anomalous transport� one

could incorporate electromagnetic e�ects  Chang and Callen� ����a� Chang and

Callen� ����b� Hedrick and Leboeuf� ����!�

More far�reaching applications of the methods and models developed here

might include a reduced description of electron transport in semiconductor lattices

 Frey� ����!� Presently� if one wishes to know the details of the electron distribution

function in a semiconductor� one employs a semi�classical approximation to describe

the possible energy levels that the electrons may occupy� and particle simulations

�or more general Monte�Carlo methods� to describe the dynamics� Because the

conduction electrons interact weakly with the lattice and with one another� �uid

equations have been considered inapplicable� However� Frey� ���� uses a �uid

model similar to that of Chang and Callen� ����a to describe the motion of the

electrons with good success� It would be interesting to investigate such phenomena

further utilizing the insights found in this thesis�
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General problems for which the present method might provide useful results

include many�body problems in which the interactions among the bodies are too

weak to validate the traditional �uid equations� For example� one might contem�

plate astrophysical applications such as the dynamics of galaxy formation or the

evolution of the universe� In the latter case� one recent study  Cen et al�� ����!

utilized particle simulation methods to describe the cold dark matter component

of the universe� It may be possible to improve upon this scheme using collisionless

�uid closures�

Final Thought

Rarely is one interested in the 
ne�scale details of a thermodynamic system� More

often one would be satis
ed with a gross model accounting only for a few observable�

low�order�average quantities� In this context� one should strive to reduce one�s

description of the dynamics to re�ect one�s interests to the greatest extent possible

without signi
cantly compromising the integrity of the resulting predictions� Insight

is much easier to come by in a familiar setting�
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��� Gyro�uid Model

I
N THIS APPENDIX� I present the nonlinear ��� �n	 uk	 Tk	 qk	 T�	 q�	 r� and

s�� gyro�uid model for completeness� While most problems probably do not

require the accuracy a�orded by this model� it is nevertheless useful to show

that the closure schemes improve as more moments are retained� Also provided is

the complete set of real and imaginary parts of each moment for the fastest growing

linear mode for the parameters �i � �	 Ls � ��Ln	 ky�i � ����� and � � �� in case

the interested reader wishes to benchmark a code that solves these equations with

the code used to produce the results in this thesis� The ��� model equations are
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In dimensional units� the quantity r� is de
ned by the relation$

r� 	 R�

T�

�so that when linearized and written in non�dimensional form� r�� � R�� � T����

Poisson�s equation  Eq� ������! is una�ected by the additional moments� Figs� A��

Figure A��$ Electrostatic potential �arbitrary units� of the fastest growing mode for
�i � �� Ls�Ln � ��� ky�i � ������ and � � � using the ��� model�

and A�� show the eight moments associated with the electrostatic potential of

Fig� A���



���

Figure A��$ Parallel moments �arbitrary units� of the fastest growing mode for
�i � �� Ls�Ln � ��� ky�i � ������ and � � ��
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Figure A��$ Perpendicular moments �arbitrary units� of the fastest growing mode
for �i � �� Ls�Ln � ��� ky�i � ������ and � � ��
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Numerical Convergence

H
ERE I study the convergence properties of ITG with respect to the spatial

resolution� arti
cial numerical dissipation �when present�� and the num�

ber of moments retained� The latter item is nice� since many �uid theories

and most �uid simulations are not systematically extended to include higher mo�

ments� That the nonlinear results obtained do not depend strongly on the number

of moments retained is evidence that the essential aspects of the nonlinear dynamics

are well�represented by the most basic model advocated here� The parameters for

the convergence studies presented below were chosen to match a set of gyrokinetic

particle�code runs provided by R� A� Santoro  Santoro and Lee� ����� Lee� ����!

and are the same as the basic �D case described in Sec� ���� The examples shown in

this Appendix are primarily from single�helicity simulations� chosen for reasons of

economy� I have carried out careful three�dimensional convergence studies in grid

resolution for a set of parameters agreed upon by the Numerical Tokamak Working

Group �� � �	 � � �	 Ls � �Ln�� In these studies� changing the number of grid

points in each direction by factors of two to four �up to �� � �� � �� gridpoints��

and reducing the time step resulted in no signi
cant change in the time�averaged

thermal �ux or spectrum�

In general� numerical convergence should be shown in at least 
ve dimen�

sions$

��� Spatial resolution fgrid points&number of modesg�
��� temporal resolution ftime stepg�

���
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��� dissipation parameter�s� fspatial 
ltering&particle size and added numerical

�hyper�viscosityg�
��� number of moments&particles�

��� and the FLR model fn�point averaging&di�erent hJ�i gyro�uid modelsg
before a result can be considered meaningful� Since it is impractical to carry out

such a test for every run� here I explicitly show that ITG converges for a speci
c

case in dimensions ���� ���� and ��� for a set of parameters that� aside from being

two�dimensional� are close to the parameters of experimental interest�  Item ��� was

tested here by halving the time step� all the diagnostic time traces in Fig� �B��� were

almost exactly the same�! I have not carefully tested the di�erent nonlinear FLR

models �such as discussed in Sec� ������� Note� however� that the linear behavior of

the FLR models has been carefully investigated and that the comparisons with the

gyrokinetic particle code shown in Chap� � indicate at least that nothing terribly

wrong is occurring nonlinearly� Finally� I also showed the importance of the non�

linear phase�mixing model in the course of the direct comparisons to the particle

simulations� Chap� ��

B�� Diagnostics

Several diagnostics are used to interpret the voluminous data that the code pro�

duces� Linear results are interpreted by time�series plots of the instantaneous com�

plex frequency at a single point located slightly away from the center of the sim�

ulation domain �so that odd�parity modes centered in the box are not neglected��

allowing one to know at a glance whether the fastest�growing �or least damped�

eigenmode has dominated the initial transient phenomena� by the Fourier transform

of this series �sometimes useful for distinguishing two roots with very similar growth

rates�� and by the 
nal �t � tend� spatial states of the various 
elds� ITG was lin�

early benchmarked primarily against Linsker�s fully gyrokinetic integral eigenvalue

code  Linsker� ����!� Recently� Q� P� Liu�s  Liu and Cheng� ����! nonlinear� ��

dimensional gyrokinetic Vlasov code has allowed simpler comparisons� That is� since

both codes are initial�value codes� one does not have to iterate between codes to


nd the roots� Also� Liu�s code includes toroidal e�ects comparable to the toroidal

e�ects of Beer et al�� ����� Thus� comparisons with the slab limit of his code pave
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the way for benchmarks of more realistic systems later� Fig� �B��� shows a compar�

ison �in kx space� of the fastest�growing even�parity eigenmodes obtained with the

gyro�uid and the gyrokinetic Vlasov codes for the parameters �i � �� Ls�Ln � ���

ky�i � ���� and � � �� The frequency obtained by Liu�s code matched the predic�

tion from the Linsker  Linsker� ����! code� �Ln�vt � ������ � �����i� The ���

gyro�uid model obtained �Ln�vt � ������ � �����i� Note that even though the

magnetic shear is weak� the linear mode is not negligible kx�i � ��

Figure B��$ Electrostatic potential �arbitrary units� of the fastest growing even�
parity mode for �i � �� Ls�Ln � ��� ky�s � ���� and � � � using the ��� model
�GF� and a gyrokinetic Vlasov code �GV��
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Nonlinearly� the situation is more complex� Presently� at run time I save the

shear �ows� modi
cations to the background gradients  through the evolution of the

�x	 ky � �	 kz � �� modes!� the time step� global growth rate� average spectral mode

widths� average mode spread� the radially integrated pressure� heat �ux and kinetic

energy for each �ky	 kz� mode� the volume�integrated electrostatic and total energy�

and �kx	 ky�� each as a function of time� If desired� movies of selected 
elds may

be generated with the National Center for Supercomputer Applications� Hierarchi�

cal Data Format library routines� Finally� if desired� �x	 ky	 kz 	 t� may be saved

separately �this is a large 
le"�� G� Valencia �a visiting Princeton Plasma Physics

Laboratory summer student� has written a particle code that pushes particles in

the turbulent 
elds thus saved� making available a wide range of studies that have

not yet been pursued�

The principal diagnostic used to compare the various runs is the heat �ux vs�

time� integrated over the entire simulation domain� The heat �ux� with the proper

FLR corrections�� is de
ned by

Q � Q� � QNLPM	 �B���

where for the ��� model

Q� 	 � �

LxLyLz

Z
d�x

�
�+

y
�pk�� � p�� �

���
�r�
�+�

y
p� �

���
�r�
�+�

y
T� �

�
��r
�

�+�

y
T�

�
� 	

and p� and pk are de
ned by Eqs� ������ The heat �ux associated with the dissipative

part of a given nonlinear phase�mixing term may be calculated from Eq� ������� For

example� the heat �ux Q� associated with the dissipative part of the nonlinear

phase�mixing term in Eq� ������ is given by

Q�f���� �r�
�+	 Tkg �

��
LxLyLz

Z
d�x j�� �r�

�

+

y
j �

jkxj
Tk
x

The total expression for the ��� QNLPM is

QNLPM �
��
��
Q�f �r�

�+	 �T� � rkg�
��
�
Q�f �r�

�+	 T�g
�If the rk moment is evolved� there is an additional term that comes from the Tk equation not

shown here�
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�
��

LxLyLz

Z
d�x

�
�
��

�r�
�

+

y
��T� � rk�� �

�
�r�
�

+

y
T�

	
�

This de
nition may be shown to be in accord with the usual de
nition of the cross�

�ux�surface heat �ux�

�

�
hhnTtot

t
ii �



x
hhn
Ttot

x
ii � � 

x
hhQii	

where Ttot � ����Tk � �T��� and is also in accord with the kinetic description used

in many gyrokinetic particle codes�

Q � � �

LxLyLz

Z
d�x

Z
dv  J��k�v��)�



y
!
m�v�k � v���

�v�t
�f�

The thermal �ux de
ned here and in Eq� �B��� is the guiding�center heat �ux�

There is another contribution from the gyrophase�dependent part of the distribution

function  Eq� �����! due to the variation of the distribution function around a gyro�

orbit� While there may be a transient di�erence between the guiding�center heat

�ux and the total heat �ux� the time�averaged� steady�state values should be the

same in a turbulent system� In the dimensionless units used throughout this thesis

 given in Eqs� ������ and ������!� the thermal di�usivity 
i is simply related to the

heat �ux�


i � hhQii��i� �B���

The thermal di�usivity calculated in this way is in units of ��i vt�Ln� �Care must be

taken to de
ne derived quantities such as these� since disparate conventions allow

di�erences of order unity that may be misleading in a detailed comparison��

Also compared are the time�averaged spectral characteristics of the elec�

trostatic potential� Time averages are performed after nonlinear saturation has

occurred� Since in all cases I retain the full dynamics �no 
ltering or dealiasing�

for k��i � � � �� the spectral information is much less sensitive than the heat

�ux to the changes in the numerical quantities studied here� and is therefore not

emphasized below� That is� unless extreme 
ltering is employed� so that the 
lter

widths are comparable to the natural cuto�s in the wavenumber spectrum from the

FLR e�ects� the spectral characteristics of the result are not a�ected� This is not

surprising� what is perhaps important to realize� however�  as may be seen from

Fig� �B���! is that the linear eigenmodes contain information for k��i � �� From

these 
gures� a reasonable 
lter would seem to be one that does not appreciably

a�ect the dynamics until k��i � ��



��� Appendix B� Numerical Convergence

B�� Moment Convergence Study

Figure B��$ Thermal �ux vs� time for di�erent numbers of moments�

Fig� �B��� shows the heat �ux vs� time for di�erent numbers of moments retained�

along with the results from the standard particle run� The �uid simulations have

� � �����vt�Ln and keep kx� � �� The �uid models agree reasonably well with the

particle�simulation prediction and with one another �though the higher�moment

models do not recover the initial peak�� Even for the ��� model the agreement is

probably acceptable� A more revealing study would compare time�averaged quanti�

ties in a steady state characterized by turbulent saturation� rather than the quasi�

linear saturation found here�

B�� Spatial and Temporal Convergence

Fig� �B��� shows the heat �ux vs� time for the ��� model as the number of grid points

in the radial direction is increased� Here� the dissipation parameter � � �����vt�Ln�

except in the �converged run	� which had ��� grid points and � � �� and the

standard particle run �described in Chap� ����� Otherwise� the parameters are the

same as for the �basic run	 de
ned in Chap� ���� As expected� the lower resolution

runs are noisier� On the basis of this plot� one could argue �from the large initial



B��� Nonlinear Phase Mixing ���

Figure B��$ Heat �ux vs� time as the radial grid resolution is increased� holding
everything else 
xed�

peak� that higher resolution in the radial grid was called for in the particle run�

Fig� �B��� shows the heat �ux vs� time for the ��� model� with the dissipation

parameter � � �����vt�Ln� as the resolution in ky is increased� Despite the very

ky poor resolution of the standard parameters� the results compare well for these

parameters� Note that the modes with ky� � � are at most very weakly growing�

so that the plethora of high�ky modes in the standard case have little e�ect here�

Before they can grow to signi
cant values� the pressure pro
le is relaxed�

B�� Nonlinear Phase Mixing

The nonlinear phase�mixing model described in Chap� ��� has little e�ect if one

truncates the Fourier components of the potential for k�� � �� This was shown in

Chap� ���� However� if one does not use a low�resolution grid and does not 
lter

the potential� one 
nds that the NLPM model can signi
cantly reduce the thermal

�ux� At the same time� one observes an attenuation of the high�k�� part of the

�uctuation spectrum� In general� the NLPM model reduces the thermal di�usivity

by as much as a factor of two for grids with su�cient resolution to be considered

converged� However� I have found that unless one keeps the same number of parallel
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Figure B��$ Heat �ux vs� time with increasing resolution in ky��

and perpendicular moments� the model fails to damp high�k�� �uctuations� and

instead can lead to a nonlinear instability that causes ITG to crash in some cases�

The e�ect of nonlinear phase�mixing on the thermal heat �ux in this �D

setting is shown by Fig� �B���� Here � � �� The result is quieter� and the overall

level is reduced by a factor of two� Note that this result implies that one should not


lter out modes with k�� � �  e�g�� see Fig� ������!� since the answer can change as

a result� This is not surprising� if one were interested in drift�kinetic results� one

could abandon the gyrokinetic equation altogether�

B�	 Added Dissipative E�ects

Fig� �B��� shows the heat �ux vs� the parameter � for the ��� model� For these runs�

I used the �D model with the �x	 ky � �	 kz � �� components of the moments and

of  suppressed� The physical parameters were �i � �� � � �� and Ln�Ls � �����

Modes with kx� � ���� ky� � � were retained for this 
gure� I usually run the code

with � � ����� so that the dependence is expected to be relatively unimportant�  A

small amount of damping reduces the noise at the shortest wavelengths in the box�!

The dependence is never completely neglible� however� since the terms introduced
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Figure B��$ The e�ect of nonlinear phase�mixing �in �D� on the thermal heat �ux�

here �or in the Krook model� are the only terms in this geometry that directly damp

the kk � � modes� which in turn are often crucial to the saturation level in the �D

simulations� The situation is much di�erent in toroidal geometry� where a variety

of physical e�ects �such as transit�time magnetic pumping� can interact with these

modes�

B�
 Krook Collision Terms

A simple density�� momentum�� and energy�conserving collision model derived by

taking moments of the density�� momentum�� and energy�conserving Krook collision

operator and ignoring FLR corrections when transforming the collision operator

from particle to guiding�center coordinates was also introduced �and found to have

little e�ect in the sheared slab for small �ii�� This collision model changes the ���

gyro�uid model  Eqs� �����%�����! by including the following terms�
Tk
t

�
coll

� ����ii����Tk � T��	

�
T�
t

�
coll

� ���ii����T� � Tk�	
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Figure B��$ Scaling of the �single helicity� average heat �ux vs� the dissipation
parameter �� using the ��� model�

�
qk
t

�
coll

� ��iiqk	�
q�
t

�
coll

� ��iiq�	

on the right�hand sides of the respective equations� In this simple model� �ii is

independent of velocity� A collision operator of this form would recover neoclassical

transport in a toroidal system but would not recover classical di�usion �because of

the incomplete guiding�center transformation��
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GyrokineticPoisson System

H
ERE I PROVIDE a brief derivation of the nonlinear electrostatic gy�

rokinetic equation  Frieman and Chen� ����� Lee� ����� Dubin et al��

����� Lee� ����! in a sheared slab� along with the associated quasineutral�

ity constraint� There are no new contributions to the literature to be found in this

appendix� The derivation is presented to clarify the role of the gyrokinetic ordering

 Frieman and Chen� ����! used extensively throughout this thesis and to justify

the neglect of nonlinear terms often retained in Poisson�s equation  Dubin et al��

����� Lee� ����!�

C�� Gyrokinetic Equation

One begins with the familiar Vlasov equation� which describes the evolution of the

one�particle distribution function in phase space$

F
t

� �v 
 F
�x

�
e

m

�
�E �

�v � �B

c

�

 F
�v

� �� �C���

Here� F��x	�v	 t� is the distribution function� �x and �v are the position and velocity

vectors in real space� and the remainder of the symbols are the usual physical

constants and electromagnetic 
elds� One wishes to 
nd an equation that can

easily describe the slow dynamics of the guiding�center motion while ignoring the

fast dynamics of the cyclotron motion� The Vlasov equation is complete �it contains

all of the collisionless dynamics� but does not easily treat the disparate time scales�

���
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The 
rst task is to change the phase�space variables from ��x	�v� to guiding�center

variables ��R	 �	 vk	 ��� Here� �R is the position of the guiding center of the particle�

� is its magnetic moment� vk is the parallel velocity of the particle� and � is the

gyrophase angle�

Upon changing variables

F��x	�v	 t� � F ��R	 �	 vk	 �	 t�	

where �� � �x� �R� �e� and �e� are local orthogonal unit vectors such that �b � �e�� �e��

�v� � v��cos��e� � sin��e��� and �� � �v��)� one is led to

F

t
� �v 


�
r�R 
 rRF �r�F

�
�rvk F

vk
�r�F

�

�

�
e

m

�
�E �

�v � �B

c

�


�
rv

�R 
 rRF �rv�
F

�
�rvvk

F

vk
�rv�

F

�

�
� ��

Here� unless otherwise noted r � rx� This expression may be simpli
ed upon

employing several identities$

�v 
 r�R � �v � �v 
 r��	 r� � � 	
B
rB � vk

B
�r�b� 
 �v�	

r�v � �	 r� � r�e� 
 �e� �
vk
v��

�r�b� 

�
�v� � �b

�
	

rv
�R � � I��b

� 	 rv� � �v�
B
	

rvvk � �b rv� � �
v��

�
�b� �v

�
	

where ) � eB�mc is the cyclotron frequency� and I is a unit tensor� The result is

F

t
�
�
�vk �

e

m
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In a sheared slab� the term proportional to rxB may be dropped� Upon adopting

the gyrokinetic ordering  Frieman and Chen� ����! ��) � ��L � kk� � F��F� �
e�Te � � � � and k�� � �	 where � is a typical frequency of the �uctuation

spectrum� � is the ion Larmor radius� L is a typical scale length of the system�

kk and k� are typical parallel and perpendicular wavenumbers of the �uctuation

spectrum� and  is the electrostatic potential� one proceeds order by order to 
nd

an equation describing the time evolution of the gyrophase�independent part of F��

The largest term in Eq� �C��� is ) F��� One 
nds therefore that the

equilibrium distribution function must be independent of the gyrophase�

F�

�
� �	 F � F� � F�����

At next order one may assume the equilibrium distribution is Maxwellian

�with Tk� � T��� to eliminate the term proportional to �vk�B� F�� � F�vk�

One 
nds that the equilibrium distribution function must satisfy

�vk 
 rRF� � �	

and the perturbed distribution function satis
es

F� �
e

mB
�� hi� F�

�
� g 	 �f � g �C���

where g is the gyrophase�independent part of the perturbed distribution function�
�f is the gyrophase�dependent part of the distribution function� and h� � �i represents

the gyrophase�averaging operation�

At order ��� one 
nds a dynamical equation for the total perturbed distri�

bution function�

F�

t
� �vk 
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e
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�
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Upon gyrophase�averaging this equation� one is led to the desired gyrokinetic equa�

tion for the time evolution of g�

g

t
� vk�b 
 rg �

e

m

�D
�E
E
� �b

�

 r �F� � g� �

e
D
�E
E

m

 �bF�

vk
� ��

Upon adding back in the small terms F��t� vk �b 
 rF� and �e�m�
D
�E
E

 �b g�vk�

one can 
nd Eq� ������ The quantity F that appears in Eq� ����� corresponds to

the quantity �F� � g� here� Also� in Eq� ������ I chose to write out the gyrophase�

averaging operator as a Bessel function as discussed in Chap� ��

C�� Quasineutrality Constraint

To 
nd the quasineutrality constraint  Eq� �����! one begins with Poisson�s equation�

r� � ���
X
s

Z
d�v qsFs	 �C���

where the indicated sum is over species� Here� I consider the case of a pure hydrogen

plasma� The ion distribution function that appears in Eq� ����� is the distribution

of guiding centers� One must therefore be careful in evaluating Eq� �C���� since the

integral is to be taken at 
xed particle position ��x� rather than at 
xed guiding�

center position ��R�� �The guiding�center transformation mixes con
guration� and

velocity�space variables since �R is a function of velocity�� The resulting corrections

to the integral are of order �k��i��� as may be seen by expanding the distribution

function in a Taylor series and gyroaveraging$

F��R� � F��x� ��� � F��x�� �� 
 r�
F��x� �
�

�
���� $ r�
r�
F��x�	

D
F��R�

E
� F��R�� �

�
k���

�F��R��

Because �e��i �
p
me�mi � �� corrections to the electron distribution function are

of higher order and may be neglected�

Thus� Eq� �C��� may be written as

r� � ���jej
�Z

d�v
���
�x
Fi � ne

�
� �C���



C��� Quasineutrality Constraint ���

In the previous section� the distribution function through O��� was found$

F��x	�v	 t� � F ��R	 �	 vk	 �	 t� � F���R	 �	 vk	 t�� �f��R	 �	 vk	 �	 t��g��R	 �	 vk	 t��O�����

With the aid of this expression� one may evaluate the integral in Eq� �C���$Z
d�v

���
�x
Fi �

Z
d�v

���
�x

�
F� � �f � g

�
� n� �  � � (��b�!

n�e

Ti
� *n��

Poisson�s equation is therefore

r� � ���jej
�
n� �  �� (��b�!

e

Ti
� *n�

�
� ne

To order ��� the dominant terms are the background densities of ion and electrons�

hence ni� � ne�� At order ��� one may compare the magnitude of the term on the

left�hand side to the term proportional to  on the right�hand side�

r�

���n�e��Ti���ir�
�

� ��D
��i

� �	

where I have taken the small k�� limit of the latter term for simplicity� Upon

neglecting the left�hand side� one is led to Eq� ������ Finally� note that the nonlinear

terms retained in some simulations �e�g��  Lee� ����!� that scale like

r��
n�
n�
r�

e

Te
�

are smaller than the terms retained in Eq� ����� by a factor of ��
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VelocityGradient E�ects

R
ECENTLY� THERE HAS BEEN much interest in the e�ect of gradients in

the velocity pro
le on microturbulence  Diamond and Kim� ����! and on

ITG turbulence in particular  Artun and Tang� ����� Hamaguchi and

Horton� ����a� Mattor and Diamond� ����� Groebner et al�� ����� Dor�

land et al�� ����b!� Here� I show that the ITG code can describe the e�ects of

imposed velocity shear and discuss its e�ects on the linear dynamics� Because we


nd the nonlinearly self�generated sheared �ows to be important to ITG turbulence

 Dorland et al�� ����b� Beer et al�� ����� Hammett et al�� ����!� this point is

an important one to con
rm� The new contributions contained in this appendix are

modest� The long�wavelength linear analysis of Artun and Tang� ���� is extended

to the k��i � � limit� It is found that short�wavelength �uctuations �k�� � ���

are the last modes to be stabilized by perpendicular velocity shear� An estimate of

the amount of shear necessary to stabilize the linear ITG instability is made and

compared to the numerical result for a given set of parameters�

D�� Gyro�uid Equations

It is easy to include the e�ects of an imposed external velocity shear in the gyro�uid

model� One may always shift to the frame of reference moving with the bulk velocity

of the plasma� however� if there are imposed gradients in that velocity the equations

must be modi
ed� Velocity gradients in the direction parallel to the magnetic 
eld

cause a new term to appear in the parallel momentum and perpendicular heat��ux

���
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equations� as well as a Doppler shift in every equation� Velocity gradients in the

direction perpendicular to both the density gradient and the magnetic 
eld con�

tribute only to the Doppler shift� Thus� one may rede
ne the total time derivative

of a 
eld to be
d

dt
	 

t
� v
 
 r� v� 
 r	 �D���

in which v� 
 r � v�yx�y � v�zx�z� The nonlinear ��� gyro�uid model that

includes these gradients is then given by
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The quasineutrality constraint equation is unchanged by the imposed veloc�

ity shear�

D�� Linear Eigenmodes

The e�ect of velocity shear on the linear ITG eigenmodes has been discussed in

detail in the literature  Artun and Tang� ����� Dong� ����� Artun et al�� ����!�

I have previously con
rmed the importance of the relative signs of the gradients in

the parallel and perpendicular �ows in trends noted in Artun and Tang� ���� with

the ITG code  Dorland et al�� ����a!� Here� I show only an example eigenmode for
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the purposes of discussion� The ���� (
���
� gyro�uid equations were used throughout

this appendix�

The fastest�growing linear eigenmode for the parameters �i � �� Ls�Ln �

����� ky�i � ���� and Ti � Te is shown in Fig� �D��a�� The frequency predicted by the

gyro�uid model is � � �����������i� In Fig� �D��b�� I show the eigenmode obtained

with the same parameters in the presence of moderate perpendicular velocity shear�

vy�vt�LT�Lv� � ������ The eigenmode no longer has a de
nite parity and is shifted

away from the rational surface �located at x � ���i�� The frequency of this modi
ed

mode is � � ������ � ����i� Thus� for these parameters the sheared background

�ow destabilizes the mode� Note also that the modi
ed mode is broader� with a

longer average x wavelength� A mixing�length estimate based upon these properties

would suggest that moderate perpendicular�velocity shear modes might have more

dangerous transport properties� As the gradient in the electric 
eld is increased

the mode is shifted further from the rational surface� Stabilization occurs when the

mode amplitude at the rational surface becomes negligible�

These properties are summarized in Fig� �D���� Note that the fastest�growing

mode for these parameters is for di�erent values of the sheared�velocity parameter on

di�erent branches of the linear dispersion relation as the jumps in the real frequency

observable in Fig� �D��a� at �vt�Ln � ����	 ���� indicate� Also� one may note the

initially destabilizing e�ect of the sheared �ow and the ultimate stabilization� As

j�vy�vt��LT�Lv�j increases� the mode is at 
rst broader and then much narrower�

as may be seen in Fig� �D��b�� Around �vy�vt��LT�Lv� � ������ the average kx�

in j�j is of order �� and the FLR e�ects e�ectively damp the mode to very low

growth rates�

The amount of sheared perpendicular �ow required to stabilize the mode

may be roughly estimated by 
nding the value for which the rate of �linear� radial

decorrelation is comparable to the growth rate� Upon using the expression for v� 
r
found immediately after Eq� �D��� and assuming the mode has a width �x� one is

led to
vy
Lv

�x


y
� � � hkki vt�

The latter relation has been noted by Kotschenreuther  Kotschenreuther� ����!

and has been found to reasonably accurate for a wide range of parameter space in
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my own investigations� The critical shear��ow value is then given by�
vy
vt

LT

Lv

�
crit

� LT

Ls
�

For the parameters shown in Fig� �D���� this quantity is v�ycrit � ������ the numer�

ically obtained value is v�ycrit � ����� The discrepancy is not important in light

of the fact that this parameter is often about unity in the nonlinear simulations

presented in Chap� �� The important point is that stabilization does occur� and

that the gyro�uid equations recover this behavior� Magnetic shear determines the

planes along which E�B �ows exist� In the shearless limit� one 
nds that sheared

�ows give way to convective cells  Cheng and Okuda� ����!� which are observed

to increase transport� Thus� understanding the Ls �� limit is non�trivial�



D��� Linear Eigenmodes ���

Figure D��$ Most unstable linear eigenmodes for the parameters �i � �� Ls�Ln �
����� ky�i � ���� Ti � Te� and �a� v�y � �� �b� �vy�vt��LT�Lv� � ������
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Figure D��$ The most unstable linear eigenmodes for the parameters �i � ��
Ls�Ln � ����� ky�i � ���� and Ti � Te� Shown are �a� the frequencies and �b�
the average radial �x� mode width �x��i�



Appendix E

MultiSpecies E�ects

T
HE ADDITION of impurities� alpha particles� or hot ion populations �from

an RF heating scheme or neutral�beam injection� for example� to the gy�

ro�uid framework is straightforward if each species is modelled as approx�

imately Maxwellian at the appropriate temperature� Recently� Kotschenreuther

 Kotschenreuther� ����! has emphasized the role of impurities on the stability

of the ITG mode� Presently� the code outlined in this thesis handles an arbitrary

number of such species� with all of the physics and model options available to the

majority species� The parameters that must be speci
ed for each additional species

are the charge �Zs�� mass� �Ms�� temperature �Ts�� gradients ��s� and concentration

�cs�� The additional equations are closed with the closures described in Chap� ��

Thus� the physics of a strongly non�Maxwellian component may be poorly repre�

sented� Upgrading the closure to re�ect non�Maxwellian distributions has not been

investigated here� but would be an interesting and useful exercise�

It is convenient to express the atomic number� mass� and temperature of

each impurity species relative to the majority ion species� That is� �s 	 Ms�Mi�

Ts 	 Ts�Ti� and Zs 	 qs�qi� where Ms is the mass of the impurity ion� Ts is

the temperature of the impurity ions� and so on� The normalized gyroradius and

normalized thermal velocity are then de
ned by

�s 	
p
�s�s

Zs
	 vts 	

r
�s
�s
�

Upon using these de
nitions and making the additional assumption that Lns � Lni

�constant Ze� pro
le� one 
nds that the dynamical equations assume a simple form�

���
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The latter assumption should be relaxed in the future� The major modi
cation is

in the normalization of the perpendicular derivatives� where k��s replaces k��i in

the arguments of the gyroaveraging operators�

dns
dt

�
h
�
�
��s

�r�
�v
s

i

 rT�s �N��T�s � �b 
 ruks �

h
� � �s�

�
�
��s

�r�
�

i +s

y
� �	 �E���

duks
dt

�
h
�
��

�
s

�r�
�v
s

i

 rq�s �N��q�s � v�s

�b 
 r
�
Tks � n �

Zs

�s
+s

�
� �	 �E���

dTks
dt

�
h
�
�
��s

�r�
�v
s

i

 rr�s �N��r�s � �b 
 r��uks � q�s� � �sk

+s

y
� �	 �E���

dqks
dt

�
h
�
��

�
s

�r�
�v
s

i

rs� �N��s� � v�s

�b 
 r�� ��k�Tks �
p

�vsjkkjDkqks � �	 �E���

dT�s
dt

�
h
�
��

�
s
�r�
�v
s

i

 rns � ��s

�
��r
�

�v
s

	

 rT�s �N��T�s

��b 
 rq�s �

�
�
�
��s

�r�
� � �s��� � ��s

��r
�

��

	
+s

y
� �	 �E���

dq�s
dt

�
h
�
��

�
s

�r�
�v
s

i

 ruks � ��s

�
��r
�

�v
s

	

 rq�s �N��q�s

�v�s�b 
 r
�
r�s � T�s �

Zs

�s
�
�
��s

�r�
�+s

�
� �	 �E���

dr�s
dt

�
h
�
��

�
s

�r�
�v
s

i

 rTks �N��r�s � ��s

�
��r
�

�v
s

	

 rr�s

��b 
 r��q�s � s�s� � �sk
�
�
��s

�r�
�

+s

y
� �	 �E���

ds�s
dt

�
h
�
�
��s

�r�
�v
s

i

 rqks �N��s� � ��s

�
��r
�

�v
s

	

 rs�s

�v�s �b 
 r�� � �k�r�s �
p

�vsjkkjDks�s � �� �E���

Poisson�s equation  Eq� ������! must also be modi
ed to re�ect the additional

species� The generalization is

� �� hhii� �
X
s

Zscs

�
*ns � �(�s � ��

Zs

�s


	
	



���

where cs 	 n�s�n�e and

*ns 	 (
���
�s

Ds

h
Nsns � �

��
�
s

�r�
�T�s

i
�

The normalizations used are�
ns�
n�

	
uks�
vti

	
Tks�
T�s

	
qks�
vtip�s

	
T�s�
T�s

	
q�s�
vtip�s

	
r�s�

n�sT
�
�s

	
s�s�

vtiT
�
�s

�

�
�i
Ln

��ns	 �uks	 �Tks	 �qks	 �T�s	 �q�s	 �r�s	 �s�s �� �E���

The e�ect of impurities on sheared rotation may be roughly estimated by

looking at the �ux�surface averaged quasineutrality constraint in the long�wave�

length limit$

� � hh
X
s

Zscs

�
*ns � �r�

��
�
s�
Zs

�s


	
ii	

X
s

Zscshh*nsii �

�X
s

�scs

�
hhEx

x
ii�

The term in parentheses on the right�hand side of this expression is the e�ective

mass of the ions� Unless the plasma is dominated by impurities� then� the impu�

rities will likely have only a small e�ect on the rotation� The self�generated shear

�ow is somewhat weaker �and therefore less stabilizing� in the presence of massive

impurities� From the point of view of the conservation of angular momentum� this

makes sense� since the greater the mass of the plasma� the more di�cult it should

be to spin� Slower rotation corresponds to weaker di�erential rotation e�ects�

On the other hand� the presence of the charge on the left�hand side indicates

that the greater the charge of a given impurity species� the greater the corresponding

contribution to the shear �ow� Again� this is a weak e�ect unless the plasma is

dominated by impurities� The e�ect of the rotation on the impurities might be

interesting� however� and deserves futher investigation�
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Appendix F

Nonadiabatic Electron Model

B
ECAUSE �e��i �

p
me�mi � �� the drift�kinetic equation is adequate

to describe the electron dynamics in the low�frequency limit considered

here� Consequently� the electron �uid equations may be recovered from

the derivation of the ion equations by taking the k��e � � limit �and noting the

change of the sign of the charge�� The neglect of the FLR e�ects results in con�

siderable simpli
cation� First� perpendicular moments �such as T�	 q�	 etc�� are

completely decoupled from the parallel moments� they are needed to describe the

evolution of the perpendicular temperature perturbations� important �for example�

in the case of magnetically trapped electrons� Second� nonlinear phase�mixing� fun�

damentally related to the di�erential drifts of particles with di�erent Larmor radii�

is not signi
cant for the electrons� Finally� the remainder of the linear and nonlinear

terms �� r�
�� that are necessary to describe the ion FLR dynamics do not appear in

the electron equations� Electron collisions could be modeled using a Krook model�

with the same kind of modi
cations suggested for the ions in App� B���

The normalizations for the electron density� momentum� etc� are given by�
ne�
n�

	
ue�
vti

	
Tke�
Te

	
qke�

vtin�Te
	
T�e�
Te

	
q�e�

vtin�Te

�
�

�i
Ln

��ne	 �ue	 �Tke	 �qke	 �T�e	 �q�e�� �F���

Upon introducing the ratio of thermal velocities parameter ve 	 vte�vti� one


nds that the equations are

dne
dt

� �b 
 rue �


y
� �	 �F���

���
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due
dt

� v�e
�b 
 r �Tke � ne � �� � �	 �F���

dTke
dt

� �b 
 r��ue � qke� � �ek


y
� �	 �F���

dqke
dt

� v�e
�b 
 r�� � �k�Tke �

p
�vejkkjDkqke � �	 �F���

dT�e
dt

� �b 
 rq�e � ��e


y
� �	 �F���

dq�e
dt

� v�e�b 
 rT�e �

r
�

�
vejkkj q�e � �� �F���

Unlike the ions� which are convected by the gyro�averaged potential� electrons see

the local potential� Hence� the total time derivative becomes

d

dt
�



t
� vE 
 r�

Note that if one wishes to use fewer equations to describe the electron response� one

may 
nd the proper closure coe�cients using the moment�reduction scheme outline

in Chap� ������ One should use Eq� ����� in place of Eq� ������ when the electron

dynamics are retained�

Presently� the electron equations are advanced implicitly to allow reasonable

time steps� However� the implicit scheme I am using is not unconditionally stable�

Consequently� for realistic mass ratios� the time step tends to be smaller by a factor

of ��%��� While this is an improvement over the factor of ��%�� expected for an

explicit scheme �for hydrogen or deuterium plasmas�� I have not pursued this avenue

of research in detail as a result� Furthermore� one would expect the nonadiabatic

electron response to be a weak e�ect in a sheared�slab setting� since an appreciable

electron response occurs only very near rational surfaces� I have developed this

model in anticipation of simulating more complex geometries�
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Sample Input File for ITG

This input namelist 
le re�creates the run used for Fig� �B���� It is provided to give

the reader a feel for the actual ITG code�

� input namelist for itg�

�wdat

�

����������������������Make a note about this run�������������������

�

note��This message appears on the first page of the output��

�

������������������������Specify Grid Details�����������������������

ldb��	 � 
 of gridpoints in the x �radial� direction

� ldb should be of the form ��n � ��m � ��p�

md��� � number of modes in the �y direction

� �and thus only half of the total y modes�

� md should be of the form ��n � ��m � ��p� � �

� for nonlinear runs �e�g�� md����	�������� etc��

� LINEAR RUNS ONLY�

� md��� allows you to specify mlow and mhi

���
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mlow�� � mmin for each n

mhi�� � mmax for each n

nd�� � number of modes in the z direction� should be odd

� and of the form ��n � ��m � ��p� � �

� nd��� implies � mode with n��

� �for shearless cases�

x��	���� � Box width Lx in the x direction �units of rho�i�

y���� � ky � m � �y� rho�i�� Ly �  pi y� rho�i

z������� � kz � n � �z� Ln� L�T�� Lz �  pi z� Ln �or L�T�

iperiod�� � iperiod � � �� � radial b�c��s

� iperiod � � �� periodic radial b�c��s

� iperiod �  �� twisted periodic radial b�c��s

nrat�� � If iperiod�� m���n�nrat determines z� by

� requiring the ���nrat� rational surface to lie

� on the edge of the periodic domain�

�

xp��� � If iperiod�� xp is roughly the distance the

� computational box is extended �radially� in

� one direction beyond the ���nrat� rational

� surface� The exact value is determined by the

� nearest grid point� That is� the physical Lx is

� Lx � x� �  r�ld�xp�x���

� The code enforces �xp �le� x� � ���

�

�����������������������Physics parameters��������������������������

�

norm�� � Normalize to L�n or L�T� Default is L�n�

� norm � � �� L�n� norm � � �� L�T

shr����� � shear parameter s�Ln�Ls or eta�s�L�T�L�s

� depending on the value of norm�



���

etai��� � L�n�L�T�perp� If norm��� etai�� is a bad value

� and etaipar�etai regardless of the next line�

etaipar��� � L�n�L�T���� Default is to set etaipar � etai�

�

vy���� � vy�Lv �imposed sheared perpendicular flow�

vz���� � vz�Lv �imposed sheared parallel flow�

� Both flows are normalized to L�T � v�t

� regardless of the value of norm�

tiovte���� � Ti�Te

�

nspecies�� � number of ion species �if nspecies � ��

� change cnstnts�f to reflect the charges�

� masses and concentrations of the ions��

ilx�� � � �� adiabatic electrons�

� � �� full electron equations

etae��� � L�n�L�T �for the electrons�

rmime�� ���� � m�i � m�e

�

����������������������Specify time step���������������������������

�

idt�� � idt�� �� adjustable time step� idt�� �� dt�dt�

� Time step adjusts only for nonlinear runs�

� Default� idt��

dt����� � maximum �and initial� time step allowed

� �in units of Ln�v�t or L�T�v�t depending on norm�

nstp����� � Total 
 of time steps to take

nprnt��� � Keep intermediate results every nprnt steps

implicit�� � Take an implicit time step if istep���

�

�������������������Choose number of moments to keep��������������
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�

nparmom�� � number of parallel moments ���	�� Default

� value is 	�

nperpmom�� � number of perpendicular moments ���	�� Default

� value is �

�

���������������������Choose FLR model����������������������������

�

iflr�� � Select a model for !J����

� �������b��

� �not an option �for debugging�

� ��Gamma������� �Default�

� 	�exp��b��

� ����b�

� ��No Linsker effect �� or 	 � � models�

� ��Real space Taylor series equations

�  �No FLR effects at all�

beta���� � filter width for particle shapes �see iflr�

� phi � Exp��beta� k���n�i etc�

� Set beta��� for no shaping�

�

��������������������Choose damping model�������������������������

�

� Always use Hammett�Perkins linear Landau damping

� model�Select perpendicular damping models

� for nonlinear cases�

�

inlpm�� � ���Use nonlinear phase mixing model



���

� ikx� is necessary for this option to work�

�

ifilter�� � � �� no moment filters

� � �� filter each moment at every time step

� with an implicit viscosity� hyperviscosity�

� etc�� determined by nuii� For example�

� n �� n��� � dt�nuii�b����

� v �� v��� � dt�nuii�b��

�

nuii������ � damping coefficient in filter and�or

� Krook collision operator

�

krook�� � � �� Use the Krook operator with

� coefficient nuii�

�

�

�������������������������Miscellaneous������������������������

�

lin�� � �� nonlinear ��linear

�

nsafe�� � 
 of intermediate save files

� �for emergency restarts�

�

ikx� � � �� finite difference for d�dx in NL terms

�  �� spectral �i�kx� for d�dx in NL terms

�

iodd� � � �� odd modes initialized

�  �� even modes initialized

� � �� both initialized �� �Default is iodd � ��

igradon�� � �Remove the �m���n��� component of all moments

� ��Constant bkgd pressure gradient� no �m���n���

� mode in parallel or perpendicular pressure�
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� ��Keep the �m���n��� modes

iphi��� � � �� set phi�ky���kz�����

� iphi��� �presently the default� uses Hamaguchi�s

� method� which allows non�physical electron

� transport�

� iphi��� �presently the default� uses Hammett�s

� method which ensures that there is no cross�field

� particle transport when adiabatic electrons

� are assumed�

nread�� � initial conditions ��set by code ��read from file

� ��initialized by the code using PMAG �below��

� ��read initial conditions from the file ITG�RESP�

� which is a copy of the results file ITG�RES from a

� previous run of ITG� This option is used to start

� where a previous run finished�

pmag���e�� � initial magnitudes of perturbations

ntrace�� ������ �� �off�on� �watch time steps go by�

movieon������ � Begin filming �NCSA�HDF� on this time step

ninterv��� � Make a movie frame every ninterv time step�

ihdf�� � ���hdf����phi�x�y� is written into itg�fields

� for time steps after MOVIEON

� and at intervals NINTERV� Default is ihdf���

�end

�xstuff

xgrafix�� � � �� Use Peter Liu�s X�windows interface

phi�v�time�� � � �� Open Phi vs� time window

phi�v�x�� � � �� Open Phi vs x animation

energy�v�time��� � �� Open energy vs� time window

gamma�v�time�� � � �� Open growth rate vs� time window

�end
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Symbolic Algebra Script for

Gyro�uid Dispersion Relation

For reference� I obtained the following six roots upon running Maple V�� with this

script$ �� � ��������������������������i	 �� � ���������������������������i	

�� � ����������������������������i	 �� � ��������������������������i	 �� �

������������� � �������������i	 and �� � ������������ � �������������i� The

unstable root ���� falls on the ��� curve shown in Fig� ����b��


 ������������� Maple input file �������������





 This routine generates the 	� gyrofluid dispersion


 relation for arbitrary forms of the FLR approximations for


 !J��� and !J����� !J���� enters only in the quasineutrality


 constraint� The starting equations may be found in Dorland


 and Hammett� Phys� Fl� B� Vol� �� � �� ����� Eqs� ����


 �linearized��


��������������������������������������������������������������


 Choose an approximation to !J����

j� �� proc�b� BesselI���b�������exp��b�� end�


j� �� proc�b� �����b�� end�


j� �� proc�b� exp��b�� end�

���
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 Choose an approximation to !J�����

g� �� proc�b� BesselI���b��exp��b� end�


g� �� proc�b� �����b� end�


��������������������������������������������������������������





 The 	� gyrofluid equations in the local linear limit


 are given by e� �� e�� The notation used is transparent� with


 the possible exception of skpar� which represents the sign


 of kpar�




e� �� �I�w�n � I�kpar�v � ���eta�b�diff�log�j��b���b���I�ky�psi � ��

e �� �I�w�v � I�kpar��n�tpar� � I�kpar�psi � ��

e� �� �I�w�tpar � I�kpar���v�qpar� � I�ky�psi�eta � ��

e	 �� �I�w�qpar � I�kpar����beta��tpar � skpar�kpar�D��qpar � ��

e� �� �I�w�tperp � I�kpar�qperp � I�ky�psi��b�diff�log�j��b���b�

� eta����b�diff�j��b��b�diff�j��b��b��b��j��b��� � ��

e� �� �I�w�qperp � I�kpar��tperp � b�diff�log�j��b���b��psi�

� skpar�kpar�D�qperp � ��


 The quasineutrality constraint is given by e��

e� �� �tau � �� � g��b����psi �j��b���

���b�diff�j��b��b�diff�j��b��b��b��j��b�

��b�diff�log�j��b���b����

�����b�diff�j��b��b�diff�j��b��b��b��j��b�

���b�diff�log�j��b���b�����n

�b�diff�log�j��b���b��tperp��


 Now solve for the dispersion relation� substituting


 the values of the closure coefficients along the way�



���

e �� solve�"e��e�e��e	�e��e�#�"n�v�tpar�qpar�tperp�qperp#��

e� �� subs�e �e���

e�� �� subs�"psi���D�sqrt�Pi��#�e���

e�� �� subs�"beta������Pi�����Pi� ��D���sqrt��Pi�����Pi� �#�e����

e� �� subs�"skpar��#�e����

e�� �� denom�rhs�e����

e�	 �� numer�rhs�e����

e�� �� e���lhs�e�� � e�	 � ��


 Evaluate the dispersion relation for some specific parameters�

numdr �� evalf�subs�kpar����b�ky���eta��tau���e�����

fsolve�evalf�subs�ky�����numdr���w�complex��


 ������������ end of Maple input file �������������



��� Appendix H� Symbolic Algebra Script for Gyro�uid Dispersion Relation



Bibliography

Artun� M�� Reynders� J� V� W�� and Tang� W� M� ������� Integral Eigen�

mode Analysis of Ion Temperature Gradient Modes in the Presence of Sheared

Flows� Accepted for publication by Phys� Fluids B�

Artun� M� and Tang� W� M� ������� Gyrokinetic Analysis of Ion Temperature

Gradient Modes in the Presence of Sheared Flows� Phys� Fluids B �� �����

Aydemir� A� Y� ������� Linear Studies of m � � Modes in High�Temperature

Plasmas with a Four�Field Model� Phys� Fluids B �� �����

Bakshi� P�� Bellew� W�� Ganguli� G�� and Satyanarayana� P� �������

Presented at the ���� Sherwood Theory Conference�

Beer� M� A� and Hammett� G� W� ������� Private communication�

Beer� M� A�� Hammett� G� W�� Dorland� W�� and Cowley� S� C� �������

Nonlinear Ballooning Gyro�uid Simulations of Toroidal ITG Turbulence� Bull�

Am� Phys� Soc� �	� �����

Beer� M� A�� Hammett� G� W�� Dorland� W�� and Cowley� S� C� �������

Nonlinear Gyro�uid Simulations of Toroidal ITG Turbulence� Presented at the

���� Sherwood Theory Conference�

Bell� M� G�� Arunasalam� V�� Barnes� C� W�� Bitter� M�� Bosch� H��

S�� L�Bretz� N�� Budny� R�� Bush� C� E�� Cavallo� A�� Chu� T� K��

Cohen� S� A�� Colestock� P� L�� Davis� S� L�� Dimock� D� L�� Dylla�

H� F�� Efthimion� P� C�� Ehrhardt� A� B�� Fonck� R� J�� Frederick�

son� E� D�� Furth� H� P�� Gammel� G�� Goldston� R� J�� Greene� G� J��

Grek� B�� Grisham� L� R�� Hammett� G� W�� Hawryluk� R� J�� Hendel�

H� W�� Hill� K� W�� Hinnov� E�� Hosea� J� C�� Howell� R� B�� Hsuan�

H�� Hulse� R� A�� Jaehnig� K� P�� Janos� A� C�� Jassby� D� L�� Jobes�

���



��� Bibliography

F� C�� Johnson� D� W�� Johnson� L� C�� Kaita� R�� Kieras�Phillips� C��

Kilpatrick� S� J�� Krupin� V� A�� LaMarche� P� H�� Langer� W� D��

LeBlanc� B�� Little� R�� Lysojvan� A� I�� Manos� D� M�� Mansfield�

D� K�� Mazzucato� E�� McCann� R� T�� McCarthy� M� P�� McCune�

D� C�� McGuire� K� M�� McNeill� D� H�� Meade� D� M�� Medley� S� S��

R�Mikkelsen� D�� Motley� R� W�� Mueller� D�� Murakami� Y�� Mur�

phy� J� A�� Nieschmidt� E� B�� Roquemore� A� L�� Rutherford� P� H��

Saito� T�� Sauthoff� N� R�� Schilling� G�� Schivell� J�� Schmidt� G� L��

Scott� S� D�� Sinnis� J� C�� Stevens� J� E�� Stodiek� W�� Stratton�

B� C�� Tait� G� D�� Taylor� G�� Timberlake� J� R�� Towner� H� H�� Ul�

rickson� M�� von Goeler� S�� Wieland� R� M�� Williams� M� D�� Wil�

son� J� R�� Wong� K��L�� Yoshikawa� S�� Young� K� M�� Zarnstorff�

M� C�� and Zweben� S� J� ������� An Overview of TFTR Con
nement with

Intense Neutral Beam Heating� In Plasma Physics and Controlled Nuclear Fu�

sion Research� ����� volume �� page ��� International Atomic Energy Agency�

Vienna�

Bender� C� M� and Orszag� S� A� ������� Advanced Mathematical Methods

for Scientists and Engineers� McGraw�Hill Book Company� New York�

Bowman� J� C� ������� Realizable Markovian Statistical Closures� General

Theory and Application to Drift�Wave Turbulence� PhD thesis� Princeton Uni�

versity�

Brizard� A� ������� Nonlinear Gyro�uid Description of Turbulent Magnetized

Plasmas� Phys� Fluids B �� �����

Callen� J� D�� Carreras� B� A�� and Stambaugh� R� D� �January� ������

Stability and Transport Processes in Tokamak Plasmas� Physics Today � ���

Carreras� B� A� and Lynch� V� E� ������� Electron Diamagnetic E�ects on

the Resistive Pressure�Gradient�Driven Turbulence and Flow Generation� Phys�

Fluids B �� �����

Cen� R� Y�� Jameson� A�� Liu� F�� and Ostriker� J� P� ������� The

Universe in a Box$ Thermal E�ects in the Standard Cold Dark Matter Scenario�

Astro� J� ���� L���



Bibliography ���

Chang� Z� and Callen� J� D� �����a�� Uni
ed Fluid&Kinetic Description of

Plasma Microinstabilities� Part I$ Basic Equations in a Sheared Slab Geometry�

Phys� Fluids B �� �����

Chang� Z� and Callen� J� D� �����b�� Uni
ed Fluid&Kinetic Description of

Plasma Microinstabilities� Part II$ Applications� Phys� Fluids B �� �����

Char� B� W�� Geddes� K� O�� Gonnet� G� H�� Leong� B� L�� Mona�

gan� M� B�� and Watt� S� M� ������� Maple V Language Reference Manual�

Springer�Verlag� Toronto�

Chen� L�� Berger� R� L�� Lominadze� J� G�� Rosenbluth� M� N�� and

Rutherford� P� H� ������� Nonlinear Saturation of the Dissipative Trapped�

Electron Instability� Phys� Rev� Lett� ��� ����

Cheng� C� Z� and Okuda� H� ������� Formation of Convective Cells� Anoma�

lous Di�usion� and Strong Plasma Turbulence Due to Drift Instabilities� Phys�

Rev� Lett� �
� ����

Cheng� C� Z� and Okuda� H� �����a�� Numerical Simulation of Trapped�

Electron Instabilities in Toroidal Geometry� Phys� Rev� Lett� ��� �����

Cheng� C� Z� and Okuda� H� �����b�� Theory and Numerical Simulations on

Collisionless Drift Instabilities in Three Dimensions� Nucl� Fusion �
� ����

Chew� G� F�� Goldberger� M� L�� and Low� F� E� ������� Boltzmann

Equation and the One�Fluid Hydrodynamic Equations in the Absence of Particle

Collisions� Proc� Roy� Soc� A���� ����

Ching� H� C� ������� Large�Amplitude Stabilization of the Drift Instability�

Phys� Fluids ��� ����

Coppi� B�� Rosenbluth� M� N�� and Sagdeev� R� Z� ������� Instabilities

Due to Temperature Gradients in Complex Magnetic Field Geometries� Phys�

Fluids ��� ����

Cordey� J� G�� Goldston� R� J�� and Parker� R� R� �January� ������

Progress Toward a Tokamak Fusion Reactor� Physics Today � ���

Cowley� S� C� ������� Private communication�

Cowley� S� C�� Kulsrud� R� M�� and Sudan� R� ������� Considerations of

Ion�Temperature�Gradient�Driven Turbulence� Phys� Fluids B �� �����



��� Bibliography

Crotinger� J� A� ������� Simulation of Drift�Wave Turbulence� Trapped

Structures and a New Nonadiabatic Electron Model� PhD thesis� Massachusetts

Institute of Technology�

Davidson� R� C� ������� Nonlinear Plasma Theory� Academic Press� New

York�

Diamond� P� H� and Kim� Y��B� ������� Theory of Mean Poloidal Flow

Generation by Turbulence� Phys� Fluids ��� �����

Diamond� P� H� and Liang� Y� ������� An Analytical Model of Coupled

Fluctuation and Flow Dynamics in Self�Regulating Turbulence� Presented at

the ���� Sherwood Theory Conference�

Dimits� A� ������� Supplemental paper presented at the APS�DPP meeting�

Dimits� A�� Drake� J� F�� Guzdar� P� N�� and Hassam� A� B� ������� Ion�

Temperature�Gradient�Driven Turbulence and Transport in a Sheared Magnetic

Field� Phys� Fluids B �� ����

Dimits� A� M� and Lee� W� W� ������� Partially Linearized Algorithms in

Gyrokinetic Particle Simulations� J� Comput� Phys� ��	� ����

Dong� J� Q� ������� Presented at the ���� Sherwood Theory Conference�

Dong� J� Q�� Guzdar� P� N�� and Lee� Y� C� ������� Finite Beta E�ects on

Ion Temperature Gradient Driven Modes� Phys� Fluids ��� �����

Dorland� W� and Hammett� G� W� ������� �D Gyro�uid Simulations of

Electrostatic Ion Temperature Gradient Turbulence in a Sheared Slab� �	th

International Conference on the Numerical Simulation of Plasmas � PWA��

Dorland� W� and Hammett� G� W� ������� Gyro�uid Turbulence Models

with Kinetic E�ects� Phys� Fluids B �� ����

Dorland� W�� Hammett� G� W�� Beer� M� A�� and Hahm� T� S� �����a��

Nonlinear Gyro�uid Simulations and Analysis$ ITG Turbulence� Presented at

the ���� Sherwood Theory Conference�

Dorland� W�� Hammett� G� W�� Chen� L�� Park� W�� Cowley� S� C��

Hamaguchi� S�� and Horton� W� ������� Numerical Simulations of Nonlinear

��D ITG Fluid Turbulence with an Improved Landau Damping Model� Bull� Am�

Phys� Soc� ��� �����



Bibliography ���

Dorland� W�� Hammett� G� W�� and Hahm� T� S� �����a�� Nonlinear

Gyro�uid Simulation and Analysis� Presented at the ���� Sherwood Theory

Conference�

Dorland� W�� Hammett� G� W�� Hahm� T� S�� and Beer� M� A� �����b��

Nonlinear and Linear FLR E�ects in Gyro�uid Turbulence Simulations� Bull�

Am� Phys� Soc� �	� �����

Dorland� W�� Hammett� G� W�� Hahm� T� S�� and Beer� M� A� �����b��

Nonlinear Gyro�uid Model of ITG Turbulence� In Horton� W�� Wakatani�

M�� and Wootton� A�� editors� Ion Temperature Gradient Driven Turbulent

Transport� American Institute of Physics� New York�

Dorland� W�� Hammett� G� W�� Reynders� J� V� W�� and Santoro�

R� A� �����c�� Nonlinear Gyro�uid Simulations of ITG Turbulence in a Sheared

Slab� Bull� Am� Phys� Soc� ��� �����

Drummond� W� E� and Pines� D� ������� Nucl� Fusion Suppl� Pt� 
 � �����

Dubin� D� H� E� and Krommes� J� A� ������� Stochasticity� Superadiabatic�

ity� and Adiabatic Invariants� In Horton� Jr�� C� W�� Reichl� L� E�� and

Szebehely� V� G�� editors� Long�Time Prediction in Dynamics� page ���� John

Wiley and Sons� New York�

Dubin� D� H� E�� Krommes� J� A�� Oberman� C�� and Lee� W� W� �������

Nonlinear Gyrokinetic Equations� Phys� Fluids ��� �����

Dupree� T� H� and Tetreault� D� J� ������� Renormalized Dielectric Func�

tion for Collisionless Drift Wave Turbulence� Phys� Fluids ��� ����

Frey� J� ������� Numerical Simulation of Semiconductor Devices� �	th Inter�

national Conference on the Numerical Simulation of Plasmas � SIT�

Fried� B� D� and Conte� S� D� ������� The Plasma Dispersion Function�

Academic Press� New York�

Frieman� E� A� and Chen� L� ������� Nonlinear Gyrokinetic Equations for

Low�Frequency Electromagnetic Waves in General Plasma Equilibria� Phys�

Fluids ��� ���%����

Galeev� A� A�� Oraevskii� V� N�� and Sagdeev� R� Z� ������� �Universal�

Instability of an Inhomogeneous Plasma in a Magnetic Field� Soviet Physics



��� Bibliography

JETP �	� ����

Galeev� A� A� and Sagdeev� R� Z� ������� Basic Plasma Physics I� volume �

of Handbook of Plasma Physics� North�Holland Physics Publishing� New York�

Groebner� R� J�� Burrell� K� H�� and Seraydarian� R� P� ������� Role

of Edge Electric Field and Poloidal Rotation in the L�H Transition� Phys� Rev�

Letters ��� �����

Guzdar� P� N�� Drake� J� F�� McCarthy� D�� Hassam� A� B�� and Liu�

C� S� ������� Submitted to Phys� Fluids B�

Hahm� T� S�� Lee� W� W�� and Brizard� A� ������� Nonlinear Gyrokinetic

Theory for Finite�Beta Plasmas� Phys� Fluids ��� �����

Hahm� T� S� and Tang� W� M� ������� Weak Turbulence Theory of Ion�

Temperature�Gradient Modes for Inverted Density Plasmas� Phys� Fluids B ��

�����

Hamaguchi� S� and Horton� W� ������� Fluctuation Spectrum and Transport

from Ion Temperature Gradient Driven Modes in Sheared Magnetic Fields� Phys�

Fluids B �� ����%�����

Hamaguchi� S� and Horton� W� �����a�� E�ects of Sheared Flows on Ion�

Temperature�Gradient�Driven Turbulent Transport� Phys� Fluids B �� ����

Hamaguchi� S� and Horton� W� �����b�� Modeling of Drift Wave Turbulence

with a Finite Ion Temperature Gradient� Plasma Physics and Controlled Fusion

��� ���%����

Hammett� G� W� ������� Private communication�

Hammett� G� W�� Beer� M� A�� and Dorland� W� ������� Developments

in the Gyro�uid Approach to Tokamak Turbulence Simulations� Technical Re�

port PPPL������ Princeton Plasma Physics Laboratory� ���� Sherwood theory

conference invited talk�

Hammett� G� W� and Dorland� W� ������� Nonlinear Gyro�uid Equations

for �D Simulations of ITG Turbulence in a Sheared Slab� Presented at the ����

Sherwood Theory Conference�

Hammett� G� W�� Dorland� W�� Beer� M� A�� and Cowley� S� C� �����a��

Progress on Toroidal and Nonlinear E�ects in Gyro�uid Simulations of Tokamak



Bibliography ���

Turbulence� Bull� Am� Phys� Soc� �	� �����

Hammett� G� W�� Dorland� W�� and Perkins� F� W� �����b�� Fluid

Models of Nonlinear Gyrokinetic Dynamics and Landau Damping� Bull� Am�

Phys� Soc� ��� �����

Hammett� G� W�� Dorland� W�� and Perkins� F� W� �����c�� Fluid

Models of Phase Mixing� Landau Damping� and Nonlinear Gyrokinetic Dynamics�

Phys� Fluids B �� �����

Hammett� G� W� and Perkins� F� W� ������� Fluid Models for Landau

Damping with Application to the Ion�Temperature�Gradient Instability� Phys�

Rev� Lett� ��� ����%�����

Hasegawa� A� and Mima� K� ������� Stationary Spectrum of Strong Turbu�

lence in Magnetized Nonuniform Plasma� Phys� Rev� Lett� ��� ����

Hasegawa� A� and Wakatani� M� ������� Self�Organization of Electrostatic

Turbulence in a Cylindrical Plasma� Phys� Rev� Letters ��� �����

Hassam� A� B� ������� Possibility of Driving Perpendicular Rotation in Core

Plasma by O��Axis Neutral Beam Injection to Suppress Microturbulence� Pre�

sented at the ���� Sherwood Theory Conference�

Hawryluk� R� J�� Arunsalam� V�� Bell� M� G�� Bitter� M�� Blanchard�

W� R�� Bretz� N� L�� Budny� R� V�� Bush� C� E�� Callen� J� D�� Co�

hen� S� A�� Combs� S� K�� Davis� S� L�� Dimock� D� L�� Dylla� H� F��

Efthimion� P� C�� Emerson� L� C�� England� A� C�� Eubank� H� P��

Fonck� R� J�� Frederickson� E�� Furth� H� P�� Gammel� G�� Gold�

ston� R� J�� Grek� B�� Grisham� L� R�� Hammett� G� W�� Heidbrink�

W� W�� Hendel� H� W�� Hill� K� W�� Hinnov� E�� Hiroe� S�� Hsuan�

H�� Hulse� R� A�� Jaehnig� K� P�� Jassby� D� L�� Jobes� F� C�� John�

son� D� W�� Johnson� L� C�� Kaita� R�� Kamperschroer� R�� Kaye�

S� M�� Kilpatrick� S� J�� Knize� R� J�� Kugel� H�� LaMarche� P� H��

LeBlanc� B�� Little� R�� Ma� C� H�� Manos� D� M�� Mansfield� D� K��

McCann� R� T�� McCarthy� M� P�� McCune� D� C�� McGuire� K�� Mc�

Neill� D� H�� Meade� D� M�� Medley� S� S�� Mikkelsen� D� R�� Milora�

S� L�� Morris� W�� Mueller� D�� Mukhovatov� V�� Nieschmidt� E� B��

O�Rourke� J�� Owens� D� K�� Park� H�� Pomphrey� N�� Prichard� B��



��� Bibliography

Ramsey� A� T�� Redi� M� H�� Roquemore� A� L�� Rutherford� P� H��

Sauthoff� N� R�� Schilling� G�� Schivell� J�� Schmidt� G� L�� Scott�

S� D�� Sesnic� S�� Sinnis� J� C�� Stauffer� F� T�� Stratton� B� C�� Tait�

G� D�� Taylor� G�� Timberlake� J� R�� Towner� H� H�� Ulrickson� M��

Vershkov� V�� Goeler� S� V�� Wagner� F�� Wieland� R�� Wilgen� J� B��

Williams� M�� Wong� K� L�� Yoshikawa� S�� Yoshino� R�� Young� K� M��

Zarnstorff� M� C�� Zaveryaev� V� S�� and Zweben� S� J� ������� TFTR

Plasma Regimes� In Plasma Physics and Controlled Nuclear Fusion Research�

����� volume �� page ��� International Atomic Energy Agency� Vienna�

Hazeltine� R� D�� Hsu� C� T�� and Morrison� P� J� ������� Hamiltonian

Four�Field Model for Nonlinear Tokamak Dynamics� Phys� Fluids ��� �����

Hedrick� C� H� and Leboeuf� J��N� ������� Landau Fluid Equations for

Electromagnetic and Electrostatic Fluctuations� Phys� Fluids B �� �����

Heppenheimer� T� A� ������� The Man�Made Sun� The Quest for Fusion

Power� Little� Brown and Company� Boston�

Hirshman� S� P� ������� Two�Dimensional Electrostatic E � B Trapping�

Phys� Fluids ��� ����

Horton� W� ������� Drift Wave Turbulence and Anomalous Transport� In Ba�

sic Plasma Physics II� volume � of Handbook of Plasma Physics� North�Holland

Physics Publishing� New York�

Horton� W�� Estes� R� D�� and Biskamp� D� ������� Fluid Simulation of

Ion Pressure Gradient Driven Drift Modes� Plasma Physics ��� ����

Horton� W�� Lindberg� D�� Kim� J� Y�� Dong� J� Q�� Hammett� G� W��

Scott� S� D�� and Zarnstorff� M� C� ������� Ion�Temperature�Gradient�

Driven Transport in a Density Modi
cation Experiment on the Tokamak Fusion

Test Reactor� Phys� Fluids B �� ����

Kadomtsev� B� B� ������� Plasma Turbulence� Academic Press� Reading�

Massachusetts� edited by M� G� Rusbridge� translated by L� C� Ronson�

Kadomtsev� B� B� and Pogutse� O� P� ������� In Leontovich� M� A��

editor� Review of Plasma Physics� page ���� Consultants Bureau� New York�

Vol� �� No� ���



Bibliography ���

Kadomtsev� B� B� and Pogutse� O� P� ������� Self�Consistent Transport

Theory in Tokamak Plasmas� In Plasma Physics and Controlled Nuclear Fusion

Research� ���	� volume �� page ��� International Atomic Energy Agency� Vienna�

Kotschenreuther� M� ������� Heat Transport Calculations due to �i Micro�

turbulence by Kinetic Simulation Using the Low�Noise �f Algorithm� Bull� Am�

Phys� Soc� ��� �����

Kotschenreuther� M� ������� Continuing Development and Applications of

the �f Algorithm for Tokamaks� Bull� Am� Phys� Soc� ��� �����

Kotschenreuther� M� ������� Impurity E�ects on ITG Turbulence� In

Horton� W�� Wakatani� M�� and Wootton� A�� editors� Ion Temperature

Gradient Driven Turbulent Transport� American Institute of Physics� New York�

Kotschenreuther� M�� Berk� H� L�� Denton� R�� Hamaguchi� S�� Hor�

ton� W�� Kim� C��B�� LeBrun� M�� Lyster� P�� Mahajan� S�� Miner�

W� H�� Morrison� P� J�� Ross� D�� Tajima� T�� Taylor� J� B�� Valanju�

P� M�� Wong� H� V��Xiao� S� Y�� and Zhang� Y��Z� ������� Novel Computa�

tional Techniques to Predict Transport in Con
nement Devices� and Applications

to Ion�Temperature�Gradient Driven Turbulence� In Plasma Physics and Con�

trolled Nuclear Fusion Research� ����� volume �� page ���� International Atomic

Energy Agency� Vienna�

Krommes� J� A� ������� Renormalized Compton Scattering and Nonlinear

Damping of Collisionless Drift Waves� Phys� Fluids ��� ����

Krommes� J� A� ������� Private communication�

Leboeuf� J��N�� Charlton� L� A�� and Carreras� B� A� ������� Shear

Flow E�ects on the Nonlinear Evolution of Thermal Instabilities� Phys� Fluids

B �� �����

Lee� G� S� and Diamond� P� H� ������� Theory of Ion�Temperature�Gradient�

Driven Turbulence in Tokamaks� Phys� Fluids ��� �����

Lee� W� W� ������� Gyrokinetic Approach in Particle Simulation� Phys� Fluids

��� ����

Lee� W� W� ������� Gyrokinetic Particle Simulation Model� J� Comput� Phys�

	�� ����



��� Bibliography

Lee� W� W�� Hahm� T� S�� Parker� S� E�� Perkins� F� W�� Rath� S��

Rewoldt� G�� Reynders� J� V� W�� Santoro� R� A�� and Tang� W� M�

������� Kinetic Studies of Microinstabilities in Toroidal Plasmas$ Simulation

and Theory� In Plasma Physics and Controlled Nuclear Fusion Research� ����

volume �� pages IAEA%CN%��&D%�%��� International Atomic Energy Agency�

Vienna�

Lee� W� W�� Krommes� J� A�� Oberman� C� R�� and Smith� R� A� �������

Nonlinear Evolution of Drift Instabilities� Phys� Fluids �	� �����

Lee� W� W�� Kuo� Y� Y�� and Okuda� H� ������� Numerical Simulation of

Collisionless Drift Instabilities for Low�Density Plasmas� Phys� Fluids ��� ����

Lee� W� W� and Tang� W� M� ������� Gyrokinetic Particle Simulation of Ion

Temperature Gradient Drift Instabilities� Phys� Fluids ��� ����

Lee� W� W�� Tang� W� M�� and Okuda� H� ������� Ion Temperature Drift

Instabilities in a Sheared Magnetic Field� Phys� Fluids ��� �����

Lehnert� B� ������� Phase�Mixing by the Guiding�Centre Drifts of Charged

Particles in a Plasma� Plasma Physics and Controlled Fusion ��� ���%����

Lidsky� L� M� �October� ������ The Trouble with Fusion� Technology Review


�� ���

Linsker� R� ������� Integral�Equation Formulation for Drift Eigenmodes Cylin�

drically Symmetric Systems� Phys� Fluids ��� ����%�����

Liu� Q� P� and Cheng� C� Z� ������� Numerical Solution of the Gyrokinetic

Equation for Tokamak Microinstabilities� Bull� Am� Phys� Soc� �	� �����

Mattor� N� ������� Can Landau�Fluid Models Describe Nonlinear Landau

Damping# Phys� Fluids B �� �����

Mattor� N� and Diamond� P� H� ������� Momentum and Thermal Transport

in Neutral�Beam�Heated Tokamaks� Phys� Fluids ��� �����

Okuda� H� and Dawson� J� M� ������� Theory and Numerical Simulation on

Plasma Di�usion Across a Magnetic Field� Phys� Fluids ��� ����

Okuda� H��Dawson� J� M�� Lin� A� T�� and Lin� C� C� ������� Quasi�neutral

Particle Simulation Model with Application to Ion Sound Wave Propagation�

Phys� Fluids ��� ����



Bibliography ���

O�neil� T� M� and Gould� R� W� ������� Phys� Fluids ��� ����

Orszag� S� A� ������� Stud� Appl� Math ��� ����

Parker� S� E� ������� Private communication�

Parker� S� E� and Lee� W� W� ������� A Fully Nonlinear Characteristic

Method for Gyrokinetic Simulation� Phys� Fluids B �� ���

Parker� S� E�� Lee� W� W�� and Santoro� R� A� ������� Gyrokinetic Simu�

lation of Ion Temperature Gradient Driven Turbulence in �D Toroidal Geometry�

Technical Report PPPL������ Princeton Plasma Physics Laboratory�

Perkins� F� W� and Hammett� G� W� ������� Gyro�uid Equations for

Toroidally�Trapped Particles� Bull� Am� Phys� Soc� ��� �����

Roberts� K� V� and Taylor� J� B� ������� Gravitational Resistive Instability

of an Incompressible Plasma in a Sheared Magnetic Field� Phys� Fluids 
� ����

Rudakov� L� I� and Sagdeev� R� Z� ������� On the Instability of a Nonuni�

form and Rare
ed Plasma in a Strong Magnetic Field� Dokl� Akad� Nauk� SSSR

��
� ����

Sagdeev� R� Z� and Galeev� A� A� ������� Nonlinear Plasma Theory� Ben�

jamin� New York� T� M� O�Neil and D� L� Book� Eds�

Santoro� R� A� and Lee� W� W� ������� Gyrokinetic Particle Simulation of

Impurity Particle Transport� Bull� Am� Phys� Soc� ��� �����

Similon� P� ������� A Renormalized Theory of Drift�Wave Turbulence in

Sheared Magnetic Fields� PhD thesis� Princeton University�

Smith� S� A� and Hammett� G� W� ������� Manuscript in preparation�

Stix� T� H� ������� Waves in Plasmas� American Institute of Physics� New

York�

Stringer� T� E� ������� Di�usion in Toroidal Plasmas with Radial Electric

Field� Phys� Rev� Lett� ��� ����

Sydora� R� D� ������� �D Gyrokinetic Particle Simulations of Ion Tempera�

ture Gradient�Driven Turbulence and Transport� In Horton� W�� Wakatani�

M�� and Wootton� A�� editors� Ion Temperature Gradient Driven Turbulent

Transport� American Institute of Physics� New York�



��� Bibliography

Sydora� R� D�� Hahm� T� S�� Lee� W� W�� and Dawson� J� M� �������

Fluctuations and Transport Due to Ion�Temperature�Gradient�Driven Instabili�

ties� Phys� Rev� Lett� ��� ����%�����

Waltz� R� E� ������� Toroidal Turbulence Simulations with Gyro�Landau

Fluid Models in a Nonlinear Ballooning Mode Representation� In Horton� W��

Wakatani� M�� and Wootton� A�� editors� Ion Temperature Gradient Driven

Turbulent Transport� American Institute of Physics� New York�

Waltz� R� E�� Dominguez� R� R�� and Hammett� G� W� ������� Gyro�

Landau Fluid Models for Toroidal Geometry� Phys� Fluids B �� �����

Wesson� J� ������� Tokamaks� Clarendon Press� Oxford�

Winsor� N� K� ������� A Numerical Model for a Low�Pressure Plasma in a

Toroidal Magnetic Field� PhD thesis� Princeton University�

Wolfram� S� ������� Mathematica� A System for Doing Mathematics by Com�

puter� Addison�Wesley Publishing Co�� New York�

Wong� H� V�� Berk� H� L�� and Jungwirth� K� ������� Gyrokinetic Simu�

lation of Toroidal �i Modes� Bull� Am� Phys� Soc� ��� �����

Zarnstorff� M� C�� Barnes� C� W�� Efthimion� P� C�� Hammett� G� W��

Horton� W�� Hulse� R� A��Mansfield� D� K�� Marmar� E� S�� McGuire�

K� M�� Rewoldt� G�� Stratton� B� C�� Synakowski� E� J�� Tang� W� M��

Terry� J� L�� Xu� X� Q�� Bell� M� G�� Bitter� M�� Bretz� N� L�� Budny�

R� V�� Bush� C� E�� Diamond� P� H�� Fonck� R� J�� Frederickson� E� D��

Furth� H� P�� Goldston� R� J�� Grek� B�� Hawryluk� R� H�� Hill�

K� W�� Hsuan� H�� Johnson� D� W�� McCune� D� C�� Meade� D� M��

Mueller� D�� Owens� D� K�� Park� H� K�� Ramsey� A� T�� Rosenbluth�

M� N�� Schivell� J�� Schmidt� G� L�� Scott� S� D�� Taylor� G�� and

Wieland� R� M� ������� Overview of Recent TFTR Results� In Plasma

Physics and Controlled Nuclear Fusion Research� ����� volume �� page ���� In�

ternational Atomic Energy Agency� Vienna�


	title_Dorland
	dorland-thesis


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


