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Turbulence in tokamaks is characterized by long parallel wavelengths and short perpendicular 
wavelengths. A coordinate system for nonlinear lluid, gyrokinetic “Vlasov,” or particle simulations 
is presented that exploits the elongated nature of the turbulence by resolving the minimum necessary 
simulation volume: a long thin twisting flux tube. It is very similar to the ballooning representation, 
although periodicity constraints can be incorporated in a manner that allows EXB nonllnearities to 
be evaluated efficiently with fast Fourier transforms (FFT’s). If the parallel correlation length is very 
long, however, enforcing perlodicity can introduce artificial correlations, so periodicity should not 
necessarily be enforced in the poloidal angle at 8= + v. This method is applied to high resolution 
three-dimensional simulations of toroidal ion temperature gradient (ITG) driven turbulence, which 
predict fluctuation spectra and ion heat transport similar to experimental measurements. 0 1995 
American Institute of Physics. 

1. INTRODUCTION 

The turbulence that evolves from fine-scale instabilities 
(-e.g., vi, trapped electron, or resistive ballooning modes) is 
thought to be responsible for the anomalously large particle, 
momentum, and heat transport levels in tokamaks. It is there- 
fore of great interest to simulate numerically the nonlinear 
evolution of these instabilities to determine the resulting 
fluctuation and transport levels. These instabilities are char- 
acterized by long wavelengths parallel to the magnetic field 
and short perpendicular wavelengths, on the order of the ion 
gyroradius, pi. This is, of course, a consequence of the rapid 
communication along field lines (at the sound speed for elec- 
trostatic instabilities) and slow communication across the 
field lines (typically velocities across the field do not exceed 
the diamagnetic speed). In addition, fluctuation 
measurements”* in tokamaks indicate a relatively short per- 
pendicular correlation length (-lop,), but a long parallel 
correlation length.3 Simulation of a full tokamak with ad- 
equate resolution of these fine perpendicular scales is some- 
what beyond the presently available computational re- 
sources, since p,la-10-s for present day large tokamaks, 
where a is the minor radius. (The latest full torus gyrokinetic 
particle simulations can now be run down to pi/a=&:) 
However, it may be unnecessary to simulate a whole torus to 
reproduce small-scale, locally driven turbulence. In this pa- 
per we describe a coordinate system for nonlinear simula- 
tions that resolves a much smaller volume and is therefore 
computationally more efficient, while still resolving the rel- 
evant small scales. The smallest possible simulation volume 
is a long thin flux tube that is several correlation lengths 
wide in both perpendicular directions (radial and poloidal), 
and extended along the field line, exploiting the elongated 
nature of the turbulence (k,,. %‘kll). This approach is advanta- 
geous for fluid, gyrokinetic “Vlasov,” and particle simula- 
tions, and could eventually be compared with full torus 
simulations. 

“‘Present address: Department of Physics, University of California, Los Aa- 
grles, Los Angeles, California 93324. 

The fundamental idea is to use coordinates that follow 
field lines. With such coordinates a flux tube (a tube with a 
surface parallel to B), which is bent by magnetic curvature 
and twisted by magnetic shear, is mapped into a rectangular 
domain. Such twisting coordinates were originally proposed 
by Roberts and Taylor,5 and Cowley et al.” emphasized their 
utility for nonlinear calculations. In Ref. 7, we described the 
essential features of this approach, with an emphasis on slab 
geometry. Here we focus more on the toroidal aspects and 
actual details of implementation. The major problem of these 
field line coordinates is enforcing the periodicity constraint, 
since the coordinates are multivalued in a torus, except at 
low-order rational surfaces. In Ref. 6 it was emphasized that 
it is unlikely that the correlated volume wraps around the 
torus and overlaps itself. When this is true, the physical pe- 
riodicity of the full torus is irrelevant, and the simplest ap- 
proach is to simulate a flux tube subdomain that is several 
parallel correlation lengths long, just as it should be several 
perpendicular correlation lengths wide. As will be described 
in Sec. III, this can be different from imposing periodicity at 
0= fr, as is usually suggested for the ballooning represen- 
tation, which could lead to artificial correlations and modify 
the results. 

Another advantage of field-line coordinates, in addition 
to the efficiency of a minimum simulation volume, is that 
radial periodicity can be easily implemented, thus avoiding 
the problems of “quasilinear Aattening” and allowing self- 
consistent turbulence-generated “zonal” flows (flows that 
cause flux surfaces to rotate). The field-line coordinates are 
also particularly convenient for gyrofluid simulations, where 
partially Fourier transformed quantities (in two of the three 
dimensions) need to be evaluated, such as 
~wd(0)~+,cos(O)+k, sin(0jI. 

In Sec. II we describe the general formulation of the 
‘basic geometry. The issues of periodicity and parallel bound- 
ary conditions are discussed in detail in Sec. III. Parallel 
boundary conditions for particle simulations are presented in 
Sec. IV. In Sec. V we discuss the relation of these flux tube 
coordinates to the standard ballooning transformation. We 
present some simulation results for toroidal ion temperature 
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gradient (ITG) driven turbulence using this coordinate sys- 
tem in Sec. VI, and investigate the effect of the parallel 
boundary conditions. We have carried out simulations with 
various sizes for the flux-tube “box,” and verified that the 
results are independent of the box size once the box is Iarger 
than the correlation length in each direction, thereby justify- 
ing some of the assumptions implicit in simulating a flux 
tube subdomain rather than the full torus. This leads to inter- 
esting questions regarding Bohm versus gyro-Bohm scaling 
for the turbulence. In Sec. VII we discuss these results, the 
efficiency of flux tube simulation, and possible limitations of 
this approach. For completeness the equations used in the 
simulations are included in the Appendix. Reference 8 con- 
tains additional details and figures that may help the reader 
conceptualize these geometrical issues. 

II. FLUX TUBE SIMULATIONS IN GENERAL 

If one wants to describe turbulence that is highly elon- 
gated along field lines and narrowly localized across field 
lines, it is natural to introduce coordinates that are constant 
on field lines. A natural way to do this for any general mag- 
netic field is to use the Clebsch representation of the mag- 
netic field” (since V=B=O): 

B=VaxVi/k (1) 

Clearly, B.Va=B.Vt,+=O, so that a and q? are constant on 
field lines. Thus, cr and $ are natural coordinates for the flux 
tube. A third coordinate, Z, must be defined that represents 
distance along the flux tube. In many applications toroidal 
flux surfaces are defined, and it is natural to take ~9 to be the 
poloidal flux. The choice of (Y is less obvious and may be 
optimized for a particular calculation. A further complication 
is that LY and $ are typically not naturally single valued and a 
cut must be introduced to enforce single values.’ This issue 
will be discussed extensively below. Let us imagine that a 
choice of a, & and z has been made and that @=Ly(r), 
t+Q=+tr), and z=z(r’) are known functions, obtained, for in- 
stance, from an equilibrium code. Thus, the metric coeffi- 
cients for the transformation to the a,$,~ coordinates are 
taken to be known. 

We shall assume that the turbulence has short perpen- 
dicular correlation lengths compared to equilibrium scale 
lengths but a parallel correlation length on the order of the 
equilibrium scale lengths. Consider a flux tube simulation 
domain defined by cr,,--Aa<a<q,+Ac~, ~o-A~glt<~o 
+A$, and -zO<z<zO. This volume is chosen to be several 
correlation lengths in all three directions, but should be as 
small as possible for computational efficiency. Once the box 
volume is larger than several correlation lengths, the turbu- 
lence should be insensitive to the size of the box. One tests 
whether the box size is adequate by increasing the box size 
and comparing the turbulence in the different size boxes, or 
by measuring the correlation functions in a given box and 
verifying that they go to zero at the edges of the box. In this 
way we arrive at a minimum simulation volume. 

Three spatial operators appear many times in the equa- 
tions for the perturbations B-V, Vf , and BXV@*V. In the 
field-aligned coordinates x, = ((Y, $,z), these are 
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B.VA=(VaxV@Vz) (2) 

where A and CD are any scalars. Since the simulation vohune 
is narrow in cy and $ compared to equilibrium variations, ail 
equilibrium quantities, or gradients of equilibrium quantities 
when they appear in these operators, are to lowest-order 
functions of z alone, with cr= cro and $= $o. For example, the 
Jacobian J=(VcrXV+Vz)-’ is to a good approximation 
constant across the box but not along the box, thus 
J=J(cx~,I&,z). When A is a perturbed scalar (n,T, etc.), 
and (1, is the electrostatic potential, we can neglect the dldz 
terms in Of, and BXV@.V, since they are smaller by Q/k, . 
Then, Eqs. (3) and (4) reduce to 

V:A=IVcrl’$+2 va-v# &+IvII= $2 

(5) 

BxV@.VA= (6) 

Therefore, the equations to be solved in this minimum simu- 
Iation volume have no explicit dependence on CY or It/, which 
leads to great computational simplification. The EXB non- 
linearity takes the simple form Eq. (6), and all other coeffi- 
cients in the equations are only functions of Z. 

The perpendicular boundary conditions on the perturba- 
tions at cr=aeu,t ACY and +=1+4~tA~ are taken to be periodic. 
If the box is more than a correlation length wide the turbu- 
lence should be insensitive to the boundary conditions, al- 
though one set of boundary conditions that is not advisable is 
fixed boundary conditions that prohibit energy and particle 
fluxes through the boundary. If fixed radial boundary condi- 
tions without sources or sinks are used, then the components 
of the perturbations that are constant on flux surfaces [the 
m =O, n =O components, i.e., n(q), T($), where m and n are 
the poloidal and toroidal mode numbers] will grow to even- 
tually cancel the driving equilibrium gradients (“quasilinear 
flattening”), thus turning off the turbulence. In principle, this 
problem can be overcome with a sufficiently large box so 
that the time scale to flatten the driving gradients becomes 
much longer than the simulation time, but periodic radial 
boundary conditions avoid flattening altogether and allow the 
use of a more efficient, smaller box. Past simulations have 
sometimes zeroed out the m =O, n =0 components of pertur- 
bations to avoid this flattening, but this prevents the genera- 
tion of sheared zonal E X B flows resulting from the m =0, 
n =0 component of cP(@), which can be an important nonlin- 
ear saturation process.7*‘0-‘4 Periodic radial boundary condi- 
tions allow the self-consistent evolution of m=O, n=O per- 
turbations, such as the zonal flows. 

The assumption of radial periodicity in the small flux 
tube is not based on actual physical constraints, which would 
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require simulating the full tokamak to include heating in the 
core, losses to the liter or edge regions, etc. Instead, we 
are assuming that the statistical properties of the fluctuations 
at $+2 A$ are the same as at $, and that if the simulation 
box width 2 A$ is larger than the radial correlation length we 
can assume that they are actually identical at every instant. 
Periodic boundary conditions are often used in two- 
dimensional plasma simulations or in simulations of homo- 
geneous Navier-Stokes turbulence, but are complicated in 
three-dimensional plasma simulations by the shear in the 
magnetic field. The tluctuations tend to be elongated along 
the direction of the magnetic field, which points in different 
directions at different radii. In reguhtr coordinates this re- 
quires the use of something like the “twist-and-shift” radial 
boundary conditions suggested by Kotschenreuther and 
Wong*‘0.‘5J6 In coordinates already aligned with the mag- 
netic field, however, radial periodicity becomes simply A( + 
+2 A~,(Y,z,t>=A(~,LY,Z,t). 

For the same reasons, we can also assume statistical pe- 
riodicity in the a! direction, A(@,a+2 ALY,ZJ) 
=AC$,%Z, tj. Since there is no explicit dependence of the 
operators in Eqs. (5) and (6) on CY or $, we use a Fourier 
series in 9 and CY, which also provides periodicity in those 
directions: 

The boundary conditions in the z direction will be discussed 
in Sec. III. Note that while each term in the Fourier series is 
a plane wave in tu, 1,4 coordinates, the wave fronts in real 
space can be very distorted, by magnetic shear, for example, 
measured by the parameter s” = (r. lqO)(dqldr),,,D. Mag- 
netic shear makes the angle between constant CY and $ sur- 
faces change as z changes-in real space the flux tube is then 
sheared and its cross section changes from a rectangle to a 
parallelogram. The wave fronts of each term in the Fourier 
series, Eq. (7), also get sheared. For example, the j =O, k #O 
term has wave fronts corresponding to the constant LY lines. 
The individual terms in the series Eq. (7) are therefore 
“twisted eddies,“5Y6 whose wave fronts twist as one moves 
along z. 

Now let us discuss the choice of the coordinates LY and $. 
As shown in Ref. 17, it is possible to choose a, I& and 
generalized “toroidal” and “poloidal” angle variables 5 and 
19, such that the field lines are straight in the Cc,@ plane and 
physical quantities are periodic over HIT in both variables. 
This choice of coordinates will simplify our discussion of 
periodicity in Sec. III. For the general magnetic field Eq. (l), 
we have’ 

where +=(27r))-“J, d7 B-V@ is the poloidal flux, 
q($)=dt,bTfd$, $T=(2rrj-2Jv drB.V+ is the toroidal 
flux, dr is the volume element, and r$ and 13 are the physical 
toroidal and poloidal angles, so physical quantities are peri- 

FIG. 1. The rectangular computational domain mapped onto a flux tube in a 
torus, with yO=2.4 and shear, s^= 1.5. The ends of this flux tube are cut off 
at poloidal angle -TT and r, and the sheared cross sections of the flux tube 
in the poloidal plane are indicated. 

odic over 2~ in Q, and 6. The function v is also periodic in (p 
and 8. We now introduce a new toroidal coordinate, 5-4 
-v(+,G;I),+). With this choice, 

cu=5-4(ti’)& (9) 

and the magnetic field lines are straight in the ([, 0) plane and 
are given by a=const. Further, periodicity is preserved in b 
and 0. For our parallel coordinate z we will use z = 0, since 
this makes our description very close to the usual ballooning 
mode formalism. Note that z is not restricted to -r<z<r, 
as we may choose to simulate a flux tube that wraps around 
the torus several times in the poloidal direction, not just 
once. This will be discussed further in Sec. III. 

In summary, our field-line folIowing coordinate system 
is given by ($,;a,~), where field lines are labeled by constant 
@ and a. One can think of $ as a radial coordinate, CY as a 
perpendicular-to-the-field coordinate, and z = b, as a parallel- 
to-the-field coordinate. Our notation simplifies if we intro- 
duce the following new variables: 

x=$$@-tioL Y=--~(-~~), z=e, (IO) 

where qa = q( I,!+,), B, is the field at the magnetic axis, and r. 
is the distance from the magnetic axis to the center of the 
box. Then the representation of the perturbations, Eq. (7), 
becomes 

m m 

Atx,y,z,t)= 2 c 6i~i+ikyY~k,,k,“(z,t), !ll) 
kx= --m k,+-m 

with k,=jTlAx, k,= -kr/Ay, Ax=qoA~fBoro, and 
Ay = y. A a/q0 . The rectangular computational box of “ra- 
dial” width 2 Ax, and “poloidal” width 2 Ay, and extended 
along the field line, 0, is mapped onto a flux tube, as shown 
in Fig. 1, for example. 

While Eqs. (2), (5), and (6) apply to general magnetic 
geometry, our simulations to date have used the traditional 
low-p, large aspect ratio, concentric circular iiux surface ge- 
ometry. The specific forms of these operators then take the 
usual ballooning representation forms (see Ref. 8 for more 
details): 
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1 dA 
&VA=--- 

qoRo 30’ 

dd, dA da, dA 

and using the definition of B. in Eq. (22), k,= - k,s^ 0, , 

V:A= -k;A[ 1 -s^*( 0-- So)*]. (14) 

Toroidal terms enter through the magnetic drift frequency, 
o,, which, using Eq. (4), is 

iwdA=(cTleB*)BxVB.VA 

= -ikyA(cT/eBoRo)[cos e+s^( 0- eo)sin B], 

(1.9 
for k,.#O, and iw,A= -ik,A(cTleBoRo)sin 0, for k,=O. 

These coordinates are similar to those used in Ref. 18. 
Our a: $, and z are analogous to -qB’, p’, and 4’ in Ref. 
18, respectively, since they have chosen to measure the dis- 
tance along the field line with +‘, a “toroidal” angle, while 
we use 8. A more significant difference between our repre- 
sentation and Ref. 18 is the treatment of periodicity and the 
boundary conditions along the field line, though their more 
recent workI has adopted a similar treatment to ours, de- 
scribed in Sec. III. 

HI. PERIODICITY AND PARALLEL BOUNDARY 
CONDITIONS 

The choice of parallel boundary conditions involves a 
number of subtle, yet important, issues. The main concept is 
that of a statistically motivated periodicity, as described in 
Sec. LI for the + and IX boundary conditions. For moderately 
“ballooning” turbulence we might expect parallel correlation 
lengths B,-(1-2)~ (though it might be longer than this). 
The simulation box should have a length 2zo = 2 rrN in the 
parallel direction, which is several times the parallel correla- 
tion length. in some cases a box length of 27r might be suf- 
ficient, but a longer box may be necessary to ensure that one 
end of the box is sufficiently decor-related from the other end 
to avoid artificially constraining correlation effects, just as 
the box must be at least a few correlation lengths wide in the 
$ and cy directions. For the cases simulated in Sec. VI, par- 
allel box lengths of at least 4~ were needed for good con- 
vergence. 

One must be careful about which other coordinates are 
held fixed while applying parallel periodicity, just as one 
must be careful to impose radial periodicity in field-line co- 
ordinates ($,;a,~) (i.e., impose periodicity in (I, while holding 
a and z fixed), as discussed in Sec. II. Though the flux tube 
is rectangular in ($,a) coordinates, it twists into a parallelo- 
gram in physical space as one follows the flux tube along z. 
The fluctuations in the physical plane perpendicular to a 
magnetic field line should be statistically identical at all 
places along that field line with the same poloidal angle (z 
=0,271;47~,...), irrespective of the twisting of the flux tube, 
which increases without bound as z--+m. Because of this, we 

will assume that the fluctuations are periodic in z while hold- 
ing ($,&J fixed, rather than holding the field-line coordinates 
(&;cr) fixed. Specifically, we impose 

or 

Physically, this is equivalent to considering two (@,[I planes 
cutting through the flux tube, at z = 0 and at z = B+ 2 rrN, and 
assuming that the turbulence is (statistically) identical in 
those two planes, To evaluate this periodicity constraint, first 
substitute a=l--q(Q)@, z = 8 into Eq. (71, and take ao=O for 
simplicity. Since the flux tube is thin, we can approximate 
q(GcI)-qo+(@-&k’, where q’ = (dqfW)+tic,i,, so Eq. 
(7) becomes 

A= i i r?ij,k(B,f) 
js-r k=-cz 

x eia(ccr-~~~(jlAg-kq’$/Aa)+ikiril?la-iknq~~~~Aa * (17) 

For convenience, we take the box width 2 ALU to be l/no of 
the full toroidal circumference, 

ha= &I~, (18) 

where no is a positive integer. Substituting this into Eq. (16) 
yields* 

A j+6j.k(ef2rrN,t)Ck=~j,k(e,t), 

where the phase factor Ck =exp( - i2 rNkqono). 

(191 

6j=2rrNkq’ A@ALu=2n0kN Aq, (201 

and 2 Aq = 2q ’ A@ is the change in q from one edge of the 
box to the other. Note that Sj must be an integer, so 
J= 2noN Aq must be an integer. This quantizes the range of 
q spanned by the flux tube, or the aspect ratio of the box, 
A@drlh~y for q’#O. One can treat shearless q’=O cases as 
wel1, then Sj= J= 0, and the radial box size 2 A+ is no 
longer quantized. In the usual q ‘$0 case, the radial position 
of the simulation box can be adjusted slightly so q. is ratio- 
nal and C,= 1. 

Equation ( 19) thus expresses a modified periodicity con- 
dition on the mode amplitudes: the value of a coefficient at 
one end of the box is specified by the value of another coef- 
ficient with the same k but a different j at the other end of a 
box. Since computer simulations cannot retain an infinite set 
of j’s and k’s, enough j and k modes are kept to resolvenup 
to a desired value of k,pi , above which the coefficients Aj.k 
are assumed to vanish. Note that Sj=O for k=O modes, so 
the periodicity condition for k=O modes simplifies to 
Aj,o(0+2rN,r)=Aj,o(B,t). 

This completes the formal specification of the boundary 
conditions, but we go on to express it in terms of notation 
often used in the ballooning transformation. It is common to 
introduce the “ballooning angle” tlo(j,k), such that the radial 
derivative of an individual (j,k) mode of Eq. (17), 
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$l,;i-(-&- ;;)¶ (21) 

vanishes at 0=0,. Note that this definition of 0” employs a 
derivative with respect to $ while holding 0 and 5 fixed, not 
iy and 0. Clearly, at O= 6r,(j,k) the wave fronts of the j, and 
kth term in Eq. (7) are perpendicular to the @surfaces. Equa- 
tions (18) and (21) yield 

kOo(j,k)= g&- 
n0 Aq’ GQ) 

Here Oa is discrete with spacing SOO=dkn, Aq, which is 
dependent on k. only the combination kOo ever appears, and 
the limit k=O must be interpreted in terms of the discrete j 
sum. In particular, the turbulence can generate k=O (Oo==~) 
modes, corresponding to zonal flows that can be important in 
the nonlinear dynamics, so the k=O modes must be allowed 
to evolve self-consistently. Similar care must be taken in the 
shear-less limit 0’ =O, where 0a+a. Using the definition of 
& in Eq. (223, we can express the shift Sj in Eq. (20) as a 
shift in 0, instead: 

isj3-r 
AOo=---- kno Aq =2*N- (23) 

Using the definition of 0a to denote ~i,k by a corresponding 
Z40Q,k, and absorbing a phase factor that is independent of 
the coordinates ($,O,r;) by using Aj k=Aj,k exp{ - ikno 
X [.qOBO(j,k> + aa]}, the parallel period&y condition of Eq. 
(19) can be written as 

iIeo+~~~,~(0,t)=~en,k(e-2~N,t). (24) 

Using Eqs. (18) and (22) and q( $)wqo+ (Q- &,)q’ [or 
going back to Eq. (7) and using ~7 itself for the radial-like 
coordinate $1, we can rewrite Eq. (17) as 

A( $, /Jl,J) = 5 2 &( o,t)e’kn0{5-9(~‘)[e-Hg(j.k)l}. 
j=--m kz-m 

(25) 
It should be emphasized that Eqs. (17) and (25) are merely 
the same equations in different notation. Equation (25) bears 
a strong resemblance to the standard ballooning representa- 
tion. There are, however, important differences that are dis- 
cussed in Sec. V. 

Equation (25), when used with the periodicity relation in 
Eq. (24), is periodic in 0 with period 2rN. By setting N= 1, 
this can satisfy physical periodicity in 0, achieving the same 
result as the “sum over p” in the standard ballooning repre- 
sentation. Thus, we are able to recover physical periodicity, 
as does the quasiballooning approach.r6 However, one 
should not necessarily use N= 1. Rather, one should use a 
large enough N so that the parallel box length 2~ = 2 TN is 
at least several times the parallel correlation length. This 
point may be confusing, since 0 is a physical variable, peri- 
odic over 271: Of course, if we were simulating a full toroidal 
annulus with no= 1, we should choose N = 1. Indeed, Eq. (25) 
or (17) provides an expansion in a complete basis set if no= 1 
and N= 1. However, we are not trying to simulate a full 
toroidal annulus, but a thin flux tube whose width is only 

m 

-2 

-IT 
-rr -2 0 2 7T 

f 

FIG. 2. Illustration on a flux surface of a possible correlated volume of the 
point 3 (enclosed by the solid line, with parallel correlation length 0,=37r), 

.and a minimum simulation volume enclosed by the dashed line. The diag- 
onal lines are parallel to the field lines (here g=2.4). In this case the simu- 
lation volume has a toroidal width of one-sixth the total toroidal circumfer- 
ence, i.e., na in E!q. (18) is 6. If the potential is represented by Eq. i25) and 
Q is made periodic in I!?, there are six identical copies of the correlated 
volume centered at the points 1-6. The correlated volume of point 5 (dotted 
line) partially overlaps the correlated volume of point 3, at the point marked 
A. This is unphysical and can be avoided in this case by making the system 
periodic over 4~. -2nKK27r. The minimum simulation volume illustrated 
is for --271<8<2rr. 

l/no of the full toroidal circumference. Then, Eq. (25) repre- 
sents no identical copies of the simulation volume if one 
considers the full range of 5, 0-+2~. Following the flux tube 
along the field lines (at fixed (Y) from O=O to 0=2~ will not 
lead to the same physical location (unless 4 is an integer) but 
to one of the no- I identical copies of itself. Forcing period- 
icity at this point is undesirable (unless the parallel correla- 
tion length is indeed significantly shorter than 27$ because it 
is a fiction of simulating only l/n, of the toroidal direction 
with no identical copies. 

This is illustrated by Fig. 2, which shows a correlated 
volume with a parallel correlation length 0,=3rr, and a per- 
pendicular correlation length equal to half the simulation box 
width, c~~=Aa=v/6. If the simulation box has a parallel 
length of only 27r, this correlated volume would be forced to 
overlap with one of the no images of itself, causing artificial 
interference effects. By extending the simulated flux tube to 
a length of 4~, we allow the whole region to evolve self- 
consistently. 

Of course, at an integer 9 flux surface, a simulation vol- 
ume really does overlap itself within a distance 0=2r and 
experience these interference effects. More generally, a cor- 
related volume will overlap itself when 0 increases by 2mN 
if q2mN mod 2~ is less than the perpendicular correlation 
length CX~. This can be used to define a maximum parallel 
length b)max, which the flux tube can be without physically 
overlapping itself. Here O,,, is also the maximum correlation 
length a correlated perturbation can have without “biting its 
tail” and experiencing coherent interference effects. In addi- 
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Yj 
2 
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Oi 
1 2 3 4 

q 

FIG. 3. Distance along the field line, 8,,, , at which a correlated volume 
(with perpendicular width 2 Aa=~/25) overlaps itself, for varying q. (a) For 
no=l, e,,, is small only near low-order q surfaces. (b) For n,=6, the 
maximum correlation length is reduced, since the correlated volume can hit 
copies of itself. In this case, if the physical correlation length is longer than 
e ma)i. the box must be extended and the periodicity condition relaxed. 

tion, 6,,, is plotted versus q(g) in Fig. 3. Note that if one 
simmates only l/no of the toroidal direction, then a corre- 
lated perturbation is no times as likely to run into itself or 
one of its images. In this case we may need to extend the 
parallel length of the simulated flux tube to avoid these arti- 
ficial correlations. For most of the plasma, there is no diffi- 
culty in extending the simulated flux tube to be two to three 
times longer than 2rr, without having the flux-tube physically 
run into itself. Even for a simulation flux tube that spans a 
range of q values, for example, 2 Aq-i, at worst the Aux 
tube might overlap itself briefly near an integer or half- 
integer q surface. As pointed out in Ref. 6, these low-order 
rational surfaces occupy a small fraction of a minor radius of 
a tokamak, and so it is very infrequent that a correlated per- 
turbation will “bite its tail.” Furthermore, experimental 
evidence2’ on tokamaks indicates that there are no unusual 
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features near low-order rational surfaces, except when there 
are macroscopic MHD instabilities. 

In practice, we find that the flux-tube length 27rN does 
not need to be extremely large, and N=2 may usually be 
sufficient. For the particular cases in Sec. VI, we find that 
N= 1 simulations produce a xi that is about 30% low, while 
N=2-4 are virtually indistinguishable. However, there may 
be other cases where an even larger N is required. In each 
case, one should justify the value of N u posteriori, by veri- 
fying that the parallel correlation functions from the simula- 
tions indeed fall off significantly in a distance 2?rN, and/or 
by carrying out convergence studies with different values of 
N, as in the perpendicular directions. 

We have also tested different parallel boundary condi- 
tions. Instead of imposing parallel periodicity holding II, and 
5 fixed, Eq. (16), the perturbations could simply be zeroed, 
A ( $, LU,Z = t rrN) = 0, or we could impose periodicity in z at 
fixed 51, and cy. While these two alternate boundary conditions 
should give the same result as our proposed method, Eq. 
(16), as the box length becomes very long, they do not con- 
verge as rapidly. We will concentrate on the case where pe- 
riodicity in z is imposed at fixed Jr and CY, so A ( ~9, LY, f s-N) 
=A( $J,(Y, - rrN), and each Aj,k mode in Eq. (7) is periodic 
with itself at z= t TN. In this case, every field line is effec- 
tively a rational field line that connects to itself, since par- 
ticles flowing out one end of the box flow back in the other 
end on the same field line. This is unlike a real sheared 
magnetic field, where most field lines are irrational and never 
connect to themselves. This is particularly important for 
electron dynamics, since electrons move rapidly along the 
field lines, and have time to sample a large fraction of the 
flux surface if q is irrational. When using the condition 
A ( 9, L-Y, +t rrN) =A( J/, cy, - TN) for the ions, we therefore 
distinguish between two ways of treating the electrons: treat- 
ing q as rational everywhere for electrons, and treating 9 as 
irrational everywhere for electrons. If q is irrational, the field 
line average (0) in the adiabatic electron response, 
n,=@--(G?) (see the Appendix), is a flux surface average, 
and is zero unless k,=O. If q is made rational everywhere, 
the field line average (@) is a function of LY, and is nonzero 
for k,#O modes, changing the quasineutrality constraint. 
This drastically changes the linear growth rates, and conse- 
quently, the turbulent heat flux. For the low shear cases in 
Sec. VI, the heat flux increases by a factor of 7. 

Even if we treat q as irrational for the adiabatic electron 
response, which is more realistic, using periodicity at fixed 
(I&X) for the ions yields heat diffusivities of (7.8,4.5,7,5) 
pTV,ilL, for box lengths (2,4,6,8)~, respectively, for the IOW 

shear cases in Sec. VI, while our approach converged to 
5p’~,~lL,, at a box length of only 4~. The alternate boundary 
conditions converge more slowly because the ends of the box 
are wasted by not smoothly connecting the turbulence at 
each end, Specifically, using A ( t+?, Q, + TTN) =A ( JI, CY, - v-&f) 
causes discontinuities in the spatial gradient operators for a 
given k, and $ mode across the ends of the box. For ex- 
ample, at &TN, V:A=-k,TAik(~~)[1+s^2(~N-eO)21~ 
while at &--TN, V:A=-d~A,,(-nN)[l+s^‘(-~~ 
- Bo)2], which is different if 0,+0. This distorts the eddies 
and damps the turbulence near the ends of the box. If the 
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ends are in the good curvature regions (lengths of 2~, 67~) 
the flux is high, and if the ends are in the bad curvature 
regions (4~,&) the flux is low. Our boundary condition Eq. 
(24) connects Ab,k( TN) to another mode with $ shifted by 
2rN to make the spatial operators continuous. 

IV. BOUNDARY CONDITIONS FOR PARTICLE 
SIMULATIONS 

Particle simulations can also take advantage of an opti- 
mum flux-tube simulation volume using the field-line coor- 
dinates ($,;a,~) described in Sec. II. Field quantities such as 
the electrostatic potential can be represented by the Fourier 
series, Eq. (7), with the parallel boundary conditions given 
by EQ. (191, or equivalently, Eq. (24). For the particles, we 
must specify the location where a particle will reenter the 
box after passing through an edge of the box. The particle’s 
velocity should not be changed. In the perpendicular direc- 
tions, I+ and a: standard periodicity is used. In the parallel 
direction, we apply FCq. (16). Using c~=Y-q(@)e and z=O, 
we see that if a particle exits the box at the position 
($,,q,z= + wN), where c~=[~--q( $,)TN, then it will re- 
enter the opposite side of the box at (& ,g ,z = - TN), where 
&=&, and CY~=~~=+Q($,)~N. Thus, the particle will be 
shifted in CY by the amount 

S~=CY~-CY~=~(I&)~;TTN mod 2 Aa, (26) 

where the modulo operation accounts for the fact that if this 
shift in CY causes a2 to fall outside the range of the box, 
-A.a<cr<Acr, then the particle has fallen into a periodic 
copy of the original box, and is simply shifted by a multiple 
of 2 ha back into the simulation domain. Expanding q(Q), 
using Eqs. (18) and (19), and introducing an integer K to 
reproduce the modulo function, we find 

64 $1 c*- $43) 
~=qoNn~CK+J ~ 2Aq. (27) 

At the outer edge of the box, $= &,+A@, the box has twisted 
by J/2 box lengths in the CY direction, and by --J/2 box 
lengths at the inner edge of the box, $=+$,--A$. Thus, .I 
represents the integer number of box widths in LX that the box 
has twisted from one end in z to the other end. This is illus- 
trated for J=2 in Fig. 4. In this figure, qr,Nn, is assumed to 
be an integer for simplicity, so the center of the box is at the 
same physical point at 8=It-mN. In general, the ends of the 
box will overlap with periodic copies of the original box. 

To summarize, if a-particle leaves the box from 
(.&,+A+,cc,z) then it reenters at (&--A$,scr,zj; if it leaves 
from ($,+Aa,z) then it reenters at (z,$-Aa,zj; and if it 
leaves from (@,a, + TN) it reenters at ( ti,,a+ 6a, - ~Nj. All of 
the above boundary conditions are reversible, i.e., if a par- 
ticle leaves at (&-A$,;a,z) it will reenter at ($+A$,scr,z), etc. 
More details on the implementation of boundary conditions 
for particle simulations are given in Ref. 8. 

V. THE BALLOONING TRANSFORMATION AND ITS 
RELATION TO FLUX-TUBE SIMULATION 

The linear theory of short perpendicular wavelength in- 
stabilities in tokamaks has been developed largely in terms 

1cIo-W +o+A$ 

FIG. 4. Boundary conditions in the parallel direction for particle simuIa- 
tions. At B=O, the simulation box is rectangular in [and & The twisted ends 
of the box at O=TN (solid) and 8= -nN (dashed) are shown. If a particle 
leaves the t9=~N end of the box at a”‘, it reenters the 8=-rN end of the 
box at CT&“, given by Eq. (26). 

of the so-called “ballooning transformation.“21 In this sec- 
tion we will discuss the relationship of the “ballooning trans- 
formation” to our flux tube simuIation scheme. In ballooning 
theory a single eigenmode is represented as 

@n($,f459t)= i ,-iot+in[-inq(z+b)(e-e0+2rp) 
p=-L-v 

X~fl,eo(~+2~P~~)~ (28) 

where &=19,(@) and &,,e0(8, @) depend on $. The toroidal 
mode number n is any large integer. The variation in 0 and p 
of the exponential is large, whereas the variation of 0, and @ 
is finite. In lowest order in an expansion in llnq one obtains 
a differential equation in ~9 for &,,,( 19, $>. This equation is 
solved with 0, a parameter and with the boundary conditions 
&--+O as /6i-+a, so the sum over p can converge. Periodicity 
in 0 is recovered by the p summation in I$. (28). A lowest- 
order approximation to the eigenvalue w,( 0,,@) is obtained 
on each surface. In higher order, the eigenvalue is quantized 
by solving radial differential equations. Much has been writ- 
ten about this higher-order procedure to find the radial be- 
havior, and we cannot do justice to the subtleties here.22 Let 
us consider instead a narrow radial annulus 
~O-A~~~~O+A$. Let @ be periodic in $ over 2 A$ at 
constant ar= l--q (Q) 8 and 0; then we can represent the radial 
variation of @ in a Fourier series in @; with n 0, = 1 m/Aq, 
i.e., the $ variation of 0,(@) and &,,80( 8, @) are combined 
into a discrete series in BO. Thus, one could write for an 
arbitrary perturbation in this ammlus: 

=,-, +$+, .-. ,ing-inq(~)(8+2~p)+il~(g-~o)1A~ 

=kz,~(~+2~pJ~, (29) 
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where we have resealed &@‘9”f&,n,I = g,,, . The p sum- 
mation makes this expression manifestly periodic in 0. Ex- 
panding q(&, so exp[-inq2?rp+ iId@-$$A$] 
=exp[-inq,2rrp+irr(l--2pn Aq)(@-&)/A$], it is clear 
that in this summation we need only take ]I] GIo=n Aq. 
since otherwise the p and I sums duplicate terms. This re- 
stricts the bandwidth in $ of the perturbations in ballooning 
space, and makes the ballooning transformation unique.23 

If we set no= I in Eq. (25) and N=l in Eq. (19) we 
obtain an exactly equivalent representation to Eq. (29). To 
see this, we note that the j in Eq. (25) and p and 1 in Eq. (29) 
are related by j=l-2ple and 6j=21,, and we set k=n. 
Thus, the -rr<B<n. range of the 4-),,/ modes with Il[<l, 
correspond to the ;ij.k modes with ]j]<6j/2 (defined only 
from - rr<H<rr for N= 1). The Aj.k modes with ]j] > 6j/2 
correspond to the -rr-27rp<tX7~-22p range of the 
$ii,+, modes with p = (j- l)lSj. The boundary condition Eq. 

( 19) makes this series of Aj.k modes (for all j) identical to 
dj,,*/ (for I/]</,,) defined on the extended domain -x<B<m 
(when no= N= 1). 

Using the boundary condition, Eq. ( 191, and a finite 6 
range simplifies the evaluation of the EXB nonlinearities 
compared to the usual ballooning representation. The simple 
form, Eq. (6), is easy to evaluate using a pseudospectral 
method. A fully spectral method remains in k space at a11 
times, so the nonlinear terms become convolutions in k 
space and require of order NtNfN,-fl operations. By us- 
ing fast Fourier transforms (FFT’s), the pseudospectral 
method reduces the operations to N,,N?,N,(log, N,l+logZ N,) 
-N”, resulting in a very significant savings for large N. 

In the ballooning representation [i.e., using Eq. (29) to 
represent the perturbations], the nonlinear terms involve 
sums over p:” 

(wVA ),,.A 0) = 4 c 2 pz,, e -2niqg(n’p’+n”p”lnrnrrqr[2rr(pf)-yr)+ a;- @I 

n’cn”=n 1’ 

X[&,,*,,( 842~~‘)A,ll,r(B+2~~“)-A,r,(‘( 0+27r&4&lr.,4 0+2?rp”)1, (30) 

where I”=1-I’+2 Aq(n’p’+n”p”) and 
Br+~,I)=lrrln Aq, Again, ]l’(s(n’]Aq and Il”[~lnNIAq, 
and A and 6 are defined on an infinitely extended t9 domain, 
without the boundary condition, Eq. (19). This expression 
differs slightly from earlier literature since we are using a 
discrete representation in $, and have implicitly used the 
inverse ballooning transfot.mation.23 If the mode width in f3 is 
less than r, the sums over y appear to be a small effect, and 
are usually neglected in nonlinear calculations using the bal- 
looning representation. This conclusion may be misleading. 
Noting that in Eq. (29), k,~=jrrlA.t.=(l-2p10)rr/Ax and 
k,= -nn-lAy= -nq,lr,, we see that in the standard bal- 
looning representation, only a wedge of &)n,(‘s in (k, ,k,.) 
space are evolved, -nAq<l<n Aq (for n#O), and the rest 
of kL space is filled by the sum over p. For small n, the 
evolved range of k,‘s is small, so it may take many terms in 
the p sum to reach moderate k,‘s. The evolved wedge of k, 
modes corresponds to a wedge of 6’a’s from - rr< $< rr. In 
our representation, since we evolve a rectangular grid in k, 
space, the Q,) range is not limited to ]fY,]<n. The nonlinear 
interaction between a mode (k, ,k,.) within the p =0 wedge 
and a mode outside the wedge could be strong, even if its 
linearly most unstable mode structure (of many eigenmodes 
in 0) is centered a long distance down the field line. For low 
k, and large k, one would have to include many p’s to cap- 
ture this interaction. In our nonlinear simulations, we do see 
modes outside the p=O wedge excited to significant ampli- 
tudes. While the form of the EXB nonlinearity in Eq. (6) can 
be efficiently evaluated with FIT’s, it is not obvious that Eq. 
(30) can be. However, since our representation is equivalent 
to the ballooning representation (if no= N= I), it automati- 
cally includes the sums over p in the nonlinearity. Our rep- 

resentation should also be more convenient for analytic cd- 
culations, since the nonlinearity takes a simple form, and the 
choice of t),‘s, or kx’s, is well defined. 

VI. SIMULATION RESULTS 

We have implemented this coordinate system in nonlin- 
ear gyrofluid simulations of toroidal ITG turbulence. The 
simulation results are presented here to describe practical 
computational issues and to test some of our assumptions. It 
is not meant to be a complete description of our gyrofluid 
equations or our nonlinear results, which are discussed in 
Ref. 8. Therefore, we have relegated the actual equations to 
the Appendix. 

There are some subtleties involving the implementation 
of the boundary condition, Eq. (19), because our equations 
involve fk,ll Landau damping terms (equivalent to a nonlocal 
integra1 operator in real space’“). Two separate methods for 
implementing this boundary condition are described in detail 
in Ref. 8, which we refer to as the “equal-length extension” 
and “muhiply connected” methods. In practice, we have ob- 
served no significant differences between these methods in 
the nonlinear simulations done to date. These issues are ig- 
norable for a particle or Vlasov simulation, since they do not 
require evaluation of $1 and can directly use the boundary 
conditions in Sec. IV. 

To test the small-scale assumption, we present two simu- 
lations: one with perpendicular dimensions (L,r= 85pi, 
L,= 1 OOpi), and one with double the box size (L,r= 17Opi, 
L,= 200~~). That these simulations give similar results indi- 
cates that the small flux tube may be capturing the essence of 
the turbulence. It is a necessary but not sufficient test, as 
discussed in Sec. VII. The physical parameters are taken 
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from the Tokamak Fusion Test Reacto?” (TFTR) L-mode 
shot #41309: ~=4, LJR-0.4, s^=lS, q=2.4, Ti= T,, 
pi=O. 14 cm, L,, = 103 cm, and the computational box is cen- 
tered at ra=53 cm. The box sizes then correspond to no= 10 
for the small box and no=5 for the large box. Both simula- 
tions use 64 grid points along the field line coordinate 8. 
Using 128 grid points along 13 gives essentially the same 
results. For these runs, N=2, so the physical 6, domain ex- 
tends from -2~ to 271: The equal length (m) extension 
method (for a total extended 0 domain from -37r to 3~) was 
used to implement the parallel boundary condition. 

4 
40 
20 .d 

$ 0 

We use a spectral representation in x and y, with +42k, 
modes and 215 ky modes for the small simulation and 
t63k, modes and t21k, modes for the large simulation, 
not counting additional modes added at high k for dealiasing. 
The modes are evenly spaced such that kypi e 1 and 
k, k?, min ~ making the computational domain roughly 
square in x and y . For N> 1, it is necessary to include more 
liX’s to include unstable modes localized near 8= +2rr, -+4rr, 
etc., in the bad curvature regions (i.e., modes with 19~‘s near 
&-2~! t4rr, etc.). The modes tend to be localized along the 
field line near f?,, so ideally one would like to include 
enough k,‘s to cover the range - G-N< oo< nN for all k,‘s. 
This is very expensive at high k,, where the spacing in 0, 
gets small, since So= -k,/s^k, . We arrange our modes in k 
space so that the 0”‘s cover the 6, domain for low k,‘s, but not 
high k,‘s. This implies ky + 7” for N> 1 and s^- I. Since 
most of the energy is at k,pi<zv the missing co’s at high k,y 
have a very little effect. 
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Figure 5 shows contours of electrostatic potential in the 
(XJ) plane at 8=0 (the outer midplane of the torus), for 
both runs at saturation. [The fluctuations on the inner mid- 
plane have roughly one-half the amplitude, which would be 
an interesting feature to look for in experiments.) It is appar- 
ent that although the box was doubled, the dominant scale 
did not change. This is also evident from the spectra in Fig. 
6, also at 8=0, where l~l’(k,)=X~~~,x,k,~n*,,k , 

14,(2(k,~=~k,~R,.l.y~~~.ky~ 
Y 

and the low resolution spectra 
are reduced by a factor of two to account for mode density. 
Although the resolution has increased, the shape and the lo- 
cation of the peak in the spectrum is roughly the same. These 
spectra are similar to BES measurements on TFTR.’ The 
large k,, =O component is evidence of sheared zonal EXB 
fll~ws,~ which are primarily in the poloidal direction. Though 
there are some small differences in the spectra, the two runs 
agree within statistical fluctuations on global quantities such 
as the volume-averaged RhJS fluctuation levels and transport 
levels: e@,lTi= 15pilL,~O.O20 and .xi=7.4p~U,ilL,, av- 
eraged from tv ,ilL, = 150-300. The statistical fluctuations in 
xi at saturation are about 10% for both runs. This level of ion 
heat transport is near the experimentally measured 
xi= 8.8pi)v lilL*, but these simulations ignore impurities 
and beams (usually a stabilizing effect), trapped electrons 
(destabilizing), and use our four moment model, which gives 
lower transport than our more accurate six moment model. 
Nevertheless, this level of agreement is encouraging, and 
suggests that toroidal ITG turbulence is responsible for 
anomalous ion heat transport in tokamaks. The transport 

FIG. 5. Contours of potential for (a) a small run and (b) a large run. Dou- 
bling the perpendicular simulation domain did not change the dominant 
scale of the fluctuations. 

from these toroidal simulations is about a factor of 25 larger 
than sheared slab simulations for the same parameters, dem- 
onstrating the importance of toroidicity. Our toroidal simula- 
tions can be run in the sheared slab limit by taking L,IR-+O 
and q/s”-+O, so that L,IL,= L,$lqR remains finite. We 
should point out that our preliminary results, Fig. 2(a) of Ref. 
7, were high by a factor of F, due to a numerical error in 
calculating xi. The remaining change is due to increased 
resolution. 

We have also performed tests varying the box length in 
the parallel direction. For these tests we have used the “mul- 
tiply connected” method to implement the parallel boundary 
conditions, for greatest accuracy, as described earlier in this 
section. Figure 7(a) shows the time evolution of the volume- 
averaged ,vi for two runs with box length N=l and 2, i.e., 
h0=2v and 4n; with no= 10, and other parameters as above. 
Figure 7(b) shows the correlation function along the field 
line, 

for the two runs. The averaging ( > is over x,y, and time once 
the simulation has reached a quasisteady state. If this corre- 
lation function were not averaged in x and y (only taken 
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FIG. 6. Potential spectra for both runs. 

along the field line passing through x = y = 0), it would return 
to one at B= 42rr for the N= 1 run, because of periodicity. 
The Fourier transform of C(Q,O) is the kll spectrum. As dis- 
cussed in Sec. III, since no> 1, using a box with -v< t9<~ 
(N= I), can artificially constrain the parallel correlation 
length. There are significant correlations at B?zrr for these 
parameters, indicating that this is the case, and that the box 
should be extended. These additional correlations in the 27r 
box are in some way constraining the nonlinear dynamics 
and reducing the flux. 

It is easier to test the scaling with box length at low 
shear, since the turbulence at +271; ‘-+47r, etc., is not at such 
high k, , because k,= - k,s^&. This allows resolution of the 
turbulence along the entire box length with fewer k, modes 
than at high shear. Also, at low shear the linear mode struc- 
ture is broader in tJ, leading to slightly broader parallel cor- 
relation functions. Figure 8(a) shows the time evolution of Xi 
in four runs with box lengths N=1,2,3,4 or A0 
=2~,4n;6n;8n: The physical parameters are the same as 
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FIG. 7. (a) Evolution of xi for two runs with varying box length and s”= 1.5, 
qz2.4. (b) Correlation functions along the field line for the same two runs, 

above, except s^=O. I and q= 1,2, and the perpendicular box 
size is LX= 160~,, L, = 1 OOp, . Again, the A6=2~ box 
gives slightly lower flux, while the longer boxes all give the 
same flux, so the minimum box length is A#=4n. The cor- 
relation functions of electron density for these runs are 
shown in Fig. 8(b), and are noticeably broader than in the 
higher shear cases. Using n, in the correlation functions re- 
moves the k,,=O component present in the @  correlation 
functions in Fig. 7(b), since n,=@-(Q) (see the Appendix). 
For these low shear runs, the poloidal spectrum peaks at 
k,pi=0.35, so the perpendicular correlation length is smaller 
than in the high shear cases. This may contribute to the 
slightly smaller change in flux in going from A@=27r to AB 
=47r, even though the parallel correlation functions are 
broader. These low shear runs are better resolved than the 
high shear runs in Fig. 7, so we expect that a 30% change in 
flux when the artificial correlations are removed by using a 
longer box is typical for ITG turbulence, where B,.-27r. We 
have also run with J’ =O.l and q =2/l, where 
,yi=7.5pfutilL, for h&4~ and Xi=6.5p,?V*iiL, for A@ 
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FIG. 8. (a) Evolution of xj for four runs with varying box length and i=O.l, 
q= 1.2. (b) Correlation functions along the field line for A19=27r and 4~. 

=~TT. For s”=0.25 and q=1.2, both A8=21rand b0=4~rgive 
Xi= 5 PfvtilL, Y any change is within the statistical fluctua- 
tions. 

VII.DlSCUSSlONAND CONCLUSIONS 
To summarize, we are simulating a rectangular domain 

in (x,y,z), and using the transformation Eq. (lo), this do- 
main becomes a long, thin, twisting flux tube in a torus. The 
differential operators take the particularly useful forms Eq. 
(2)-(6), applicable to general magnetic geometry; only the 
metric coefficients Va, V $, and Vz need to be specified. The 
boundary condition Eq. (19) can make the perturbations pe- 
riodic in 0, if N= 1, which makes this representation equiva- 
lent to the ballooning representation for a coarse grid in ~1, 
with spacing na. However, when n,>l, the box must be 
extended in 8 to avoid nonphysical correlations if the parallel 
correlation length is longer than 2vqR, i.e., 8,>2rr. The 
fundamental assumptions are that the correlation lengths 
(both parallel and perpendicularj are smaller than the box 
size, that the equilibrium gradients vary slowly across the 

small perpendicular extent of the box, and that the turbulence 
is local, i.e., driven only by the equilibrium gradients within 
the box. 

The assumptions implicit in simulating a thin flux-tube 
subdomain should always be checked a posteriori by verify- 
ing that the simulation box is indeed at least a few correla- 
tion lengths long in each direction, so that the box is large 
enough for the type of turbulence under consideration. One 
should also verify that the results are independent of the size 
of the simulated flux tube (and independent of the particular 
choice of boundary conditions), as the flux tube is made 
larger than the correlation lengths. In this paper we have 
demonstrated that both conditions are met, at least for the 
particular cases considered in Sec. VI. Our gyrofluid equa- 
tions have been scaled to the gyroradius pi, and the limit 
pi/L,-+0 taken, using the usual small-scale turbulence order- 
ing assumptions, thus the box-size independence implies 
gyro-Bohm scaling with magnetic field, B, at least for suffi- 
ciently small p* = pJL, . 

While the turbulent heat conduction from our simula- 
tions is of the right order of magnitude to explain experimen- 
tal results from the core region of many tokamaks, the ex- 
periments indicate a Bohm scaling’77’28 with B, not gyro- 
Bohm. Several possibilities for this discrepancy exist. One is 
that the experimental p.+, while small (-10-3-10-2), may 
be large enough that the radial variation of equilibrium gra- 
dients, i.e., o,(q), 17i(~), etc., or equilibrium flows, may be 
affecting the turbulence. For very small p* there is a scale 
separation between the turbulence, with scales of order pi, 
and the equilibrium, with scale L,, but if p* is not small 
enough, the turbulence may begin to feel radial variations in 
the equilibrium. It is interesting to note that the BES 
measured’ correlation length h,-2 cm is of order of the 
geometric mean between pi-O.15 cm and the minor radius 
u-90 cm. Another possible explanation is that the instabili- 
ties driving the turbulence may be near marginal stability, 
which can mask gyro-Bohm scaling trends, and, in some 
limits, tie the core transport scaling to edge parameters.“‘-“’ 
‘4 very sensitive dependence on some parameters that vary 
slightly while scaling p* could also partially mask a gyro- 
Bohm scaling. Another explanation might involve nonlocal 
turbulence, where fluctuations radially propagate a signifi- 
cant distance from where they were generated by an instabil- 
ity, an effect that is currently under debate.3”33 

Numerical studies of some of these effects do not nec- 
essarily require simulating the whole tokamak. Rather, one 
could consider a somewhat thicker tlux tube than usual, and 
include the radial variations of w,(G), 117i(~), and other 
plasma parameters over the simulated region. Even if simu- 
lating the full torus radially, field-line coordinates are useful 
to allow a coarser grid in the parallel direction, and a coarser 
grid in the toroidal mode number n. When the equilibrium 
protiles are assumed to be constant, so L, , L,, etc., do not 
vary radially (as assumed in our simulations), the linear 
eigenmodes are unbounded radially. In ballooning terminol- 
ogy, the solutions of the zeroth-order eigenmode equation in 
llnq are independent of @. In a real tokamak, however, the 
radial profile variation determines the radial extent of the 
linear modes, and this radial structure is determined from a 
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higher-order equation in lhq. Recently, there has been re- 
newed interest in the solution for this radial envelope, and 
the modifications to the zeroth-order eigenfrequencies.22 For 
longer-wavelength global modes, the linear radial mode 
structure is also determined by the radial variation of equi- 
librium gradients.“’ An alternative way to include these ef- 
fects is to still use Eq. (7) to represent the perturbations. The 
$ dependence of the equilibrium will then linearly couple 
different j modes in Eq. (7), which are uncoupled when the 
profiles have constant gradients. Then the superposition of 
different j (i.e., k,) modes will determine the radial envelope 
of the true linear mode. ^However, since the nonlinear EXB 
coupling of the various Aj,k modes is usually much stronger 
than this linear coupling, it is likely that the precise radial 
linear mode shape is subdominant, and that the radial scale 
length of the turbulence is set by nonlinear processes, as 
suggested in Refs. 6 and 35. Comparing the order of magni- 
tude of these effects in, for example, the density equation, we 
have 

1 e@ nl -- - vE*Vn~-piv,ik: T, n , 
n0 I 0 

; v~‘vno(x)- !ye[ *++j], 

where L, is the scale length for the radial variation in L,, , 
and is typically of order L,. The nonlinear term is of the 
same order as the x-independent linear term [i.e., the w,(Go) 
term] in the standard gyrokinetic ordering, where 
n,ln,-pi/L,, and k,pi=l. As the linear mode widths get 
broader radially (in x), the x/L, terms become more impor- 
tant. While the linear modes are broad, the typical turbulent 
eddy size is not much larger than Ax- 1 Op, , so it would 
seem that the x-dependent term (%%J,/@) can safely be ig- 
nored, as long as Ax%L, . The effects of radial variations in 
the equiIibrium may start becoming important if p*=pJL, is 
large enough, and could lead to a transition from gryo-Bohm 
to Bohm behavior.36 From the above arguments, it would 
seem that experiments should have small enough p* to be in 
the gyro-Bohm regime, though TFTR seems to be in the 
Bohm regime.27.28 

Equilibrium sheared zonal flows (k,.=O, ki=O, k,#O 
flows that cause flux surfaces to rotate) can be included in 
our representation in several ways (one of which is presented 
in Ref. 19) though we have not yet implemented them in our 
simulations. Such sheared flows can be important, particu- 
larly near the plasma edge, where they appear to be respon- 
sible for the H-mode transition.37 Though we are presently 
neglecting equilibrium-scale zonal flows, we do include the 
higher k, components of the zonal flows that are generated 
by the turbulence itself. 

For typical tokamak parameters, our reduced simulation 
volume can represent large computational savings. We com- 
pare rough scalings with some other methods: the results are 
only order of magnitude estimates. Perhaps, the most 
straightforward way to simulate a tokamak is with the 
“m~2,r” representation: 

Since we are interested in simulating fine-scale turbulence, 
we need to resolve perpendicular scales of order pi. if we are 
simulating a full torus, the range of m’s must be 
mE(o,tl ,. . ., L a/pi). To resolve the long paralIe1 struc- 
ture, the range of n ‘s must be n E (0, 1 I,. . . I f a/qpi), where 
q is a representative value, around 2. The radial grid for 
@m.,(@) must resolve pi and span the minor radius, so 
r=lA,, where A,-pi and l~(O,l,...,a/~~). This gives the 
total number of grid points, for a- 103pi, 
N m.n,r- lldalpi)3- 1 09. This is the same as expected from 
a computational grid in the physical r,6,< space, where the l 
grid can be l/q coarser than the r or 6 directions. 

By simulating a thin toroidal annulus in r, but still going 
all the way around in 13 and 5, the number of radial grid 
points is reduced by Ada, which for our simulations is typi- 
cally &. Further, aligning the grid points with the field lines 
reduces the necessary resolution in this direction. We have 
found that 64 grid points along the field line is adequate, so 
the number of grid points for a thin annulus with a field- 
aligned coordinate is N,,,t,,-64( alpi)2Arla- 10T. 

The next level of reduction is to also exploit the small 
perpendicular correlation length in the poloidal direction, 
which brings us to our twisting flux tube: 
N aUx iube-64(alpi)*( Arla)( by/a) - 106, so for the simula- 
tion in Fig. 5(a), including modes for dealiasing, we used 
N-64X 128X48-4X 10’. This is roughly lo3 times fewer 
grid points than a full torus simulation with the same reso- 
lution. 

Kotschenreuther and WonglS have proposed using the 
representation 

@(r,@,()=C e'~'mOB-nOSleije&j [(r-ye), 

j.l 

which has many similarities to our representation. It is peri- 
odic in 5 with period 2nfno and in 13over 271; and is therefore 
simulating a wedge of a toroidal annulus when the r domain 
is small. Thus, Eq. (33) is as efficient as the one described in 
this paper, however, if $,>27r, false correlations along the 
parallel direction will be introduced, as discussed in Sec. 1% 
It is not obvious how to remedy this problem with Eq. (33), 
but with our approach one simply uses a longer box, i.e., 
N>l. 

The “quasiballooning” approach of DimitsJ6 shares 
similar computational advantages to our method. Indeed, the 
quasiballooning (almost-field-line coordinates) method has 
many similarities to the field-line coordinates approach of 
Roberts and Taylor,’ and Cowley et aL.,6 upon which our 
paper is based, though the quasiballooning method empha- 
sizes the perspective of a real-space radial grid, while we use 
discrete Fourier transforms for the radial direction that illus- 
trate its relation to the usual ballooning transformation. We 
have shown that physical periodicity in 8 can also be imple- 
mented with our approach, but that there are cases where one 
should forgo physical periodicity in favor of a longer box 
(i.e., IV> 1) to avoid false parallel correlations. As described 
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in Sec. III, simulating only l/a0 of the toroidal direction is 
often justified by the short perpendicular correlation lengths 
of the turbulence, but that makes a perturbation extended 
along a field-line no times as likely to “bite its tail,” which 
should be compensated for by making the box longer than a 
parallel correlation length. In principle, N=l simulations 
should eventually converge as the box is made large enough 
in the perpendicular directions (so that na-+l), but from the 
runs we have done it appears that faster convergence is ob- 
tained by allowing the box to be longer than a parallel cor- 
relation length as well, thus consistently following the prin- 
ciple that the simulation domain should be longer than the 
correlation lengths in al1 three directions. 
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APPENDIX: TOROlDAL GYROFLUID EQUATIONS 

The equations used in the simulations are a subset of 
those derived in detail in Ref. 8, and are briefly summarized 
here. In these simulations, we evolve four moments of the 
gyrokinetic equation, the perturbed guiding center density, 
parallel flow, parallel temperature, and perpendicular tem- 
perature, with closure approximations to model the effects of 
parallel resonances,s toroidal resonances,39*40 and eR.41 
Here we ignore collisions and particle trapping (i.e., b.VB 
=Oj, although we have developed models of these effects, 
and have extended this model to up to six moments.7 Using 
the normalizations in Ref. 41, the dynamical equations are 

“liTil+(2+U4i)TL+5+~ 1+~$ ( 2 :i~]-2~3~lo,lT,,-2v,,lw,lT,. 

The total time derivative includes the EXB nonlinearities, 
dldt=dlJt+v,.V. The gyroaveraged potential and ExB 
drift are *=I?,!/% and v~Y=~ XVQ, respectively. The toroi- 
da1 drift terms have been written using iwd= (cT/eB’)B 
xVB.V. 

The closure coefficients for this set of moments are cho- 
sen to provide an accurate approximation to the linear kinetic 
response. The parallel closure coefficients are ~,1=2/,/~ and 
dyL = l/Jr. The toroidal closure coefficients have both dissi- 
pative and reactive pieces, and written in the form 
v=(~~,vi)=~~,+ivil~dl/~d, they are ~t=(1.93, -0.39), 
v,=(O.24, 1.29), v,=(--1.40, 0.47), v,=(-0.14, -1.75), and 
v;-(0.76, -0.98). 

(@)=(4 Ay z,,j-‘Jdy dz(RI&)@(x,y,z), and is only 
nonzero for the k, =0 components. This form of the adiabatic 
electron response prevents radial electron flow, which would 
short out the radial electric field responsible for the nonlin- 
early generated sheared EXB flows that are essential for 
saturation.7 The gyrokinetic quasineutrality constraint is 
n, = rZi + (I’a - 1) @, where tii is the ion density in real space, 
which is related to the ion guiding center density and perpen- 
dicular temperature by the FLR closure relation in Ref. 41, 
yielding 

r1/2 

T(@-(@))=$~~ N(b)n+;v:T, 

We assume the adiabatic electron response, 
fi,=7(@-(@‘)), where ~~ Til T, ) and W(44 

The functions NAb) and D(b), where b=kTp:, and the op- 
erators V, and V, model FLR effects, and explicit forms are 

=(Jda dz J\V$@)/(Jda dz JlV& is a flux surface aver- given in Ref. 41. Since this equation involves both @ and 
age. In circular concentric geometry, this becomes (@), we use the following procedure to determine @, given IZ 
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and TL . In general, the coefficients in this equation can be 
functions of the field-line coordinate, so writing 6,=(e) 
+&D, and solving for SrD gives sD=[fii+(I’,-l)(Q)]/(~ 
f 1 -I’,). Now flux surface averaging L@, since (#)=O, and 
solving for (a), gives 

w=(,, ;Lr,) /(;:;:$o). 
Now that (a) is determined, we use this expression in the 
quasineutrality constraint to obtain a. 
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