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Abstract

Much progress has been made in simulating tokamak turbulent transport
using both gyrofluid and gyrokinetic particle techniques. Recent simulations
have focused on Ion Temperature Gradient (ITG) driven electrostatic tur-
bulence, a potential candidate for explaining turbulence in some parameter
regimes, and have explored experimentally-relevant physics issues such as
the long-wavelength peak in measured spectra, the important role of sheared
flows in turbulence, and the scaling of the transport with normalized gyro-
radius ρi/a and other parameters.

This paper presents the first nonlinear gyrofluid simulations which si-
multaneously include trapped-electron effects (for arbitrary collisionality)
as well as the ion temperature gradient drives, in 3-D toroidal simulations
capable of high resolution. This enables more realistic comparisons with ex-
periments, and provides the full transport matrix (of electron and ion heat
and particle fluxes), so that such issues as particle pinches or convection
multipliers can be investigated. A relatively sophisticated trapped-electron
model is used which retains pitch-angle dependence throughout. This is po-
tentially important for advanced tokamak regimes (negative shear, second
stability) where a major fraction of the trapped particles have favorable
drift. We also present initial linear results including the passing electron
fluid equations needed to get fully electro-magnetic fluctuations (i.e., “finite
β” effects which introduce coupling between drift-like and MHD-like modes)
to look for a possible β dependence of the transport.

1. Introduction

Turbulent transport in tokamaks is a very challenging scientific problem. It is
an intrinsically nonlinear, chaotic, 3-dimensional (plus velocity space) problem
involving a wide range of space and time scales. It is further complicated by a zoo
of instability driving mechanisms, and by puzzling experimental results exhibiting
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a number of different regimes. Computer simulations are a valuable tool in
tackling these problems, in combination with analytical insights and detailed
comparisons with experiments. Our goal is to develop quantitative predictions
of tokamak turbulence that we can compare with present experiments, and then
use to aid the design of future fusion reactors. Fairly good agreement between
experiments and nonlinear ITG turbulence simulations was found in the recent
work by Dorland et al.[1], providing encouraging evidence that we are on the
right track.

The present paper will focus on extending such nonlinear simulations to in-
clude more realistic physics, primarily non-adiabatic trapped and passing elec-
trons, to enable more realistic and detailed comparisons with experiments over
a wider range of parameters. Trapping in the magnetic well is a robust mech-
anism for generating the non-adiabatic electrons needed to get electron particle
and heat flux. We can now study regimes where the collisionless or dissipative
trapped-electron mode (CTEM, DTEM) dominates over the ITG mode, such as
in the core of supershots, or mixed regimes where the TEM drive may double the
growth rate of the ITG mode. These simulations can also investigate why the
cores of supershots are convection dominated with a 3/2 multiplier, or search for
possible “off-diagonal” pinch effects. Our quasi-fluid trapped electron model[2]
is fairly sophisticated, retaining the full pitch-angle dependence throughout. We
also present initial linear results including the passing electron fluid equations
needed to get magnetic fluctuations, δA‖ as well as δΦ. A number of other
physics results from the gyrofluid and gyrokinetic codes will also be described,
including the issue of Bohm vs. gyro-Bohm scaling.

2. Gyrofluid Simulation Developments

“Gyro-Landau fluid” (or gyrofluid) equations are an extension of the usual fluid
equations to include models of kinetic resonances and gyro-averaging (FLR)
which play important roles in fusion plasma turbulence. They are essentially
a reduced set of moments of the gyrokinetic equation which include models
of parallel kinetic resonances (Landau-damping)[3], linear and nonlinear gyro-
averaging (FLR) effects[4], toroidal drift resonances (first with 4 moments[5] and
now with 6 moments including magnetic mirroring effects[2, 6]). They have been
extended[7] to multiple ion species (such as D/T/beams/impurities, including
ion-ion collisions), an important capability needed for realistic comparisons with
actual experiments. Extensions to trapped electrons[2] and passing electrons[8]
are discussed below. There are some nonlinear regimes where the gyro-Landau
fluid approximations break down (i.e., they require many terms to converge),
as pointed out by Mattor[9] for ion Compton scattering in the low-frequency,
weak-turbulence regime, γ � ω � k‖vti. However, the gyrofluid approximations
should work fairly well in the strong-turbulence regimes expected in tokamaks
(more details on these justification issues can be found in Ref.[10, 6, 11]). Non-

2



IAEA-CN-60/D-8

linear benchmarks between gyrofluid and gyrokinetic codes have been carried out
and find similar behaviors in regimes tested so far[10, 12, 13].

One of the interesting nonlinear results observed in the gyrofluid ITG simu-
lations is that the turbulence often generates strong sheared flows (n = 0 “radial
modes”) which can in turn control the saturation of the turbulence[10, 6, 14, 15].
These generated sheared flows appear to be less important when the magnetic
shear is high[7, 16]. The importance of self-generated flows in edge turbulence
and H-modes has been previously emphasized[17, 18], while the present work
shows how it can be important in core ITG turbulence as well. Nonlinear gy-
rofluid studies have found[14] that when the shearing rate associated with the
E × B flow, γE = (r/q)∂(Vφ/R)/∂r, exceeds the maximum growth rate of the
microinstabilities, then the turbulence is suppressed. Including the parallel flow
shear which drives the Kelvin-Helmholtz instability tends to prevent complete
stabilization. Increasing rotational shear is a leading candidate for explaining
the VH improved confinement regime on DIII-D.

3. Quasi-Fluid Bounce-averaged Trapped Electrons

Here we outline the derivation of a “quasi-fluid” treatment of trapped electrons,
and present initial nonlinear results. Details of the derivation and results will
be found in Ref.[2]. Since we are interested in time scales much longer than the
electron bounce frequency, we start with the nonlinear bounce-averaged drift-
kinetic equation [19]:

(

d

dt
+ i〈ωde〉b

)

〈fe〉b = 〈C〉b (〈fe〉b − 〈Φ〉b) − iFM (ωT
∗e − 〈ωd〉b)〈Φ〉b

fe = FM (Φ − 〈Φ〉b) + 〈fe〉b
where 〈...〉b denotes bounce-orbit averaging. Φ has been normalized to e/Te and

d/dt = ∂/∂t + b̂ × 〈Φ〉b · ∇. The nonlinear E×B terms (in d/dt) have the same
form as for ions, except that y is now thought of as a toroidal coordinate, i.e.,
radial E causes toroidal precession of trapped electrons. Also, only the bounce-
averaged Φ enters the E×B drifts. Bounce averaging eliminates the parallel
direction, so 〈fe〉b(x, y,E, κ) is a function of radius, x, toroidal angle, y, energy,
E = mv2/2, and pitch angle κ.

We take moments over (v⊥, v‖) of the gyrokinetic equation to get our 3-D
gyrofluid equations, but we only need to take moments over energy of the bounce
averaged kinetic equation to get 3-D trapped-fluid equations for the electrons,
which are functions of (x, y, κ), i.e., nt(x, y, κ) = 4π

∫ ∞
0 dv v2〈fe〉b/n0, and the

higher moments pt and rt are similar with additional factors of v2/(3v2
te) and

v4/(15v2
te) in the integrals. Since 〈ωde〉b ∝ E, this introduces the usual closure

problem of the coupled moments hierarchy.

dnt

dt
+

3

2
iωdept −

3

2
iωde〈Φ〉b + iω∗e〈Φ〉b = 〈C〉b(nt − 〈Φ〉b)
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dpt

dt
+

5

2
iωdert −

5

2
iωde〈Φ〉b + (1 + ηe)iω∗e〈Φ〉b = 〈C〉b(pt − 〈Φ〉b)

drt

dt
+

7

2
iωdett −

7

2
iωde〈Φ〉b + (1 + 2ηe)iω∗e〈Φ〉b = 〈C〉b(rt − 〈Φ〉b)

We use an extension of the Landau-fluid closure approximation[3] to provide

a 3-pole model of the precession resonance and phase-mixing, tt = −i |ωde|
ωde

(νant +
νbpt + νcrt), where each closure coefficient has both a dissipative and nondissi-
pative piece, ν = νr + iνi|ωde|/ωde, but now ωde, the bounce averaged ∇B and
curvature drift frequency (the toroidal precession frequency) is pitch angle de-
pendent. The closure coefficients are chosen to match the linear kinetic response:
νa = (−.071,−.290), νb = (−.689, 1.102), and νc = (1.774,−.817). Retaining the
pitch angle (κ) dependence of the trapped-electron fluid “density”, nt(x, y, κ),
“pressure”, etc., is needed to represent the pitch-angle dependence of 〈ωde〉b.
This recovers the favorable drifts of barely-trapped particles, and is potentially
important for Advanced Tokamak regimes involving negative-shear or second-
stability. It also allows use of an actual diffusive pitch-angle-scattering operator
in the “fluid” equations (better handles trapped-passing boundary layer effects),
whose bounce-average is calculated in Ref.[20]. Note that 〈C〉b operates on
〈Φ〉b which depends on pitch-angle, and the collision operator causes the net fe

to relax to adiabatic limit when νeff � ω. The energy dependence of the pitch-
angle scattering operator will couple different energy-moments together, though
for now we have assumed ν⊥(E) ≈ ν0 for simplicity. The real space electron den-
sity (normalized to n0), which is needed to calculate the potential, is related to
the pitch-angle-dependent trapped electron density by (in the large aspect ratio
limit):

ne(x, y, θ) =

∫

d3vfe = Φ +
√

2ε

∫ κmax

sin(θ/2)

dκκ[nt(x, y, κ) − 〈Φ〉b(x, y, κ)]
√

κ2 − sin(θ/2)
,

where θ is the coordinate along the field line. The lower bound on the κ integral
arises since only electrons with their turning points, θt, beyond θ contribute to
the local density, and κ = sin(θt/2) at the turning point. The integral should go
up to the trapped-passing boundary κmax = 1 for all modes with ky 6= 0 (toroidal
mode number n 6= 0). However, for toroidally symmetric ky = 0 (n = 0) modes
one must keep track of the passing particles as well, so the κ integral should
extend over all pitch-angles, κmax = 1/

√
2εB . This is related to the fact that the

orbit average 〈Φn〉b = 〈fe,n〉b = 0 for passing particles for toroidal mode numbers
n 6= 0, since Φn must vanish as θ → ∞ for n 6= 0, but not for n = 0 modes.

This trapped electron model (with the 4+2 moment toroidal gyrofluid equa-
tions for the ions) is compared linearly vs. fully kinetic results [21] in Fig. 1A,
for ηi = ηe = 3, q = 1.5, ŝ = 1, Ln/R = 1/3, r/R = 1/6, and kθρ = 0.35 (i.e.,
parameters as given in Ref.[21]). The kinetic results exhibit a somewhat weaker
rate of transition between the collisionless and collisional limits. The gyrofluid
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code might be able to reproduce that feature better with an energy-dependent
ν⊥, which will allow higher energy moments to be less collisional.

We present preliminary nonlinear results in Fig. 1B, for the parameters in
Fig. 1A, and νeff = 0.1. For this collisionality, although the linear growth rate
nearly doubled, the nonlinear χi is close to χi from simulations with adiabatic
electrons. In the linear stage, the ratio of χi/χe ≈ 7, which is the quasilinear ratio
for the fastest growing mode at kθρ ≈ 0.4. Nonlinearly, χi/χe drops to about 4,
consistent with the quasilinear ratio for the peak in the nonlinear spectrum at
kθρ ≈ 0.2.

4. Finite-β Electromagnetic Gyro-Landau-Fluid Model

ITER-P scaling suggests a χ of the Bohm-like form[22] χ ∝ (cT/eB)β1/2ν
1/4
∗ ,

and the scaling of χ with plasma density (via β) is an important issue for the
design of ITER. Thus the extension of turbulence studies to include “finite-β”
electromagnetic perturbations is of interest. More details on this extension will
be in Ref.[8].

For purely passing particles with no consideration of the mirror force, gen-
eralization of the electrostatic GLF model by Waltz, Dominguez, Hammett[5]
(WDH) to finite beta is straightforward. We need only include the parallel mag-
netic vector potential in the parallel momentum equations

MsdUs/dt = −ik̃‖(t
−1
s P‖s + esΓ0sΦ) + iMsesωD[(Γ‖ + Γ⊥)/2Us − iσtµUs],

−βe/2(es∂As1/∂t − iω∗(1sAs1 + ηsAs2))

and in all of the fluid equations generalize the k‖ operator to k̃‖ = b̂ · ∇ =

(b̂0 + δ ~B⊥/B0) · ∇, i.e., including the “magnetic flutter” nonlinearity. This can
be expressed in a form similar to the E × B nonlinearity,

ik̃‖f = ik‖f − (βe/2)b̂0 ×∇A · ∇f.

Otherwise the continuity and pressure equations remain unchanged from WDH
which may be consulted for notation and further definition. [This section fo-
cuses on the “3+1” fluid equations with a reduced FLR model presented in
WDH. Other gyrofluid results reported in this paper employ up to “4+2” fluid
equations with a more complete FLR model[4], and follow a somewhat different
notation.] The same closure coefficients as found in WDH are used to represent
parallel and toroidal drift resonances. Φ is determined by the usual gyrokinetic
quasineutrality condition, and A is determined by Ampere’s law. There are
magnetic flutter contributions to the particle and energy fluxes, in addition to
the ExB flows and turbulent energy exchange specified in WHD. One can show
that Ampere’s law forces the magnetic flutter component of the electron and ion
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particle fluxes to be the same. The magnetic flutter component of the heat flux
is:

QMsx = (3/2)T0sΓMx − n0s(cS/a)(ρs/a)2χMdT0s/dr

χM = (βe/2)
2
√

8/πMsΣk|k‖|−1k2
yA

∗
k [Ak − k‖Tsk/(ηs(βe/2)ky)]

This essentially corresponds to magnetic flutter heat flow with the Landau-
fluid[3] parallel collisionless diffusivity, χ‖ = (2/

√
π)vt/|k‖| (in physical units).

The first term in χM represents Rechester-Rosenbluth field line diffusion and
the second term is the Kadomtsev-Pogutse back reaction term which prevents
significant magnetic heat flow as the field line becomes isothermal [Ak − k‖Tsk

/(ηs(βe/2)ky)] → 0. Formally, the operator |k‖|−1 should be written as |k̃‖|−1,
i.e., it should evaluate the phase-mixing due to free-streaming along perturbed

magnetic field lines. But for now, we are simplifying it to operate along the un-
perturbed magnetic field. There may be cases where this difference is important,
but we believe that the magnetic flutter flows will usually be very small.

We can merge the above equations for passing electrons with a separate set
of equations for trapped electrons with some approximations based on dividing
velocity space into a trapped region (|v‖| <

√
εv) and untrapped regions (

√
εv <

|v‖| < v), where
√

ε = [(r/R)[1+cos(θ)]/[1+(r/R) cos(θ)]]1/2 is the local trapped
fraction. These approximations lead to weighting factors of 1 − √

ε for various
terms in the passing electron equations. One must be careful in constructing
this model so that the total electron response (passing plus trapped) recovers the
proper fundamental limits (such as the adiabatic limit). We have carried out this
merger (and carried out successful linear benchmarks) using a somewhat simpler
trapped-electron model than presented in the previous section, but we believe
the merger of passing and trapped electron “fluid” equations can be carried out
with the model of the previous section as well.

The electron equations are stiff in time because the frequency of the waves we
want to follow is much lower than the typical electron transit frequency k‖vte. To
handle this, we use a small-storage, implicit “response matrix” method developed
by Kotschenreuther for a gyrokinetic ballooning code[21]. Our finite beta trapped
electron code has not yet been run to the nonlinear stage but we believe it
gives a satisfactory representation of the linear mode stability in comparison to
Kotschenreuther’s gyrokinetic stability code. Fig. 2 shows that it reasonably
well reproduces the onset of the ideal ballooning mode limit, for the parameters
kθρs = 0.2, ŝ = 1, q = 2, a/LT = 3, a/Ln = 1, Ti/Te = 1, a/R = 1/3, and
r/R = 1/6.

5. Bohm vs. Gyro-Bohm Scaling Puzzles

The scaling of χ with ρ∗ = ρi/a (i.e., scaling with the size of the tokamak) is a
key question of interest for ITER. Though most theories lead to gyro-Bohm-like
scalings, χ ∝ (cT/eB)ρ/a (times some function of other dimensionless parameters
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independent of ρ∗), dimensionless scaling experiments on TFTR[22, 23] appear
to be closer to a Bohm-scaling (χ independent of ρ∗) than a gyro-Bohm scaling.

Cowley proposed[24] using an efficient “minimum-simulation volume” em-
ploying field-line coordinates, a concept implemented and elaborated on by oth-
ers as well ([25, 14, 26]). The main idea is that it should be sufficient to simulate
a thin “flux-tube” whose width only needs to be a few decorrelation lengths wide
in the directions perpendicular to ~B (while still being very extended along a field
line to allow for the long parallel correlation lengths). One should demonstrate
the validity of this approach by verifying that the results (the χ and the size of
the eddies) are independent of the simulated flux-tube size, once it is larger than
a few decorrelation lengths. The simplest versions of this approach ignore the
variation of equilibrium parameters (such as ω∗(r) or ηi(r)) on the scale of the
thin flux tube, and thus implicitly assume a gyro-Bohm scaling.

Detailed convergence studies in flux-tube geometry have been carried out in
both gyrofluid[25, 14] and gyrokinetic[16] codes, finding that the results are in-
deed independent of the simulation size. In essence, these results demonstrate
the existence of a gyro-Bohm scaling regime in the limit of ρ∗ → 0 (at least for
the type of ITG-driven turbulence studied so far). Moreover, these flux-tube
simulations (as well as the full-torus simulations[27]) have found that the nonlin-
ear spectrum peaks at a lower kθρ than the fastest growing linear mode, yielding
a spectral width ∆k⊥ρ ∼ 0.2 similar to long-wavelength spectra measured on
TFTR[28]. On the other hand, full torus simulations have found a Bohm scal-
ing for χi in the smallest range of ρ∗’s which are achievable at present (from
ρ∗ = 1/64 to 1/128). (Details on these calculations are in the next section and
the references therein.) In contrast to the present flux-tube codes, which are
effectively scaled to the ρ∗ → 0 limit and assume ω∗ is constant, this full-torus
code includes the radial variation of ω∗T (r), which is presumably affecting the
radial correlation lengths of the turbulence to give a Bohm scaling.

These two results can be reconciled by realizing that there may different
scaling regimes for different values of ρ∗, as illustrated in Fig. 3. [This figure
is meant only as a conceptual illustration and, except for the points from the
full-torus results, is not precise.] Present day tokamak experiments lie at ρ∗’s
smaller than the full-torus code can reach, and ITER will extrapolate beyond
present experiments by another factor of 3. It would seem plausible that future
tokamaks with smaller ρ∗ will be in more of a gyro-Bohm regime. However, it
is not yet proven where the transition between these two regimes lies, or how
the transition point scales with other parameters such as Ti/Te, the closeness to
marginal stability LT,crit/LT , the type of instability driving the turbulence, or
the presence of sheared flows.

Present dimensionless-scaling experiments[22, 23] appear to be more Bohm-
like, though the intrinsically gyro-Bohm model by Dorland et al.[1] wasn’t far off.
This may be due in part to the ability of marginal stability effects to mask other
dependencies in χ (as noted by others also), i.e., χ is sensitive to small changes
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in 1/Lti if it is near the critical temperature gradient. Indeed the prediction of
temperature profiles is much easier in the marginal stability limit where ∇T is
determined by the linear Lti,crit rather than the complicated nonlinear physics of
χ.

Longer wavelength instabilities can be more sensitive to the variation of ω∗(r),
and analysis of long-wavelength trapped-ion instabilities indeed supports a Bohm-
like scaling of ion thermal transport. The stabilizing influence of sheared flows
on long-wavelength (krρbi < 1) linear trapped-ion modes has been studied[29]
by modifying a two-dimensional code, including full trapped-particle dynamics
and poloidal mode coupling. Global modes with radial extent over many ratio-
nal surfaces can be significantly stabilized by realistic levels of sheared toroidal
rotation for TFTR-like parameters. Including a hot beam species turns out to be
stabilizing in the absence of rotation, but can have a net destabilizing effect with
sufficient rotation. Toroidal rotation effects on shorter wavelength (kθρi < 1)
toroidal drift modes are studied using the same rotation model in a comprehen-
sive ballooning-representation kinetic calculation[30], and can be stabilizing due
to radially local and non-local effects. Analytic studies[31] of sheared-flow effects
on turbulence have also been carried out. Earlier cylindrical results have been
extended to toroidal geometry including v‖ as well as vE×B, finding a scaling
on q and ŝ which may provide insights into confinement improvement with high
triangularity in DIII-D VH modes and the favorable influence of a separatrix or
current ramp down.

6. Gyrokinetic Simulation of Tokamak Transport

Fully nonlinear toroidal gyrokinetic equations formulated in the early 1980’s[32,
33, 34, 35], have recently become solvable by direct numerical simulation[27]
due to enormous gains in computing power and developments in low noise δf
methods[39, 40, 41]. For example, simulations of a whole tokamak cross-section
with a minor radius of 100-200ρi are now feasible on current generation massively
parallel supercomputers. These first-principles nonlinear codes have become a
vital tool for the improved understanding of anomalous transport.

Global toroidal gyrokinetic simulations have been used extensively to inves-
tigate ITG-driven turbulence[27]. The largest runs done so far have been with 8
million particles with a minor radius of a = 128ρi. Linear results are in reason-
able agreement with linear eigenmode calculations[36]. The ensuing turbulent
spectrum retains remnants of the linear ballooning mode structure, and peaks
at significantly longer wavelengths than the linearly most unstable modes. The
kr, kθ spectra show features similar to those obtained from recent beam emis-
sion spectroscopy and reflectometry measurements on TFTR[28, 37] with the kθ

spectrum peaking at kθρi ∼ 0.1-0.2 and the kr spectrum peaking at zero. By
varying the minor radius a/ρi from 64 to 128 in the simulation, while keeping all
other dimensionless parameters fixed, we have found that the resulting kr spec-
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trum scales as krρs ≈ (ρi/a)1/2, while the kθρi spectrum remains fixed. This can
easily be shown[38] to be consistent with a Bohm-scaling for χi, using a quasi-
linear expression for the heat flux and a mixing length saturation level. Fig. 3
shows the measured χi vs. a/ρi from five runs[39]. All points were measured at
the same dimensionless time of approximately T = 300LT /cs. The a = 128ρs

run shows an error bar because, in contrast to the other cases, the heat flux did
not stay at a steady state at T = 300Lt/cs but continued to drop until the run
was terminated at approximately T = 1000Lt/cs. Work is underway to under-
stand this apparent anomaly. These runs indicate that a transition occurs from a
worse-than-Bohm scaling at very small system size (a/ρi < 64) to a Bohm scaling
for larger systems. The scaling of χi with the edge safety factor q(a) which is
related to current scaling through Ip ∝ 1/q(a) is found to be χi ∝ q(a)1/4. Fur-
ther discussion on global scaling can be found in Ref. [42]. In addition, global
gyrokinetic simulations with artificially narrow variation in the temperature gra-
dient show nonlocal transport in regions where the gradient is zero, indicating
χi → ∞ or the break down of local diffusive transport theories. Simulations
indicate favorable scaling of χi with increasing Ti/Te.

These global simulations have found χi ∝ |φ|2, suggesting that a weak-
turbulence treatment may be appropriate. A greatly reduced description (need-
ing only a modest number of toroidal modes ∼ 10) of the essential physics appears
to be possible using a set of mode coupling equations with the nonlinear coupling
coefficients determined empirically from the simulation itself. Detailed measure-
ments of the nonlinear mode coupling coefficients have been made for the first
time[42] which are essential for determining the underlying mechanisms for the
downward shift in the wavelength spectrum.

Multi-ion species have been included to investigate their impact on trans-
port. An inward impurity pinch due to ITG microturbulence has been found[43]
consistent with recent TFTR experiments[44]. In trace particle simulations, a
linear dependence on Z/m for the pinch velocity is observed. We have investi-
gated the thermal transport in the presence of an inverted density gradient in
multi-hydrogenic-ion plasmas. In the presence of an inverted density gradient
in DT simulations with ηT

i = 4 and ηD
i = −4, a factor of 2 increase in χT

i has
been observed. This increase is related to the “impurity-gradient” instability
predicted by Coppi et al.[45], which is a close cousin of the ITG instability, i.e. it
is driven by gradients in the average thermal velocity of the ions, but in this case
due to gradients in the relative concentrations of light (deuterium) vs. heavy (im-
purities, or even tritium, relative to deuterium) ions. The tritium experiments
on TFTR provide a unique capability for testing various aspects of such D-T-
gradient instabilities, which are a topic of interest for understanding fueling in
future reactors. Further simulations with different combinations of H, D, and T
are in progress.

The global gyrokinetic code has been extended to study the turbulence-
generated sheared-flows[46]. Proper treatment[10, 6] of the adiabatic electron
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response leads to large self-generated poloidal flows in steady state, with modestly
reduced heat transport (at least for TFTR L-mode type parameters). In contrast
to local flux-tube gyrokinetic calculations[12, 38, 16], the dominant radial mode
is global with kr ∼ 1/a, similar to earlier fluid calculations by Hasegawa and
Wakatani[47]. Poloidal flow generation via quasilinear radial currents seems to
be the most promising theoretical description, which is equivalent to the Reynolds
stress argument presented by Diamond and Kim[17]. The effect of toroidal drift
orbit averaging on these radial modes is under investigation which will help in
validation or improvements in fluid treatments of such modes.

A zero-electron-inertia fluid model has been derived[38, 48] from moments
of the drift kinetic equation taking me→0, but with T‖e finite avoiding all ac-
curacy or stability constraints on k‖vte∆t, as well as particle noise associated
with electron free streaming. This is in the same spirit as previous zero-electron-
mass models[49, 50, 51], but the fluid equations are derived from the drift-kinetic
equation, and the ions are treated fully gyrokinetic[32, 33]. This approach is a
natural extension of both flux tube[12, 38] and whole cross section[27] 3D toroidal
gyrokinetic simulations to include effects of electron ExB flow, electron pressure
gradient effects (e.g. ω∗e), and most importantly the electron parallel current,
which in turn is used to include electromagnetic perturbations (δB⊥). Work
is underway to study the β dependence of χi from ITG-driven microturbulence
modified by δB⊥. The inclusion of finite δB‖ is straightforward through the
gyrokinetic perpendicular pressure balance equation. Development of an electro-
magnetic bounce-averaged trapped-electron model is also in progress.

7. Summary

Major steps have been taken towards increasingly realistic physics in tokamak
turbulence simulations codes. Here we presented the first nonlinear gyrofluid
results including a sophisticated trapped-electron model[2] which retains effects
which may be important in advanced tokamak regimes. We applied an extension
of the gyrofluid equations to passing electrons to include finite-β electromagnetic
perturbations, and tested this linearly. Flux-tube simulation codes (both gy-
rofluid and gyrokinetic) have demonstrated the existence of a gyro-Bohm scaling
regime for ITG-driven turbulence in the limit ρ∗ → 0. The full-torus gyrokinetic
simulations have found a Bohm scaling at the moderate values of ρ∗ computa-
tionally achievable at present. There is presumably at transition from Bohm to
gyro-Bohm scaling at some intermediate value of ρ∗.
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Figure 1: 1A: A comparison of linear growth rates from gyrofluid trapped elec-
tron model vs. kinetic theory. As νeff/ω → ∞, the growth rates approach the
adiabatic-electron/ITG limit, while for νeff = 0, trapped electrons increase the
linear growth rate by a factor of 2. 1B: Time evolution of χi and χe from a
nonlinear simulation with trapped electrons. The ratio χi/χe is lower in the fully
nonlinear regime (t > 70) than it is in the quasilinear regime (t < 60).
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Figure 2: Comparison of gyrofluid with gyrokinetic calculations of the growth
rate vs. β, showing the transition from an ITG instability at low β to a kinetic
ballooning mode above the ideal β limit.

14



IAEA-CN-60/D-8

Figure 3: A conceptual illustration of the two scaling regimes observed for ITG-
driven turbulence: Bohm scaling from the full-torus gyrokinetic code[38] at mod-
erate ρ∗, and gyro-Bohm scaling in flux-tube codes in the limit ρ∗ → 0. The oval
representing present experiments is not precise, and is meant only to illustrate
the qualitative result that while dimensionless scaling experiments are closer to
a Bohm than a gyro-Bohm scaling, there are recent encouraging comparisons of
gyro-Bohm-type theories with a range of experiments[1]. One might conjecture
that future tokamaks with smaller ρ∗ will transition to a gyro-Bohm regime, but
this is uncertain because the location and parametric dependence of the transition
between these two regimes is not yet understood.
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