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A set of nonlinear gyrofluid equations for simulations of tokamak turbulence are derived by taking
moments of the nonlinear toroidal gyrokinetic equation. The moment hierarchy is closed with
approximations that model the kinetic effects of parallel Landau damping, toroidal drift resonances,
and finite Larmor radius effects. These equations generalize the work of Dorland and Hammett
@Phys. Fluids B5, 812 ~1993!# to toroidal geometry by including essential toroidal effects. The
closures for phase mixing from toroidal¹B and curvature drifts take the basic form presented in
Waltz et al. @Phys. Fluids B4, 3138~1992!#, but here a more rigorous procedure is used, including
an extension to higher moments, which provides significantly improved accuracy. In addition,
trapped ion effects and collisions are incorporated. This reduced set of nonlinear equations
accurately models most of the physics considered important for ion dynamics in core tokamak
turbulence, and is simple enough to be used in high resolution direct numerical simulations.
© 1996 American Institute of Physics.@S1070-664X~96!01110-X#

I. INTRODUCTION

Fluid equations have long been used to provide a re-
duced description of plasma dynamics and to carry out para-
digm studies of plasma turbulence which have provided
much insight.1–4 This paper builds on previous fluid descrip-
tions by including important kinetic effects necessary for
more realistic simulations of plasma turbulence, especially
‘‘toroidal’’ effects arising from variations in the strength of
the magnetic field. These toroidal gyrofluid~or gyro-Landau
fluid! equations describe the time evolution of a few mo-
ments of the gyrokinetic equation. We will concentrate on a
set of six guiding center moments: the guiding center den-
sity, n, parallel velocity,ui , parallel pressure,pi , perpen-
dicular pressure,p' , and the parallel fluxes of parallel and
perpendicular heat,qi and q' . The moment hierarchy is
closed by approximations which model the kinetic effects of
collisionless phase mixing from parallel free streaming5,6 and
toroidal¹B and curvature drifts,7,8 and finite Larmor radius
~FLR! effects.9 The toroidal gyrofluid equations presented
here incorporate reliable models of most of the physics con-
sidered important for electrostatic ion dynamics in tokamak
turbulence. This reduced set of nonlinear fluid equations is
simple, yet accurate enough to be used in three-dimensional
high resolution direct numerical simulations of tokamak
turbulence.7,10 This paper presents the first detailed deriva-
tion of the governing equations used in the toroidal gyrofluid
simulations of Refs. 11, 12, and 13.

Toroidal¹B and curvature drift effects are an important
destabilization mechanism for tokamak microinstabilities.
The growth rates for the toroidal ion temperature gradient
~ITG! driven mode are typically two to three times higher
than the growth rates of the slab ITG mode, and toroidicity
changes the character of the instability: In a sheared slab the
instability is a modified ion sound wave, in a torus it is more
interchange-like. In addition, nonlinear simulations of toroi-
dal ITG turbulence find much larger fluctuation and transport
levels than sheared slab simulations for the same parameters,
bringing the predicted ion heat flux up to experimentally

measured levels.7,10 Thus, incorporating toroidal effects is
essential. The key difficulty here is closing the higher mo-
ments introduced by the velocity dependence of the toroidal
¹B and curvature drifts. We close these terms with closure
approximations similar in spirit to Ref. 8, but here we use a
more rigorous procedure to find our closure coefficients, pro-
viding significantly improved accuracy. The derivation pre-
sented here is valid for finiteki , while Ref. 8 focused on the
purely toroidal (ki50) limit and a term to remove a singu-
larity for finite ki was addeda posteriori. In addition to
presenting a four moment model~four moments were used in
Ref. 8!, we have extended our model to evolve six moments,
which is significantly more accurate. These toroidal gyro-
fluid equations also incorporate linear and nonlinear FLR
effects as in Ref. 9, although the linear FLR terms are modi-
fied by toroidicity.

Another important toroidal effect is the damping of po-
loidal flows. Slab14,15 and toroidal11,16 gyrofluid simulations
revealed that an important nonlinear saturation process for
core tokamak turbulence is the nonlinear generation and
damping of radially sheared ‘‘zonal’’E3B flows: flows
which cause flux surfaces to rotate. These sheared flows are
very weakly damped in a sheared slab via classical viscosity;
the dominant damping mechanisms arise from toroidal ef-
fects. The fluid terms arising from the mirroringmb̂–¹B and
toroidal drift terms in the gyrokinetic equation are included
to provide accurate models of poloidal flow damping from
magnetic pumping. These mirroring terms also model the
effects of trapped ions, extending the validity of these equa-
tions into the trapped ion regime at lowkur i . Finally, a
Krook collision operator has been incorporated, important
for poloidal flow damping in the Pfirsch-Schlu¨ter regime,
and for collisional effects on very low frequency modes.

We begin by reducing the toroidal gyrokinetic equation
to a convenient form in Sec. II; then exact moment equations
are derived in Sec. III. Finite Larmor radius effects are
treated in Sec. IV. The kinetic linear response function is
derived in Sec. V and used to optimize the closure approxi-
mations in Sec. VI. The final equations are presented in Sec.
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VII. A simpler and slightly less accurate set of equations
evolving four moments is given in Sec. VIII. These equa-
tions are thoroughly tested against fully kinetic linear theory
in Sec. IX. Finally, a summary of these results is given in
Sec. X, and we discuss the validity of these equations for
nonlinear simulations of tokamak turbulence.

II. THE TOROIDAL GYROKINETIC EQUATION

The starting point of the derivation of the toroidal ion
gyrofluid equations is the nonlinear electrostatic gyrokinetic
equation in toroidal geometry,17,18also see Refs. 19–21. Our
fluid equations are therefore based on the usual gyrokinetic
ordering

v

V
;
kiv t
V

;
eF

T
;
F1

F0
;

r

L
;«!1, k'r;1, ~1!

wherev is a typical frequency,V5eB/mc is the cyclotron
frequency,ki is a typical parallel wavenumber,k' is a typi-
cal perpendicular wavenumber,r5v t /V is the gyroradius,
v t
25T/m is the thermal velocity, andL is a macroscopic

equilibrium scale length, e.g., the density scale length
Ln

2152(1/n0)¹n0. Although we will usually omit the spe-
cies index, the equations derived in this paper will apply to
any ion species, for whichk'r;1 andv;v t5v t /qR: main
ions, impurities, or a Maxwellian energetic component~e.g.,
beam ions!. The orderingk'r;1 is a ‘‘maximal ordering’’
and allows for a subsidiary expansionk'r!1 at a later time,
although we will assume thatk' is not too small, i.e., we will
assumek'L@1. The gyrokinetic equations, at least the ver-
sion we are presently using, may need a generalization to be
able to handle the plasma edge where equilibrium gradients
may be short enough thatk'L;1 andeF/T;1. The gyro-
kinetic ordering removes the fast cyclotron time scale by
averaging over the gyroangle, reducing the velocity space
dimensions from three to two. It also retains the physics of
strong turbulence even though the fluctuating quantities
eF/T and F1 /F0 are ordered small, since¹F1 /¹F0;1.
Thus the dominantE3B nonlinearity is retained, and other
nonlinearities areO («) smaller. In conservative form, the
resulting equation is

]

]t
FB1¹•@FB~v ib̂1vE1vd!#

1
]

]v i
FFBS 2

e

m
b̂–¹J0F2mb̂–¹B1v i~ b̂–¹b̂!•vED G

5BC~F !, ~2!

which is valid up toO («). This equation describes the evo-
lution of the gyrophase independent part of the guiding cen-
ter distribution function F5F(R,v i ,m,t), where
m5v'

2 /2B, v i is the parallel guiding center velocity, andR is
the guiding center position. This form is valid for a general
magnetic field, andb̂ is the unit vector in the direction of the
magnetic field,B5Bb̂. The combinationFB enters because
B is the Jacobian of the transformation from (v i ,v') vari-
ables to (v i ,m). Because finite Larmor radius effects are
retained (k'r;1), the particles feel the gyroaveraged
E3B drift, vE5(c/B)b̂3¹J0F, whereJ0 is the linear op-

erator that carries out the gyroaveraging of the electrostatic
potential. In Fourier space, this operator is the Bessel func-
tion J0(k'v' /V), wherek' is the perpendicular wavenum-
ber ofF, not of F.

Toroidicity enters in Eq.~2! through the¹B and curva-
ture drifts, thev i(b̂–¹b̂)•vE toroidal angular momentum
conserving term, through the nonzero divergence ofvE in
toroidal geometry, toroidal FLR effects, and themb̂–¹B mir-
roring force. All these terms arise becauseB is not constant
in general, in contrast to a sheared slab model. In Eq.~2!, the
¹B and curvature drifts have been combined in

vd5
v i
2

V
b̂3~ b̂–¹b̂!1

m

V
b̂3¹B. ~3!

Using the equilibrium relations¹p5(1/c)J3B and
(4p/c)J5¹3B, and the identityb̂–¹b̂5(¹3b̂)3b̂, this can
be written:

vd5
v i
21mB

VB2 B3¹B1
4pv i

2

VB2 b̂3¹p, ~4!

where the¹p term is negligible forb58pp/B2!1. For
largerb, or stongly rotating plasmas wherenmiv–¹v is not
ignorable in the equilibrium force balance equation, one sim-
ply needs to keep the curvature and¹B drifts separately.
Thus instead ofvd in Eq. ~10!, one would use two operators:
v¹B andvk , as in Ref. 22.

For ion species, collisional effects will be modeled with
a particle, momentum, and energy conserving Bhatnagar-
Gross-Krook operator23 ~ion-electron collisions are negli-
gible!

C~F j !52(
k

n jk~F j2FM jk!, ~5!

wheren jk is the collision rate of speciesj with speciesk.
Collisions between speciesj and k causeF j to relax to a
shifted Maxwellian,FM jk , with the appropriate density, ve-
locity, and temperature to conserve particles, momentum,
and energy. BecauseF1 is small,FM jk can be linearized. For
a single ion species plasma, this leads to

C~F !52n i i HF12Fn1n0 1
uiv i

v t
2 1

T1
T0

S v2

2v t
2 2

3

2D GF0J ,
~6!

wherev25v i
21v'

2 andT15(Ti112T'1)/3. The generaliza-
tion for multiple ion species can be found in Refs. 23 and 24.

Since the perturbations of interest satisfyklD!1
(lD!r i for typical tokamak parameters!, we will assume
quasineutrality,ne5(Zjnj , wherene is the electron density,
nj is the ion particle density~not the guiding center density!
of the j th species, andZje is the species charge. The ion
particle density is related to the guiding center density
by19–21

nj5n̄ j2nj0~12G0!
ZjeF

Tj
, ~7!

whereG0(bj )5 exp(2bj)I0(bj), I 0 is a modified Bessel func-
tion, bj5k'

2v t' j
2 /V j

25k'
2r j

2 andv t' j
2 5T' j /mj . The second

term on the right hand side of Eq.~7! arises from the gy-
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rophasedependentpart of the distribution function, and is
usually called the polarization density. Thek' in the polar-
ization density term is fromF. The contribution to the par-
ticle density from the gyrophaseindependentpart of the dis-
tribution function,n̄ j , is

n̄ j5E d3vJ0F5E d3v~F01J0F1!. ~8!

HereJ0 operates onF1, i.e., k' comes fromF1. For a pure
ion-electron plasma, with hydrogenic ions (Z51), the
quasineutrality constraint simplifies to

ne5n̄i2ni0~12G0!
eF

Ti
. ~9!

For simpler notation, in the remainder of this paper we will
drop the species indexj and setZj51. To incorporate mul-
tiple ion species, one simply evolves the moments for each
species independently. Different species are coupled together
through the quasineutrality constraint and through interspe-
cies collision terms.

We will now manipulate Eq.~2! into a form convenient
for deriving fluid equations. All of the toroidal effects except
themb̂–¹B terms can be written compactly using the nota-
tion:

ivd[~v t
2/VB2!B3¹B–¹. ~10!

Let us first look at the¹B and curvature drift terms. For
example, pulling (VB2)21B3¹B out of the divergence

¹–@FBvd#5
1

VB2B3¹B–¹@FB~v i
21mB!#

1FB~v i
21mB!¹–F 1

VB2B3¹BG ,
the second term becomes

¹–F 1

VB2B3¹BG5
1

VB2¹B–¹3B.0

which is small for lowb since the toroidal component of
¹B is zero and the current,J, is mostly toroidal. Thus for
low b:

¹–~FBvd!5
1

VB2B3¹B–¹@FB~v i
21mB!#

5~1/v t
2!ivd@FB~v i

21mB!#. ~11!

In toroidal geometry, FLR effects are complicated by the
fact that the argument ofJ0 depends onB. When deriving
fluid equations by taking moments of Eq.~2!, it is easiest if
F and J0 appear together, i.e., on the same side of spatial
gradient operators. We now manipulate the terms in Eq.~2!
involving J0F so gradients only act on the combination
FJ0 or FJ1. Defining a5k'v' /V, and recalling that the
spatial gradients are taken holdingv i andm fixed, we can
write

¹J0F5J0¹F1F¹J0 ,

¹J0~k'v' /V!5¹J0~a!5
]J0
]a

¹a5J1~a!
a

2B
¹B.

TheE3B term becomes

¹–@FBvE#5¹–FFBJ0 c

B2B3¹F

1FBFJ1
a

2B

c

B2B3¹BG .
The divergence of theE3B drift can be written in the same
form as the¹B and curvature drift terms:

¹–F cB2B3¹F G5
c

B2¹F3~¹3B!2
2c

B3 ~B3¹F!–¹B

.2~e/T!ivdF,

since again,¹F is mostly perpendicular, andJ is mostly
toroidal. WritingvF5(c/B)b̂3¹F, we have

¹–@FBvE#5vF–¹~FBJ0!12FBJ0~e/T!ivdF

1~e/T!ivdS FBJ1F k'v'

2V D .
The first term on the right hand side includes the usual linear
v* terms fromF0 and theE3B nonlinearity fromF1, with
FLR corrections as discussed in Ref. 9. The linear pieces of
the second and third toroidal terms (} F0) are of the same
order as the slabE3B nonlinearity in the gyrokinetic order-
ing ~we keepB21¹B;F0

21¹F0). The nonlinear pieces in
the toroidal terms (} F1) are higher order in the gyrokinetic
ordering, and can be ignored.

Performing similar manipulations on the toroidal angular
momentum conserving term, using the identity
(b̂–¹b̂)•vE52(c/B3)(B3¹B)–¹J0F, leads to

]

]v i
@FBv i~ b̂–¹b̂!•vE#

52
]

]v i
~Fv i!

c

B2B3¹B–¹J0F

52
]

]v i
~Fv i!

c

B2B3¹B•S J0¹F1J1
a

2B
¹BD .

TheJ0 term again has thevd form, and theJ1 term vanishes
leaving

]

]v i
@FBv i~ b̂–¹b̂!•vE#52

]

]v i
~FBJ0v i!~e/T!ivdF.

Sincekir;«, the only contribution from theEi term is
linear, so in this term we only needF0. Using the notation
¹i5b̂–¹, and a MaxwellianF0

F05
n0

~2pv t
2!3/2

e2v i
2/2v t

2
2mB/v t

2
, ~12!

we have ¹iuv i,m
B(]F0/]v i)5(]F0/]v i)B(12mB/v t

2)
3 ¹i ln B, so this term becomes

2
e

m
~ b̂–¹J0F!

]F0

]v i
B52

e

m
¹iS J0FB

]F0
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1
e
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J0FB
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]v i
~mB/v t

221!¹i ln B.
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Combining all these terms, Eq.~2! can be written

]

]t
FB1B¹i

FBv i

B
1vF–¹~FBJ0!12FBJ0~e/T!ivdF

1~e/T!ivd~FBJ1Fk'v'/2V!1
ivd
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2 21D¹i ln B2mB
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]v i
~FB!¹i ln B

2
]

]v i
~FBJ0v i!~e/T!ivdF50. ~13!

This form is messy, but most suited for taking moments,
because velocity dependent terms such asF, J0, m, etc., are
grouped together on the same side of spatial gradient opera-
tors.

III. GENERAL TOROIDAL GYROFLUID EQUATIONS

We are interested in deriving evolution equations for ve-
locity space moments of Eq.~13!, defined by

n5E Fd3v, nui5E Fv id
3v,

pi5mE F~v i2ui!
2d3v, p'5~m/2!E Fv'

2d3v,

qi5mE F~v i2ui!
3d3v, q'5~m/2!E Fv'

2 ~v i2ui!d
3v,

r i ,i5mE F~v i2ui!
4d3v, r i ,'5~m/2!E Fv'

2 ~v i2ui!
2d3v,

r','5~m/4!E Fv'
4d3v, s','5~m/4!E F~v i2ui!v'

4d3v,

si ,i5mE F~v i2ui!
5d3v, si ,'5~m/2!E F~v i2ui!

3v'
2d3v.

It will often be convenient to use temperature instead of pres-
sure, where the parallel temperature is defined bypi[nTi
and perpendicular temperature byp'[nT'

We now proceed to derive moment equations by inte-
grating Eq.~13! over velocity space. These equations express
exact conservation laws of the gyrokinetic equation in the
collisionless limit: conservation of particles, momentum, etc.
However, because of the velocity dependence in the parallel
free streaming term,kiv i , the toroidal drift terms,
vd(v i

21v'
2 /2), the mirroring termsv'

2¹ ln B, and the FLR
terms, J0(k'v' /V), higher moments are introduced into
each of these equations, leading to the usual problem of the
coupled moments hierarchy. These equations are not useful
until closure approximations are made for the highest mo-
ments that are not evolved, as discussed in following sec-
tions. Taking integrals of the form*dv idmv i

jmk . . . of Eq.
~13! leads to the following exact moment equations, using
the notation:n^A&5*d3vFA52p*dv idmFBA:

]n

]t
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Before proceeding to discuss closure approximations, it is
useful to note that many of these terms are higher order in
the gyrokinetic ordering, and can be neglected. By separating
the moments into equilibrium and fluctuating parts the par-
allel nonlinearities drop out, since they are higher order in
«. For example, we letn5n01n1, wheren1 /n0;O («). We
retain the dominantE3B nonlinearities~the vF–¹ terms!,
which are leading order. In addition, we assumeF0 is an
unshifted Maxwellian, so the equilibrium parts of odd mo-
ments are zero, and terms likeui

2 are higher order in«.

IV. FINITE LARMOR RADIUS EFFECTS

In Ref. 9, accurate models of FLR effects were devel-
oped by carefully approximating velocity space averages of
J0 which appear in the dynamical equations and in the
quasineutrality constraint, Eq.~9!. As in Ref. 9, we choose to
evolve moments of the guiding center distribution function,
not real space moments, to provide a better description of
linear FLR effects including the ‘‘Bakshi-Linsker’’
effect,25,26 and additional FLR nonlinearities. For simplicity,
we will not incorporate the nonlinear FLR phase mixing
model in Ref. 9, specifically because in our toroidal nonlin-
ear simulations we do not see large fluctuation levels at high
k'r i , where these terms become important. In addition to
approximating^J0&, ^J0v i&, ^J0v i

2&, ^J0v'
2 &, ^J0v i

3&, and
^J0v iv'

2 &, which appear in the slab limit, we also need to
approximatê J0v'

4 &, ^J1a&, ^J1v i
2a&, and ^J1v'

2a&, which
arise from toroidal terms. Linearly, these terms involve only
F0, and could be evaluated exactly. However, in the
quasineutrality constraint we have to approximaten̄i , which
comes fromF1, see Eq.~8!. F1 is not Maxwellian in general,
so the^J0F1& term in n̄i needs to be approximated. As dis-
cussed in Ref. 9, the best agreement with linear kinetic
theory is obtained by approximating both the^J0& terms and
n̄i . In the linear kinetic equation, theJ0 in Eq. ~8! combines
with theJ0 in theE3B drifts in the gyrokinetic equation, Eq.
~2!, so the average ofJ0

2 over a Maxwellian enters the dis-
persion relation in the slab limit, not the average ofJ0. These
are quite different, especially for largeb, since
^J0

2&5G0(b) and ^J0&
25 exp(2b). This motivated the

^J0&'G0
1/2 approximation introduced in Ref. 9, which is

more robust and more accurate for linear dispersion rela-
tions. With the inclusion of toroidal effects, thev' in
J0(k'v' /V) couples with thev'

2 in the toroidal drifts, so it
is no longer simplyG0(b) that enters the linear kinetic equa-
tion, see Eq.~52! and Eq.~58!. We have not found a com-
pletely satisfying replacement tôJ0&'G0

1/2 for the general

toroidal case, but̂J0&'G0
1/2 continues to work reasonably

well. Therefore, we will use the results of Ref. 9 to approxi-
mate

^J0&5G0
1/2, ~20!

^J0v i&5v tG0
1/2, ~21!

^J0v i
2&5v t

2G0
1/2, ~22!

^J0v'
2 &52v t

2 ]

]b
~bG0

1/2!5v t
2~2G0

1/21¹̂'
2 !, ~23!

^J0v i
3&5v t

3G0
1/2, ~24!

^J0v iv'
2 &52v t

3 ]

]b
~bG0

1/2!5v t
3~2G0

1/21¹̂'
2 !. ~25!

The modified Laplacian operators¹̂'
2 and ¹̂̂'

2 are defined by

1

2
¹̂'
2C5b

]G0
1/2

]b
F, ~26!

¹̂̂'
2C5b

]2

]b2
~bG0

1/2!F, ~27!

whereC5G0
1/2F is the approximation to the gyroaveraged

potential.
There are four new terms due to toroidicity that need

approximating:̂ J0v'
4 &, ^J1a&, ^J1v i

2a&, and^J1v'
2a&. Sev-

eral techniques could be used to approximate these terms;
one is to follow the approach and rationale in Ref. 9. For
example, thê J1a& term can be rewritten using the follow-
ing trick:

^J1a&'2
]

]bU
b51

^J0~ba!&. ~28!

Thus the approximation for̂J0& is the fundamental one, and
all other FLR terms can be derived from it. Using
^J0&'G0

1/2 leads to

^J1a&'2
]

]bU
b51

G0
1/2~b2b!522b

]G0
1/2

]b
52¹̂'

2 , ~29!

and

^J1v i
2a&'22v t

2b
]G0

1/2

]b
52v t

2¹̂'
2 . ~30!

For the ^J1v'
2a& term, we will assume thatF is approxi-

mately Maxwellian, so thatv'
2F'2v t

2](T'F)/]T' , and
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^J1v'
2a&'2

]

]b U
b51

2v t
2 ]

]T'

~T'^J0~ba!&!

524v t
2 ]

]b S b2 ]G0
1/2

]b D 524v t
2¹̂̂'

2 . ~31!

The final toroidal FLR term is

^J0v'
4 &'4v t

4Fb ]2

]b2
~bG0

1/2!12b
]

]b
~bG0

1/2!G
54v t

4~2G0
1/21¹̂'

21 ¹̂̂'
2 !. ~32!

These approximations remain first order accurate inb to
those obtained using the Taylor series expansion
J0'12k'

2v'
2 /4V2.

Now we look at linear FLR effects in theE3B terms.
For example, in the density equation, following Ref. 9:

vF–¹n^J0&.vF–¹~n0G0
1/2!1nonlinear terms ~33!

Since b5k'
2v t'

2 /V2 depends on bothB and T' ~through
v t'
2 5T'0 /m), gradients acting on functions ofb ~FLR

modified terms!, introduce pieces proportional to¹B and
¹T'0

¹b5
b

T'0
¹T'02

2b

B
¹B,

¹n0G0
1/25G0

1/2¹n01n0
]G0

1/2

]b
¹b.

We now introduce the diamagnetic frequency
iv*[2(cT/eBn0)¹n0•b̂3¹, h i5Ln /LTi

, and
h'5Ln /LT'

, whereLTi
and LT'

are the equilibrium scale
lengths of parallel and perpendicular temperature, which can
be different in general. When they are assumed to be the
same, we drop the subscripts, and writeh. With these defi-
nitions, Eq.~33! becomes

vF–¹n^J0&52n0iv*G0
1/2eF

T0
2n0h'b

]G0
1/2

]b
iv*

eF

T0

12n0b
]G0

1/2

]b
ivd

eF

T0
,

sincevF•(1/B)¹B52 ivd(eF/T). For a general function of
b,

vF–¹n0f ~b!52n0f ~b!iv*
eF

T0
2n0h'b

] f

]b
iv*

eF

T0

12n0b
] f

]b
ivd

eF

T0
.

This form will be used to evaluate terms like
vF–¹^nJ0v'

2 &.
In the linear part of the (e/2T) ivd(Fn^J1a&) terms, we

need to evaluate

vd~Fn^J1a&!5n0^J1a&vdF1Fn0
]^J1a&

]b
vdb

1F^J1a&vdn0 ,

The last two terms are higher order in«, so the^J1a& terms
only contribute

~e/2T!ivd~Fn^J1a&!5 in0K J1a

2 L vd

eF

T0
.

Because the final equations will get rather complicated,
for the moment, we will treat the linear and nonlinear terms
separately. We normalize time, parallel lengths, and perpen-
dicular lengths as

~ t,ki ,k'!5S tv tLn
,kiLn ,k'r D , ~34!

and fluctuating quantities as

r

Ln
~F,n,u,p,q,r ,s!

5S eF

T0
,
n1
n0
,
u1
v t
,

p1
n0mv t

2 ,
q1

n0mv t
3 ,

r 1
n0mv t

4 ,
s1

n0mv t
5D , ~35!

where normalized quantities are on the left hand side and
dimensional quantities are on the right. With these normal-
izations, the characteristic drift wave time and space scales
areO (1), and theperturbed quantities will beO (1) at the
gyro-Bohm saturation level. In this paper, all equilibrium
quantities are ion parameters, i.e.,T05Ti0, v t5v t i . For the
equilibrium F0 we use a Maxwellian, so the normalized
equilibrium values of the moments arepi051, p'051,
r i ,i053, r i ,'051, and r','052. With the linear FLR ap-
proximations discussed above, temporarily ignoring the non-
linear terms, the moment equations, Eqs.~14!–~19!, become

]n

]t
1B¹i

ui

B
2S 11

h'

2
¹̂'
2 D iv*C1S 21

1

2
¹̂'
2 D ivdC

1 ivd~pi1p'!50, ~36!

]ui

]t
1B¹i

pi

B
1¹iC1S p'1

1

2
¹̂'
2C D¹i ln B

1 ivd~qi1q'14ui!50, ~37!

]pi

]t
1B¹i

qi13ui

B
12~q'1ui!¹i ln B2S 11h i

1
h'

2
¹̂'
2 D iv*C1S 41

1

2
¹̂'
2 D ivdC1 ivd~r i ,i1r i ,'!

50, ~38!

]p'

]t
1B2¹i

q'1ui

B2 2F11
1

2
¹̂'
21h'S 11

1

2
¹̂'
21 ¹̂̂'

2 D G
3 iv*C1S 31

3

2
¹̂'
21 ¹̂̂'

2 D ivdC1 ivd~r i ,'1r','!

50, ~39!

]qi

]t
1¹i~r i ,i23pi!1~2r i ,i13pi13r i ,'23p'!

3¹i ln B1 ivd~si ,i1si ,'23qi23q'16ui!50, ~40!
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]q'

]t
1¹iS r i ,'2pi1

1

2
¹̂'
2C D1~22r i ,'1r','1pi2p'!

3¹i ln B1S ¹̂̂'
2C2

1

2
¹̂'
2C D¹i ln B

1 ivd~si ,'1s','2qi2q'1ui!50. ~41!

If we had evaluated the velocity space averages using a Max-
wellian F, giving ^J0&5 exp(2b), the n, ui , pi and p'

equations above would be equivalent to the electrostatic limit
of those derived in Ref. 22. Theq equations would also be
equivalent if Ref. 22 had proceeded to higher moment equa-
tions. This equivalence can be verified by replacing
G0
1/2→ exp(2b/2) and evaluating the derivatives with re-

spect tob in Eqs.~26! and~27!. As discussed in the follow-
ing sections, these equations require closure approximations
for r i ,i , r i ,' , r',' , si ,i , si ,' , ands',' , which Ref. 22 did
not address.

For the nonlinear terms, we follow Ref. 9. Thus, to each
of Eqs.~36!–~41! we add the usualE3B nonlinearities plus
additional FLR nonlinearities, as follows:

]n

]t
1vC–¹n1@ 1

2 ¹̂'
2vC#–¹T'1•••, ~42!

]ui

]t
1vC–¹ui1@ 1

2 ¹̂'
2vC#–¹q'1•••, ~43!

]pi

]t
1vC–¹pi1@ 1

2 ¹̂'
2vC#–¹T'1•••, ~44!

]p'

]t
1vC–¹p'1@ 1

2 ¹̂'
2vC#–¹p'1@ ¹̂̂'

2vC#–¹T'1•••,

~45!

]qi

]t
1vC–¹qi1•••, ~46!

]q'

]t
1vC–¹q'1@ 1

2 ¹̂'
2vC#–¹ui1@ ¹̂̂'

2vC#–¹q'1•••.

~47!

In these terms,vC is the approximation to theE3B drift in
the gyroaveraged potential,vC5(c/B)b̂3C, where
C5G0

1/2F. There is a typographical error in Eq.~59! of Ref.
9, where the nonlinear term involvingq' should be dropped.

Now let us return to the quasineutrality constraint, Eq.
~9!. Here we have to approximate the real space density.
Because of theJ0 which acts onF1, n̄i will involve the
guiding center density and all higher perpendicular moments,
but we only evolve up toT' . Thus we need another closure
approximation which relatesn̄i to n andT' . The approxi-
mation for n̄i in Ref. 9 was tailored to fit the local kinetic
dispersion relation in the slab limit. In the toroidal case, be-
cause of thev' dependence of the toroidal drifts in the reso-
nant denominator of the toroidal response function, Eq.~52!,
following such a procedure is more complicated, so we sim-
ply use

n̄i5
1

11b/2
n2

2b

~21b!2
T' . ~48!

This is first order accurate inb for both then andT' terms,
and behaves appropriately (n̄i→0) in the b→` limit. The
FLR approximations used here and above provide a reason-
ably accurate fit to the kinetic FLR behavior in the local
kinetic dispersion relation, and continue to perform well non-
locally, as demonstrated in Sec. IX. The agreement at small
b is excellent, and is usually within 20% fork'r i'1. Above
k'r i'1 the agreement is not as good, but the limiting be-
havior ask'r i→` is properly recovered. Note that the FLR
models described in this section can also be used with a
simpler Pade´ approximation, by substituting
G0
1/2→(11b/2)21 in Eqs. ~26! and ~27!, as discussed in

Ref. 9.

V. LOCAL LINEAR TOROIDAL RESPONSE FUNCTION

Our closure approximations forr i ,i , r i ,' , r',' , si ,i ,
si ,' , ands',' , will be chosen to provide accurate models of
the kinetic effects of parallel and toroidal drift phase mixing.
Ultimately, we choose the closure coefficients to provide an
accurate fit to the local linear toroidal response function,
which is derived in this section.

We begin by transforming the linearized gyrokinetic
equation to (E,m) variables, soF5F(R,E,m), where
E5v i

2/21mB. Then breakingF into adiabatic and nonadia-
batic pieces,F5g2F0J0eF/T0, the equation for the nona-
diabatic piece is found to be

g5F0

v2v*
T

v2kiv i2vdv
J0
eF

T0
, ~49!

where vdv5vd(v i
21mB)/v t

2 and v*
T5v* @11h(v i

2/2v t
2

1 mB/v t
223/2)]. In the local approximation, we treatvd ,

v* , and ki as constants, usingvd52kurv t /R and
v*52kurv t /Ln , so vd /v*5Ln /R[en . The total distri-
bution function in guiding center coordinates,f5 f (R,E,m)
is:

f ~R!5F1 f̃5F~R!2
eF~x!

T0
F01F0J0

eF~R!

T0
, ~50!

whereF is gyrophase independent, andf̃ is the gyrophase
dependent part. The first piece off̃ is in real space,x. To
obtain the real space ion density~not the density of gyro-
centers!, only the parts in guiding center space need to be
gyroaveraged~acted on byJ0)

n~x!5E d3v f ~x!

5E d3vFJ0F~R!2
eF~x!

T0
F01F0J0

2eF~R!

T0
G

52n0
eF

T0
1E d3vJ0g, ~51!

since theJ0F andF0J0
2eF/T0 pieces combine to giveJ0g.

Inserting the solution forg, Eq. ~49!, the ion density re-
sponse function is

4052 Phys. Plasmas, Vol. 3, No. 11, November 1996 M. A. Beer and G. W. Hammett

Downloaded¬06¬Dec¬2002¬to¬198.35.8.52.¬Redistribution¬subject¬to¬AIP¬license¬or¬copyright,¬see¬http://ojps.aip.org/pop/popcr.jsp



Ri5
n

2n0eF/T0

512
1

n0
E d3vF0

v2v*
T

v2kiv i2vdv
J0
2~k'v' /V!, ~52!

which is the usual linear form. Trapped particle effects ap-
pear in the variation ofv i along a particle’s orbit. We will
neglect trapped particle effects in this section, and treatv i as
a constant.

For Im(v/vd).0, the resonant denominator can be
written

1

v2kiv i2vdv
52

i

vd
E
0

`

dtei t~v2kiv i2vdv!/vd, ~53!

and now thev i andv' integrals can be evaluated. Normal-
izing v andkiv t to the toroidal drift frequency by introduc-
ing x5v/vd and zi5kiv t /vd , and using a Maxwellian
F0, Eq. ~12!, the response function becomes

Ri511
i

A2p
E
0

`

dtE
0

`

dv'v'E
2`

`

dv i H x2
1

en
F1

1hS v i
21v'

2

2v t
2 2

3

2D G J ei t@x2ziv i /v t2v i
2/v t

2
2v'

2 /2v t
2
#

3e2~v i
2
1v'

2
!/2v t

2
J0
2~k'v' /V!.

The v' integrals are

E
0

`

dv'v'e
2~11 i t!v'

2 /2v t
2
J0
2~Abv' /v t!

5v t
2e

2b/~11 i t!

11 i t
I 0S b

11 i t D , ~54!

and

E
0

`

dv'v'
3e2~11 i t!v'

2 /2v t
2
J0
2~Abv' /v t!

52v t
2e

2b/~11 i t!

~11 i t!2
I 0S b

11 i t D F12
b

11 i t

1
b

11 i t

I 1~b/11 i t!

I 0~b/11 i t!G , ~55!

where I 0 and I 1 are modified Bessel functions. Thev' de-
pendence in the resonant denominator was neglected in the
numerical evaluation of thev' integrals ofJ0 in Ref. 8 ~al-
though it was retained everywhere else!, and thusI 0 and I 1
had real arguments, instead of the complex arguments in the
expressions above. This produces differences in the local dis-
persion relations at largeb. The response function in Ref. 27
correctly retains thev' dependence of the resonant denomi-
nator while integrating overv' . The local kinetic response
function described here, and the local kinetic eigenvalues
calculated using this response function in Sec. IX, were care-
fully checked against the results of Ref. 27.

The v i integrals are

E
0

`

dv ie
2~112i t!v i

2/2v t
2
2 i tziv i /v t5A2pv t

e2t2zi
2/2~112i t!

A112i t
,

~56!

and

E
0

`

dv iv i
2e2~112i t!v i

2/2v t
2
2 i tziv i /v t

5A2pv t
3e

2t2zi
2/2~112i t!

~112i t!5/2
~112i t2t2zi

2!. ~57!

Putting it all together

Ri511 i E
0

`

dtei txe2t2zi
2/2~112i t!e2b/~11 i t!I 0S b

11 i t D
3H x2S 12

3

2
h i D Y en

~11 i t!A112i t

2
h i

en
F 12

b

11 i t
1

b

11 i t
I 1S b

11 i t D Y I 0S b

11 i t D
~11 i t!2A112i t

G
2

h i

en
F 112i t2t2zi

2

2~11 i t!~112i t!5/2
G J . ~58!

Thus, the local toroidal response function is a rather compli-
cated function,Ri5Ri(x, zi , b, en , h). We wish to find
closure approximations so the response derived from the
fluid equations will closely match this response function. In
the form of a one dimensional integral as in Eq.~58!, the
response function is easy to evaluate numerically, which we
will be forced to do to find the optimal closure coefficients
and to solve the local dispersion relation. The response func-
tion can be factored into three pieces, the first independent of
v* , the second proportional to 1/en , and the third propor-
tional toh/en . Since we will be interested in matching this
kinetic response for allh anden , we need to fit each of these
pieces independently

Ri5R01R1 /en1R2h/en , ~59!

whereR0, R1, andR2 are independent ofh anden

R0511 i E
0

`

dtei txe2t2zi
2/2~112i t!e2b/~11 i t!I 0S b

11 i t D
3H x

~11 i t!A112i t
J , ~60!

R152 i E
0

`

dtei txe2t2zi
2/2~112i t!e2b/~11 i t!I 0S b

11 i t D
3H 1

~11 i t!A112i t
J , ~61!
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R25 i E
0

`

dtei txe2t2zi
2/2~112i t!e2b/~11 i t!I 0S b

11 i t D
3H 3/2

~11 i t!A112i t

2

12
b

11 i t
1

b

11 i t
I 1S b

11 i t D Y I 0S b

11 i t D
~11 i t!2A112i t

2
112i t2t2zi

2

2~11 i t!~112i t!5/2
J . ~62!

The response function of the fluid equations will also natu-
rally factor into these three parts. In the purely toroidal limit
(ki50), neglecting FLR (b50), these expressions simplify
considerably, and can be written in terms of the usual plasma
dispersion function:28

R0512
x

2
Z2SAx

2D , ~63!

R15
1

2
Z2SAx

2D , ~64!

R25S x22
1

2DZ2SAx

2D 1Ax

2
ZSAx

2D . ~65!

The resonant denominator in Eq. ~52!,
v2kiv i2vd(v i

21v'
2 /2)/v t

250, by completing the square,
can be written

v

vd
1
ki
2v t

2

4vd
2 5S kiv t

2vd
1
v i

v t
D 21 v'

2

2v t
2 . ~66!

The left hand side of Eq.~66! can be negative, but the right
hand side is positive for allv. Thus along the realv axis, no
particles are in resonance forv,2ki

2v t
2/4vd , and Ri is

purely real, as shown in Figs. 1 and 2. Aski→`, this cutoff
frequency moves to2`, andRi approaches the slab limit
response function. A useful discussion of role of the ellipti-
cal resonance bands in velocity space exhibited by Eq.~66!,
the transition from the toroidal resonance to the slab reso-
nance, and the resulting change in the local kinetic ITG
threshold, is given in Ref. 29.

We will also use the kinetic response function of other
moments~not just density!, which can be written in the fol-
lowing compact form in theb50 limit:

M j ,k5E d3v fv i
j~v'

2 /2!k52n0v t
2k1 j eF

T0
M̃ j ,k , ~67!

M̃ j ,k5M̃ j ,k
~0!1M̃ j ,k

~1!/en1M̃ j ,k
~2!h/en , ~68!

M̃ j ,k5
2 j /2

Ap

11~21! j

2
G~k11!GS j11

2 D
1 i22 j /2E dtei txH Fx2

1

en
1
3

2

h

en
2

h

en

k11

11 i tG K̃ j

2
h

en
K̃ j12J G~k11!e2t2zi

2/2~112i t!

~11 i t!k11~112i t! j11/2, ~69!

FIG. 1. Kinetic and fluid toroidal response functions in the purely toroidal
limit, R0, R1, andR2, with b50 andki50.
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K̃ j5
2 j /2~112i t! j11/2

A2pv t
j11

et2zi
2/2~112i t!

3E
2`

`

dv iv i
je2~112i t!v i

2/2v t
2
2 i tziv i /v t. ~70!

For the lowest fewj ’s, we have

K̃051,

K̃152 i tzi ,

K̃252~112i t!2t2zi
2 ,

K̃35tzi@26i ~112i t!1 i t2zi
2#,

K̃4512~112i t!2212t2zi
2~112i t!1t4zi

4 .

The oddK̃ j ’s are proportional to odd powers ofzi ~or ki),
while the evenK̃ j ’s are proportional to even powers ofzi .
This will guide our choice of closure approximations in the
next section.

VI. GENERAL CLOSURE

There are three places in the moment equations Eqs.
~38!–~41! where closure approximations are needed, in ad-
dition to the FLR closures in Sec. IV: In the parallel free
streaming terms¹ir i ,i and¹ir i ,' ; in the toroidal drift terms
vd(r i ,i1r i ,'), vd(r i ,'1r','), vd(si ,i1si ,'), and
vd(si ,'1s','); and in the mirroring termsr i ,i¹i ln B,
r i ,'¹i ln B, andr','¹i ln B. For each, we make closure ap-
proximations designed to model the physical processes these
terms represent. Because our final closure scheme is rather
complicated, we begin by considering simple models of
phase mixing arising from parallel free streaming and toroi-
dal drifts independently, to justify the functional forms of
our closures. Then, we consider both resonances together,
and find closure coefficients which ensure that the fluid re-
sponse function closely matches the kinetic response func-
tion for all ki andvd . Because of the branch cut disconti-
nuity atv50 in the toroidal limit response function, we will
not be able to use analytic methods to find the closure coef-
ficients, as was done in Refs. 5 and 9. We will therefore find
the toroidal closure coefficients by numerically minimizing
the difference between the fluid and kinetic responses.

The velocity dependence in thekiv i parallel term intro-
duces parallel phase mixing, leading to linear Landau damp-
ing. Consider a simple one dimensional kinetic equation with
no E field

] f

]t
1v i

] f

]z
50. ~71!

The solution is simplyf (z,v i ,t)5 f (z2v it,v i ,t50). If we
start with a Maxwellian perturbation inf ,

f 05eik izf M5eik iz
n0

A2pv t
2
e2v i

2/2v t
2
, ~72!

free streaming will cause moments off to phase mix away.
For example, the density is

n5E d3v f5
n0

A2pv t
2E dv ie

ik i~z2v it !e2v i
2/2v t

2

5n0e
ik ize2ki

2v t
2t2/2. ~73!

FIG. 2. Kinetic and fluid toroidal response functions in the mixed toroidal/
slab limit,R0, R1, andR2, with b50 andkiv t /vd52.7.
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To model this process, we need to introduce damping pro-
portional toukiuv t into our fluid equations. Thus, for the par-
allel closures, we choose5,9

r i ,i53~2pi2n!1b iTi2 iA2D i
ukiu
ki

qi , ~74!

r i ,'5pi1p'2n2 iA2D'

ukiu
ki

q' , ~75!

where b i5(3229p)/(3p28), D i52Ap/(3p28), and
D'5Ap/2. With this closure, the fluid equations reproduce
the linear kinetic behavior quite well in the slab limit, as
shown in Refs. 5 and 9.

Similarly, the velocity dependence of the¹B and curva-
ture drifts introduces phase mixing. In this case the damping
rate is different, since the toroidal drifts depend onv i

2 and
v'
2 /2. Now consider only the phase mixing due to the toroi-

dal drifts

] f

]t
1vd

] f

]y
50,

~76!

vd5vd0
v i
21v'

2 /2

v t
2 , vd05

rv t
R

.

The solution isf (y,v i ,v' ,t)5 f (y2vdt,v i ,v' ,t50). Start-
ing with a Maxwellian perturbation inf ,

f 05eikyyf M5eikyy
n0

~2pv t
2!3/2

e2~v i
2
1v'

2
!/2v t

2
, ~77!

free streaming will again cause moments off to phase mix
away. For example, the density is:

n5E d3v f

5
n0

~2pv t
2!3/2

2pE dv idv'v'e
ikyy2vd0@~v i

2/v t
2
2v'

2 /2v t
2
!t#

3e2~v i
2
1v'

2
!/2v t

2

5
n0e

ikyy

A112ikyvd0t~11 ikyvd0t !
. ~78!

To capture this toroidal phase mixing, damping proportional
to ukyuvd05uvdu must be introduced into the fluid equations,
but with complex closure coefficients to get the phase shift in
Eq. ~78!.

The toroidal closure terms enter in the combinations
r i ,i1r i ,' , r i ,'1r',' , si ,i1si ,' , andsi ,'1s',' . Expand-
ing the general moment response functions Eq.~69! for small
ki , all the oddj moments have leading order corrections of
O (ki), while the evenj moments have leading order correc-
tions of O (ki

2). Thus in our closure approximations for the
toroidal terms, we close the even momentsr i ,i1r i ,' and
r i ,'1r',' in terms of the lower even moments (n, pi , and
p'), and the odd momentssi ,i1si ,' andsi ,'1s',' in terms
of the lower odd moments (ui , qi , andq'), to preserve this
small ki behavior. At largeki ~the slab limit! the response
function is primarily determined by the parallel closures, and
the toroidal closure approximations are subdominant. In ad-
dition, we break ther and s closures into dissipative and
Maxwellian pieces~the terms that would arise ifF were
exactly Maxwellian!. The Maxwellian parts are
r i ,i53pi

2/n, r i ,'5pip' /n, r','52p'
2 /n, and si ,i

5 si ,'5s','50. Linearizing and normalizing, these become
r i ,i56pi23n, r i ,'5pi1p'2n, and r','54p'22n.
Guided by the discussion above, we choose dissipative
pieces proportional touvdu/vd . Thus in the toroidal terms,
combining the Maxwellian and dissipative pieces, we choose

r i ,i1r i ,'57pi1p'24n22i
uvdu
vd

~n1Ti1n2T'!, ~79!

r i ,'1r','5pi15p'23n22i
uvdu
vd

~n3Ti1n4T'!,

~80!

si ,i1si ,'52 i
uvdu
vd

~n5ui1n6qi1n7q'!, ~81!

si ,'1s','52 i
uvdu
vd

~n8ui1n9qi1n10q'!. ~82!

Each closure coefficient has both a dissipative and non-
dissipative piece,n5n r1 in i uvdu/vd . This choice is moti-
vated by Ref. 8. Making the dissipative parts of ther clo-
sures only depend onTi and T' ensures that the fluid
response will match the kinetic response atv/vd50 in the
ki50 limit.

The toroidal closure coefficientsn12n10 in Eqs. ~79!–
~80! are chosen so the response function of the fluid equa-
tions closely approximates kinetic response function, Eq.
~58!. In the local limit withb50 and¹iB50, and inserting
the closure approximations above, the fluid equations Eqs.
~36!–~41! can be written in matrix form, using
g[vd /v51/x and k5ki /v, and assumingvd.0 to sim-
plify notation
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M53
1 2k 2g 2g

0 124g 2k 0

g~422in122in2! 23k 12g~722in1! 2g~122in2!

g~322in322in4! 2k 2g~122in3! 12g~522in4!

~31b!k 2g~62 in5! 2~31b!k 0

k 2g~12 in8! 0 2k

••••••

0 0

2g 2g

2k 0

0 2k

11 iA2D ik1g~31 in6! g~31 in7!

g~11 in9! 11 iA2D'k1g~11 in10!

4 ,
M 3

n

ui

pi

p'

qi

q'

4 53
2

k/g

4

3

0

0

4 gF13
21

0

21

21

0

0

4 genF13
0

0

21

21

0

0

4 gh

en
F. ~83!

Thus, the response function of the fluid equations also
naturally factors into the form Eq.~59!. Because this set of
equations is rather complicated, to determine the toroidal
fluid response functions we solve forn and p' by numeri-
cally row reducing the matrixM . In Ref. 8, the fluid and
kinetic response functions were compared only in the
v*50 andh50 limit. In the slab limit, determining the
closure coefficients in thev*50 andh50 limit (R0) also
gave an equally good fit for thev* andh pieces (R1 and
R2), but in the toroidal case this is not automatic. In addition,
in Ref. 8 the toroidal closure coefficients were matched at
ki50, and good agreement forki Þ 0 is not guaranteed~al-
though aski→` the slab limit is recovered and the agree-
ment will again be good!. In fact, if the toroidal terms are
closed in the purely toroidal limit (ki50), the toroidal clo-
sure terms in the odd moment equations drop out. This led to
singular behavior of the response function for the closure in
Ref. 8 at some nonzeroki , since thevd(qi1q') term in the
parallel velocity equation was dropped. This was corrected in
the addendum to that paper.

Therefore, special care must be taken find toroidal clo-
sure coefficients which simultaneously provide a good fit to
the kinetic response function for all three parts of the re-
sponse function, for allki . Because both fluid and kinetic
response functions are complicated with finiteki , we choose
the closure coefficients numerically, by minimizing the dif-
ference between the kinetic and fluid response functions over
a range ofki’s simultaneously, but in theb50 limit. We use
Powell’s method,30 an efficient multidimensional iterative
minimization technique. This process starts with arbitrary
values of the coefficientsn12n10, and numerically inverts
the matrixM for these values of the coefficients for a speci-
fied range ofx andki . Then the difference between the fluid
and kinetic response functions is calculated along the realx
axis and the coefficients are adjusted. This process is re-
peated until the error between the kinetic and fluid is mini-
mized, i.e., further small variations of the closure coefficients
only make the fit worse. IfR has no poles in the upper-half
x plane, matching along the real axis guarantees that the fluid
R will also match the kineticR in the upper-halfx plane.

Since we are primarily interested in accurately modeling the
growth rates of unstable modes, the errors in the lower half
plane are probably not important, as long as we do have
damped modes in the system. The best fit between the kinetic
and fluidR’s was found using 12ki’s evenly spaced from
zi50 to 4.2, over the range ofx where the kinetic response
function is changing most rapidly,28,x,16 atzi50 and
214,x,22 at zi54.2, with 100 grid points inx. To the
error in the density response function, we also add 1/100 the
error between the kinetic and fluidp' responses, sincen is
most important for the local dispersion relation, butp' en-
ters the linear dispersion relation from FLR effects. While an
excellent fit ton is obtained, it is difficult to simultaneously
match thep' response for intermediateki’s. We find that the
best fit is given by

n15~2.019,21.620!,

n25~0.433,1.018!,

n35~20.256,1.487!,

n45~20.070,21.382!,

n55(28.927,12.649),

n65~8.094,12.638!,

n75(13.720,5.139),

n85~3.368,28.110!,

n95~1.974,21.984!,

and

n105~8.269,2.060!.

This set of the closure coefficients results in a fluid response
function which differs from the kinetic response function by
an RMS average of 0.044~in the real and imaginary parts!
over the range specified above. Outside this range, the dif-
ference is even smaller, since for largex the response is
fluid-like and the fluid equations automatically do quite well,
and for largeki ~the slab limit!, the response is slab-like and
the agreement is quite good, as shown in Refs. 5 and 9.
These are an improvement over the closure coefficients in
Ref. 11. The fit between the kinetic and fluid response func-
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tions is excellent, as shown in Figs. 1 and 2. The fluid equa-
tions give a rational approximation to the kinetic response
function, and cannot capture the branch cut at
v/vd52ki

2v t
2/4vd

2 exactly @see Eq.~66!#, but this set of
closure approximations provides a reasonable fit to this sharp
transition.

Since some of the real parts of the closure coefficients
are negative~in the cross terms!, we have checked that in the
limit Ln→`, LT→`, all roots are damped, as they should
be. In this limit, withki50, the three fluid roots~solutions of
the dispersion relation R0521) are v/vd56.107
21.422i uvdu/vd , 0.11020.351i uvdu/vd , and 1.779
22.125i uvdu/vd , giving damped roots for either sign of
vd .

Finally, we have to close the mirroring terms, introduced
by the mb̂–¹B terms in the gyrokinetic equation. These
terms incorporate trapped particle effects, reproducing the
Chew-Goldberger-Low31 pressure balance equation. They
are also important to model the damping of poloidal flows by
magnetic pumping. Since these terms introduce no new dis-
sipative processes, we take Maxwellian closures

r i ,i56pi23n, ~84!

r i ,'5pi1p'2n, ~85!

r','54p'22n. ~86!

This may not be the ultimate set of closure approxima-
tions, however, the resulting fluid equations provide a very
accurate model of the physics underlying ion dynamics in
toroidal plasmas. While it is straightforward to calculate the
error between the kinetic and fluid response functions, it is
more difficult to quantify the accuracy of the fluid eigenfre-
quencies, or roots of the dispersion relation. As shown in

Sec. IX, this set of closures provides excellent agree-
ment with linear kinetic calculations, as long as one is not
too close to marginal stability, where the small errors in the
response function can give rise to weakly unstable modes.
We have obtained another set of closure coefficients de-
signed to give a more accurate stability threshold, by mini-
mizing the error in the response function and threshold si-
multaneously. These coefficients are:n15(0.848,20.118),
n25(21.239,2.064), n35(0.103,20.517), n45(0.960,
21.906), n55(211.626,3.185), n65(22.872,11.679),
n75(23.156,9.878), n85(4.494,1.225), n95(3.260,
4.625), andn105 (5.888,10.459). Unfortunately, while im-
proving the threshold behavior, these coefficients are less
accurate than the above set away from threshold. More com-
plicated closure approximations could certainly be found, or
the set of equations used here could be extended to higher
moments, but the relative simplicity of the closures used here
afford a tractable and sufficiently accurate model for most
applications.

VII. FINAL EQUATIONS

We arrive at the six moment toroidal gyrofluid equations
by inserting the closures discussed in the previous section
into the moment equations, Eqs.~36!–~41!, with the nonlin-
ear terms given by Eqs.~42!–~47!. Specifically, we use the
parallel phase mixing closures in Eqs.~74!–~75!, the toroidal
phase mixing closures in Eqs.~79!–~82!, and Maxwellian
closures for the mirroring terms, Eqs.~84!–~86!. In addition,
we add the collision terms obtained by integrating Eq.~6!
over velocity space. We will also refer to this set of equa-
tions as the ‘‘412’’ model, since it evolves 4 parallel mo-
ments and 2 perpendicular moments.

dn

dt
1@ 1

2 ¹̂'
2vC#–¹T'1B¹i

ui

B
2S 11

h'

2
¹̂'
2 D iv*C1~21 1

2¹̂'
2 !ivdC1ivd~pi1p'!50, ~87!

dui

dt
1@ 1

2 ¹̂'
2vC#–¹q'1B¹i

pi

B
1¹iC1S p'1

1

2
¹̂'
2C D¹i ln B1 ivd~qi1q'14ui!50, ~88!

dpi

dt
1@ 1

2 ¹̂'
2vC#–¹T'1B¹i

qi13ui

B
12~q'1ui!¹i ln B2S 11h i1

h'

2
¹̂'
2 D iv*C1S 41

1

2
¹̂'
2 D ivdC

1 ivd~7pi1p'24n!12uvdu~n1Ti1n2T'!52
2

3
n i i ~pi2p'!, ~89!

dp'

dt
1@ 1

2 ¹̂'
2vC#–¹p'1@ ¹̂̂'

2vC#–¹T'1B2¹i
q'1ui

B2 2F11
1

2
¹̂'
21h'S 11

1

2
¹̂'
21 ¹̂̂'

2 D G iv*C

1S 31
3

2
¹̂'
21 ¹̂̂'

2 D ivdC1 ivd~5p'1pi23n!12uvdu~n3Ti1n4T'!5
1

3
n i i ~pi2p'!, ~90!

dqi

dt
1~31b i!¹iTi1A2D iukiuqi1 ivd~23qi23q'16ui!1uvdu~n5ui1n6qi1n7q'!52n i i qi , ~91!

dq'

dt
1@ 1

2 ¹̂'
2vC#–¹ui1@ ¹̂̂'

2vC#–¹q'1¹iS T'1
1

2
¹̂'
2C D1A2D'ukiuq'1S p'2pi1 ¹̂̂'

2C2
1

2
¹̂'
2C D¹i ln B

1 ivd~2qi2q'1ui!1uvdu~n8ui1n9qi1n10q'!52n i i q' . ~92!
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The mainE3B nonlinearities have been absorbed in the total
time derivative d/dt5]/]t1vC–¹. In the slab limit
(vd5¹i ln B50) these equations reduce to Eqs.~56!–~61!
of Ref. 9. The quasineutrality constraint is

ne5
n

11b/2
2

bT'

2~11b/2!2
1~G021!F. ~93!

When the electrons are assumed to be adiabatic,
ne5t~F2^F&!, ~94!

wheret5Ti0 /Te0 and ^F& is a flux surface average.
This constitutes a fairly complicated set of fluid equa-

tions compared to those usually used in plasma physics. A
somewhat simpler four moment model is described below,
and it is worth justifying the complication of the six moment
model. In principle, the six moment model is more appealing
because as more moments are retained, more details of the
distribution function are accurately described. On more prag-
matic grounds, the six moment model provides a signifi-
cantly improved fit to the kinetic response function, and is
necessary for quantitative accuracy in linear growth rates and
mode structures. The six moment model is also required to
capture the destabilization from trapped ion effects, which
become important in the long wavelength regime. Finally,
six moments may be required to obtain accurate damping
rates of poloidal flows from magnetic pumping. Magnetic
pumping arises from parallel flow damping, and since no
closure approximations appear in Eq.~88!, theui equation is
an exact moment of the gyrokinetic equation toO (b). This is
not the case for the simpler four moment model discussed
below. Magnetic pumping rates from this six moment model
are calculated in Ref. 7.

A variation of these equations was used in Ref. 11 where
ukiuqi in Eq. ~91! was replaced byBukiu(qi /B) and where
ukiuq' in Eq. ~92! was replaced byB2ukiu(q' /B2), i.e., ukiu
acted onq' /B2, not justq' . However, it was found that this
leads to a weakly growing mode even in the
vd5v*5h50 limit which should be stable~a bumpy cyl-

inder limit!. Switching to the present form of the parallel
closures removed this spurious instability.

VIII. FOUR MOMENT MODEL

We present here a simpler and slightly less accurate gy-
rofluid model which only evolves four moments:n, ui , pi ,
and p' . We will also refer to this set of equations as the
‘‘311’’ model, since it evolves three parallel moments and
one perpendicular moment. In this case, since we are not
evolving qi andq' , instead of closing the toroidals terms
with Eqs. ~81! and ~82!, we need to close thevd(qi1q')
term in the parallel velocity equation

qi1q'522i
uvdu
vd

n5ui . ~95!

We still use the toroidalr closures in Eqs.~79! and~80!, but
with new closure coefficients. In addition, we use the parallel
closures of Refs. 5 and 9, extended to include collisions as
well as collisionless phase mixing

qi52
31b i

A2D iukiu1n i i
ik iTi , ~96!

q'52
1

A2D'ukiu1n i i
ik iS T'1

1

2
¹̂'
2C D . ~97!

These are essentially the highki and/or highn i i limits of
Eqs.~91! and ~92!, keeping only the slab terms.

We again use the method described in Sec. VI to mini-
mize the error between the fluid and kinetic local re-
sponse functions to determine the toroidal closure coeffi-
cients n12n5. The best fit is n15(1.232,0.437),
n25(20.912,0.362), n35(21.164,0.294), n45(0.478,
2 1.926), andn55 (0.515,2 0.958).

Inserting theseq closures into Eqs.~36!–~39!, using the
nonlinear FLR terms in Eqs.~42!–~45! without theq' part of
Eq. ~43!, and dropping theqi and q' mirroring terms
(qi5q'50 for a Maxwellian!, the dynamical equations are

dn

dt
1@ 1

2 ¹̂'
2vC#–¹T'1B¹i
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B
2S 11

h'

2
¹̂'
2 D iv*C1S 21

1

2
¹̂'
2 D ivdC1 ivd~pi1p'!50, ~98!

dui

dt
1B¹i

pi

B
1¹iC1S p'1

1

2
¹̂'
2C D¹i ln B14ivdui12uvdun5ui50, ~99!

dpi
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2 ¹̂'
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~31b i!ki
2Ti

A2D iukiu1n i i
13¹iui2ui¹i ln B2S 11h i1
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2
¹̂'
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1

2
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1 ivd~7pi1p'24n!12uvdu~n1Ti1n2T'!52
2

3
n i i ~pi2p'!, ~100!

dp'
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2vC#–¹T'1
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2

A2D'ukiu1n i i
~T'1 1

2 ¹̂'
2C!1B2¹i
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B2 2F11
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¹̂'
21h'S 11

1
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¹̂'
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2 D G iv*C

1S 31
3

2
¹̂'
21 ¹̂̂'

2 D ivdC1 ivd~5p'1pi23n!12uvdu~n3Ti1n4T'!5
1

3
n i i ~pi2p'!. ~101!

4059Phys. Plasmas, Vol. 3, No. 11, November 1996 M. A. Beer and G. W. Hammett

Downloaded¬06¬Dec¬2002¬to¬198.35.8.52.¬Redistribution¬subject¬to¬AIP¬license¬or¬copyright,¬see¬http://ojps.aip.org/pop/popcr.jsp



The quasineutrality constraint, Eq.~93!, is unchanged for this
model.

IX. LINEAR BENCHMARKS

In this section the accuracy of the toroidal gyrofluid
equations is demonstrated by comparing with linear kinetic
theory, using adiabatic electrons. We first test the toroidal
gyrofluid equations against kinetic theory in the local limit,
whereki andvd are treated as constants. The eigenfrequen-
cies are determined by finding roots of the local dispersion
relation with adiabatic electrons,Ri52t, where the kinetic
Ri is calculated by numerically evaluating the integrals Eq.
~59! and the fluidRi is calculated by numerically row reduc-
ing the matrix equation in Eq.~83!, with additional FLR
terms on the right hand side ifb is nonzero. In the local limit,
we ignore the¹i ln B terms in the gyrofluid equations and
ignore the modulation ofv i along a particle’s orbit in the
kinetic response.

Figure 3 shows the kinetic and gyrofluid growth rates in
the purely toroidal limit (ki50), with b50, for the param-
eters of Fig. 5~a! of Ref. 8, wheret51, h i51, 1.5, 2, and
3, varyingen . The four moment model in Sec. VIII repro-
duces the stable lowen regime better than the four moment
model presented in Ref. 8~which used different closure co-
efficients!. The six moment equations provide much better
agreement with kinetic theory, but are slightly off for low
h i , near marginal stability.

Figure 4 shows a comparison in the local limit forki
Þ 0, the mixed toroidal/slab limit. We use the parameters of
Fig. 3 of Ref. 32, whereh i51.5,2,3,en50.2, and we choose
kiLn5Ln /qR50.1, using the normal connection length for
the mode widthL i;qR, andq52. The linear growth rates
from the six moment toroidal gyrofluid model and kinetic
theory are shown vskur i . The six moment toroidal gyrofluid
equations provide an accurate description of the full kinetic
behavior. Both the growth rate and real frequency of the
toroidal ITGmode vary roughly asg,v r } kur i at long wave-

lengths. Askur i decreases,uvu5Ag21v r
2 decreases, and

the stabilizing effect of parallel Landau damping becomes
more important. Whenuvu;kiv t i , the mode is stabilized,
producing the long wavelength cutoff at
kur i;kiLn;Ln /qR. This local estimate suggests that the
inverseq dependence of this long wavelength cutoff can
introduce confinement degradation with increasingq, since
the longest wavelengths cause the most transport.

Now we move on to nonlocal comparisons with kinetic
theory using the ballooning representation in circular flux
surface geometry, as in Refs. 32 and 33. In these nonlocal
calculations, we find the eigenmode structure along the field
line coordinate,u, also called the ‘‘extended ballooning
angle.’’ Theu dependence of terms in the equations couples
different ki’s; this coupling is ignored in the local approxi-
mation. For example, bothvd and k' vary along the field
line: the u dependence ofvd describes the effects of the
good and bad curvature regions, and theu dependence of
k' comes from the fact that as one moves along the field
line, the mode twists, andk' increases. For the comparison
with Ref. 32, we neglect trapped particle effects by turning
off the ¹i ln B terms. In circular flux surface geometry,
B5B0R0 /R5B0 /(11e cosu), so settinge50 removes the
¹i ln B mirroring terms. As in Ref. 32, we also neglect col-
lisions and assume adiabatic electrons. All of the results
compared in this section will only look at modes with
u050, i.e., those centered in the bad curvature region, since
they are typically the most unstable and most linear calcula-
tions only focus on these modes. The growth rate spectrum
for u0 Þ 0 has important implications for the anisotropic fluc-
tuation spectra seen in our nonlinear simulations and in ex-
perimental fluctuation measurements in tokamaks, as dis-
cussed in Ref. 7. Figure 5 shows the eigenfunction from the
fully kinetic integral calculation of Ref. 32 and from the 412
toroidal gyrofluid equations for the parameters in Fig. 2~c! of
Ref. 32,h i53, en50.2, q52, ŝ51, kur i50.53, andt51.
The ‘‘ballooning’’ mode structure along the field line shown
in Fig. 5 is determined by theu dependence of bothvd and
k' . The mode is primarily localized nearu50 in the bad

FIG. 3. Comparison of local linear growth rates from the~412! and~311!
toroidal gyrofluid equations vs. kinetic theory in the toroidal limit, with
ki50 and b50. The four moment equations in Sec. VIII reproduce the
stable lowen regime better than the four moment model in Ref. 8 but are
slightly less accurate at largeen . The six moment equations are much more
accurate, and are quite good forh i.1, away from marginal stability.

FIG. 4. Local growth rates from the six moment toroidal gyrofluid equations
compared with kinetic theory, now in the mixed toroidal/slab limit with
ki50.1 anden50.2. The toroidal gyrofluid equations again provide a very
accurate model of the fully kinetic results.

4060 Phys. Plasmas, Vol. 3, No. 11, November 1996 M. A. Beer and G. W. Hammett

Downloaded¬06¬Dec¬2002¬to¬198.35.8.52.¬Redistribution¬subject¬to¬AIP¬license¬or¬copyright,¬see¬http://ojps.aip.org/pop/popcr.jsp



curvature region. Landau damping is strongly stabilizing for
high ki , so the most unstable modes have broad mode struc-
tures along the field line. Minimizingki while simulta-
neously localizing the modes in the bad curvature region
leads to mode structures withki'1/qR, with large amplitude
at the outer midplane and smaller amplitude at the inner
midplane. Further along the field line~i.e., away from
u50), magnetic shear causesk' to increase, which leads to
FLR stabilization at largeuu 2 u0u. This magnetic shear sta-
bilization through FLR effects keeps the mode amplitude
small in bad curvature regions further along the field line,
e.g., atu52p. Whenŝ or kur i is small, this magnetic shear
effect is weaker, and the eigenfunctions become more ex-
tended inu.

Figure 6 compares the kinetic and fluid growth rates and
real frequencies for the parameters of Fig. 3 in Ref. 32:
h i51.5, 2, and 3,en50.2,q52, ŝ51, andt51. The agree-
ment between the 412 gyrofluid equations and kinetic
theory is quite satisfactory, especially forkur i,0.5 where
our models of FLR effects are very accurate. This level of
agreement is a substantial improvement over previous fluid
theories, and is more accurate than the four moment gyro-
fluid model of Ref. 8. Askur i decreases, the mode width
increases andki becomes smaller. This shifts the long wave-
length cutoff to lowerkur i than in the local limit, whereki is
held fixed. In other respects the fully nonlocal results seem to
follow the local trends fairly closely.

Figure 7 shows a comparison with Fig. 4 of Ref. 32,
using the parameters:h i52.5, en50.2, 0.3, 0.45,q51.5,
and ŝ50.13q/en . The toroidal gyrofluid and kinetic results
are not in terribly good agreement near marginal stability
(en50.45), but the agreement is satisfactory foren50.2 and
0.3.

To test of our models of trapped ion effects, we compare
with the linear gyrokinetic particle simulations of Ref. 33,
and the gyrokinetic ‘‘Vlasov’’ simulations of Ref. 34 which
both include trapped ion effects. Figure 8 shows a compari-
son of nonlocal linear eigenfrequencies from all three ap-
proaches, in the flat density limit,h i→`. The other param-
eters are:LT /R50.1, q52, ŝ51, t51, ande50.3, in the

collisionless limit, as in Fig. 6 of Ref. 33. All three calcula-
tions assumed adiabatic electrons. The gyrofluid and Vlasov
results are shown both with (e50.3) and without (e50)
trapped ion effects, to show the destabilizing effect of the
trapped ions for very long wavelengths. Since the¹i ln B
mirroring terms are proportional toe, settinge50 turns off
these terms. Without the mirroring terms, all modes are
stable belowkur i'0.04. With the mirroring terms, the tor-
oidal ITG mode gradually evolves into a trapped ion mode.
Trapped ion effects become important when the mode time
scales are comparable to or less than the ion bounce fre-
quency, uvu&vbi5Aev t i /qR. For these parameters
vbiLT /v t i5AeLT /qR50.03, so trapped ion effects become
significant forkur i&0.1. The six moment toroidal gyrofluid
equations model this effect with reasonable accuracy. In par-
ticular, the gyrofluid model shows that trapped ions can re-
move the long wavelength cutoff which exists when trapped
ions are ignored, in agreement with fully kinetic theory.

In Fig. 9 we show the same results as in Fig. 8, but now
normalized tov t i /LT , which is independent ofku , and is
thus proportional to the growth rate in physical units. This
demonstrates more clearly than in Fig. 8 that the growth rates
of the trapped ion modes are much less than those of the
fastest growing modes nearkur i;1/2, and suggests that our
models of trapped ion effects are probably adequate.

FIG. 5. Linear nonlocal eigenfunction comparison with the fully kinetic
calculations of Ref. 32. The coordinate along the field line,u, is equivalent
to the ‘‘extended ballooning angle.’’

FIG. 6. Nonlocal linear growth rate and real frequency comparison between
the toroidal gyrofluid equations and kinetic theory, for the four moment and
six moment models. The six moment model provides excellent agreement
with fully kinetic theory, especially forkur i,1/2.
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For the measured parameters used in Ref. 33,r i'0.13
cm and r 0550 cm; sokur i50.015nq/r 0 implies n'2,
wheren is the toroidal mode number. Thus, the ballooning
approximation is definitely breaking down at these very long
wavelengths, and radial variations in the equilibrium will
affect the mode structures and growth rates.

X. SUMMARY AND DISCUSSION

In summary, we have derived toroidal ion gyrofluid
equations with improved models of the important kinetic ef-
fects associated with toroidicity. Special care was taken to
derive closure approximations which, though similar to those
of Ref. 8, are well behaved in the mixed limit where both
toroidal drifts and parallel free streaming are important, i.e.,
where bothki andvd are nonzero. This work also extends
the four moment toroidal gyrofluid model of Ref. 8 to six
moments, including themb̂–¹B mirroring terms. By evolv-
ing six moments, no approximations are made to the parallel

velocity equation, important for accurate poloidal flow
damping rates. Including themb̂–¹B terms also incorporates
trapped ion effects to some extent; the growth rate in the
very low kur i trapped ion mode regime is within a factor of
two of fully kinetic calculations. The gyrofluid trapped ion
results are in closer agreement with kinetic theory if we com-
pare the diffusion (} k'

2D) required to stabilize the long
wavelength trapped ion modes.35 New toroidal FLR terms
are treated which arise from the variation ofB ~in the argu-
ment ofJ0) with major radius, and generalize the FLR model
of Ref. 9 to toroidal geometry. An improved four moment
model is also presented, which is simpler and numerically
less demanding than the six moment model. Impurity and
Maxwellian-model energetic particle dynamics are equally
well described by these toroidal gyrofluid equations.

Although electrostatic turbulence effectively describes
many experimental regimes, the electrostatic assumption is a
limitation of the toroidal ion gyrofluid equations presented
here. Recent work has begun including electromagnetic
effects.36,37The main difficulty here is that magnetic fluctua-
tions are driven by parallel current fluctuations, and since
trapped particles do not carry current, passing electrons can
no longer be considered adiabatic, and need to be evolved.
Resolving the fast electron parallel motion seriously slows
down the numerical calculations. Some trick analogous to
bounce averaging, which is quite successful in simplifying
the trapped electron dynamics,7 would be useful for the pass-
ing electrons.

We conclude by discussing the validity of gyrofluid
equations for plasma turbulence. These gyrofluid equations
are an approximation to the full nonlinear gyrokinetic equa-
tion, and break down in some regimes. For example, in the
slab limit, the weak turbulence wave-kinetic equation de-
rived from the gyrofluid equations successfully reproduces
the gyrokinetic wave-kinetic equation in the limit
v@kiv t i , but fails to recover the ion-Compton scattering
rate very near marginal stability, in the limit
g!v!kiv t i .

15,38 The nonlinear validity of the gyrofluid
equations in strong turbulence regimes has not yet been un-

FIG. 7. Comparison of linear growth rates from kinetic theory and the six
moment model. Again, the agreement is quite good except foren50.45,
whereŝ51/3.

FIG. 8. Comparison of linear growth rates and real frequencies normalized
to v* T from fully kinetic calculations and the six moment toroidal gyrofluid
equations with trapped ion effects. Including trapped ions (e50.3) further
destabilizes the toroidal ITG mode at long wavelengths, which gradually
evolves into a trapped ion mode forkur i(0.1.

FIG. 9. Linear growth rates and real frequencies normalized tov t /LT . In
physical units, the growth rates of the trapped ion modes are much less than
those of the fastest growing modes nearkur i;1/2, which suggests that our
models of trapped ion effects are probably adequate.
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ambiguously verified on fundamental grounds. However, gy-
rofluid simulations have been compared against full gyroki-
netic particle simulations, finding similar behavior full three
dimensional sheared slab simulations and in three mode cou-
pling test problems.15,39Toroidal simulations have also been
benchmarked with toroidal gyrokinetic particle simulations,
though not as extensively as the sheared slab simulations,
and find reasonable agreement.39 Very recently, the toroidal
gyrokinetic particle simulations of Ref. 40 appear to predict
lower transport by about a factor of 2. While in principle
gyrokinetic simulations are more accurate, since they solve
the gyrokinetic equation directly, there are a number of is-
sues which need investigation: particle noise, particle filter-
ing, resolution, and geometry~we implement field-line coor-
dinates in a somewhat different way than Ref. 40, which
tends to emphasize resolution in different parts ofk-space!.
We have done some simulations with exactly the same par-
ticle filtering and box size as in Ref. 40, without magnetic
shear (ŝ50) where our coordinate system and Ref. 40’s co-
ordinate system become identical. We then find that the gy-
rofluid simulation reproduces the gyrokineticx i to within
20%. Turning off the particle filtering then causesx i to rise
by a factor of 1.3, and our general experience is that increas-
ing the box length in the parallel direction beyond 2p typi-
cally increasesx i by a factor of 1.4. These resolution issues,
and not intrinsic differences between the gyrofluid and gyro-
kinetic equations, thus appear to account for most of the
differences seen so far, though more extensive comparisons
would be worthy of eventual further study.

Another way to address the nonlinear accuracy of the
linear closures is to consider a simple analytic model of the
nonlinear terms, by using the renormalized kinetic equation.
Here the nonlinearvE–¹f 1 term in the linear kinetic equation
is replaced byDvNL f 1

~2 iv1 ik iv i1 ivd1DvNL! f 15~ ik iv ieF/T2vE–¹! f 0 .

This can now be integrated over velocity space to find a
renormalized dispersion relation. IfDvNL is independent of
velocity, this will be identical to the linear dispersion relation
with v replaced byv1 iDvNL . This is sometimes used to
determine a saturation level for the turbulence by requiring
that DvNL balance the linear growth rate. Closing the fluid
hierarchy with linear closure approximations naively appears
to neglectDvNL in the resonant denominator and appears to
introduce an error ofO (DvNL /kiv t i), which is typically
O (1). However, the gyrofluid equations actually do much
better than this. If we similarly renormalize theE3B non-
linearity in each gyrofluid equation and solve for the renor-
malized gyrofluid dispersion relation, we will obtain the
three or four pole linear dispersion relation withv again
replaced byv1 iDvNL . Thus the renormalized gyrofluid
dispersion relation is just as good an approximation to the
renormalized gyrokinetic dispersion relation as it was in the
linear case. Of course there are many nonlinear processes
which are not captured by this simple renormalized disper-
sion relation approximation, so this is not a proof that the
gyrofluid closures always work nonlinearly. A novel discus-
sion by Krommes and Hu41 has addressed the correspon-
dence between the gyrofluid and gyrokinetic approaches to

plasma turbulence in a very different way, by focusing on
and clarifying the role of dissipation in the two models.

More generally, each gyrofluid equation, as a moment of
the gyrokinetic equation, is an exact nonlinear conservation
law: closure approximations are introduced into higher mo-
ment equations in a way which preserves the conservative
form the equations. Our equations retain the dominant
(E3B) nonlinearities and provide accurate physics based
models of the linear drive and dissipation mechanisms. As
more moments are retained, more details of the underlying
distribution function are accurately described. In fact, Smith
has demonstrated convergence in the number of moments for
the nonlinear plasma echo problem,11 though it required
many moments in that case. In the strong turbulence limit, it
seems unlikely that many moments need to be kept, since the
broad spectrum of modes should average out sharp velocity
space variations in the distribution function. Future work
should continue to test the validity of the gyrofluid approxi-
mation, both through comparisons with kinetic simulations
and through purely theoretical simplified problems.
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