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A novel set of nonlinear fluid equations for mirror-trapped electrons is developed which differs from
conventional fluid equations in two main respects:~1! the trapped-fluid moments average over only
two of three velocity space dimensions, retaining the full pitch angle dependence of the trapped
electron dynamics, and~2! closure approximations include the effects of collisionless wave-particle
resonances with the toroidal precession drift. Collisional pitch angle scattering is also included. By
speeding up calculations by at leastAmi /me, these bounce averaged fluid equations make possible
realistic nonlinear simulations of turbulent particle transport and electron heat transport in tokamaks
and other magnetically confined plasmas. ©1996 American Institute of Physics.
@S1070-664X~96!01511-X#

I. INTRODUCTION

Mirror-trapped particles often play an important role in
long mean-free-path plasma dynamics, especially in mag-
netic confinement fusion devices and planetary magneto-
spheres. This paper presents a reduced nonlinear fluid-like
description for mirror-trapped particles. These equations
should be useful for describing nonlinear trapped particle
dynamics in a wide range of plasma phenomena, but we will
focus on tokamaks, where trapped electrons can be an im-
portant cause of turbulent transport.1 Through wave-particle
resonances, trapped electrons can destabilize the dissipative
or collisionless trapped electron mode~TEM!, and, as shown
below, can double the growth rate of the ion temperature
gradient~ITG! mode in some regimes. We include these ki-
netic resonances by using an extension of the method of Ref.
2 to take fluid moments of the bounce averaged drift kinetic
equation of Ref. 3.

Although much progress has been made recently in non-
linear simulations of electrostatic core tokamak turbulence
arising from the ITG instability, more realistic simulations
require proper treatment of the trapped electron dynamics.
To date, most simulations have focused on ion heat transport
and have assumed adiabatic electrons, i.e.ñe5n0eF̃/Te ,
where ñe is the fluctuating electron density andF̃ is the
fluctuating electrostatic potential. For realistic tokamak pa-
rameters, however, thenonadiabatic electron response,
which primarily comes from trapped electrons, is often im-
portant. To describe electron heat transport and particle
transport in addition to ion heat transport, proper treatment
of the nonadiabatic electron response is necessary. If the tur-
bulence is electrostatic and the electrons are purely adiabatic,
there is no net particle transport, since theE3B convection
of the perturbed electron density is zero (E3B–“ñe50).

In this paper, a sophisticated bounce averaged trapped
electron fluid model is derived which retains the pitch angle
dependence of the electron response, as opposed to more
simplified models which assume all electrons are deeply
trapped.1 Retaining this pitch angle dependence is important
for advanced tokamak configurations in the second stability
regime or with reversed magnetic shear,4 where a large frac-
tion of the trapped electrons have favorable toroidal preces-

sion drift. This approach also allows use of a full pitch angle
scattering operator for electron collisions, not a Krook-type
algebraic approximation,5 so these equations are continu-
ously valid in the collisionless regime, where the electron
response is driven by the toroidal precession resonance, in
the dissipative regime, and also in the very collisional regime
where the electrons become adiabatic. Since bounce averag-
ing removes the fast parallel time scale, these trapped elec-
tron fluid equations are not numerically stiff. Coupled with
the gyrofluid ion equations derived in Refs. 6–8, these equa-
tions can be used efficiently in high resolution three-
dimensional~3-D! toroidal simulations which simultaneously
include trapped electron effects as well as the ITG drive. In
addition, these equations enable calculation of the full trans-
port matrix: electron and ion heat fluxes and particle fluxes.

II. NONLINEAR BOUNCE AVERAGED KINETIC
EQUATION

The electron dynamics are actually simpler than the ion
dynamics in two respects, becauseme!mi . First, the turbu-
lent scales are on the order of the ion gyroradius, so
k're!1 and we can neglect finite Larmor radius effects for
the electrons and use the drift kinetic equation. Second, the
turbulent time scales~on the order of the ion transit fre-
quency, v t i5v t i /qR, or the diamagnetic frequency,
v*5k'r iv t i /Lne) are long compared to the electron bounce
frequency,v!vbe5Aev te /qR. Thus we can average over
the fast bounce motion so that the trapped electron dynamics
are described by the nonlinear bounce averaged drift kinetic
equation.3 It is useful to rewrite this equation for̂f e&b , the
bounce averaged distribution function, instead of the nona-
diabatic piecehe as in Ref. 3; the two are related by
f e5FeeF/Te1he , whereFe is the Maxwellian equilibrium.
At this point we normalizeF to e/Te . In addition, we use
the field-aligned coordinate system given by the transforma-
tion Eq. ~10! in Ref. 9, wherex is the radial variable,y is
perpendicular and mostly poloidal, andz5qRu is the coor-
dinate along the field line at fixedx andy. Reference 8 gives
details of the simplification of Eq.~31! of Ref. 3, which can
be rewritten:
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S ddt1 ivdeD ^ f e&b5^C&b~^ f e&b2Fe^F&b!

1 iF e~vde2v
* e
T !^F&b . ~1!

This equation is four dimensional~4-D! ~two velocity and
two space dimensions!, since the variation along the field
line has been removed by bounce averaging and the rapid
particle gyration frequency,vce5eB/mec, has been aver-
aged over. Equation~1! employs the usual two-scale expan-
sion, where the fluctuation scales are much smaller than the
equilibrium scales. The bounce average is defined by
^A&b5(rdzA/uv iu)/(rdz/uv iu), where the integration is
along an orbit. To lowest order inv/vbe , the fast electron
parallel motion causeshe to be constant along a field line,
which prescribesf e5^ f e&b2Fe^F&b1FeF for trapped elec-
trons andf e5FeF for passing electrons. The nonlinear term
describing convection by the bounce averagedE3B drift has
been absorbed ind/dt5]/]t1b̂3^F&b–“. The collision
term is discussed below. The diamagnetic frequency is
v
* e
T 5(kycTe /eBLne)@11he(v

2/2v te
2 23/2)#, where he

5Lne /LTe , and the toroidal precession frequencyvde is the
bounce averaged“B and curvature drift frequency. Our
derivation is correct for general magnetic geometry, but by
expanding for large-aspect-ratio circular flux surfaces,
the bounce average can be written in terms of elliptic
integrals.3 We combine the geometric and pitch angle
dependence in the usual manner inG: vde5(kycTe /eBR)
3(v2/2v te

2 )G( ŝ,k). It is important to keep the pitch angle
dependence ofvde to describe the stabilization of the trapped
electron mode ~TEM! in reversed shear configurations
( ŝ,0). The limiting values atk50 andk51 are indepen-
dent of shear, but asŝ decreases, the precession drifts of
barely trapped particles are reversed, so they cannot resonate
with the TEM. We have recently emphasized that the Shafra-
nov shift can be even more effective in reversing these drifts
and stabilizing the TEM.10

It will be most convenient to use the velocity space vari-
ablesv andk, wherev is the total velocity (E5mv2/2) and
k is a pitch angle variable defined byk25(12mBmin /
E)/2eB , where eB5(Bmax2Bmin)/2Bmax, Bmax and Bmin

are the maximum and minimum values of the magnetic field
on the flux surface, andm5mv'

2 /2B. Thus k is the pitch
angle at the outer midplane normalized to unity at the
trapped-passing boundary~whereE5mBmax), and is a con-
stant of the bounce motion. For deeply trapped electrons
~with E5mBmin), k50, and the maximumk for passing par-
ticles ~wherem50! is 1/A2eB. For trapped particles~k,1!,
the poloidal angle of the banana tip or turning point,u t , is
related tok by k5 sin(ut/2). This can be seen by using
E5mBt where B at the turning point is Bt

5B0 /(11e cosut). Our pitch angle variable differs slightly
from Ref. 3, but for trapped particles the difference is negli-
gible sincev'v' . Writing uv iu in terms ofv and k: uv iu
5vA12(122eBk2)B/Bmin, the bounce time istb(k)
5rdz/uv iu, and the bounce average becomes^F&b(x,y,k)
5(qR/vtb)*2u t

u t duF(x,y,u)/A12(122eBk2)B/Bmin.

Before taking moments of Eq.~1!, it is instructive to
calculate the total electron density, which we break into

separate integrals over passing and trapped particles. Since
the passing particles are adiabatic:ne5*pd

3vFFe

1* td
3v f e 5 *pd

3vFFe 1 * td
3v(^ f e&b2^F&bFe1FFe).

Combining the adiabatic pieces for trapped and passing par-
ticles gives:ne5n0F1* td

3v(^ f e&b2^F&bFe). The velocity
space integral over trapped particles inv andk variables is:

E
t
d3v^ f e&b5E

0

`

4pdvv2E
sin~u/2!

1

2BeBk^ f e&b

3dk/ABmin
2 2BBmin~122eBk2!.

We introduce the following shorthand notation for the pitch
angle part of this integration:

^A~k!&k5E
sin~u/2!

1 2BeBkA~k!dk

ABmin
2 2BBmin~122eBk2!

. ~2!

Averaging in pitch angle turns functions ofk into functions
of u, because of theu dependence of the Jacobian and the
turning points. The electron density in real space is just the
k average of thev-averaged̂ f e&b . Defining ak-dependent
‘‘density’’ by integrating only over v: nt(x,y,k)
5*0

`4pdvv2^ f e&b , the total density in real space is:

ne~x,y,z!5n0F1^nt~x,y,k!&k2n0^^F&b~x,y,k!&k .
~3!

Thek average of̂ F&b in Eq. ~3! is analogous to the polar-
ization density in the ion real space density, and comes from
the z-dependent part of the total electron distribution func-
tion.

III. BOUNCE AVERAGED FLUID EQUATIONS

The separablev and k dependence of Eq.~1! and the
pitch angle dependence of^F&b suggest a significantly dif-
ferent approach for deriving trapped electron fluid equations.
Both the gyrokinetic and drift kinetic equations have already
reduced the velocity space dimensions from three to two by
gyroaveraging. For the ions, we take moments overv i and
v' of the five-dimensional~5-D! f i(x,y,z,v i ,v') to obtain
3-D ion fluid equations.8 For the electrons, we start with the
5-D f e(x,y,z,v,k) and bounce average, which removes the
parallel coordinate. Then we only need to take moments over
v of ^ f e&b(x,y,v,k) to obtain 3-D pitch angle dependent
‘‘fluid’’ equations for the electrons, which are functions of
x, y, andk. These moments can be thought of as the elec-
tron density, pressure, etc., of banana tips, sincek is directly
related to the turning point byk5 sin(ut/2). The resulting
trapped electron fluid equations look similar to the 3-D ion
fluid equations derived in Ref. 8, with the parallel coordinate
replaced by the pitch angle variable,k. This has the advan-
tage of retaining the full pitch angle dependence of the elec-
tron moments, the toroidal precession frequencyvde , and
the bounce averaged potential. When the real space electron
density or pressure is needed, we perform thek average in
Eq. ~2!.

We derive trapped electron fluid equations by averaging
Eq. ~1! over v. Since only even powers ofv appear
in Eq. ~1!, we will only need even moments:
nt(x,y,k)5(4p/n0)*0

`dvv2^ f e&b, pt(x,y,k)5(4p/3n0v te
2 )
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3*0
`dvv4^ f e&b, r t(x,y,k)5 (4p/15n0v te

4 ) *0
`dvv6^ f e&b ,

t t(x,y,k)5(4p/105n0v te
6 ) *0

`dvv8^ f e&b , and v t(x,y,k)
5(4p/945n0v te

8 )*0
`dvv10^ f e&b, which have been normal-

ized to their Maxwellian values. Thev2 dependence ofvde

brings the next higher even moment into each dynamical
equation, introducing the usual closure problem of the
coupled moments hierarchy. Performing thev integration
and redefining vde5GkucTe /eBR and
v* e5kucTe /eBLne , we have:

dnt
dt

1
3

2
ivde~pt2^F&b!1 iv* e^F&b5^C&b~nt2^F&b!,

dpt
dt

1
5

2
ivde~r t2^F&b!1 i ~11he!v* e^F&b

5^C&b~pt2^F&b!,
~4!

drt
dt

1
7

2
ivde~ t t2^F&b!1 i ~112he!v* e^F&b

5^C&b~r t2^F&b!,

dtt
dt

1
9

2
ivde~v t2^F&b!1 i ~113he!v* e^F&b

5^C&b~ t t2^F&b!.

We require a closure approximation for the highest moment
to model toroidal precession drift phase mixing, using an
extension of the method of Ref. 2. For a 3-moment electron
model ~evolving nt , pt , and r t) we choose:t t52 i (uvdeu/
vde)(nant1nbpt1ncr t), and in the 4-moment model~also
evolving t t), we choose: v t52 i (uvdeu/vde)(nant
1nbpt1ncr t1ndt t). As in Ref. 8, each closure coefficient
has both a dissipative and nondissipative piece,
n5n r1 in i uvdeu/vde , but nowvde is pitch angle dependent.
We choose these closure coefficients to closely match the
collisionless bounce averaged kinetic response function,
given by: Re5nt(k)/^F&b(k)5(4p/n0)*dvv

2Fe(2vde

1v
* e
T )/(v2vde). This can be factored into the form:

Re5Re01 (v* e /vde) Re11(v* ehe /vde) Re2 . These inte-
grals11 become functions ofxe5v/vde and k ~through
vde(k)): Re05112xe22xe

3/2Z(2Axe), Re1522@1
2AxeZ(2Axe)], Re252@112xe22xe

3/2Z(2Axe)]13@1
2AxeZ(2Axe)], whereZ is the plasma dispersion function.
The corresponding response functions from the 3-moment
electron fluid equations are (s5vde /uvdeu):

Re05
212xe

2142isncxe230xe1105~ isnb1 isnc21!

8xe
3228isncxe

2270isnbxe2105isna
,

Re15
8xe

2228isncxe270isnb112xe242isnc130

8xe
3228isncxe

2270isnbxe2105isna
,

Re25
12xe242isnc160

8xe
3228isncxe

2270isnbxe2105isna
,

with similar expressions for four moments.8 We use Powell’s
method12 to find the closure coefficients by minimizing the
error between the fluid and kinetic response functions,Re0 ,
Re1 , and Re2 , along the realxe axis. The best fits are

na5(0.290,20.071), nb5(21.102,20.689), and nc
5(0.817,1.774) for the 3-moment model, and
na5(20.038,0.073),nb5(0.657,20.060), nc5(21.522,
21.085), andnd5(0.905,2.073) for the 4-moment model.
The response function for the 3- and 4-moment models are
shown in Fig. 1. Very good agreement is obtained for both
models.

We now derive collision terms from the Lorentz colli-
sion operator:C5(ne(v)/2)]/]j@(12j2)] f e /]j#, where
j5v i /v. The energy dependent collision frequency is:
ne(v)5(4pnee

4 lnL/me
2v3) (Zeff1Hee(v/v te)), where the

FIG. 1. Kinetic and fluid bounce averaged response functions,~a! Re0 ,
~b! Re1 , and~c! Re2 for the 3- and 4-moment electron models.
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Zeff part accounts for electron-ion collisions~assuming
v@v t i) summed over ion species (Zeff5( jZj

2nj /ne), and
the Hee(x) part is from electron-electron collisions, where
Hee(x)5A2/p exp(2x2/2)/x1@121/(x2)#erf(x/A2). This
collision operator conserves particles and energy, but not
momentum. The bounce average of this collision operator13

enters Eq.~1!, and in our variables, is:

^C&b5
ne

8eB
2 ukutb

]

]k F ~122eBk2!
tb
uku H K Bmin

B L
b

21

12eBk2J ]

]k
~^ f e&b2Fe^F&b!G . ~5!

To makef e continuous at the trapped-passing boundary, we
apply the boundary condition̂f e&b5Fe^F&b at k51. The
use of a full differential operator ink for C instead of an
algebraic Krook model5 automatically incorporates the in-
creasing importance of pitch angle scattering near the
trapped-passing boundary. Thus, barely trapped electrons
will scatter more quickly into the passing region than deeply
trapped electrons. Once electrons are scattered to passing,
they are free to move rapidly along the field line and phase
mix, relaxing to an adiabatic response. Because we assume
that passing electrons become adiabatic instantaneously
~since vbe;kiv te is large!, there is some boundary layer
near the trapped-passing boundary which we do not resolve.
The width of this boundary layer is perhaps of
O (Avneff/vbe), and so is usually negligible for the moderate
collisionalities we consider. Note that the bounce averaging
procedure of Ref. 3, which we follow, uses the ordering
v;v* e;vde;neff!vbe , and so can continuously handle
the transition from what is usually called the ‘‘collisionless
trapped electron’’ regime (neff,v, where the trapped elec-
trons give a significant nonadiabatic response due to preces-
sion resonances! to what is usually called the ‘‘dissipative
trapped electron’’ regime@v,neff,vbe , where collisions
wipe out most of the trapped electrons and the nonadiabatic
electron responsehe;O (v/neff) is becoming small#. This
has been confirmed in comparisons of our calculations with
fully kinetic calculations which do not bounce average,14

which we will report in the future. However, the present
ordering cannot handle very large collision frequencies,
neff@vbe;kiv te , where collisional drag on passing elec-
trons begins to impede their parallel flow. This is the domi-
nant drive for the classic resistive drift wave instability. For
neff;vbe , the nonadiabatic response due to drag on passing
electrons scales asneffv/vbe

2 and is still relatively small be-
causev!vbe . Thus we believe that the present equations
are appropriate for moderate to low collisionalities typical of
most tokamaks, but they would need extension to include
collisional drag on passing electrons, which may become im-
portant very close to the edge of some tokamaks.

The collision operator in Eq.~5! must be integrated over
v to find the collision terms in the trapped electron fluid
equations. The velocity dependence ofne should introduce
coupling between different fluid moment equations, just as
the velocity dependence ofvde did. However, for the time
being we will assumene5 constant when integrating over

v, which leads to the simple form of the collision terms in
Eqs.~4!. A better approximation will be described in future
work, which leads to weaker collision terms in the higher
moment equations to model thene;1/v3 dependence.

We now describe how these electron moment equations
are solved. The emphasis is on numerical solution, but ana-
lytic solution follows conceptually similar procedures. In our
numerical simulations,8,9,15 the ion gyrofluid moments are
stored and evolved in (x,y,z) space. The electron moments
are stored and evolved in (x,y,k) space, and separate elec-
tron moments are independently evolved in each magnetic
well along z. The bounce averaged̂F&b(k) is calculated
from F(z) by numerically integrating alongz, and is then
used to advance the electron moments in time. The electron
nonlinearities are evaluated pseudospectrally, as the ion non-
linearities, but ink rather than inz. The electron collision
terms are evaluated implicitly. Only the electron density
needs to be evaluated in real space. To solve the gyrokinetic
quasineutrality equation, the real space density,ne(z), is cal-
culated by performing thek averages ofnt(k) and ^F&b as
given by Eqs.~2! and ~3!. Then the quasineutrality equation
is solved forF, and the cycle is repeated.

As in the adiabatic limit, special treatment is required for
toroidally symmetric perturbations withky50, which have a
component which is constant on flux surfaces. Whenky
Þ 0, trapped electrons scattered onto passing orbits quickly
become adiabatic, but this is not true ifky50. When
ky50, vde5v* e50, so the bounce averaged kinetic equa-
tion reduces to d^ f e&b /dt5^C&b(^ f e&b2Fe^F&b). This
equation applies to passing particles with 1,k,1/A2eB as
well as trapped particles with 0,k,1. Thus the passing
ky50 electron moments interact only via collisions with
trappedky50 moments, which in turn interact with trapped
ky Þ 0 moments only through the nonlinear term in
d/dt5]/]t1b̂3^F&b•¹. Conservative boundary conditions
for ^C&b ensure that there is no flux across thek51/A2eB
boundary. The bounce average is generalized fork.1 to an
orbit average withu→6` so that only theky50 component
of F or f e leads to a nonzerôF&b or ^ f e&b , sinceF and
f e must vanish asu→6` for ky Þ 0 but not forky50. The
upper bounds on thek integrals in Eqs.~2! and ~3! are ex-
tended tok51/A2eB for ky50 modes. Note that in the final
analysis there is noky50 electron response to a component
F̄ of F which is constant on a flux surface, since^F̄&b5F̄ is
independent ofk so ^C&b^F̄&b50.

IV. COMPARISON WITH KINETIC THEORY

To conclude, we demonstrate the accuracy of these
trapped electron fluid equations by comparing fully nonlocal
linear results with kinetic theory in the collisionless limit.
The eigenfrequencies from the six moment toroidal gyrofluid
equations8 and the three moment trapped electron fluid equa-
tions are compared with fully kinetic calculations14 in Fig. 2.
These results are for a pure deuterium plasma with
h i5he53, ŝ51, q51.5, Lne /R51/3, andr /R51/6, as in
Fig. 1 of Ref. 14. The gyrofluid results with adiabatic elec-
trons are also shown. The trapped electron response doubles
the growth rates for these parameters, even though this is an
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ITG mode. Our trapped electron model also agrees quite well
for the TEM. Initial nonlinear results using this model have
been presented in Refs. 15 and 8. Quite recently, we have
found that this model reproduces several interesting features
of the transport in the core of supershots and Enhanced Re-
versed Shear discharges,16 where the TEM dominates. These
results will be reported in a future publication.
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