Toroidal gyrofluid equations for simulations of tokamak turbulence
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A set of nonlinear gyrofluid equations for simulations of tokamak turbulence are derived by taking
moments of the nonlinear toroidal gyrokinetic equation. The moment hierarchy is closed with
approximations that model the kinetic effects of parallel Landau damping, toroidal drift resonances,
and finite Larmor radius effects. These equations generalize the work of Dorland and Hammett
[Phys. Fluids B5, 812 (1993] to toroidal geometry by including essential toroidal effects. The
closures for phase mixing from toroid®B and curvature drifts take the basic form presented in
Waltz et al.[Phys. Fluids B4, 3138(1992], but here a more rigorous procedure is used, including
an extension to higher moments, which provides significantly improved accuracy. In addition,
trapped ion effects and collisions are incorporated. This reduced set of nonlinear equations
accurately models most of the physics considered important for ion dynamics in core tokamak
turbulence, and is simple enough to be used in high resolution direct numerical simulations.
© 1996 American Institute of Physids$1070-664X96)01110-X

I. INTRODUCTION measured level§!° Thus, incorporating toroidal effects is
essential. The key difficulty here is closing the higher mo-
Fluid equations have long been used to provide a rements introduced by the velocity dependence of the toroidal
duced description of plasma dynamics and to carry out para&vB and curvature drifts. We close these terms with closure
digm studies of plasma turbulence which have providedapproximations similar in spirit to Ref. 8, but here we use a
much insight:~* This paper builds on previous fluid descrip- more rigorous procedure to find our closure coefficients, pro-
tions by including important kinetic effects necessary forviding significantly improved accuracy. The derivation pre-
more realistic simulations of plasma turbulence, especiallgented here is valid for finitley, while Ref. 8 focused on the
“toroidal” effects arising from variations in the strength of purely toroidal ;=0) limit and a term to remove a singu-
the magnetic field. These toroidal gyrofiuidr gyro-Landau larity for finite k; was addeda posteriori In addition to
fluid) equations describe the time evolution of a few mo-presenting a four moment modébur moments were used in
ments of the gyrokinetic equation. We will concentrate on aRef. 8, we have extended our model to evolve six moments,
set of six guiding center moments: the guiding center denwhich is significantly more accurate. These toroidal gyro-
sity, n, parallel velocity,u;, parallel pressurep, perpen- fluid equations also incorporate linear and nonlinear FLR
dicular pressurep, , and the parallel fluxes of parallel and effects as in Ref. 9, although the linear FLR terms are modi-
perpendicular heatg, and g, . The moment hierarchy is fied by toroidicity.
closed by approximations which model the kinetic effects of  Another important toroidal effect is the damping of po-
collisionless phase mixing from parallel free strearfifhgnd  loidal flows. SlaBb**® and toroidat''® gyrofluid simulations
toroidal VB and curvature drifté® and finite Larmor radius revealed that an important nonlinear saturation process for
(FLR) effects? The toroidal gyrofluid equations presented core tokamak turbulence is the nonlinear generation and
here incorporate reliable models of most of the physics condamping of radially sheared “zonalExB flows: flows
sidered important for electrostatic ion dynamics in tokamakwhich cause flux surfaces to rotate. These sheared flows are
turbulence. This reduced set of nonlinear fluid equations isery weakly damped in a sheared slab via classical viscosity;
simple, yet accurate enough to be used in three-dimensiontie dominant damping mechanisms arise from toroidal ef-
high resolution direct numerical simulations of tokamakfects. The fluid terms arising from the mirroringo-VB and
turbulence’:'® This paper presents the first detailed deriva-toroidal drift terms in the gyrokinetic equation are included
tion of the governing equations used in the toroidal gyrofluidto provide accurate models of poloidal flow damping from
simulations of Refs. 11, 12, and 13. magnetic pumping. These mirroring terms also model the
Toroidal VB and curvature drift effects are an important effects of trapped ions, extending the validity of these equa-
destabilization mechanism for tokamak microinstabilities.tions into the trapped ion regime at lolyp;. Finally, a
The growth rates for the toroidal ion temperature gradienKrook collision operator has been incorporated, important
(ITG) driven mode are typically two to three times higher for poloidal flow damping in the Pfirsch-Sciu regime,
than the growth rates of the slab ITG mode, and toroidicityand for collisional effects on very low frequency modes.
changes the character of the instability: In a sheared slab the We begin by reducing the toroidal gyrokinetic equation
instability is a modified ion sound wave, in a torus it is moreto a convenient form in Sec. Il; then exact moment equations
interchange-like. In addition, nonlinear simulations of toroi-are derived in Sec. lll. Finite Larmor radius effects are
dal ITG turbulence find much larger fluctuation and transportreated in Sec. IV. The kinetic linear response function is
levels than sheared slab simulations for the same parametedgrived in Sec. V and used to optimize the closure approxi-
bringing the predicted ion heat flux up to experimentallymations in Sec. VI. The final equations are presented in Sec.
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VII. A simpler and slightly less accurate set of equationserator that carries out the gyroaveraging of the electrostatic
evolving four moments is given in Sec. VIIl. These equa-potential. In Fourier space, this operator is the Bessel func-
tions are thoroughly tested against fully kinetic linear theorytion Jo(k, v, /Q), wherek, is the perpendicular wavenum-

in Sec. IX. Finally, a summary of these results is given inber of ®, not of F.

Sec. X, and we discuss the validity of these equations for  Toroidicity enters in Eq(2) through theVB and curva-

nonlinear simulations of tokamak turbulence. ture drifts, thev|(b-Vb)-ve toroidal angular momentum
conserving term, through the nonzero divergencevpofin
Il. THE TOROIDAL GYROKINETIC EQUATION toroidal geometry, toroidal FLR effects, and thé-VB mir-

The starting point of the derivation of the toroidal ion roring force. All these terms arise becau&és not constant

gyrofiuid equations is the nonlinear electrostatic gyrokinetid" 9eneral, in contrast to a sheared slab model. In(Bqthe
equation in toroidal geomet®y:*8also see Refs. 19-21. Our VB and curvature drifts have been combined in

fluid equations are therefore based on the usual gyrokinetic vﬁ e e ua

ordering vdzﬁbx(b-Vb)+ 5beB. 3

— et P <1, k p~1, (1) Using the equilibrium relations Vp=(1/c)JxB and

(47/c)J=VxB, and the identityp- Vb= (Vxb) xb, this can

wherew is a typical frequency§)=eB/mc is the cyclotron be written:

frequencyk is a typical parallel wavenumbek, is a typi- 2
. _ . . UH + /.LB 47rv [

cal perpendicular wavenumbes=v,/{} is the gyroradius, Vg= —BxVB+ > bxVp, (4)

vt2=T/m is the thermal velocity, and. is a macroscopic 0B 0B

equilibrium scale length, e.g., the density scale lengthyhere theVp term is negligible for3=8mp/B2<1. For

L, "= —(1ing) Vno. Although we will usually omit the spe- |arger 8, or stongly rotating plasmas whenenv-Vv is not
cies index, the equations derived in this paper will apply tojgnorable in the equilibrium force balance equation, one sim-
any ion species, for whick, p~1 andw~w=v{/qR:main  ply needs to keep the curvature aR® drifts separately.
ions, impurities, or a Maxwellian energetic componéy.,  Thus instead of in Eq. (10), one would use two operators:
beam iong The orderingk, p~1 is a “maximal ordering” wyg andw, , as in Ref. 22.

and allows for a subsidiary expansiknp<1 at a later time, For ion species, collisional effects will be modeled with
although we will assume thk& is not too small, i.e., we will a partide, momentum, and energy Conserving Bhatnagar-
assumek, L>1. The gyrokinetic equations, at least the ver- Gross-Krook operatét (ion-electron collisions are negli-
sion we are presently using, may need a generalization to bgple)

able to handle the plasma edge where equilibrium gradients

may be short enough th&t L~1 ande®/T~1. The gyro- C(F)= _E Vi(Fi—F i) (5)
kinetic ordering removes the fast cyclotron time scale by : T T Mk

averaging over the gyroangle, reducing the velocity space
dimensions from three to two. It also retains the physics otvcv
strong turbulence even though the fluctuating quantitiesS
ed/T and F,/F, are ordered small, sincEF;/VFy~1.
Thus the dominanEXB nonlinearity is retained, and other
nonlinearities are”(e) smaller. In conservative form, the
resulting equation is

2

here v;, is the collision rate of speciejs with speciesk.
ollisions between specigsand k causeF; to relax to a
hifted Maxwellian,F ;i , with the appropriate density, ve-
locity, and temperature to conserve particles, momentum,
and energy. Becaudg, is small,F; can be linearized. For

a single ion species plasma, this leads to

n1+qu”+T1 1)2_3 F
Ny vt2 To thz 2/ 0 ’(6)

wherev?=vf+vf andT,=(Tj;+2T,)/3. The generaliza-
vy tion for multiple ion species can be found in Refs. 23 and 24.
_BC(F) 2 Since the perturbations of interest satiskhp<<1

' (Ap<<p; for typical tokamak parametgrswe will assume
which is valid up to”(e). This equation describes the evo- quasineutralityn,==Z;n;, wheren, is the electron density,
lution of the gyrophase independent part of the guiding cenn; is the ion particle densitynot the guiding center densjty
ter  distribution  function F=F(R,v|,u,t), where of the jth species, an@;e is the species charge. The ion
w=v2/2B, v| is the parallel guiding center velocity, aRtis  particle density is related to the guiding center density
the guiding center position. This form is valid for a generalby*®-2
magnetic field, and is the unit vector in the direction of the 7 ed
magnetic fieldB=Bb. The combinatior=B enters because nj=n;— njo(l—Fo)%, (7
B is the Jacobian of the transformation fromy (v,) vari- I
ables to ¢,u). Because finite Larmor radius effects are wherel'y(b;)= exp(—bi)lo(bj), lo is @ modified Bessel func-
retained k, p~1), the particles feel the gyroaveraged tion, b;=k7v? /Qf=k%p? andv? ;=T,;/m;. The second
ExB drift, ve=(c/B)bxVJ,®, wherel, is the linear op- term on the right hand side of E¢7) arises from the gy-

C(F)=- Vii{ Fi—

J ~
— FB+V-[FB(vjb+Ve+vy)]

J
+—

e. . ~ -
FB( — E[).V‘]OQD—I(,Lb-VB-l-v||(b'Vb)‘VE>
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rophasedependenpart of the distribution function, and is The ExXB term becomes
usually called the polarization density. The in the polar-

ization density term is frond. The contribution to the par- V. [FBvg]=V-
ticle density from the gyrophasedependenpart of the dis-
tribution function,n;, is

C
FBogzBX VO

a C
+FBDJ o2 =7BXVB|.

n_J:J d3vJOF=J d3v(Fo+JoFy). (8 _ . o

The divergence of th& xB drift can be written in the same
Here J, operates orF,, i.e.,k, comes fromF,. For a pure form as theVB and curvature drift terms:
ion-electron plasma, with hydrogenic ionZ+£€1), the
quasineutrality constraint simplifies to V.

C
B?
— ed
ne:ni_nio(l_ro)T. (9) ZZ(E/T)de(I),
I

since againV® is mostly perpendicular, and is mostly
toroidal. Writingvg=(c/B)bxV®, we have

C 2c
BXV® = ?VCD X(VxB)— §(BxV<IJ)-VB

For simpler notation, in the remainder of this paper we will
drop the species indexand setZ;=1. To incorporate mul-
tiple ion species, one simply evolves the moments for each  V-[FBvg]=Vg-V(FBJy) +2FBJy(e/T)i wq®
species independently. Different species are coupled together K
through the quasineutrality constraint and through interspe- +(e/T)iwd( FBJ,® ivi).
cies collision terms. 20

We_ WI|| now manlpulate Eq(2) into a Torm convenient  The first term on the right hand side includes the usual linear
for deriving fluid equations. All of the toroidal effects except w, terms fromF, and theExB nonlinearity fromF,, with
the ub-VB terms can be written compactly using the nota-F|R corrections as discussed in Ref. 9. The linear pieces of

tion: the second and third toroidal terms<(F,) are of the same
iwdE(th/QBZ)BXVB-V. (10) _order as the sIa_Ele norllilnearity in the gy_rokineti_c orde_r—
_ . ing (we keepB™"VB~F, “VFy). The nonlinear pieces in
Let us first look at theVB and curvature drift terms. For the toroidal terms (X Fl) are h|gher order in the gyrokinetic
example, pulling 2B?) " 'Bx VB out of the divergence ordering, and can be ignored.
1 Performing similar manipulations on the toroidal angular
V- [FBv4]= WBXVB-V[FB(vﬁJr uB)] momentum  conserving term, using the identity

(b-Vb)-vg=—(c/B%)(BxVB)-VJ,®, leads to

1
2 . d A n
+FB(UH+/~LB)V [WBXVB ! _(91) [FBUH(be)VE]
I

the second term becomes 5 .
= — — — B X .
c?v”(FUH)BZB VB-VJy®

1 1
V. WBXVB :WVB-VXBZO
J c a
which is small for lowg since the toroidal component of =— ﬁ—(FvH)ﬁBxVB- JchIH—JlﬁVB .
VB is zero and the curreng, is mostly toroidal. Thus for Yl
low G: The J, term again has they form, and thel; term vanishes
1 leaving
V-(FBvd)zWBxVB-V[FB(Uﬁ+MB)] 9 . 9
EH[FBU”(be)VE]Z—M(FBJovH)(e/T)I(Ud(D

_ 2y 2
(Tl FBvj + uB)]. D Sincekp~e&, the only contribution from thé& term is

In toroidal geometry, FLR effects are complicated by thejinear, so in this term we only neefl,. Using the notation

fact that the argument of, depends orB. When deriving VH=I5-V, and a MaxwelliarF,

fluid equations by taking moments of E@), it is easiest if

F and J, appear together, i.e., on the same side of spatial L —v2i20% = uBlv?

gradient operators. We now manipulate the terms in(2q. 0_(27-rut7)3’28 PR (12

involving Jo® so gradients only act on the combination

FJo or FJ;. Defining a=k, v, /Q, and recalling that the

spatial gradients are taken holding and . fixed, we can

write

we have VH|U”YMB((9F0/¢7UH)=((9F0/(9v||)B(1—,u,B/vt2)
X VH In B, so this term becomes

© 53,0 2 %=~ 2y |30 20
a(- O)WII_ Vi JoPB—=

VIgP=J,VP+DVI,, v
0"‘]0 o € (9F0 2
= = = _ + — — _ ]
Vdo(k,v, 19)=VIg(a) = ——Va=J(a) 55 VB. -Jo®B 70| (uBlvg=1)V|InB
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Combining all these terms, E¢R) can be written

J FBUH .
EFB-F BV”?+Vq)-V(FBJ0)+2FBJO(e/T)I wq®

i
T (e/T)iwg(FBL,DK, v, 120) + — [FB(v?+ uB)]
Ut

dFq

e
+—J,PB
5UH m*°

e
- —V(JO(I)B
m

<P (EB )Y, InB—uB-L(FB)V, In B
— = nB-uB— n
(91)“ Utz I K 19U||( ) I

d .
—M(FBJOUH)(e/T)lwdd)zo. (13)

This form is messy, but most suited for taking moments
because velocity dependent terms suclr ag,, u, etc., are
grouped together on the same side of spatial gradient oper

tors.

Ill. GENERAL TOROIDAL GYROFLUID EQUATIONS

It will often be convenient to use temperature instead of pres-
sure, where the parallel temperature is definedppsnT,
and perpendicular temperature py=nT,

We now proceed to derive moment equations by inte-
grating Eq.(13) over velocity space. These equations express
exact conservation laws of the gyrokinetic equation in the
collisionless limit: conservation of particles, momentum, etc.
However, because of the velocity dependence in the parallel
free streaming term,kp, the toroidal drift terms,
wq(vf+v?/2), the mirroring terme)?V In B, and the FLR
terms, Jo(k, v, /€Q)), higher moments are introduced into
each of these equations, leading to the usual problem of the
coupled moments hierarchy. These equations are not useful
until closure approximations are made for the highest mo-
ments that are not evolved, as discussed in following sec-
tions. Taking integrals of the forry‘idv”duvﬂwk ... of Eq.

'(13) leads to the following exact moment equations, using

the notationn(A)=[d*vFA=2m[dvduFBA:

(;_? +BV)(nu /B)+Vg-V(N(Jo)) +2n(Jo)(e/T)i wq®

We are interested in deriving evolution equations for ve-

locity space moments of Eq13), defined by

nzf Fd3,

p||=mf F(v||—u||)2d30,

nuuzf Fod3,
pi=(m/2)f Fo?d,
qH=mf F(oj—up3d3, ql=(m/2)f FoZ(vj—upd3,
ru,u:mf Foj—up*d’, fnf(m/Z)f Fof (v)—up?d,
rLl=(m/4)f Fold3, su=(m/4)f F(oj—upo?dd,

SH‘H:mJ F(v”—uH)5d3v, S”'J_Z(m/Z)J F(vH—uH)%fdsv.

+(e/T)i wg(PN(I1a)/2) + (1T)iwg(pj+p, +NnmMf)
=0, (14)

d
Enu” +BV)(py/m+ nuf)/B+vq)-V(n(Jov||>)

+2n<JovH>(e/T)| (,()dCD+(e/T)| wd(<Dn(le||a>/2)
+(1/'l')iwd(q||+qi+3p“uH+ pLUH-anLMS)

e e 2 2
+ EVHH<JO>¢+ mn(Jo(vl/ZUt - 1)>(DVH InB

+ %V” In B+ n(JOv”)(e/T)iwd(I):O, (15

%(p”—}— nmy) +BY(q)+3pjuy+nmuf)/B+Ve-V(n(Jov)) +20(Jov ) (e/ T)i wg® + (e/ T)i wg(Pn(Jsvf ar)/2)

+(1/T)iwd(rH’”JrrH’L+4qHuH+qLu”+6p”uf+ piuﬁ'anLﬁ)

e e
+2-Vin(Ioo) @ +2n(Jgu(vE /207 = 1)) DV} In B+2(a, +p, up) V) In B+2n(Jovf) (e/T)iwg® =0, (16)

n(Jov?) +2”<Jovf>
2B 2B

9P

Jat B

+ BVH(QL"" pLU”)/BZ-FVq,-V

+(UM)iwg(ry, +r,  +q,u+p,uf)/B=0,

(elT)iwg®+ (el T)i wg(Pn{Iv? a)/4B)

17

0 . .
E(QH'F 3pHuH+ nmq|2) + BVH(I’“]” +4C]||U“+ GDHUﬁ"‘ nmq“‘)/BJrvq) -V(n(Jovﬁ) + 2n<Jovﬁ‘)(e/T)| wqd + (elT)i wy

. e
X (@n(leﬁ’aﬂZ) + (/)i wd(s||,H+ S|t 5I'H’“UH+ 3r||,lu”+ 10'.]HUﬁ+ 10p||uﬁ’+ pLUHS-i- I"ImL”S) + 3EV”I’]<JOUﬁ>q)

e
+ 3En<Jouﬁ(uilzu$— 1))@V In B+3(r), +2q, uj+p, uf) VjInB+3n(Jeui)(e/T)iwg®=0, (18)
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d g tpy n(Jou”uf>+2n<JomuHuf)

2 .
B "BVt 20yt P u)/B*+vg-V B o5 (e/Miog®
(e/T)Iwd(q)n<le“ULa>/4B)+(1/T)Ia)d(S”l+SL L+3r|\LuH+rL LUt pLuH)/B-F VH n{J ;§> —n<J0(vi/ZB)
r
X (vf/20f = 1))@V} In B+ 5=V} In B+n(Jgvjo?/B)(e/T)i wg®=0. (19)

Before proceeding to discuss closure approximations, it isoroidal case, bu(Jo)%l‘é’2 continues to work reasonably

useful to note that many of these terms are higher order imvell. Therefore, we will use the results of Ref. 9 to approxi-
the gyrokinetic ordering, and can be neglected. By separatinmate
the moments into equilibrium and fluctuating parts the par-

1/2

allel nonlinearities drop out, since they are higher order in {(Jo)=T" (20
e. For example, we let=ngy+nq, wheren; /ng~(e). We (Igv >:Utrl/2 (21)
retain the dominanEXxB nonlinearities(the v -V terms, | o

which are leading order. In addition, we assufgis an (Jouﬁzvfrl’z, (22
unshifted Maxwellian, so the equilibrium parts of odd mo-

ments are zero, and terms I|k1§ are higher order irx. (Jovﬁ 2vt ab(bl—w1/2) Ut(2F1/2+ %): (23)
IV. FINITE LARMOR RADIUS EFFECTS (Jov”> vird?, (24)

In Ref. 9, accurate models of FLR effects were devel- N
oped by carefully approximating velocity space averages of (Jovvs)=2v] ab(bfllz) vi(2Ig%+V2). (25
Jo which appear in the dynamical equations and in the
quasineutrality constraint, E(9). As in Ref. 9, we choose t0 1o modified Laplacian operatoVs? andV2 are defined by
evolve moments of the guiding center distribution function,
not real space moments, to provide a better description of 1 A2
linear FLR effects including the *Bakshi-Linsker” 1¥=b—p- ab P, (26)
effect?®2?and additional FLR nonlinearities. For simplicity,
we will not incorporate the nonlinear FLR phase mixing
model in Ref. 9, specifically because in our toroidal nonlin-
ear simulations we do not see large fluctuation levels at high
k, pi, where these terms become |mp0rtant In addition tghtzrnetgl Fl/zq) is the approximation to the gyroaveraged
approximating(Jo), (Jov|), (Jovt), (Jov?), (Jovi), and I
<Jovva) which appear ”m the sl,llab limit, we alio need to Thgre ?re.f\(])urllnevi/] termsJ dge o todro\lldlc;ty thgt need
approximate(Jov?), (J;a), (Jwfa), and(J;v? @), which applroxwrr]]a_ ing{ Ovi>|’< 1), (Jyvfae), and( 1via)h. ev- .
arise from toroidal terms. Linearly, these terms involve onlyera f[ec hiques could be used to app'roxma.te these terms;
Fo, and could be evaluated exactly. However, in theOne is to follow the approach and rationale in Ref. 9. For

quasineutrality constraint we have to approximate which _exam_ple., the(J,a) term can be rewritten using the follow-
comes fromF,, see Eq(8). F; is not Maxwellian in general, ing trick:
so the(JyF4) term inn; needs to be approximated. As dis- 9
cussed in Ref. 9, the best agreement with linear kinetic <31a>~—£ (Jo(Ba)). (28)
theory is obtained by approximating both k) terms and p=1

n; . In the linear kinetic equation, thk in Eq. (8) combines  Thus the approximation fqidy) is the fundamental one, and
with the Jg in the EXB drifts in the gyrokinetic equation, Eq. all other FLR terms can be derived from it. Using
(2), so the average of§ over a Maxwellian enters the dis- (Jo)~T'}? leads to

1/2

vlef b (bF1’2)<I> (27)

persion relation in the slab limit, not the averagelgf These 5 12

are quite different, especially for largeb, since ~_ 2 U2 p2ky— _op 0 _ g2
(33y= Fo(b) and (Jo)?= exp(—b). This motivated the (Jre) B 5 1F0 (B70)=—2b7 vi. 9
(Joy~T'§? approximation introduced in Ref. 9, which is

more robust and more accurate for linear dispersion rela® and

tions. With the inclusion of toroidal effects, the, in aré/Z N

Jo(k, v, /Q) couples with the? in the toroidal drifts, so it (Jwﬁa)%—vabW: —v2V2, (30)

is no longer simphy(b) that enters the linear kinetic equa-

tion, see Eq(52) and Eg.(58). We have not found a com- For the(lefa) term, we will assume thaf is approxi-
pletely satisfying replacement td,)~T'3 for the general mately Maxwellian, so that?F~20v29(T, F)/4T, , and
4050 Phys. Plasmas, Vol. 3, No. 11, November 1996 M. A. Beer and G. W. Hammett
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9 , 0 The last two terms are higher orderdnso the(J,a) terms
(Iia)=~ a,B th ﬁ(l(%(ﬁa») only contribute
ed
g [ ,rg? )25 (e/zT)iwd(cbnula)):in0<J13> Wg—
=—dv?— b b b =—4v;V7i. (31 2 To

Because the final equations will get rather complicated,

The final toroidal FLR term is for the moment, we will treat the linear and nonlinear terms

2 d separately. We normalize time, parallel lengths, and perpen-
(Jovl)~4v! b—bz(br(l)/z)ﬂLZb%(chl)/z)} dicular lengths as
A~ = tv
=4v{(2Tg*+ Vi +VE). (32 (t.K| .kL>=(L—t,k|Ln ,kLp), (34
n

These approximations remain first order accurateb ito
those obtained using the Taylor series expansio
Jo~1-K20?2/402, p
Now we look at linear FLR effects in thExB terms. 1 (®.,n,u,p,q.r.s)
- - . - n
For example, in the density equation, following Ref. 9:

I,;;md fluctuating quantities as

Vo -VN(Jg)=Ve-V(nol's?) +nonlinear terms ~ (33)

ed n; u p q r
( l l 1 1 1 5,(35)

To 'Ng’ vy nomvt nomvt nomvt "NoMmu;
Sinceb k?vZ /Q? depends on botB and T, (through _ - _
Uu T,o/m), gradients acting on functions df (FLR where normalized quantities are on the left hand side and

modified termy introduce pieces proportional t68 and dimensional quantities are on the right. With these normal-

VT, izations, the characteristic drift wave time and space scales
are (1), and theperturbed quantities will be?(1) at the
Vb= LVT —Z—bVB gyro-Bohm saturation level. In this paper, all equilibrium
T, *° B quantities are ion parameters, i.€¢=Tiq, v{=vy; . For the
i equilibrium F, we use a Maxwellian, so the normalized
Vnol—w(l)/ZZF(l)/ZVn0+n0 0 vp equilibrium values of the moments amo=1, p,o=1

db ' ro=3, ro=1, andr, ; o=2. With the linear FLR ap-
proximations discussed above, temporarily ignoring the non-

We now introduce the diamagnetic frequency | .
~ g q yImear terms, the moment equations, Edst)—(19), become

iw*=—(cT/eBrb)Vn0 bxV, 7=Ln /LT| and

=L /LT , whereLT” and Ly are the equilibrium scale dn
Iengths of paraIIeI and perpend|cular temperature, which cat
be different in general. When they are assumed to be the .
same, we drop the subscripts, and writeWith these defi- +Hiog(p+pr)=0, (36)
nitions, Eq.(33) becomes

BVH

1+—V2)|w*\1f+ 2+ = V2)|wdqf

au p 1.
od (91_%/2 od H+BVH +V‘l’+(pj_+ EVJZ_\P)V InB
v¢~Vn(Jo>=—noiw*Fl To —nombwiw*_r—
0 +iwg(gy+a, +4u)=0, (37)
ary? ecb
+2ngb——iw ap q+3u
P p YT, BV s+ 2(q, UV N B | 1+
sincevy,- (1/B)VB= —iwy4(ed®/T). For a general function of 1
b, +%§f)iw*‘y+(4+E@f)iwd‘lfﬂwd(r”'+r||'l)
Vnef(b)= ¢(b)i ed b&f' ed
Vo -Vnof(b) = —ngf( )Iw*T—O No7. %Iw*T_o =0, (39)
of ed ap, oo ALY 1., l1ey 25
+2n°bo7blwd T, T'H?’VH B2 1+§VL+77L 1+§VL+VL
This form will be used to evaluate terms like . 3.5 251, .
Vo - V(nJgu2). ><|w*\1f+(3+ EVerVf twgW +iwg(r) +r, )
In the linear part of thed/2T)i wq(Pn(J,a)) terms, we
need to evaluate =0, (39
NI aq
wd(¢n<31a>)=no<J1a>wd¢+®no%wdb St VU= 3R+ (1 3Py 3ry .~ 3p)
+®(J ) wgng, XV In B+iwgy(s)+s),. —39,—3q, +6u)=0, (40
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7,

ot

This is first order accurate ib for both then andT, terms,
+(=2r +r  +p—p) and behaves appropriately;(~0) in the b—o limit. The
FLR approximations used here and above provide a reason-
ably accurate fit to the kinetic FLR behavior in the local
kinetic dispersion relation, and continue to perform well non-
locally, as demonstrated in Sec. IX. The agreement at small
+iwg(s) . +s,. . —q—q.+u)=0. (41D pis excellent, and is usually within 20% f&r p;~ 1. Above

1A2
+VH r||vl—pH+ EVL\P

XVH In B+

o) 1z,
VJ_\P_EVJ_\P VH In B

If we had evaluated the velocity space averages using a Ma¥.Pi~1 the agreement is not as good, but the limiting be-
wellian F, giving (Jo)= exp(-b), the n, uj, p; and p, havior ask, p;— is properly recovered. Note that the FLR

equations above would be equivalent to the electrostatic limif0dels described in this section can also be used with a

of

those derived in Ref. 22. Thg equations would also be Simpler Pade approximation, by  substituting

equivalent if Ref. 22 had proceeded to higher moment equar-élz_’(lﬂ’/zr1 in Egs. (26) and (27), as discussed in
tions. This equivalence can be verified by replacingREf- 9.

I'¥?2— exp(-b/2) and evaluating the derivatives with re-

spect tob in Egs.(26) and(27). As discussed in the follow-

ing sections, these equations require closure approximationg L OCAL LINEAR TOROIDAL RESPONSE FUNCTION
forry, ry s ri .S S, ands, ; , which Ref. 22 did

not address. Our closure approximations far , ry ., r, ., Sy,

For the nonlinear terms, we follow Ref. 9. Thus, to eachsj,. » ands, , , will be chosen to provide accurate models of

of Egs.(36)—(41) we add the usudE xB nonlinearities plus the kinetic effects of parallel and toroidal drift phase mixing.
additional FLR nonlinearities, as follows: Ultimately, we choose the closure coefficients to provide an
accurate fit to the local linear toroidal response function,
O vy VN4 [292vy ] VT, +---, (42  Which is derived in this section. o o
dat We begin by transforming the linearized gyrokinetic
au equation to E,u) variables, soF=F(R,E,u), where
_H'I'V\I"VUH_‘_[%%JZ_V\P]'VQL_F e (43) E=vﬁ/2+ uB. Then breaking= into adiabatic and nonadia-
ot batic piecesF=g—FyJoed/Ty, the equation for the nona-
ap . diabatic piece is found to be
— Ve V3 Vive ] VT + -, (44) ;
d 0= w, ed
9=Fo——————Jo—, (49

ap. o2 =, ok~ g, To
—— Vg Vp +[3VIvy]-Vp +[VIvy]-VT +---,

at (45) where wduzwd(vﬁJr,uB)/vt2 and o, "=w,[1+ 17(0ﬁ/20t2
+ ,uB/vf—S/Z)]. In the local approximation, we treaty,
aq o, , and k; as constants, usingsy=—Kgpv;/R and
S Ve Vot (46) ©, = —Kgpvi/Lp, SO wglw, =L,/R=e,. The total distri-
bution function in guiding center coordinatess f(R,E, «)
L Vg, +[552vg]-Vuy 4 [T2vg ]V s
5t TV q, +[zVive]-Vu+[Vivy]-Vg, +---.
~ ed(x e®(R
7 f(R)=F+T=F(R)— 2 ® (50

= FotFodo—=—,
In these termsyy, is the approximation to thEx B drift in 0 0

the gyroaveraged potential,vg=(c/B)bxW¥, where

W =T{2®. There is a typographical error in EG9) of Ref.

9, where the nonlinear term involvirg should be dropped.
Now let us return to the quasineutrality constraint, Eq.

(9). Here we have to approximate the real space densit

Because of thel, which acts onF;, n; will involve the

guiding center density and all higher perpendicular moments,

but we only evolve up td@, . Thus we need another closure n(x)=f dvf(x)

approximation which relates; to n and T, . The approxi-

mation forn; in Ref. 9 was tailored to fit the local kinetic [

dispersion relation in the slab limit. In the toroidal case, be- _f d*

cause of the, dependence of the toroidal drifts in the reso-

nant denominator of the toroidal response function, (@), - n ﬁJrJ 4?0 og (51)

following such a procedure is more complicated, so we sim- °T, osh

ply use

whereF is gyrophase independent, ahds the gyrophase
dependent part. The first piece bfis in real spacex. To

obtain the real space ion densityot the density of gyro-
centers, only the parts in guiding center space need to be
ygyroaverageolacted on bydy)

ed(x) ,eP(R)
JOF(R)— T—OFO+ FOJOT—O

since theJyF and FOJSeCID/TO pieces combine to givéyg.
e 1 N 2b T (48) Inserting the solution foilg, Eq. (49), the ion density re-
" 14+b/2° (2+b)% LT sponse function is
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n
- noe(D/TO

—1 f —ox’
Co- kuvn—

Ri:

0(kﬂ)L 1), (52

which is the usual linear form. Trapped particle effects ap

pear in the variation of| along a particle’s orbit. We will
neglect trapped particle effects in this section, and weats
a constant.

For Im(w/wy)>0, the resonant denominator can be

written

1 i
—-_ drel T((u*kHvH*wdu)/wd, (53)

o—Kp|— g, wgJo

and now thev| andv, integrals can be evaluated. Normal-
izing @ andkju, to the toroidal drift frequency by introduc-

ing x=ow/wy and zy=kp/wy, and using a Maxwellian
Fo, EQ. (12), the response function becomes

i [ anfa s

vi+v? 3
A )

2Ut2 2

: 2,2 2., 2
]e'T[XZIIU/”tU|/vtUlevt]

2 2 2
xe Wit g2k v, 1Q).

Thewv, integrals are

* N
fo dULvLe—(lﬂr)vL/thJg( \/BUJ_ Ivy)

e—b/(1+i7') b

O\1+ir)

2
:Ut

(54)

1+ir

and

« L2, 2
j dv, v3e v 32( oy | vy
0

e b/(1+in)

=2v? lo|
Tt IrinZ e

1+ir

b 1, (b/l+in)
T i (olitin)|

b
C1+ir

(59

wherely andl, are modified Bessel functions. The de-

pendence in the resonant denominator was neglected in the

numerical evaluation of the, integrals of], in Ref. 8 (al-
though it was retained everywhere g|sand thusl, and |,

~ Tzzﬁ/2(1+ 2i7)

@ L2502
fo dUHef(1+2IT)v”/2vt7ITZHv”/vt: /2’7Tl)t

Ji+2ir
(56)
and
J dU”UHe (1+2i7)vﬁ/2012—i7'Z”vH vy
- Z‘ /2(1+2IT)

=42 Utmz—(l-l—ZlT 7'ZH) (57)
Putting it all together
R=1+i focheiTxe—fzzf/2<1+2i7)e—b/(1+if)| b

! 0 ON1+ir

x-[1-57

/
(1+in)yi1+2i7

1 b b | b | b
i _1+i7'+1+i7' Hai+ir N1+ir

€n | (1+in2J1+2ir

_ . 2
7 1+2|T_T22H

ey 2(1+iT)(1+2i7)?

(58)

=}

Thus, the local toroidal response function is a rather compli-
cated function,R=Ri(x, z, b, €,, 7). We wish to find
closure approximations so the response derived from the
fluid equations will closely match this response function. In
the form of a one dimensional integral as in E{8), the
response function is easy to evaluate numerically, which we
will be forced to do to find the optimal closure coefficients
and to solve the local dispersion relation. The response func-
tion can be factored into three pieces, the first independent of
w, , the second proportional tod/, and the third propor-
tional to n/€,. Since we will be interested in matching this
kinetic response for aly ande,,, we need to fit each of these
pieces independently

had real arguments, instead of the complex arguments in the
expressions above. This produces differences in the local dis-
persion relations at large. The response function in Ref. 27
correctly retains the, dependence of the resonant denomi-
nator while integrating ovev , . The local kinetic response
function described here, and the local kinetic eigenvalues
calculated using this response function in Sec. IX, were care-
fully checked against the results of Ref. 27.

Theuv) integrals are

Phys. Plasmas, Vol. 3, No. 11, November 1996

Ri=Ro+Ri/en+Ry7le,, (59
whereR,, Ry, andR, are independent of and e,
Ro=1+i fwdTeiTxe—Tzzﬁlz(uzir)e—b/(lﬂf)l b
0 0 ON1+ir
X X (60)
(1+irJ1+2ir]’
R,=—i fwdTeiTxe—#zﬁ/2(1+2i7)e—b/(1+i7)| b
! 0 ON1+ir
X ! (61)
(1+inJ1+2ir]’
M. A. Beer and G. W. Hammett 4053
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—i * i 7X —7-222/2(1+2i7-) —b/(1+i7) b ‘ 2 LA L I I B A |
Rs> |JO dre'™e 77 e lo T5ir kv oan0

—— kinetic A

X 3/2

(1+invi+2ir

1 b b | b | b
_1+i7+1+i7' N1+ir ON1+ir

(1+in3/1+2ir

_111|||||||||||||||||||||

1+2i7— TZZﬁ -5 0 5 10 15
T 2+in(A+2in? | 62) (@ w/wq
CTT 1T | LI I T TT [ T T b7 I_
H . . . I k||Vt/G.Jd=0' -1
The response function of the fluid equations will also natu- 1~ — kinetic
; . .o - e fluid .
rally factor into these three parts. In the purely toroidal limit L Re(R,)
- P 1

(kj=0), neglecting FLR I¢=0), these expressions simplify
considerably, and can be written in terms of the usual plasma 0
dispersion functior{®

-1
Ro=1—gzz< \[g) (63

_2 11 I | I I | | I 11 1 1 | 1111 |
1_, X -5 0 5 10 15
Ri=5Z Ak (64) () w/wq
2 LI Trrir I T T 17T | T T T | LI L |
o ant/G.Jd:O =
x 1), \ﬁ \ﬁ \ﬁ S — kinetic -
=|l=-—= = = - S S — fluid
R, 575 Z 5 + 2Z 5/ (65) i ui
1 e
The resonant denominator in Eq. (52), -
w—kpp— wy(vf+v2/2)lv?=0, by completing the square, i |
can be written . N
2 2 2 2
“ "Hl:<%+”_ v 66
wd 4(,()5 2wd Ut thz _1 11 ] 11 (1 | 11 (1 | | I | | | | |
-5 0 5 10 15
© w/wq

The left hand side of Eq66) can be negative, but the right
hand side is positive for all. Thus along the reab axis, no
particles are in resonance fas<—kfv{/4wy, and R; is
purely real, as shown in Figs. 1 and 2. ks, this cutoff
frequency moves to-, andR; approaches the slab limit
response function. A useful discussion of role of the ellipti-
cal resonance bands in velocity space exhibited by(&#), |\7|J. = |\“/|'J(0k>+ |\~/|jlk)/6n+ Mﬁ() nle,, (69)
the transition from the toroidal resonance to the slab reso- ' ’ ’ '

nance, and the resulting change in the local kinetic ITG

FIG. 1. Kinetic and fluid toroidal response functions in the purely toroidal
limit, Ry, Ry, andR,, with b=0 andk;=0.

i2 — 1) i
threshold, is given in Ref. 29. M. k:2_ Mp(k.,_ 1)F(E)
We will also use the kinetic response function of other 3 N 2 2
moments(not just density, which can be written in the fol- 1 3 K1
lowing compact form in thé=0 limit: +i2‘1’2f drei™| | x— — 4277 272 1R
€ 2¢€, €,1+ir !
) ed - _ T'(k+ 1)e—72zf/2(1+2ir)
M =fd3va v212),=—ngZ—M,,, 6 TR
j.k h( 1 ) oYt TO j.k ( 7) enKl+2 (1+i'7')k+l(1+2i7')]+1/2' (69)
4054 Phys. Plasmas, Vol. 3, No. 11, November 1996 M. A. Beer and G. W. Hammett

Downloaded-06-Dec-2002-t0-198.35.8.52.~Redistribution-subject-to-AlP-license-or-copyright,~see=http://ojps.aip.org/pop/popcr.jsp



i L Nj+12
—|~<-'22 (1+ 2' T) eTZZﬁ/2(1+2iT) 1.5 T 7 7T L |k T } T |2|'7 ]
j j+1 - Vi/wa=2.7 A
V27l - Linetic 1
1 T AN fluid ]
X f dUHvﬁef(l+2i7)Uﬁ/2vt27iTZHUH /Ul- (70) r ]
- 05| 1
For the lowest fewj's, we have E
or -
Koz 1, E ............. E
-0.5 | -
Kl: N I TZ” ! _1 C I 1 1 L 1 l L1 1 1 | 1 1 1 1 7

_ -10 0 10 20

K2=2(1+2i7)—7'22f, (a) w/wg

R’ B _6. 1+2- +- 2 2 [ [ T T ¥ T I T T Ikllbt}wld:-lz.l'?l ]
3= 1z =6i(1+2in)+iTZ], 05l —kinetic ]
<L e fluid ]
r Re(Ry) 7

Ko=12(1+2i7)2- 127228(1+ 2 1) + 12 .

The odde's are proportional to odd powers af (or k),
while the everK;'s are proportional to even powers gf.
This will guide our choice of closure approximations in the

I Im(R,)
next section. —0.5 -

_1||||||||||‘||||

VI. GENERAL CLOSURE -10 0 10 20
There are three places in the moment equations Egs. ®) @/

(38)—(41) where closure approximations are needed, in ad- L B ‘k'V}w' Jo'

dition to the FLR closures in Sec. IV: In the parallel free 0.4 ltkindetic'

streaming term&)r  andVr; , ; in the toroidal drift terms
wd(r”’HJrr”'l), wd(r”'J_'FFJ_’J_), wd(sH,ll"—SH,J_)! and
wq(S|, . +s.,1); and in the mirroring termsr; V) In B,
r,.VyInB, andr, , V, In B. For each, we make closure ap-
proximations designed to model the physical processes these
terms represent. Because our final closure scheme is rather
complicated, we begin by considering simple models of
phase mixing arising from parallel free streaming and toroi-

02 L " Re(Ry)

dal drifts independently, to justify the functional forms of

our closures. Then, we consider both resonances together, T S SR
and find closure coefficients which ensure that the fluid re- -10 0 10 20
sponse function closely matches the kinetic response func- © w/wq

tion for all kj and wy. Because of the branch cut disconti-
nuity atw=0 in the toroidal limit response function, we will
not be able to use analytic methods to find the closure coe
ficients, as was done in Refs. 5 and 9. We will therefore find
the toroidal closure coefficients by numerically minimizing
the difference between the fluid and kinetic responses.

FIG. 2. Kinetic and fluid toroidal response functions in the mixed toroidal/
fslab limit, Ry, Ry, andR,, with b=0 andkjy,/wy=2.7.

: . n

The velocity dependence in tligv parallel term intro- f0=e'kHZfM=e'kHZ—02e‘"f’2”t2, (72)
duces parallel phase mixing, leading to linear Landau damp- 2y
ing. Consider a simple one dimensional kinetic equation withfree streaming will cause moments bto phase mix away
no E field For example, the density is

ot + ot 0 71 n

at Vg =Y (71 n:J By fe ——2 2f dvHeikH(z—th)e—uﬁlzuf

V2w

The solution is simplyf(z,v,t) =f(z—vt,v),t=0). If we . .
start with a Maxwellian perturbation if, =nee'KiZe K vtt72, (73
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To model this process, we need to introduce damping pro-

portional to|ky|v, into our fluid equations. Thus, for the par- r
allel closures, we choo3@

Kl

f,||=3(29—”)+B|T—iﬁDn|k—q’ (74)

|k |
ML =Pj+p.— _I\/_DL H (75

where B=(32-97)/(37—8), Dj=2\m/(37—8), and
D, = /@/2. With this closure, the fluid equations reproduce
the linear kinetic behavior quite well in the slab limit, as
shown in Refs. 5 and 9.

Similarly, the velocity dependence of tiWé& and curva-

ture drifts introduces phase mixing. In this case the damplng

rate is different, since the toroidal drifts depend Lq?nand
/2 Now consider only the phase mixing due to the toroi-
daldnﬁs

8f+ af_o
E wa_ )
(76)
v||2+vf/2 pUY
vd:deTv Udozﬁ-

t

The solution isf(y,v|,v, ,t)=f(y—vg4t,v,v, ,t=0). Start-
ing with a Maxwellian perturbation i,

—(vﬁ+vi)/2v12' (77)

foz eikyny = eikyy—nome
(27vy)

free streaming will again cause momentsfafo phase mix
away. For example, the density is:

ZJ diuf
= n_O 2 dod y—vgol(v 2102 u2 12v2)1]
T @) I v,v, ety [fog —vl/20]

X e*(vH +UL)/2vt

noeikyy

T 2ikygot(1+ikywgot)

(78)

The toroidal closure terms enter in the combinations
s Mt re s S tses andsHL+sL . - Expand-
ing the general moment response functions(g6) for small
k|, all the oddj moments have leading order corrections of
(K), while the everj moments have leading order correc-
tions of /(k”) Thus in our closure approximations for the
toroidal terms, we close the even momenjg+r;, and
rj,.+r. . interms of the lower even moments,(p;, and
p.), and the odd momentg | +s; , ands|, +s, , interms
of the lower odd momentsu(, g, andq, ), to preserve this
small k; behavior. At largek; (the slab limi} the response
function is primarily determined by the parallel closures, and
the toroidal closure approximations are subdominant. In ad-
dition, we break the and s closures into dissipative and
Maxwellian pieces(the terms that would arise i were
exactly Maxwellian. The Maxwellian parts are
H ”=3pﬁ/n rM:p”pL/n, I’lezpi/n, and S|L|
S|,. =S, =0. Linearizing and normalizing, these become
H”_6p” 3n, ML=PitpL— and r, ,=4p, —2n
Guided by the discussion above, we choose dissipative
pieces proportional tdwy|/wy. Thus in the toroidal terms,
combining the Maxwellian and dissipative pieces, we choose

Jogl
r||,H+r||,L:7pH+pL_4n_2|w_d(VlT||+V2TL)1 (79
|l
r||l+rLL p||+5pL 3n—2Iw—d(V3TH+V4TJ_),
(80)
o
S _I_(V5u\|+7}6qH+V7qJ_) (81)
_ ol
S|, +S, =i w_d( vgU|+ voQ+ vigd, ). (82

Each closure coefficient has both a dissipative and non-
dissipative piecey=v,+iv|wgy|/wy. This choice is moti-
vated by Ref. 8. Making the dissipative parts of thelo-
sures only depend o and T, ensures that the fluid
response will match the kinetic responsewditog=0 in the
kHZO limit.

The toroidal closure coefficients; — vy in Egs. (79)—
(80) are chosen so the response function of the fluid equa-
tions closely approximates kinetic response function, Eq.
(58). In the local limit withb=0 andV|B=0, and inserting

To capture this toroidal phase mixing, damping proportionathe closure approximations above, the fluid equations Eqgs.

to |ky|v4o=|wgy| must be introduced into the fluid equations,

(360)—(41) can be written in matrix form, using

but with complex closure coefficients to get the phase shift ig=wq/w=1/x andk=k|/», and assumingvy>0 to sim-

Eq. (798).
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1 -k -g -9 0 0
0 1-4g -k 0 -9 -9
g(4—2iv,—2iv,) -3k 1-g(7-2ivy) —g(1—2iv,) -k 0
M=1 4(3=2iva—2ivy) —k —g(1-2ivy) 1-g(5-2iv,) 0 —k '
(3+B)k —g(6—ivs)  —(3+PB)k 0 1+i+2Djk+9g(3+ivg) 9(3+ivy)
k —g(1—ivg) 0 -k g(1+ive) 142D, k+g(1+ivy) |
n] [ 2] [—1] [0 ]
uj k/g 0 0
M ; E : gD+ _i %cm _i 96_;743_ (83
q 0 0 0
L q] [ 0] L 0 | 0

Thus, the response function of the fluid equations als@ince we are primarily interested in accurately modeling the
naturally factors into the form Ed59). Because this set of growth rates of unstable modes, the errors in the lower half
equations is rather complicated, to determine the toroidaplane are probably not important, as long as we do have
fluid response functions we solve farandp, by numeri- damped modes in the system. The best fit between the kinetic
cally row reducing the matriM. In Ref. 8, the fluid and and fluidR’s was found using 1X's evenly spaced from
kinetic response functions were compared only in thezy=0 to 4.2, over the range of where the kinetic response
w,=0 and »=0 limit. In the slab limit, determining the function is changing most rapidly; 8<x<16 atzj=0 and
closure coefficients in the, =0 and»=0 limit (Ry) also ~ —14<x<22 atz=4.2, with 100 grid points ix. To the
gave an equally good fit for the, and 5 pieces R, and  error in the density response function, we also add 1/100 the
R,), but in the toroidal case this is not automatic. In addition,error between the kinetic and flujal. responses, since is
in Ref. 8 the toroidal closure coefficients were matched afnost important for the local dispersion relation, tput en-
kj=0, and good agreement fay # 0 is not guaranteethl- ters the Iin_ear di;persiqn relqtign f.ro.m FLR e'ffects. While an
though askj—c the slab limit is recovered and the agree- excellent fit ton is obtained, it is difficult to simultaneously
ment will again be good In fact, if the toroidal terms are Mmatch thep, response for intermediatg’s. We find that the
closed in the purely toroidal limitkj=0), the toroidal clo- best fit is given by
sure terms in the odd moment equations drop out. Thisledto  »,=(2.019,-1.620,
singular behavior of the response function for the closure in —(0.433,1.018
Ref. 8 at some nonzelq, since thewy(q;+q, ) term in the v2=(0. T
parallel velocity equation was dropped. This was corrected in  v3=(—0.256,1.487,
the addendum to that paper. . _

Therefore, special care must be taken find toroidal clo- v4=(~0.070-1.382,
sure coefficients which simultaneously provide a good fit to vs=(—8.927,12.649),
the kinetic response function for all three parts of the re-  p;=(8.094,12.638
sponse functio_n, for alk; . Bepause bpth .flyid and kinetic v,=(13.720,5.139),
response functions are complicated with firkfe we choose
the closure coefficients numerically, by minimizing the dif- vg=(3.368-8.110,
ference between the kinetic and fluid response functions over  ,,=(1.974-1.984,

a range ok|’'s simultaneously, but in the=0 limit. We use

Powell's method? an efficient multidimensional iterative

minimization technique. This process starts with arbitrary ~— ¥10= (8.269,2.060.

values of the coefficients; —v,9, and numerically inverts This set of the closure coefficients results in a fluid response
the matrixM for these values of the coefficients for a speci-function which differs from the kinetic response function by
fied range ok andk; . Then the difference between the fluid an RMS average of 0.04dn the real and imaginary pajts
and Kkinetic response functions is calculated along thexeal over the range specified above. Outside this range, the dif-
axis and the coefficients are adjusted. This process is rderence is even smaller, since for largethe response is
peated until the error between the kinetic and fluid is mini-fluid-like and the fluid equations automatically do quite well,
mized, i.e., further small variations of the closure coefficientsand for largek; (the slab limi, the response is slab-like and
only make the fit worse. IR has no poles in the upper-half the agreement is quite good, as shown in Refs. 5 and 9.
x plane, matching along the real axis guarantees that the fluilhese are an improvement over the closure coefficients in
R will also match the kinetidR in the upper-halfx plane. Ref. 11. The fit between the kinetic and fluid response func-
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tions is excellent, as shown in Figs. 1 and 2. The fluid equaSec. 1X, this set of closures provides excellent agree-
tions give a rational approximation to the kinetic responsement with linear kinetic calculations, as long as one is not
function, and cannot capture the branch cut attoo close to marginal stability, where the small errors in the
ol wyg= —kﬁvf/4w§ exactly [see Eq.(66)], but this set of response function can give rise to weakly unstable modes.
closure approximations provides a reasonable fit to this shai/e have obtained another set of closure coefficients de-
transition. signed to give a more accurate stability threshold, by mini-
Since some of the real parts of the closure coefficientsnizing the error in the response function and threshold si-
are negativéin the cross termswe have checked that in the multaneously. These coefficients ang:=(0.848~0.118),
limit L,—o°, Ly—o, all roots are damped, as they should v,=(—1.239,2.064), v3;=(0.103,-0.517), v,=(0.960,
be. In this limit, withk; =0, the three fluid rootésolutions of ~ —1.906), vs=(—11.6263.185), ve=(—2.872,11.679),
the dispersion relation Rp=—1) are /wy=6.107 v;=(—3.156,9.878), wvg=(4.494,1.225), vy=(3.260,
—1.422|wy|/wg, 0.110-0.351|wy4|//wyq, and 1.779 4.625), andvip= (5.888,10.459). Unfortunately, while im-
—2.125|wgy|/wy, giving damped roots for either sign of proving the threshold behavior, these coefficients are less
Wy accurate than the above set away from threshold. More com-
Finally, we have to close the mirroring terms, introducedplicated closure approximations could certainly be found, or
by the ,uB-VB terms in the gyrokinetic equation. These the set of equations used here could be extended to higher
terms incorporate trapped particle effects, reproducing th&oments, but the relative simplicity of the closures used here
Chew-Goldberger-LoW pressure balance equation. They afford a tractable and sufficiently accurate model for most
are also important to model the damping of poloidal flows byapplications.
magnetic pumping. Since these terms introduce no new dis-
sipative processes, we take Maxwellian closures

r,1=6p;—3n, (84)

VII. FINAL EQUATIONS

We arrive at the six moment toroidal gyrofluid equations
rL=p+p.—n, (85 by inserting the closures discussed in the previous section
into the moment equations, Eq86)—(41), with the nonlin-

rLo=4p, —2n. (86 ear terms given by Eq$42)—(47). Specifically, we use the

This may not be the ultimate set of closure approxima-parallel phase mixing closures in E4g4)—(75), the toroidal
tions, however, the resulting fluid equations provide a veryphase mixing closures in Eq$79)—(82), and Maxwellian
accurate model of the physics underlying ion dynamics inclosures for the mirroring terms, Eq84)—(86). In addition,
toroidal plasmas. While it is straightforward to calculate thewe add the collision terms obtained by integrating Eg).
error between the kinetic and fluid response functions, it iover velocity space. We will also refer to this set of equa-
more difficult to quantify the accuracy of the fluid eigenfre- tions as the “4-2" model, since it evolves 4 parallel mo-
guencies, or roots of the dispersion relation. As shown imments and 2 perpendicular moments.

+[1V2vq,] VT, +BVg ! (l+?V2)|w*\P+(2+1Vf)|wd\lf+|wd(p”+pl) 0, (87)

ﬂ+[l§2v ]-Vq, +BV Pl vws
dt 2ViVel VAL ) I

1.
pﬁzquf)v” In B+iwq(q)+a, +4u) =0, (89)

d ~ 1.
p"+[1vaq,] VTL+BV”qH L 2(q +upVy In B—[ 14 7+ %Vf)iw*qw 4+ EVf)iwd‘P
. 2
+iwg(7pytpy—4n) +2|wg (v T+ voT )= =~ Zwi(p)=pu), (89
+[1V2v\1,] VpL+[V2v\I,] VTL+BZV”ql —1+= v2+m(1+ v2+v2 iw, ¥
3., =,| . 1
+ 3+§VL+VL de\lf—i—|wd(5pi+pH—3n)+2|wd|(v3TH+V4TL)=§Vii(pH—pl), (90)
q .
d—,{H+(3+ﬂH)VHT||+ \/EDH||<|\|G1H+ i wg(—309)—3q, +6u)) +|wg|(vsu)+ veay+ v7a, ) = — v;qy., (91
di 192 o2 1” 2 J2 _ 2 E o2
n +[2VLV\I’]-VUH'F[VJ_V\I,]'V(]J_'FVH TJ_+2VJ_‘I’ + 2DJ_|k|||QJ_+ p. p||+VJ_‘I’ ZVL‘I’ V” InB
+iwg(—aq—q, +up) +|eg|(veuj+ veq)+ vied, )= — ;0 - (92)
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The mainE X B nonlinearities have been absorbed in the totalinder limit). Switching to the present form of the parallel
time derivative d/dt=9d/dt+vy-V. In the slab limit closures removed this spurious instability.
(wg=V) In B=0) these equations reduce to E¢56)—(61)

of Ref. 9. The quasineutrality constraint is VIIl. FOUR MOMENT MODEL
n bT
Ne= - = 5+ (Tp—1)d. (93 We present here a simpler and slightly less accurate gy-
1+b/2 2(1+b/2) ; .
rofluid model which only evolves four moments; uj, py,

When the electrons are assumed to be adiabatic, andp, . We will also refer to this set of equations as the

Ne=7(P—(P)), (94  “3+1” model, since it evolves three parallel moments and
where7=T,o/To and(®) is a flux surface average. one perpendicular moment. In this case, since we are not

This constitutes a fairly complicated set of fluid equa-€voVingq andq, , instead of closing the toroidal terms
tions compared to those usually used in plasma physics. Aith Egs.(81) and (82), we need to close theq(q;+q.)
somewhat simpler four moment model is described below!€r™m in the parallel velocity equation
and itis WOI’.th jlustifying t_he complication of the six moment g +q,=—2i | vsu|. (95)
model. In principle, the six moment model is more appealing Wg

because as more moments are retained, more details of tge sill use the toroidal closures in Eqs(79) and(80), but
distribution function are accurately described. On more pragy,ith new closure coefficients. In addition, we use the parallel

matic grounds, the six moment model provides a signifi-ciosyres of Refs. 5 and 9, extended to include collisions as
cantly improved fit to the kinetic response function, and isy || as collisionless phase mixing

necessary for quantitative accuracy in linear growth rates and

mode structures. The six moment model is also required to = 3tA i

- e sl . 0 q= - KTy, (96)
capture the destabilization from trapped ion effects, which \/ED\llkH|+Vii
become important in the long wavelength regime. Finally, _ 1.,
six moments may be required to obtain accurate damping d.=— 72D, k[ + Ikl(TL_l—EVJ_\P)' 97
rates of poloidal flows from magnetic pumping. Magnetic LI Vi

pumping arises from parallel flow damping, and since noThese are essentially the hidgh and/or highw;; limits of
closure approximations appear in Eg§8), theu; equationis  Egs.(91) and(92), keeping only the slab terms.
an exact moment of the gyrokinetic equation@¢b). This is We again use the method described in Sec. VI to mini-
not the case for the simpler four moment model discussedize the error between the fluid and kinetic local re-
below. Magnetic pumping rates from this six moment modelsponse functions to determine the toroidal closure coeffi-
are calculated in Ref. 7. cients v,—wvs. The best fit is »;=(1.232,0.437),

A variation of these equations was used in Ref. 11 wherer,=(—0.912,0.362), v3;=(—1.164,0.294), v,=(0.478,
[kjlqy in Eq. (91) was replaced byB|k|(q/B) and where —1.926),ands=(0.515,— 0.958).
lkjla, in Eq. (92) was replaced by?|ki|(q, /B?), i.e., k| Inserting thesey closures into Eqs(36)—(39), using the
acted ong, /B2, not justq, . However, it was found that this nonlinear FLR terms in Eq$42)—(45) without theq, part of
leads to a weakly growing mode even in theEq. (43), and dropping theq, and g, mirroring terms
wg= o, = 7=0 limit which should be stabléa bumpy cyl-  (gq;=q, =0 for a Maxwellian), the dynamical equations are

dn .o, yj TLg2 |, 1oo). -
dt"‘[EVJ_Vq,]'VTJ_‘FBVHg— 1+ > Vilio, ¥+|2+ EVL de‘I"f'Ia)d(p”‘f'pJ_):O, (98
W oy Py w2920 |V, n B4 U+ 2| wg vsuy =0 (99)
dt I's [ PLT5V1 [ @qy| @q|VsU| =Y
dp) | 1co (3+B)K(T| 7 Az) 1A2)
— +[5Vivg] VT, + —————+3Vju—uyVy In B—| 1+ npy+ =V liw, V+| 4+ =V |iwgV
qr TL2Vivel VT, 2Dkl 7 U=y nt o5 Vi|lo, 5Vi|log
. 2

+iwg(Tpy+p.—4n)+2]wg (v T+ 2T ) == Zwi(p=p.), (100
dp = f LI“ 1 1 =

L 192 o2 192 2 o2 o2 w2 ||
—+[53Vivy]-Vp, +[Vivy]- VT, + ———— (T, + 5 ViV)+ BV =5 — |1+ = Vi + 1+ =V +V)|w‘I’
dat [2VIive]-Vp, +[VIivy] L \/EDL“(HH_VH( 1T 3V] I'g2 2 V1T V1L L *

3,\2 o). ] 1

+ 3+§VL+VL |wd\lf+|wd(5pL+pH—Bn)+2|wd|(v3TH+v4TL)=§V”(pH—pL). (101

Phys. Plasmas, Vol. 3, No. 11, November 1996 M. A. Beer and G. W. Hammett 4059

Downloaded-06-Dec-2002-t0-198.35.8.52.-Redistribution-subject-to-AlP-license-or-copyright,~see-http://ojps.aip.org/pop/popcr.jsp



The quasineutrality constraint, E@3), is unchanged for this lengths. Ask,p; decreases|w|=y*+ w,z decreases, and

model. the stabilizing effect of parallel Landau damping becomes
more important. Whenw|~kjuvy;, the mode is stabilized,
IX. LINEAR BENCHMARKS producing the long wavelength cutoff at

Kepi~kLn~Ln/gR. This local estimate suggests that the
inverseq dependence of this long wavelength cutoff can
ntroduce confinement degradation with increasipgsince
he longest wavelengths cause the most transport.

In this section the accuracy of the toroidal gyrofluid
equations is demonstrated by comparing with linear kineti
theory, using adiabatic electrons. We first test the toroid
gyrofluid equations against kinetic theory in the local limit, Now we move on to nonlocal comparisons with kinetic
V\{herek” andwg are treatgd as constants. The elgerjfrequ_entheory using the ballooning representation in circular flux
cies are d_eterm.med.by finding roots of the local dl'spe'rsmrgurface geometry, as in Refs. 32 and 33. In these nonlocal
relguon with adiabatic eIegtronRi - .where t.he Kinetic calculations, we find the eigenmode structure along the field
R; is calculateo_l by _numerlcally evaluatmg_ the integrals Edjine coordinate, §, also called the “extended ballooning
.(59) and the ﬂu'dR‘ IS _calc_ulated by nu_merlcaI_I)_/ row reduc- angle.” The # dependence of terms in the equations couples
ing the matrix equation in E_q(83), with additional FLR differentk’s; this coupling is ignored in the local approxi-
terms on the right hand sidebfis nonzero. In the local limit, mation. For example, bothy andk, vary along the field

. . . . . ’ L
we ignore theV) In B terms in the gyroﬂyld ,equa'qo_ns and line: the 6 dependence ofvy describes the effects of the
ignore the modulation ob along a particle’s orbit in the good and bad curvature regions, and thelependence of
klnetlp response. S . .k, comes from the fact that as one moves along the field

Figure 3 Sh.OWS .thg Kinetic anq gyrofluid growth rates "Nline, the mode twists, ankl, increases. For the comparison
tt:e purfeIé/. tormda:c II'?m'ft g\zoh)' W'tb fzo*_ffr tlhg p2aramd- with Ref. 32, we neglect trapped particle effects by turning
eters of Fig. %) of Ref. 8, wherer=1, 7;=1, 1.5, 2, an off the V| InB terms. In circular flux surface geometry,

3, varyinge,,. The four m_oment model in Sec. VIl repro- B=ByRy/R=B,/(1+ e cosf), so settinge=0 removes the
duces the stable low,, regime better than the four moment v, In B mirroring terms. As in Ref. 32, we also neglect col-

mf(f)_d_el [t)res_lfahnted. in Ref. (8\;h'Ch utged d|fferg(rj1t closurr]ebcct)t— lisions and assume adiabatic electrons. All of the results
efficients. € SiX moment equations provide much be ercompared in this section will only look at modes with
agreement with kinetic theory, but are slightly off for low 0p,=0, i.e., those centered in the bad curvature region, since

7, hear marginal stability. . . . they are typically the most unstable and most linear calcula-
Figure ,4 showg a comparison In the local limit fioy ions only focus on these modes. The growth rate spectrum
;&. 0, the mixed toroidal/slab limit. We use the parameters Otior 0y # 0 has important implications for the anisotropic fluc-
Fig. 3 of Ref. 32, wher_e;i= 1523,,=0.2, a”‘?' we choose tuation spectra seen in our nonlinear simulations and in ex-
k”L”:L“/qR: 0.1, using the normal cqnnectlon length for perimental fluctuation measurements in tokamaks, as dis-
the mode yvldtI“L”~qR, an(_jq=2. The_ linear growth rz_ates_ cussed in Ref. 7. Figure 5 shows the eigenfunction from the
from the six moment toroidal gyrofluid model and kinetic fully kinetic integral calculation of Ref. 32 and from the-2

theory are shovyn VE,p; . The six mom.en.t toroidal gyroflgid . toroidal gyrofluid equations for the parameters in Fig) &f
equations provide an accurate description of the full klnetlcRef 32,7=3, €,=0.2,q=2, 8=1, kyp;=0.53, andr=1
. 32,7,=3, €,=0.2, , , Kgp;=0.53, .

behgvior. Both the growth rate and real frequency of theThe “ballooning” mode structure along the field line shown
toroidal ITG mode vary roughly ag, o > Kypj atlongwave- i riq 5 s determined by the dependence of botiag and

k, . The mode is primarily localized ne&=0 in the bad

1 _I T 1 I‘l T I~I T I TT 1T [ T I—I—I_ _I-I~I§I_
— kinetic e =9
: %erfluid: ///’ ] 0.25 LI I LI | LI T T I LI I L
08 [T ATR o T ] —kinetic 1
r 1 I-- gyrofluid ]
i o ] 0.2 ]
06 R - =R C ]
3 C T r ]
DN Y ] .0.15 [ -
04 d C ]
o -} L =
- 'J - -
L > 01 N
0.2 - L ]
[ 0.05 |- .
0 0.1 0.2 0.3 0.4 0.5 - " A
En o L0 :’l . RN NI AN | |\|‘-
0 02 04 08 0.8 1 1.2
FIG. 3. Comparison of local linear growth rates from tde-2) and(3+1) K0,

toroidal gyrofluid equations vs. kinetic theory in the toroidal limit, with

kj=0 andb=0. The four moment equations in Sec. VIII reproduce the FIG. 4. Local growth rates from the six moment toroidal gyrofiuid equations
stable lowe, regime better than the four moment model in Ref. 8 but are compared with kinetic theory, now in the mixed toroidal/slab limit with

slightly less accurate at largg . The six moment equations are much more kj=0.1 ande,=0.2. The toroidal gyrofluid equations again provide a very
accurate, and are quite good fgr>1, away from marginal stability. accurate model of the fully kinetic results.
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FIG. 5. Linear nonlocal eigenfunction comparison with the fully kinetic r b
calculations of Ref. 32. The coordinate along the field lifieis equivalent r ]
to the “extended ballooning angle.” -0.1 |- -
=—02F -]
. . . A = I T
curvature region. Landau damping is strongly stabilizing for < r .
highk, so the most unstable modes have broad mode struc- F-03 | ]
tures along the field line. Minimizing; while simulta- 3 r P
neously localizing the mm_jes in the pad curvature region ~0.4 [= kinetic m=92 ]
leads to mode structures wikiy~ 1/qR, with large amplitude - grzoflmd: ]
at the outer midplane and smaller amplitude at the inner ~0.5 Fo 3+1 -
i . . C PO
midplane. Further along the field liné.e., away from T R R BT W
#=0), magnetic shear causks to increase, which leads to 0 02 0~4k 06 08 1

FLR stabilization at largéd — 6,|. This magnetic shear sta- (b) 6%

bilization through FLR effects keeps the mode amplitude

small in bad curvature regions further a|0ng the field "ne,FIG. 6. Nonlocal Iir_1eargr0\_/vth rate ar_]d rgal frequency comparison between
~ . . . the toroidal gyrofluid equations and kinetic theory, for the four moment and

e.g., atg=2m. Whens or kﬂpi is small, this magnetic shear six moment models. The six moment model provides excellent agreement

effect is weaker, and the eigenfunctions become more eXsith fully kinetic theory, especially fok ,p;<1/2.

tended iné.

Figure 6 compares the kinetic and fluid growth rates and
real frequencies for the parameters of Fig. 3 in Ref. 32collisionless limit, as in Fig. 6 of Ref. 33. All three calcula-
7;=1.5,2,and 3¢,=0.2,0=2,5=1, andr=1. The agree- tions assumed adiabatic electrons. The gyrofluid and Vlasov
ment between the 42 gyrofluid equations and kinetic results are shown both withe&0.3) and without €=0)
theory is quite satisfactory, especially fhpp;<<0.5 where trapped ion effects, to show the destabilizing effect of the
our models of FLR effects are very accurate. This level oftrapped ions for very long wavelengths. Since #eln B
agreement is a substantial improvement over previous fluighirroring terms are proportional te, settinge=0 turns off
theories, and is more accurate than the four moment gyrghese terms. Without the mirroring terms, all modes are
fluid model of Ref. 8. Ask,p; decreases, the mode width stable belowk,p;~0.04. With the mirroring terms, the tor-
increases ankl becomes smaller. This shifts the long wave-oidal ITG mode gradually evolves into a trapped ion mode.
length cutoff to lowelk4p; than in the local limit, wherg is ~ Trapped ion effects become important when the mode time
held fixed. In other respects the fully nonlocal results seem tscales are comparable to or less than the ion bounce fre-
follow the local trends fairly closely. quency, |w|<wpi=\evy;/qR. For these parameters

Figure 7 shows a comparison with Fig. 4 of Ref. 32, w,L1/v=+eL1/qR=0.03, so trapped ion effects become
using the parametersy;=2.5, €,=0.2, 0.3, 0.45q=1.5, significant fork,p;=<0.1. The six moment toroidal gyrofluid
ands=0.1xg/e,. The toroidal gyrofluid and kinetic results equations model this effect with reasonable accuracy. In par-
are not in terribly good agreement near marginal stabilityticular, the gyrofluid model shows that trapped ions can re-
(e,=0.45), but the agreement is satisfactory ége=0.2 and  move the long wavelength cutoff which exists when trapped
0.3. ions are ignored, in agreement with fully kinetic theory.

To test of our models of trapped ion effects, we compare  In Fig. 9 we show the same results as in Fig. 8, but now
with the linear gyrokinetic particle simulations of Ref. 33, normalized tov,; /Ly, which is independent ok,, and is
and the gyrokinetic “Vlasov” simulations of Ref. 34 which thus proportional to the growth rate in physical units. This
both include trapped ion effects. Figure 8 shows a comparidemonstrates more clearly than in Fig. 8 that the growth rates
son of nonlocal linear eigenfrequencies from all three apof the trapped ion modes are much less than those of the
proaches, in the flat density limiij;—oc. The other param- fastest growing modes nekp;~1/2, and suggests that our
eters arel. 1/R=0.1,q=2,5=1, r=1, ande=0.3, in the  models of trapped ion effects are probably adequate.
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FIG. 7. Comparison of linear growth rates from kinetic theory and the sixFIG. 9. Linear growth rates and real frequencies normalizeg, tb. In

moment model. Again, the agreement is quite good excepk fer0.45, physical units, the growth rates of the trapped ion modes are much less than

wheres=1/3. those of the fastest growing modes nkgs; ~ 1/2, which suggests that our
models of trapped ion effects are probably adequate.

For the measured parameters used in Ref.p33,0.13
cm andry=50 cm; sokyp;=0.01=ng/r, implies n~2, velocity equation, important for accurate poloidal flow
wheren is the toroidal mode number. Thus, the ballooningdamping rates. Including theb-VB terms also incorporates
approximation is definitely breaking down at these very longtrapped ion effects to some extent; the growth rate in the
wavelengths, and radial variations in the equilibrium will very low k4p; trapped ion mode regime is within a factor of
affect the mode structures and growth rates. two of fully kinetic calculations. The gyrofluid trapped ion
results are in closer agreement with kinetic theory if we com-
pare the diffusion (e« ka) required to stabilize the long
wavelength trapped ion mod&New toroidal FLR terms

In summary, we have derived toroidal ion gyrofluid gre treated which arise from the variationB®f(in the argu-
equations with improved models of the important kinetic ef-ment ofJ,) with major radius, and generalize the FLR model
fects associated with toroidicity. Special care was taken t@f Ref. 9 to toroidal geometry. An improved four moment
derive closure approximations which, though similar to thosemodel is also presented, which is simpler and numerically
of Ref. 8, are well behaved in the mixed limit where both |ess demanding than the six moment model. Impurity and
toroidal drifts and parallel free streaming are important, i.e.Maxwellian-model energetic particle dynamics are equally
where bothk| and wy are nonzero. This work also extends well described by these toroidal gyrofluid equations.
the four moment toroidal gyrofluid model of Ref. 8 to six ~ Although electrostatic turbulence effectively describes
moments, including the:b-VB mirroring terms. By evolv-  many experimental regimes, the electrostatic assumption is a
ing six moments, no approximations are made to the paralldimitation of the toroidal ion gyrofluid equations presented

X. SUMMARY AND DISCUSSION

here. Recent work has begun including electromagnetic
effects®®3’ The main difficulty here is that magnetic fluctua-
tions are driven by parallel current fluctuations, and since
trapped particles do not carry current, passing electrons can
no longer be considered adiabatic, and need to be evolved.
Resolving the fast electron parallel motion seriously slows

— ¢ fluid: . . .
0 i é B e=03 _ down the numerical calculations. Some trick analogous to
5 - V=00 . bounce averaging, which is quite successful in simplifying
3 _02 o o o the trapped electron dynami€syould be useful for the pass-
particle:, . ing electrons.
' We conclude by discussing the validity of gyrofluid
~0.4 — equations for plasma turbulence. These gyrofluid equations

are an approximation to the full nonlinear gyrokinetic equa-
tion, and break down in some regimes. For example, in the
slab limit, the weak turbulence wave-kinetic equation de-
rived from the gyrofluid equations successfully reproduces
the gyrokinetic wave-kinetic equation in the limit

FIG. 8. Comparison of linear growth rates and real frequencies normallizecclo>kHvti but fails to recover the ion-Compton scattering

to w, 7 from fully kinetic calculations and the six moment toroidal gyrofluid
equations with trapped ion effects. Including trapped iogrs §.3) further

rate very near marginal stability, in the limit

15,38 ; P :
destabilizes the toroidal ITG mode at long wavelengths, which graduallyy <@ <Kjvy; . The nonlinear validity of the gyrofluid
evolves into a trapped ion mode fkpp;<0.1.
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ambiguously verified on fundamental grounds. However, gyplasma turbulence in a very different way, by focusing on
rofluid simulations have been compared against full gyroki-and clarifying the role of dissipation in the two models.

netic particle simulations, finding similar behavior full three More generally, each gyrofluid equation, as a moment of
dimensional sheared slab simulations and in three mode cothe gyrokinetic equation, is an exact nonlinear conservation
pling test problem$®3° Toroidal simulations have also been law: closure approximations are introduced into higher mo-
benchmarked with toroidal gyrokinetic particle simulations, ment equations in a way which preserves the conservative
though not as extensively as the sheared slab simulationfgrm the equations. Our equations retain the dominant
and find reasonable agreeméhw/ery recently, the toroidal (ExB) nonlinearities and provide accurate physics based
gyrokinetic particle simulations of Ref. 40 appear to predictmodels of the linear drive and dissipation mechanisms. As
lower transport by about a factor of 2. While in principle more moments are retained, more details of the underlying
gyrokinetic simulations are more accurate, since they solvdistribution function are accurately described. In fact, Smith
the gyrokinetic equation directly, there are a number of is-has demonstrated convergence in the number of moments for
sues which need investigation: particle noise, particle filterthe nonlinear plasma echo problémthough it required

ing, resolution, and geometfwe implement field-line coor- many moments in that case. In the strong turbulence limit, it
dinates in a somewhat different way than Ref. 40, whichseems unlikely that many moments need to be kept, since the
tends to emphasize resolution in different partkefpace. broad spectrum of modes should average out sharp velocity
We have done some simulations with exactly the same paispace variations in the distribution function. Future work
ticle filtering and box size as in Ref. 40, without magneticshould continue to test the validity of the gyrofluid approxi-
shear §=0) where our coordinate system and Ref. 40’s co-mation, both through comparisons with kinetic simulations
ordinate system become identical. We then find that the gyand through purely theoretical simplified problems.

rofluid simulation reproduces the gyrokinetig to within

20%. Turning off the particle filtering then causgsto rise ~ ACKNOWLEDGMENTS
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