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A wavenumber dependent eddy viscosity is calculated for a simple two-dimensional drift wave
model from direct numerical simulations for a wide range of parameters and cutoff wavenumber.
The damping rate given by this eddy viscosity is well modeled by a hyperviscosity, where the power
and magnitude are parameterized as functions of the shear in the resolved advecting velocity. Tests
in simulations with low resolution find that the use of this parameterized hyperviscosity yields
somewhat better results than the use of hyperviscosity with fixed power and is significantly better
the use of no extra damping term or a Smagorinsky type eddy viscosity. This parameterized
hyperviscosity is very useful computationally, since reducing resolution requirements by even a
factor of 2 reduces the computational requirements by a factor of 8 in two dimensions, or 16 in three
dimensions. ©1997 American Institute of Physics.@S1070-664X~97!00204-8#
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I. INTRODUCTION

Models for the subgrid scale dissipation in numeric
simulations of turbulence have long been necessary in
study of atmospheric and oceanographic turbulence, wh
the direct numerical simulation of the full range of scales
infeasible.1 ‘‘Large Eddy Simulations’’ ~LES! evolve the
largest scales of a problem and model the average intera
with the unresolved small scales through dissipative te
called eddy viscosity. Our goal is to apply these techniq
to simulations of drift wave turbulence in tokamaks. Th
preliminary study tests some basic dissipative terms i
simple two-dimensional~2D! drift wave model. By restrict-
ing the problem to two dimensions, a large number of sim
lations can be performed with sufficient time histories for t
statistics necessary to compute the eddy viscosity. The
sulting parameterization of the eddy viscosity has been s
cessfully applied to fully three-dimensional~3D! simulations
of drift wave turbulence which will be reported in a futu
paper.

When it is computationally impossible to resolve the d
sipation scales in homogeneous isotropic turbulence,
standard tool used in numerical simulations is hypervisc
ity, a damping rate of the formM ukup, where the powerp is
larger than 2 which gives ordinary viscosity. Hyperviscos
introduces an artificial dissipation range into the proble
that is narrower than the usual dissipation range and th
fore requires less resolution. The choice of power and m
nitude is somewhat arbitrary. Numerical studies of 2
Navier-Stokes turbulence have found that a moderately h
power (p58 or p516) allows the hyperviscosity to effec
tively remove energy from small scales with a minimum
unphysical dissipation at the large scales.2 While the dissipa-
tion range introduced by hyperviscosity acts as a model
the true dissipation range, the damping provided by hyp
viscosity has not been systematically compared with the n
linear transfer rates to unresolved scales.
978 Phys. Plasmas 4 (4), April 1997 1070-664X/97/4
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Eddy viscosities attempt to model the sink of energy
small scales by introducing dissipation into the resolv
scales. The Smagorinsky nonlinear viscosity,3 for example,
is a simple model with a long history of applications in flu
turbulence. The damping given by the Smagorinsky visco
is proportional touku2, which is rigorously correct only in the
limit where the separation of scales between resolved
unresolved modes is asymptotically large. When there is
nificant transfer of energy that is local ink-space, as in
Navier-Stokes turbulence, the contribution to the eddy v
cosity from local transfer to unresolved modes near the c
off is poorly represented by ak2 damping rate.4 A theoretical
eddy viscosity has been tested for the inverse cascade r
in large eddy simulations of 2D Navier-Stokes turbulence5

The ideas of hyperviscosity and eddy viscosity are co
bined here to create a nonlinear filter for use in simulatio
of drift wave turbulence. Since theoretical predictions of t
nonlinear transfer do not exist for comprehensive models
drift wave turbulence~or even for the simple model consid
ered here!, the hyperviscosity model is chosen by compa
son with direct numerical simulations. The eddy viscosity
calculated for a given set of parameters and resolution fro
higher resolution simulation by calculating the transfer fro
modes that are contained in the low resolution simulation
all other modes. We calculate the eddy viscosity in this fa
ion for a wide range of parameters and various resolutio
We then fit this damping rate by adjusting the hyperviscos
power and magnitude. The powerp and magnitudeM were
then parameterized as functions of the resolved modes b
on insights from Kraichnan’s eddy viscosity for the 2D e
strophy range.

The resulting parameterized hyperviscosity has sev
advantages over traditional approaches. The choice of po
and magnitude are calculated from functions of the resol
scales, eliminating what are arguably free parameters in
(4)/978/13/$10.00 © 1997 American Institute of Physics
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standard application of hyperviscosity. The damping r
comes closer to modeling the actual eddy damping rate
eddy viscosities like Smagorinsky’s which have damp
rates proportional tok2. For problems of interest, the actu
eddy damping rate has not been predicted theoretically
can only be calculated from high resolution simulations. T
method is straightforward to implement in spectral simu
tions of homogeneous turbulence, wherek-dependent damp
ing rates are trivial to incorporate.

The parameterization is based on the general phys
processes of nonlinear advection and 2D enstrophy casc
We therefore expect this model to be useful for more gen
drift wave calculations which resolve the main energy inje
tion scales, and are using this hyperviscosity only to red
the resolution needed for modes at scales smaller than
injection scales. This model may also be useful for pass
scalar advection problems. Situations with inverse casc
and significant energy production at unresolved scales, s
as may be found in magnetohydrodynamic turbulence or
Navier-Stokes turbulence, result in negative eddy viscosi
and are therefore clearly beyond the scope of this model,
have been studied with other models.5

II. MODEL EQUATIONS

The model equation for this study was chosen to be
simple as possible while retaining the basic physics relev
to subgrid turbulence processes in fluid simulations of d
wave turbulence. Saturation in toroidal gyrofluid turbulen
simulations6 involves a balance between the source of flu
tuations in linearly unstable modes and the dissipation
modes that are stabilized by terms that model Lan
damping.7 Fluctuation energy is transferred from unstable
stable modes through the advection nonlinearity. A use
2D model will at the least contain theE3B drift advection
nonlinearity, a linear instability, and dissipation to mod
Landau damping, which is primarily a function of the para
lel wavelength and should therefore be present at long
pendicular wavelengths. Though the system we will study
this paper includes models of these three essential effec
is a relatively simple one-field 2D equation which resu
from major simplifications and approximations. For e
ample, it is missing the bad curvature and ion tempera
dynamics which are important instability mechanisms in
core region of many tokamaks. As a 2D model, it is miss
a special constraint on the adiabatic electron response w
enhances the role of theky5kz50 component of the elec
trostatic potential,8 leading to turbulence-generated shea
flows which are important in toroidal simulations.9,6,10,11

Nevertheless, the system used in this study is a useful p
digm for studying certain effects important in plasma turb
lence where theE3B nonlinearity is important, and some o
the lessons learned in this simple model can then be app
in more complicated three-dimensional multi-field simu
tions.

There is a significant literature on two-dimensional mo
els for drift wave turbulence. The prototypical model of H
segawa and Mima12 captures the basic physics of theE3B
nonlinearity in a one-field 2D equation, but contains no l
ear drive to produce fluctuations. So-called ‘‘id ’’ equa-
Phys. Plasmas, Vol. 4, No. 4, April 1997
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tions,13,14 introduce linear drive through a simple model f
the non-adiabatic part of the electron response. The mo
equation derived here is a simplified ‘‘id ’’ model, with an
additional term added to model Landau damping at lo
wavelengths.

There are a number of derivations in the literature of t
model starting from standard fluid equations. Here we ske
the derivation from a gyrokinetic/gyrofluid perspective. T
starting point is just a conservation equation for the ion gu
ing center densityngc

]ngc
]t

1“–@ngc~vE1uiẑ!#50, ~1!

where

vE5~c/B!ẑ3“f ~2!

is theE3B drift velocity, f is the potential, andui is the
parallel ion flow. Most of the ion FLR effects are ignore
~via the assumptionTi!Te) while the ion polarization ef-
fects are retained by including the ion polarization density
addition to the guiding center density in determining the
tual ion density

ni5ngc1n0
rs
2e

Te
¹'
2f, ~3!

wherers5cs /Vci is the gyroradius using the ion gyrofre
quency,Vci5eB/mic, and the sound speed,cs5ATe /mi .
~This approach is the standard method used in the gyr
netic Poisson equation.15–17! For the ion parallel flow veloc-
ity, we will use a ‘‘1-moment’’ model of Landau damping,18

n0
d

dz
ui'C1v tukiu~n1f!'C2v tukiun, ~4!

whereC1 andC2 are constants of order unity. Making use
the standard two-scale approximations~see Ref. 18 for some
of our notation! to expandngc in Eq. ~1! via

ngc5n0S 11
x2x0
Ln

D1ñi ~5!

into a long scale equilibrium part with density gradient sc
length,Ln , and a short scale fluctuating componentñi , leads
to

]ñi
]t

1vE–“ñi1
n0e

Te

csrs
Ln

]f

]y

52a
cs
Ln

ñi1m
csrs

2

Ln
¹'
2 ñi , ~6!

The density gradient in the long scale equilibrium introduc
the diamagnetic drift term containing the derivative of t
potential. The collisional viscosity,m, is expected to be
small, but is included to provide a sink for fluctuation ener
at highk. The other dissipative term,añi , introduces damp-
ing at long wavelengths and is intended as a simple mo
for the Landau damping caused by a small but finiteki
@;(qR)21 in a tokamak#. Three-dimensional simulations o
drift wave turbulence have found that the bulk of the dis
pation comes from Landau damping,6 so it is necessary to
979S. A. Smith and G. W. Hammett
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include a model for this process in 2D simulations whe
ki has been ignored. A simple fluid model for Landau dam
ing would set the damping rate,acs /Ln , proportional to
ukiuv t .

7

To close the model system, we must relate the fluct
tion density to the potential. The real space ion dens
dni , is just the sum of the guiding space density,ñi , and the
ion polarization density,rs

2¹'
2ef/Te . As a crude model for

the electron response that will provide linear drive we
dne5(12d0rs]/]y)ef/Te . Quasineutrality therefore give
us

ñi5
n0e

Te
S 12rs

2¹'
22d0rs

]

]yDf. ~7!

Using normalized variables,

t5
cs
Ln

t, x85xrs , y85yrs , c5
Ln
rs

e

Te
f, ~8!

and then dropping the primes we obtain the evolution eq
tion,

S ]

]t
1a2m¹'

2 D F12¹'
22d0

]

]yGc
1 ẑ3“c–“F2¹'

22d0
]

]yGc1
]c

]y
50. ~9!

Expressing the potential as a sum of Fourier mod
c5(kexp(ik–x)ck , gives the mode coupling equation,

S ]

]t
1 ivk2gk2gk

dDck5Nk , ~10!

where the nonlinear term is defined as,

Nk5(
k8

ẑ3k8–k@ uk2k8u22 id0~ky2ky8!#

11uku22 id0ky
ck8ck2k8 ,

~11!

and the linear frequency and growth rate are given by,

vk5
ky~11uku2!

~11uku2!21d0
2ky

2 , ~12!

gk5
d0ky

2

~11uku2!21d0
2ky

2 2a2muku2. ~13!

We have introduced an additional growth rate,gk
d , for the

dissipation model which can be defined to be the regu
hyperviscosity given by Eq.~33! or the parameterized hype
viscosity given by Eq.~36! or set to zero.@The Smagorinsky
eddy viscosity of Eq.~22! does not have the form of a simp
damping rate ink-space.# The linear physics of this mode
agrees with a model for dissipative trapped electron d
waves derived by Lianget al.14 to first order ind0 (D0 in
their notation! and second order inkrs . Setting a50,
m50, and d050, gives the equation of Hasegawa a
Mima.12

The model equation used here was chosen for simpli
and only contains the gross features of drift wave turbulen
To be of practical use, in fact, our results concerning ed
viscosity should not depend on the precise nature of Eq.~9!,
980 Phys. Plasmas, Vol. 4, No. 4, April 1997
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since we are interested in applications to more sophistica
models of drift wave turbulence. The toroidal gyro-flu
equations,6,19 which evolve multiple fields and contain sig
nificantly more complicated~hence more accurate! linear
physics, share the same basic nonlinear advection term
tained in this model. Hence the eddy viscosity calculated
this study is parameterized as a function of the advec
velocity without reference to the linear physics.

III. PHYSICS OF THE SATURATED STATE

Before considering the effects of subgridscale effec
we examine the results of simulating the model, Eq.~9!, for
a typical set of parameters. Simulations were performed w
periodic boundary conditions using the standard dealia
pseudospectral approach. A hyperviscous damping term
the form discussed in the next section was used for the
sults considered here. Initially we consider a box of s
50rs350rs , using a 1283128 grid in real space, for param
etersd050.35, a50.035, andm50.0001, with a hypervis-
cosity defined by Eq.~33! with powerp516 and coefficient
set to the average rate of shear,nh5S(t). @See Eq.~34!.#
This choice ofd0 gives growth rates large enough that t
saturated state is in the strong turbulence regime. The ins
taneous potential late in the simulation is shown in Fig. 1

One useful macroscopic parameter that can be expre
in this model is the volume averaged particle flux,

G5
1

AE x̂–vEñi dx

5d0S cTeeB

rs
Ln

D n0Ln(k ky
2ucku2. ~14!

The gyro-Bohm scaling of the flux is the natural scaling f
this system, since the use of periodic boundary conditi
and a constant background gradient prevents the sys
scale from directly entering the analysis.~The system scale
could in principle enter through the size of the simulati
domain Lx3Ly , implying a Bohm scaling. The fact tha
such ‘‘flux-tube’’ simulations saturate,20,21and that the satu-
ration amplitude is independent of the size of the simulat

FIG. 1. Contours of potential for saturated turbulence at one instant
S. A. Smith and G. W. Hammett
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domain indicates that a gyro-Bohm scaling regime exists
sufficiently smallrs /L.! The time history of the flux for our
initial set of parameters is shown in Fig. 2.

Since observable physical quantities such as the par
flux and mean square density fluctuations can be expre
as quadratic functions of the potential, one is led to study
evolution and saturation of the squared magnitude of
modes. There is only one quadratic quantity that is conser
by the nonlinear term of our model, Eq.~9!, corresponding to
the fact that the volume integrated square dens
* ñi(x)

2 dx, is conserved by divergence free advection. W
will denote this conserved quantity,V, and define a normal
ized modal contribution to the conserved quantity,

Vk5
1
2 @~11uku2!21d0

2ky
2#ucku2. ~15!

Figure 3 displays the saturated spectrum for the initial se
parameters, where the standard two-dimensional spe
density is defined by,V(k)52pk^Vk&, where the average i

FIG. 2. Particle flux from simulation of the model equation in a periodic b
(50rs350rs) in the strong turbulence regime,d050.35, a50.035,
m50.0001.

FIG. 3. Time averaged spectrum of density fluctuations for the simulatio
Fig. 2.
Phys. Plasmas, Vol. 4, No. 4, April 1997
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taken over the band ofk’s at radiusk. ~The growth rates for
this simulation are displayed in Fig. 4.! Attempting to infer
an inertial range power law scaling from this spectrum wo
give V(k);kp with 24&p&23 which is very different
from the 2D Navier-Stokes highk inertial range where en
strophy scales ask21.22,23 In fact, simulations of 2D Navier-
Stokes turbulence have typically observed inertial ranges
nificantly steeper than theoretically predicted. Thek21

enstrophy range is an asymptotic limit that can only be
served when the dissipation scales are separated from
forcing scales by at least two orders of magnitude.24 The
separation of scales required to observe inertial range sca
is particularly large in 2D turbulence, where the enstrop
transfer is very nonlocal. Such a scenario is highly unlike
for plasma turbulence problems where significantly damp
modes exist at wavenumbers very close to the unsta
modes driving the turbulence. Therefore, one should not
pect to find universal exponents in drift wave simulations

The evolution equation for this quadratic invariant
just,

S ]

]t
22gkDVk5Tk , ~16!

where the nonlinear transfer,Tk , is given by,

Tk5@~11uku2!21d0
2ky

2#~ckNk*1ck*Nk!. ~17!

In steady state, the nonlinear transfer balances the
duction and dissipation of fluctuations due to linear grow
or damping.~See Fig. 5 for typical example of the linea
production.! For two-dimensional equations of this form
with only one quadratic invariant, it has been noted that
guments from statistical mechanics imply transfer to sm
scales,25 in contrast to the dual cascade picture from 2
Navier-Stokes turbulence. With moderate dissipation due
Landau damping at all scales, there is no clearly defin
inertial range or cascade. The production of the conser
quantity for a typical run is plotted in Fig. 5. Note that th
dominant source and the major sink for fluctuation ene
both lie near the peak of the spectrum. The major transfe
k-space of fluctuation energy is in fact not a cascade,
f

FIG. 4. Growth rates for the simulation of Fig. 2. Ak16 hyperviscosity
damping term has been used to improve the resolution of the inertial ra
981S. A. Smith and G. W. Hammett
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takes energy from unstable modes near thekx50 axis to
Landau damped modes of nearly the same magnitude
the ky50 axis. ~Realistic simulations of transport therefo
require accurate models of Landau damping.! The dissipa-
tion near the cutoff indicates a small cascade of fluctua
energy to highk. This picture of energy production ink
space is qualitatively similar to that observed in toroid
gyro-fluid simulations.~See Fig. 5.9 of Ref. 6.! The small
amount of transfer to highk is dynamically insignificant, so
we can conclude that the level of turbulence is set prima
by eddy turnover at long wavelengths. Simulations of j
the long wavelengths are therefore theoretically feasible.
we shall see, however, simply eliminating modes that
beyond the bulk of the spectrum can give catastrophic res
as the small transfer of fluctuation energy ‘‘piles up’’ sec
larly at the cutoff.

IV. EDDY VISCOSITY AND HYPERVISCOSITY

Our model equation can be written symbolically as,

]

]t
c5N~c!1Lc, ~18!

whereL is a linear operator, andN the quadratic nonlinearity
defined by Eq.~11!. Numerical simulations cannot follow th
detailed behavior of the continuous field,c. We consider
pseudospectral simulations on a periodic box of sizel3 l ,
with a finite number of modes. The resolved modes~those
that are evolved in a simulation! can be defined through
filter function, f→ f̄ , such that, in Fourier space

f̄ k5Gk f k , ~19!

whereGk51 for ukxu,kx
c and ukyu,ky

c , andGk50 other-
wise.~The boundary wavenumbers,kx

c andky
c , are called the

cutoff wavenumbers. For theoretical studies of isotropic t
bulence, a spherical region ink-space,uku<kc is typically
used.! Fields such as the potential,c, can then be decom

FIG. 5. Time averaged production and dissipation of density fluctuations
the simulation of Fig. 2~contours of^gkVk&). Each point is a resolved
mode. Solid lines are contours of the production region at 0,1,2,5,10,
20 ~dimensionless units!. Dashed lines are contours of the dissipation reg
at 21,22,25,210, and220. The dotted lines are contours at20.05 and
20.1.
982 Phys. Plasmas, Vol. 4, No. 4, April 1997
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posed into a resolved part,c̄, and a subgrid contribution
cs5c2c̄. The filtered evolution equation can be written

]

]t
c̄5N~ c̄ !1Ns1Lc̄, ~20!

where the subgrid contribution to the nonlinear term is d
fined by,

Ns5N~c!2N~ c̄ !. ~21!

Given the resolved fieldc̄, pseudospectral evaluation of th

nonlinear term gives preciselyN(c̄), so the only term in the
evolution Eq.~20! that is not calculated in a simulation of th
resolved field is the subgrid contribution,Ns.

The field of Large Eddy Simulation is concerned wi
deriving approximate models for the effect of the subg
term,Ns, that can expressed in terms of the resolved fie
c̄. Traditionally it is argued that the average contribution
the subgrid term,Ns, can be viewed as an eddy viscosit
draining energy from the resolved scales.

If there were a true separation of scales, and the sub
field cs had asymptotically short wavelengths and short ti
scales compared to the resolved fieldc̄ then the subgrid term
would truly act like a viscosity.26 Averaging over a time tha
is short for the resolved modes but long compared to
turnover time for the subgrid modes, we would find th
^Ns&5neddy¹

2c̄, where the eddy viscosity,neddy, is a func-
tion of the statistics of the small scales. In reality, howev
the length and time scales of the subgrid modes are ne
identical to those of barely resolved modes.

Various approaches to estimating the subgrid contri
tion have been proposed. We will examine two simple e
mates, ak-space dependent eddy viscosity, and the Smag
insky eddy viscosity.3 In numerical simulations, application
of these approaches corresponds to introducing a simple
sipative term@Nk

s'nkk
2ck or N

s'“n(x)“c, respectively#
where the damping@nk or n(x)] is predicted either theoreti
cally or empirically as a function of the resolved scales. S
eral authors have pointed out that in a turbulent state, sub
scales do not act in a purely dissipative fashion, and th
more complete model would contain terms to simulate no
and backscatter of energy from the subgrid scales.27 Simple
damping terms, however, are extremely efficient to calcula
It is not clear which approach, adding higher order terms
the subgrid model or increasing grid resolution with a sim
subgrid model, is more efficient at improving the statistics
the long wavelength modes for a given increase in comp
tional complexity. For the current study, we consider sim
dissipative terms.

A. Smagorinsky eddy viscosity

A traditional view of eddy viscosity is that the sho
wavelength modes in some sense act like a thermal nois
the resolved scales and hence serve to enhance the re
viscosity. Estimating the subgrid contribution by a spatia
varying eddy viscosity yields,

Ns'“neddy~x!“c~x!. ~22!

r

nd
S. A. Smith and G. W. Hammett
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Smagorinsky gave heuristic arguments for the scaling of
eddy viscosity in the context of simulations of qua
geostrophic turbulence,3 and concluded that,

neddy~x!5~Csd!2S~x,t !, ~23!

whereCs is a non-dimensional constant,d is an estimate of
the subgrid length scale, andS(x,t) is the local strain rate o
the velocity field defined by,

S~x,t !5AS ]Vx

]x D 21S ]Vy

]y D 21 1

2 S ]Vx

]y
1

]Vy

]x D 2. ~24!

Note thatS50 for rigid rotation, as well as for uniform
flows.

The Smagorinsky model has been applied in compu
tions of flows far outside the realm of its original derivatio
with success in many cases. This model was used in sim
tions in this study for the purpose of comparison, to illustr
the behavior of the standard eddy viscosity withk2 damping.
Different choices of length scale and constant have b
found to give optimal results in different situations in flu
turbulence. We therefore arbitrarily setd to the physical
space grid spacing, and usedCs50.1 based on initial tests
for one choice of parameters with moderate resolution.

B. Kraichnan’s eddy viscosity

One approach to defining a damping term originat
from the subgrid modes is by comparing the nonlinear tra
fer term with the viscous term in a two-point closure theor4

Considering the splitting of modes into resolved and subg
our evolution equation for the quadratic invariant, Eq.~16!,
can be written as,

S ]

]t
22gkDVk5Tk

r1Tk
s , ~25!

where the transfer defined in Eq.~17! has been decompose
into a resolved piece,Tk

r , and the subgrid piece,Tk
s . In the

context of this equation, the analog to Kraichnan’seffective
eddy viscositywould be defined as,

neddy~k!5
2^Tk

s&
2k2^Vk&

, ~26!

for some appropriately defined ensemble average. The m
vation for this definition of an eddy viscosity comes fro
introducing a damping term of the form,2neddy(k)k

2ck on
the right hand side of the primitive Eq.~10!. This damping
term would introduce the term2^Tk

s&Vk /^Vk& to the right
hand side of Eq.~25! above, which, on average, will balanc
the subgrid transfer term,Tk

s .
Kraichnan derives predictions of this eddy viscosity4 in

2D and 3D Navier-Stokes inertial ranges using the Test F
Model.28 While plasma turbulence is not expected to exhi
inertial range behavior, there are several generic conclus
about eddy viscosity worth noting. The primary discove
was that the eddy viscosity does not give a damping
proportional tok2 that is traditionally associated with a
eddy viscosity. The eddy viscosity does asymptote to a c
stant value at long wavelengths. This constant, howeve
negative for 2D turbulence. The major contribution to t
Phys. Plasmas, Vol. 4, No. 4, April 1997
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subgrid energy transfer comes from coherent straining of
short wavelength modes by long wavelength velocity she
which causes the eddy viscosity to become large and pos
near the high-wavenumber cutoff,kc . Our simulations cor-
respond most closely to the two-dimensional case where
cutoff, kc , lies in the enstrophy range. For this case, t
significant positive contribution to the eddy viscosity lies in
region near the cutoff wavenumber,kc , of width k0 , where
the straining field is dominated by wavenumbers of sizek0
and smaller. The shape of the eddy viscosity function in t
region depends on the nature of the spectrum at long wa
lengths. For an artificial spectrum that allowed for a simp
calculation, the eddy viscosity in the near cutoff region w
found to be

neddy~k!'~ukck0!
21f S kc2k

k0
D , for ~kc2k!!kc , ~27!

whereu is eddy circulation time of the long wavelength
@See Eq.~6.5! in Ref. 4.#

C. Numerical eddy viscosity

In the original work on this eddy viscosity,4 the subgrid
transfer,̂ Ts&, was viewed as a theoretically derived quant
containing contributions from all three-mode couplings th
cross the cutoff ink-space. The standard approach to calc
lating eddy viscosity in numerical simulations29,30defines the
subgrid transfer based on the subgrid contribution to the n
linear term as defined in Eq.~21!. For our model the subgrid
transfer is defined by,

Tk
s5@~11uku2!21d0

2ky
2#~ckNk

s*1ck*Nk
s!. ~28!

Substituting this definition forTs into the definition of eddy
viscosity in Eq.~26!, we find that

neddy~k!52
Real~^ck*Nk

s&!

k2^ucku2&
. ~29!

Using this definition, the eddy viscosity approximation f
the subgrid term,

Nk
s'2neddy~k!k2ck , ~30!

can be viewed as the linear~in ck) approximation that mini-
mizes the mean squared residual error.

To calculate the eddy viscosity for a given low resol
tion simulation with cutoff wavenumberkc , a simulation is
performed at much higher resolution containing a large nu
ber of higherk modes (uku.kc) along with all the modes
resolved by the low resolution simulation. The ‘‘unre
solved’’ component of the nonlinear term,Ns, defined in Eq.
~21!, is calculated for the low resolution simulation from
modes resolved in the higher resolution simulation. Calcu
ing the eddy viscosity from high resolution simulations
apply to low resolution simulations cannot by itself redu
the computational cost of a particular problem since presu
ably the high resolution simulations yield accurate resu
already. It is hoped that by parameterizing the eddy visco
calculated for a number of runs, we can obtain a model
the eddy viscosity that extrapolates to drift wave proble
for a larger range of parameters.
983S. A. Smith and G. W. Hammett
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The sample simulation mentioned in Sec. III was used
calculate the eddy viscosity for a simulation with half of
resolution. The resulting eddy viscosityneddy(k) is plotted in
Fig. 6 with the linear drive and damping for lines of mod
out to the cutoff wavenumber in two directions ink-space.
As noted in Sec. III, we do not expect inertial range behav
in simulations of this kind of plasma turbulence, and there
no inverse cascade of energy from very short waveleng
While there is a small negative eddy viscosity at long wa
lengths for this simulation, it is dynamically insignifican
compared to the linear drive and dissipation at long wa
lengths. The dominant effect of the eddy viscosity lies in
narrow region near the cutoff where it becomes positive
large compared to the linear drive. The mechanism for
damping near the cutoff is the loss of fluctuation energy fr
resolved modes by the coherent straining due to long wa
length modes.4 This damping mechanism is probably th
dominant physical effect of subgrid modes in drift wave tu
bulence simulations, so the focus of this study is to eff
tively model the positive eddy viscosity in the region ne
the cutoff.

D. Heuristic arguments for the scaling of the eddy
damping rate

Consider a fictitious wave packet of short waveleng
fluctuations, localized ink-space and real space so that t
long wavelength advecting velocity field looks locally like
shear flow. Without loss of generality, consider the action
the local shear flow,vE(x,y)52u21yx̂, where the shearing

FIG. 6. Eddy viscosity calculated for the simulation of Fig. 2. The trans
was calculated for a box of 37339 modes~representing a simulation with
half the actual resolution! to modes outside the box, but resolved by t
simulation. The dotted line is the linear growth rate, expressed as a visc
by dividing by k2. The eddy viscosity has a small negative component
k→0, but it is negligible compared to the linear driving term. The ed
viscosity becomes important in a small region near the cutoff. The das
line is the parameterized hyperviscosity derived in Sec. V. For these pa
eters and cutoff wavenumber the parameterization provides a good fit t
actual eddy viscosity.
984 Phys. Plasmas, Vol. 4, No. 4, April 1997
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time is denoted byu. The advection part of the continuit
equation then has the form of a shear flow in Fourier spac
well,

]

]t
ñi~k!1u21

]

]ky
kxñi~k!. ~31!

Figure 7 illustrates this process. The wave packet will
advected ink-space in a particular direction depending
the local shear. The random variations of the local shear
thus lead to a random walk diffusion of this wave packet
k-space, with a net transfer of fluctuation energy to hi
k.31

In the numerical simulation, however, the absence of
nonlinear interactions with unresolved modes and the con
vative nature of the nonlinearity cause the cutoff ink-space
to act as a reflecting boundary. Thus in Fig. 7, the wa
packet, represented by the dark circle, would be reflec
back to long wavelengths instead of leaving the system
reasonable estimate of the amount of eddy damping requ
by an eddy viscosity, therefore, would be given by the
verse of the time which a wave packet spends in the n
cutoff region of widthDkeddywhere the eddy viscosity oper
ates.~In reality a wave packet may enter and leave this
gion of k-space several times as it random walks to the d
sipation range. Thus we do not expect the actual e
viscosity needs to be large enough to fully damp fluctuatio
before they are reflected back to large scales.! For this ex-
ample, the velocity of the packet ink-space isu21kx so the
time it spends in the edge region isukx

21Dkeddy. An eddy
damping rate of the form,

geddy~k!;2u21kcDkeddy
21f F kc2k

Dkeddy
G , ~32!

would therefore effectively damp fluctuations being shea
to high wavenumber. The maximum damping rate given
the theoretical enstrophy range eddy viscosity defined in

r

ity
s

ed
m-
he

FIG. 7. Heuristic picture of a fluctuation wave packet undergoing shear
discussed in Sec. IV D, the region of significant eddy viscosity near
cutoff ~the grey region!, acts as an absorbing buffer for fluctuation ener
that would leave the system unaided if the system were truly unbound
S. A. Smith and G. W. Hammett
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~27! scales asneddy(kc)kc
2'u21kck0

21 while 2geddy(kc)
3 kc

2 ; u21kcDkeddy
21, so the same basic scaling is obtain

if we identify k0 with Dkeddy.

E. Hyperviscosity

Hyperviscosity is defined as a damping term of the fo

gk
d52nhS uku

kc
D p, ~33!

wherep is larger than two. Hyperviscosity has been used
a long time as a numerical tool for simulating high Reyno
number turbulence, in order to provide an artificial dissip
tion range in the resolved modes. Hyperviscosity has b
regarded as an artificial damping term that does not atte
to estimate the subgrid interaction. Authors have, howe
viewed hyperviscosity as a kind of subgrid model in the w
that it serves as a sink for small scale fluctuation energy2

The choice of powerp and size of the hyperviscosit
nh is rarely discussed in the literature. Typically the size
the damping is set experimentally so that a dissipation ra
appears within the resolved modes. Studies of 2D Nav
Stokes turbulence2 have found that large powers (p;16)
work well, but that the optimal choice depends on the re
lution of the simulation. With insufficient damping at th
cutoff fluctuation energy will tend towards equipartition
the Fourier modes leading to a spectrumV(k) } k towards
the cutoff which disagrees with the converged dissipat
result. If the power used is too small, then damping tha
sufficient to prevent unphysical behavior at the cutoff w
introduce significant damping at long wavelengths a
strongly affect the results. On the other hand, there m
clearly be an upper limit to the power used. For a very h
power there would be virtually no damping for almost all t
modes except for a few modes near the cutoff which wo
be extremely damped. The results would be similar to p
forming a simulation with those modes removed and
damping on the remaining modes. This behavior may
considered analogous to impedance matching at the en
an electrical cable, where strong reflections occur if the lo
impedance is either too small or too large.

The constant,nh , is typically chosen so that modes ne
the cutoff experience damping that is large compared to
eddy turnover rate. An artificial dissipation region is intr
duced into the resolved modes that is much narrowe
k-space than the dissipation region given by the usuak2

damping term. If the precise form of the dissipation does
affect the large scale dynamics~as we will find in Sec. VI!,
then the use of artificial damping terms like hyperviscos
can yield significant savings in computation by greatly
ducing the required resolution.

V. HYPERVISCOSITY AS A MODEL FOR EDDY
VISCOSITY

The exact form of the eddy damping depends on
detailed nature of the saturated spectrum and the mode-m
coupling to unresolved modes. If one could accurately p
dict the eddy viscosity from theory then there would be
point in performing numerical simulations. There are a la
Phys. Plasmas, Vol. 4, No. 4, April 1997
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number of models for drift wave turbulence each of whi
will saturate with a different spectrum, so in general we w
expect a different eddy viscosity from that predicted f
Navier-Stokes turbulence by Kraichnan.4 Hence we are mo-
tivated to parameterize the basic features of the eddy vis
ity in terms of the large scale flow.

Hyperviscosity provides significant damping in a narro
region near the cutoff wavenumber, just as the calcula
eddy damping for this model does~Fig. 6!. An obvious
method of fixing the two hyperviscosity parameters, t
powerp and magnitudeM in Eq. ~36!, is to match the width
and overall damping rate with the calculated eddy damp
term. The width and the damping are functions of the la
scale flow, so to apply the results to simulations we m
define quantities corresponding to the long wavelength s
k0 and eddy circulation timeu. As a surrogate for the long
wavelength eddy turnover time we used the volume avera
shearing rate,

S~ t !5S 1AE S~x,t !2 dxD 1/2. ~34!

An average wavenumber of the large scales is given by
viding the rate of shear by the root mean square of the
locity field,

kav5SS 1AE Vx
21Vy

2 dxD 21/2

. ~35!

We will use the average wavenumberkav as an estimate for
the long wavelength scalek0 and the inverse rate of shea
S(t)21 as an estimate for the eddy circulation timeu.

The hyperviscosity used for the simulations conside
here introduces a damping term of the form,

gh52M F S kxkxcD
p

1S kykycD
pG , ~36!

into the model, Eq.~10!, by settinggk
d5gh . This hypervis-

cous damping term,gh , can be compared to the dampin
rate, neddy(k)k

2, given by the theoretical eddy viscosity o
Eq. ~27!, and to the heuristic eddy damping rate defined
Eq. ~32!. The width of the theoretical eddy viscosity scal
with the long wavelength scalek0 while the width of this
hyperviscosity scales askc /p, so we expect to find thatp
} kc /kav. Comparing the magnitude of the three dampi
rates at the cutoff wavenumberkc , we expect the magnitude
to scale asM } Skc /kav.

An estimate for the powerp and magnitudeM was ob-
tained from the numerically calculated eddy viscosity by s
ting two moments ink-space to zero,

(
k

~2neddy~k!k22gh!50,

~37!

(
k

~2neddy~k!k22gh! min ~kxc2ukxu, kyc2ukyu!50.

This estimate matches the width and magnitude of the da
ing region given by the hyperviscosity to that of the ed
viscosity. The estimate for the power and magnitude fr
simulations with a range of parameters and resolutions
985S. A. Smith and G. W. Hammett
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summarized in Figs. 8 and 9. The scaling of the power~and
hence the width of the damping region!, seems very robust
The estimate from these simulations gives

p;1.7kc /kav12.4,
~38!

M;0.1Skc /kav.

The scaling of the magnitude~Fig. 9! is less robust than the
scaling of the power~Fig. 8!. There may be other macro
scopic quantities that can be used to refine the estimate
the size of the damping.

VI. TESTS OF HYPERVISCOSITY

Simulations were performed for a range of paramete
and grid sizes ranging from 32332 to 2563256 to test the
performance of three dissipation models against each o
and against the use of no dissipation model. An ordin
hyperviscosity was tested with powerp516 and coefficient
set based on the rate of shear,nh5S. The Smagorinsky eddy
viscosity was tested with the constantCs50.1 chosen arbi-
trarily. Based on the results from the previous secti
we tested the parameterized hyperviscosity with pow
p51.7kc /kav12.4 and magnitudeM50.1S(t)kc /kav.

Typically simulations of isotropic turbulence will use a
a priori fixed power hyperviscosity to provide the necess

FIG. 8. Hyperviscosity power predicted from direct numerical simulatio

FIG. 9. Hyperviscosity magnitude predicted from direct numerical simu
tion.
986 Phys. Plasmas, Vol. 4, No. 4, April 1997
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damping. Resulting spectra for simulations using the fix
power hyperviscosity are shown in Fig. 10 for the parame
choice that gave moderate levels of turbulence. We exp
the rate of transfer of fluctuations to short wavelengths
scale with the rate of shearS, so our choice of a hypervis
cous damping of the formS(k/kc)

p corresponds to setting
the dissipation wavenumber to a fixed fraction of the cut
wavenumberkc . ~The dissipation wavenumber is the scale
which the damping of the conserved quantity becomes
namically significant.! The spectrum at long wavelengths o
served in simulations24 is a slowly changing function of Rey
nolds number for the 2D Navier-Stokes enstrophy casc
where hyperviscosity is the primary source of dissipatio
Since the physics of our drift-wave model is dominated
production and dissipation of fluctuations at long wav
lengths~see Fig. 5!, we expect to find an even weaker d
pendence of the long wavelength saturation on the pre
details of the dissipation range. Moving the hypervisco
dissipation scale with the cutoff allows us to resolve more
the small scale dynamics with increased resolution. T
spectra are almost identical at long wavelengths for g
sizes 1283128 and 2563256, so we are confident that th
2563256 case well represents the converged solution.

The results of simulations using no eddy viscosity
hyperviscosity term are shown in Fig. 11 for comparison
is well known that lack of an eddy viscosity leads to u
physical results in Navier-Stokes turbulence when the sm
scale dissipation wavenumber exceeds the cutoff. One m
think that since dissipation from terms that model Land
damping at long wavelengths is the dominant drain of ene
then the transfer to small spatial scales can be comple
ignored. From the results, we can see that this hypothes

.

-

FIG. 10. Convergence of simulations using hyperviscosity at moderate
bulence levels.~The parameters,d050.15,a50.015, andm50.0001, were
used with periodic box size 50rs350rs .) A hyperviscosity with ana priori
fixed powerp516 was used as is typically done in simulations of isotrop
turbulence. The damping was set to the rate of shear (nh5S) to ensure that
resolved high-k modes were sufficiently damped. The large scale aver
wavenumber,kav , calculated from the highest resolution simulation is i
cluded for reference.
S. A. Smith and G. W. Hammett
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only partially true. Given sufficient resolution, the spectru
converges to the reference spectrum obtained from the h
est resolution hyperviscosity run. The lower resolution ru
however, give wildly inaccurate results despite the fact t
the lowest resolution considered here (32332) resolves the
primary production and dissipation wavenumbers in Fig.
Drift wave turbulence will typically exhibit only a moderat
separation of scales between the spectral peak and the
pative range, so it is practical to perform 2D simulations w
sufficient resolution that an eddy viscosity or hyperviscos
term is unnecessary. On the other hand, for three-dim
sional simulations of drift wave turbulence, the reduction
required resolution can be significant.

Performance of the Smagorinsky eddy viscosity w
constant,Cs50.1, for the same parameter choice is shown
Fig. 12. Again, given sufficient resolution, the spectrum co
verges to the reference spectrum. Results at long wa
lengths (krs;0.4) for lower resolution runs are better tha
those obtained using no additional dissipation terms but
as good as those obtained using a hyperviscosity. We fo
that choosing a larger value of the constantCs will improve
the results somewhat at lower resolution but degrades
results for the 1283128 case. The constantCs is probably
not universal for the kind of turbulence we are studying he
in contrast to the case of the inertial range in Navier-Sto
turbulence. A fundamental problem with applying any ed
viscosity that gives damping scaling ask2, however, is that
providing sufficient damping for modes near the cut
forces one to introduce a significant artificial damping in
the long wavelength modes that dominate the nonlin
physics.

Simulation results using the parameterized hypervisc
ity are shown in Fig. 13. In this case, results at low resolut
are obtained that are superior to those from all other
proaches considered in our study. The performance of
parameterized hyperviscosity indicates that it provides a

FIG. 11. Convergence of simulations using no added dissipative term
the same choice of parameters used in Fig. 10. The lower resolution re
failed to give reasonable results in this case.
Phys. Plasmas, Vol. 4, No. 4, April 1997
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sonable model of the actual eddy damping process. Note
in the lowest resolution run here, a significant portion
driven modes lie beyond the cutoff wavenumber, so
spectrum falls below the reference spectrum. It is poss
that even better results may be obtained for low resolut
simulations by modeling the transfer of energy from un
solved small scales to resolved long wavelengths by addin
negative term to the eddy viscosity to model this backscat

Convergence of the measured flux is summarized
simulations of weakly driven, moderately driven, an
strongly driven turbulence~Figs. 14, 15, and 16, respec
tively!. In each case, the measured flux is normalized t
reference value obtained from a high resolution~grid size
2563256) simulation using hyperviscosity. In all cases t

or
lts
FIG. 12. Convergence of simulations using the Smagorinsky eddy visco
with Cs50.1, for the same choice of parameters used in Fig. 10.

FIG. 13. Convergence of simulations using the parameterized hypervis
ity (p51.7kc /kav12.4,M50.1Skc /kav) for the same choice of parameter
used in Fig. 10.
987S. A. Smith and G. W. Hammett
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most reasonable results obtained at lower resolution w
obtained using the parameterized hyperviscosity or thek16

hyperviscosity. For the moderate and strong turbule
cases, one obtains reasonable results at resolutions at le
factor of 2 smaller than those necessary for simulations w
no added dissipation. For the case of weakly driven tur
lence, however, the nonlinear coupling to unresolved mo
is less important and there is little difference between any
the models used. In summary, a hyperviscous damping t
works effectively in drift wave simulations at low resolution
~working down tokc /kav;4) and moderate to strong leve
of turbulence.

FIG. 14. Convergence of the measured flux as a function of resolu
for the case of weakly driven turbulence.~The parameters,d050.20,
a50.03, andm50.0001, were used with periodic box size 40rs340rs .)
The flux is normalized to the flux measured by a reference simulation w
kc /kav'13. In this case the nonlinear transfer to shorter wavelengths
small effect, so the use of a subgrid damping term is unnecessary.

FIG. 15. Convergence of the measured flux as a function of resolution
the cases of moderately driven turbulence.~See Fig. 10 for the parameters!
The flux is normalized to the flux measured by a reference simulation w
kc /kav'15. In this case the nonlinear transfer is sufficiently strong that
simulations will blow up with no damping term for lower resolution runs.
high powered hyperviscosity outperforms the Smagorinsky viscosity.
988 Phys. Plasmas, Vol. 4, No. 4, April 1997
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VII. RESOLUTION REQUIREMENTS

We have observed that if the cutoff wavenumber is
least a factor of 3 or so greater than the long wavelen
scale,kav, ~or roughly a factor of 6 larger than the spectr
peak wavenumber!, then reasonable results can be obtain
with the use of a hyperviscosity. There are several source
error in calculating macroscopic quantities such as the
from lower resolution simulations. Contributions to the flu
from unresolved modes may be significant or the resol
modes may fail to saturate at the correct level. Incorrect s
ration levels may be due to the failure of our parameteri
tion to model the eddy viscosity or from the failure of edd
viscosity to model the physics of unresolved modes.

For the lowest resolution simulations considered in t
study, the contribution to the flux from unresolved modes
too small~5% or less! to explain the discrepancy between th
calculated flux at low and high resolution. As is clear fro
the spectra in Figs. 10 and 13, the error in the calculated
at the lowest resolution comes from the failure of resolv
modes to saturate at the correct level. The eddy visco
calculated for grid size 32332 for moderate levels of turbu
lence is plotted in Fig. 17. The parameterization overe
mates the eddy viscosity significantly in this case. As w
the calculated eddy viscosity is significantly anisotropic a
the negative viscosity at long wavelengths is of compara
size to the positive portion that the parameterization mod
For comparison, we used the calculated eddy viscosity
simulation at this resolution. The resulting spectrum
shown compared to the hyperviscosity simulations and
high resolution reference spectrum in Fig. 18. Using the c
culated eddy viscosity gives very accurate results in t
case. The flux calculated from this simulation is within 5
of the flux calculated from the highest resolution run.

The current limits of the parameterized hyperviscos
are therefore clearly due to its failure to model accurately
eddy viscosity at low resolution. Future work will attempt
improve the parameterization of the magnitude of the hyp

n

re
a

or

re
e

FIG. 16. Convergence of the measured flux as a function of resolution
the cases of strongly driven turbulence.~See Fig. 2 for the parameters.! The
flux is normalized to the flux measured by a reference simulation wh
kc /kav'13. The results are similar to those obtained for the case of m
erately driven turbulence~Fig. 15!.
S. A. Smith and G. W. Hammett
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viscosity, generalize the parameterization to provide an
tropic damping, and possibly to incorporate a model for
negative viscosity at long wavelengths. It is not clear fro
this work which of these improvements will have the great
effect on improving the accuracy of low resolution simu
tions.

VIII. CONCLUSIONS

A new parameterized hyperviscosity, Eqs.~36! and~38!,
was derived by analyzing the eddy viscosity calculated fr
simulations with a range of parameters and resolutio
Simulations using the parameterized hyperviscosity perfo
somewhat better than those using hyperviscosity with fi
power, and significantly better than those using no ex

FIG. 17. Eddy viscosity calculated for a low resolution simulation at m
erate levels of turbulence.~See Fig. 10 for the parameters.! In this case, the
parameterized hyperviscosity grossly overestimates the damping. Note
the calculated eddy viscosity is anisotropic in this case and has a signifi
negative component at long wavelengths. Simulations at this resolution
timatedkc /kav'3.

FIG. 18. Comparison of simulations at low resolution using hypervisco
and the calculated eddy viscosity in Fig. 17.~At this resolution, the Smago
rinsky eddy viscosity gives very poor results, and simulations with no ad
dissipative term blow up.!
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damping term, or a Smagorinsky-type eddy viscosity. Ac
rate results are obtained provided the cutoff wavenumb
kc , is approximately four or more times greater than t
characteristic wavenumber of the advecting velocity,kav. At
lower resolutions, the parameterization fails to accurat
model the eddy viscosity.

This new hyperviscosity model is easy to implement
3D psuedospectral simulations. Finite difference analog
involving “

p operators are conceivable, but would requ
more effort to implement, and generalizations to no
uniform turbulence with boundary layers would be a top
for another study.

Because this hyperviscosity is based on physics gen
to most drift-wave turbulence, application to more comple
models is straightforward. This hyperviscosity is very use
computationally, since reducing resolution requirements
even a factor of 2 reduces the computational requirement
a factor of 8 in two dimensions, or 16 in three dimension
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