
Gyrofluid Theory and Simulation of Electromagnetic
Turbulence and Transport in Tokamak Plasmas

Philip Benjamin Snyder

A Dissertation

Presented to the Faculty

of Princeton University

in Candidacy for the Degree

of Doctor of Philosophy

Recommended for Acceptance by the

Department of Astrophysical Sciences

November 1999



c©Copyright by Philip Benjamin Snyder, 1999. All rights reserved.



Dedicated to my parents,

Gene and Christine Snyder

iii



iv



Abstract

T URBULENCE AND TRANSPORT in toroidal plasmas is studied via

the development of an electromagnetic gyrofluid model, and its imple-

mentation in realistic nonlinear simulations. This work extends ear-

lier electrostatic gyrofluid models to include magnetic fluctuations and

non-adiabatic passing electron dynamics. A new set of electron fluid equations is

derived from the drift kinetic equation, via an expansion in the electron-ion mass

ratio. These electron equations include descriptions of linear and nonlinear drift

motion, Landau damping, and electron-ion collisions. Ion moment equations are de-

rived from the electromagnetic gyrokinetic equation, and the gyrokinetic Poisson’s

Equation and Ampere’s Law close the system. The model is benchmarked with

linear gyrokinetic calculations, and good agreement is found for both the finite-β

ion temperature gradient (ITG) and kinetic Alfvén ballooning (KBM) instabilities.

Nonlinear simulations of ITG and KBM-driven turbulence are performed in toroidal

flux tube geometry at a range of values of plasma β, and electromagnetic effects are

found to significantly impact turbulent heat and particle transport. At low values

of β, transport is reduced, as expected due to the finite-β stabilization of the ITG

mode. However, as β approaches the ideal-MHD stability threshold, transport can

increase. In the presence of dissipation provided by a model of electron Landau

damping and electron-ion collisions, this transport increase can be quite dramatic.

Finally, the results of the simulations are compared to tokamak experiments, and

encouraging agreement is found with measured density and temperature fluctua-

tion spectra. Direct comparisons of transport fluxes reveal that electromagnetic

effects are important at characteristic edge parameters, bringing predicted fluxes

more closely in line with observations.
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Chapter 1

Introduction

U NDERSTANDING TURBULENT TRANSPORT has been a critical,

but elusive, goal of the magnetic fusion program for decades. In the

past few years, with the advent of powerful supercomputers and effi-

cient physics models, much progress has been made toward the devel-

opment of quantitatively accurate predictions of tokamak transport. However, there

are still many transport phenomena which are poorly understood, and a complete

model, which can reliably predict transport in future experiments, is lacking.

The primary goal of this thesis is to take a step towards a more complete

understanding of turbulent transport. To this end, a new physics model is developed

and implemented in nonlinear numerical simulations. The new model relaxes the

electrostatic approximation made in many previous models, by adding the physics

of magnetic fluctuations and non-adiabatic passing electrons.

The introduction of electromagnetic physics both quantitatively modifies

previous electrostatic results, and introduces qualitatively new physics, making the

model both more accurate and more complete. The model is used to assess the im-

portance of electromagnetic effects on turbulence and transport, both in the plasma

core and in the edge.1 Comparisons are made both with electrostatic simulations

and with experiment. The model should help bring theoretical predictions in line

with experimental results, and shed light on previously poorly understood trans-

1The term edge here refers to the outer ∼ 20% of the closed magnetic surfaces. The core
refers to the inner ∼ 80%. Transport in the extreme edge, or the scrape off layer where magnetic
surfaces are not closed, is not considered here.

1



2 Chapter 1. Introduction

port phenomena. We hope that, in addition to providing new physical insight, our

model will ultimately aid in the design of low transport, cost effective magnetic

fusion reactors.

1.1 Background and Motivation

Understanding and controlling the rate at which particles and heat escape from

the reactor chamber is critical to the successful design and operation of a magnetic

fusion device. In the early days of the fusion program, estimates of particle and

heat transport based on simple collisional diffusion were made. However, these

estimates were found to drastically under-predict the transport observed in experi-

ments, and the large measured transport was labeled “anomalous.” Understanding

this “anomalous” transport has been a primary goal of the fusion program ever

since.

While the magnetically confined plasmas in most present-day fusion experi-

ments are believed to usually be stable to large-scale magnetohydrodynamic modes,

there also exist smaller scale instabilities (often called “microinstabilities”) which

can drive turbulence, leading to the large observed transport. Recent improvements

in tokamak diagnostics have allowed for the direct observation of fluctuations be-

lieved to be driven by these microinstabilities. These fluctuations typically have

length scales perpendicular to the magnetic field on the order of the ion gyrora-

dius, k⊥ρi ∼ .1 − .5, where k⊥ is a typical perpendicular wave number, and ρi

is the ion gyroradius, defined to be vti/Ωci, where vti is the ion thermal speed

(
√

Ti/mi), and Ωci is the ion cyclotron frequency, (ZeB/mic). The fluctuation

frequencies are small compared to Ωci, often scaling like the diamagnetic drift fre-

quency, ω∗ = kθρivti/Ln, where kθ is a typical poloidal mode number, and Ln is the

density scale length, −[d(ln n0)/dr]−1.

With these typical fluctuation length and time scales in mind, it is possible

to make a simple mixing length estimate of the particle diffusivity (D), and heat
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conductivity (χ):

D,χ ∼ ∆x2

∆t
∼ ρ2

i ω∗ ∼ ρ2
i kθρi

vti

Ln

∼ ρ2
i vti/Ln

where we’ve taken kθρi ∼ 1. The above result is known as the gyro-Bohm diffusivity,

and it yields estimates of global confinement that agree with many broad trends

observed in several tokamak experiments. This agreement is encouraging, insofar

as it suggests that microturbulence is responsible for the “anomalous” transport.

However, such simple mixing length estimates prove inadequate as transport models

both because they predict global transport only within an order of magnitude,

and because they are unable to properly account for local transport behavior. In

particular, the mixing length estimate predicts that heat flux and diffusivity should

decrease with minor radius (due to the T 3/2 dependence), while in experiments

the heat diffusivity and fluctuation levels are generally observed to increase with

radius, with a particularly dramatic increase near the plasma edge. Hence the

mixing length model often predicts too large a flux in the core and too small a

flux near the edge. In addition, mixing length models cannot fully account for

the improved confinement modes and transport barriers seen in many experiments.

More detailed gyro-Bohm based models are able to explain some of these effects

despite their basic gyro-Bohm scaling by including effects such as critical gradients

and stabilizing E×B shear.

Several more involved analytic theories of turbulent transport have been

developed, such as those described in [Lee and Diamond 1986], [Terry et al.

1988], and [Biglari et al. 1989]. Each of these models contains a great deal of

physical insight, but they all rely on assumptions which must be checked with more

detailed analyses. Quantitative predictions based on these models suffer from many

of the same limitations as simple mixing length estimates. A number of excellent

review articles are available on analytic theories of turbulent transport, including

[Krommes 1997; Connor and Wilson 1994].

In order to provide a more complete and accurate model of turbulent trans-

port, direct numerical simulation (DNS) techniques have been employed. Nonlinear

numerical simulation of plasma turbulence is very challenging, because of the large
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number of dimensions (six in a fully kinetic simulation), and the wide range of

plasma length and time scales. However, dramatic increases in available computing

power, combined with the development of efficient physics models have led to a

great deal of progress.

1.1.1 Physics Models for Turbulence Simulations

Several different types of physics models have been employed for the study of tur-

bulence and transport in fusion plasmas. These models can all be derived starting

with a general six-dimensional plasma kinetic equation, and making a series of ap-

proximations. In all cases, tradeoffs between physical completeness of the model

and its practicality for use in numerical simulations are made. The models can be

broadly categorized into pure fluid models, kinetic models, and fluid/kinetic hybrid

models.

Pure Fluid Models

The simplest models are pure fluid models. These models take velocity space mo-

ments of a kinetic equation, and then close the moment hierarchy by assuming

the plasma is highly collisional. Note that the simplest fluid models, such as ideal

MHD, omit the small scale dynamics necessary for an accurate description of micro-

turbulence (note however that kinetic effects can be added to MHD-type models, as

in Appendix C). More detailed models such as Braginskii’s equations [Braginskii

1965] must be employed.

Fluid models are generally amenable to numerical simulation, since only a

small number of equations need be solved in a three-dimensional space. A set of

analytic approximations is generally made to focus the model on the length and

time scales relevant for microturbulence and transport.

Earlier fluid simulations of plasma turbulence were carried out using simpli-

fied equations, often in local coordinates, two dimensions, or sheared slab geometry,

for example [Horton et al. 1980]. Simulations in toroidal geometry were first made

feasible by the development of the ballooning representation [Connor et al. 1979],
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and its extension to nonlinear problems [Cowley et al. 1991; Beer et al. 1995].

This representation utilizes the separation between equilibrium and perpendicular

fluctuation scale lengths to set up an efficient computational domain, as described

in Sec. 5.1.

Pure fluid simulations have revealed a great deal about the qualitative nature

of plasma microturbulence. However, such simulations cannot provide a quantita-

tively accurate model of turbulence in the core of a fusion plasma, because they

lack important kinetic effects. Only near the plasma edge, where high collisionality

negates kinetic effects, can such models be reliably used.

Recent developments have centered around the use of Braginskii-based fluid

equations to study turbulent transport near the plasma edge, eg. [Zeiler et al.

1998; Xu et al. 1998; Rogers and Drake 1997; Scott 1997; Carreras et al.

1991; Hasegawa and Wakatani 1987]2.

Kinetic Models and Gyrokinetics

The recognition of the importance of plasma kinetic effects in the growth and

saturation of microinstabilities led to interest in more direct approaches to the

solution of the kinetic equation.

The most general plasma kinetic equations are six-dimensional (three dimen-

sions in real space and three in velocity space), and contain a wide range of spatial

and temporal scales, making direct numerical simulation in realistic geometry dif-

ficult, beyond the early pioneering work of [Cheng and Okuda 1977]. However,

several recent advances have led to great progress toward fully kinetic simulations.

The first is the development of the nonlinear gyrokinetic equation [Frieman

and Chen 1982; Lee 1983; Dubin et al. 1983]. Gyrokinetics averages over

the particles’ fast gyromotion around a strong magnetic field, resulting in a five-

dimensional equation describing the drift motion of charged rings. All time scales

slower than the ion gyro-frequency (Ωi = ZeB/mic, where Ze is the ion charge,

B is the equilibrium magnetic field, and mi is the ion mass) are retained, as are

2The fluid equations of B. Scott employ a model of Landau damping, and thus can also be
considered a gyrofluid model.
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spatial scales of the order of the ion gyroradius (ρi = vti/Ωi where vti is the ion

thermal speed, defined to be
√

Ti/mi).

The resulting gyrokinetic equation is still difficult to solve directly, and

particle-in-cell methods [Birdsall and Langdon 1991], which follow the tra-

jectories of many superparticles in order to resolve the phase space, were applied

[Lee 1983; Lee 1987]. These techniques were made significantly more efficient for

the study of realistic core turbulence systems with small fluctuation levels by the

development of the δF method [Kotschenreuther 1988; Dimits 1988; Dimits

and Lee 1993; Parker and Lee 1993], which removes the equilibrium distribution

and its associated noise from the simulation.

δF gyrokinetic particle (GKP) simulations are now a primary tool for in-

vestigating plasma microturbulence, and they have been implemented both in flux

tube [Dimits et al. 1994] and full torus geometries [Parker et al. 1993]. A mas-

sively parallel, full torus GKP code including ion-ion collisions has been developed

by [Lin et al. 1998], and used to study zonal flow dynamics. While most past GKP

simulations have been electrostatic with purely adiabatic electrons, extensions to

include magnetic fluctuations and non-adiabatic electrons are a subject of current

research, as is discussed in Sec. 1.1.4.

The direct approach of solving the gyrokinetic equation on a five-dimensional

grid has also been attempted, and found to be computationally challenging. How-

ever, with recent improvements in computational power and algorithms, there has

been an increasing amount of work employing this approach [Jenko and Scott

1998; Dorland et al. 1999].

Fluid/Kinetic Hybrids and the Gyrofluid Model

The computational advantages of fluid models, combined with the recognition of

the importance of kinetic effects in microturbulence, encouraged the development

of models which sought to incorporate kinetic effects into an enhanced fluid model.

One approach involves treating one component of the plasma, often the bulk, with

fluid equations, while treating another component, perhaps a fast beam distribu-

tion, with a kinetic particle simulation. While this method is effective for some
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problems, its usefulness in microturbulence is limited, because of the importance

of kinetic effects within the bulk plasma itself.

Another approach is to include kinetic effects within the fluid equations

themselves. Early efforts used artificial viscosities [Lee and Diamond 1986] and

heat conductivities [Waltz 1988; Hamaguchi and Horton 1992] to produce

rough models of kinetic effects. It was later recognized that a systematic approach

to closing the highest fluid moment could provide an excellent model of linear

Landau damping, while maintaining important conservation properties [Hammett

and Perkins 1990; Chang and Callen 1992a].3

The “gyrofluid” or “gyro-Landau fluid”4 approach, which takes velocity

space moments of the gyrokinetic equation in gyrocenter space, and then closes

the moment hierarchy with closures carefully chosen to model kinetic effects, has

been widely employed in studies of plasma turbulence and transport. Gyrofluid

models were developed first in slab geometry [Dorland 1993], and have since

been implemented in toroidal geometry [Waltz et al. 1992; Beer et al. 1992;

Hammett et al. 1993], with expanded closure terms which include models of lin-

ear and nonlinear finite-Larmor radius effects [Hammett et al. 1992; Dorland

1993] as well as toroidal drift resonances [Beer and Hammett 1996]. Trapped

ion effects and a full model of bounce-averaged electron dynamics have also been

implemented in gyrofluid models [Beer 1995].

An important benchmark of the accuracy of gyrofluid approximations is

provided by benchmarks with δF gyrokinetic particle (GKP) simulations. A brief

3Nonlinear Landau damping effects are more difficult to include in a fluid model. Some types
of nonlinear Landau damping are included in some models [Dorland 1993], while it has been
shown that there can be errors near marginal stability in strongly kinetic regimes [Mattor 1992].
However, we believe that the regime where these errors occur is fairly narrow and may only lead
to a small shift in the effective critical gradient predicted by the simulation [Dorland 1993;
Hammett et al. 1993].

4A number of different terms has been used to describe such equations, including “gyrofluid”,
which emphasizes that the equations are moments of a gyrokinetic equation in gyrocenter space,
“Landau fluid”, which emphasizes that the fluid equations contain models of Landau damping,
and “gyro-Landau-fluid” which emphasizes both. The term gyrofluid is used here for brevity
to describe any model which takes moments of the gyrokinetic equation and includes models of
kinetic effects.
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discussion of comparisons between gyrofluid and GKP simulations is given in Ap-

pendix A.

1.1.2 Current Understanding of Tokamak Transport

The use of large-scale direct numerical turbulence simulations, in conjunction with

linear stability calculations and analytic theory, has led to rapid progress in the

understanding of tokamak transport over the past decade. The primary tools fu-

eling this progress have been gyrofluid and δF gyrokinetic particle simulations,

with Braginskii-based fluid simulations playing an important role near the more

collisional edge of the plasma.

A great deal of physical insight has been generated by these simulations. It

is now generally thought that the ion temperature gradient mode (ITG, see Sec. 2.2)

plays a dominant role in driving the microturbulence and associated “anomalous”

ion thermal transport observed in the core of many tokamak experiments. Addi-

tional instability drive due to impurities and trapped particles is often important,

and an additional instability, the trapped electron mode (TEM), sometimes plays

a role, as shown, for instance, in the gyrofluid simulations of [Beer 1995]. It

has also been consistently observed in simulations [Parker et al. 1993; Dimits

et al. 1994; Beer 1995] that the turbulent spectrum peaks at wavelengths longer

than the linearly most unstable modes, yielding fluctuation spectra similar to those

observed in experiments [Fonck et al. 1993].

The present state of transport modeling is illustrated by Fig. 1.1. The mea-

sured total plasma stored energy for a number of shots at three different tokamak

experiments (DIII-D, JET, and TFTR) is plotted against the prediction of the

GLF23 transport model [Waltz et al. 1997], using data provided by [Kinsey

1998]. This analysis is similar to that in [Kinsey et al. 1997]. The GLF23 model

is constructed using a gyrofluid calculation of the linear mode growth rates and

quasilinear transport fluxes, with a variant of a mixing length estimate of the non-

linear saturation level fit to 3-D nonlinear gyrofluid simulations [Beer 1995]. The

model is based on theory and simulation results, and contains no fit coefficients from

experiments. The plot shows broad-based agreement between theory and experi-
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Figure 1.1: Plasma stored energy from several shots on three tokamaks is compared
to predictions from the GLF23 transport model. Encouraging agreement is found
in the underlying trends, but the scatter is significant, and a number of caveats are
invoked. [data courtesy of J. Kinsey]
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ment over more than two decades in stored energy. Reasonable agreement is found

for data from all three tokamaks, in both H and L mode shots. This agreement is

very encouraging. It strongly suggests that the “anomalous” transport measured

in experiments can be explained by microinstability-driven turbulence, and it also

suggests that many aspects of the turbulent transport are being correctly described

by the model. However, there is a great deal of scatter in the plot (RMS error of

26%).5 While some of this scatter can be attributed to uncertainties in experimen-

tal measurements, the discrepancies in the outliers and the overall scatter are large

enough to indicate that important physics is absent from the transport model and

the nonlinear simulations on which it is based.6

Furthermore, there are a number of caveats involved in producing the plot in

Fig. 1.1. Measured density and rotation profiles are used. Hence, the model is using

a fixed density profile and predicting only heat transport, not particle transport.

Also, a measured temperature is used as a boundary condition at a radius of 90% of

the total plasma minor radius, and heat transport is predicted only inside this fixed

point. Hence the model is not predicting transport near the edge of the plasma.

Despite the many caveats and uncertainties, the results produced by GLF23 and

similar theory-based transport models, in conjunction with reasonable agreement

between experiment and nonlinear simulations in turbulent spectra and fluctuation

measurements [Fonck et al. 1993; Evensen et al. 1998], support ITG/TEM

as an important instability mechanism in the core, and demonstrate clear progress

toward a quantitative understanding of turbulent transport.

Another important insight relates to the role of E × B flows. Theoretical

work has suggested that shear in large-scale E×B flows can break apart turbulent

eddies and lead to a reduction in transport [Biglari et al. 1990; Hahm and

Burrell 1995]. The component of the E×B flow with kφ = kθ = 0, where φ and

θ are the toroidal and poloidal directions, has come to be called zonal flow, because

5The IFS-PPPL model [Kotschenreuther et al. 1995] has many similarities to GLF23 and
achieves a comparable RMS error.

6It should be noted that there are a number of other theory-based and semi-empirical models
which achieve similar levels of fit to the experiments despite fairly significant differences in the
models. Efforts to extend the database to include transient and perturbative experiments and
rotation scans are ongoing to help distinguish between the performance of the many models
[Mikkelsen 1998; Kinsey et al. 1999].
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it is radially localized. Both gyrofluid [Hammett et al. 1993; Beer 1995] and

δF gyrokinetic [Dimits et al. 1994; Lin et al. 1998] simulations have observed

the turbulent generation of small radial scale zonal flows. These simulation results,

combined with recent theoretical developments [Hahm et al. 1999; Diamond

et al. 1998] have demonstrated that turbulence-driven flows play a critical role

in the saturation of turbulence. Sheared E×B flows are now widely believed to

play an important role in the enhanced confinement modes observed in both the

core and the edge of tokamak experiments. Improved understanding of these flows

suggests the possibility that they may be used to control turbulent transport, and

lead to at least a partial solution to the “anomalous transport problem.”

1.1.3 The Need for an Electromagnetic Model with Non-

adiabatic Passing Electrons

Significant progress toward a quantitative understanding of turbulent transport has

been made at a rapid pace over the course of the last decade. This progress brings

with it the promise that, with continuing refinement and improvement of physics

models and simulation codes, a reliable and predictive understanding of transport

may be within reach.

While progress has been great, there are still many uncertainties, and pre-

vious models have invoked a number of caveats and approximations that must be

relaxed in a more complete model. Many of these caveats are mentioned above,

and here we emphasize two of the most important: the electrostatic approximation

and the use of adiabatic passing electrons.

Most previous gyrokinetic particle and gyrofluid simulations have invoked

the electrostatic approximation, assuming that turbulence can be described purely

in terms of a fluctuating electrostatic potential, with magnetic fluctuations ne-

glected. Formally, this is equivalent to assuming zero plasma β, where β is the

ratio of the plasma pressure to the magnetic field pressure. However, it is very

important to note that, as explained in Sec. 2.3.1, the electrostatic approximation

requires not only β ¿ 1, but also requires that β be far below the ideal-MHD

critical βc, a condition rarely met in plasmas of fusion interest. This is especially
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important in the outer regions of the plasma, where β is generally small, yet large

values of the safety factor q and sharp gradients often push the plasma close to the

ideal ballooning limit. Furthermore, the validity of the electrostatic approxima-

tion will be more questionable in future high β experiments,7 and in any attractive

fusion reactor,8 than it has been in past lower β experiments.

The electrostatic approximation removes the predominantly electromagnetic

modes such as the shear Alfvén wave, and its associated instabilities (see Secs. 2.1

and 2.3), from the system. Hence electrostatic simulations cannot evaluate the

importance of such modes, which are predicted by linear theory to be unstable in

both the core and edge of some tokamak plasmas. In addition, well known finite-β

modifications to predominantly electrostatic modes such as ITG (see Sec. 2.3) are

neglected. The modifications to linear instability growth rates are substantial at

experimentally observed β values, and there is reason to expect that the nonlinear

evolution of the system is affected.

Electromagnetic effects are expected to be particularly important in the

edge, where steep gradients often push the plasma close to the ideal-MHD stabil-

ity threshold. In this region, disagreement between experimentally observed heat

conductivity (which tends to dramatically increase near the edge), and the heat

conductivity predicted by electrostatic simulations (which tends to decrease near

the edge) has been so drastic that the edge region has often been entirely omitted

from theory-based transport models. It is hoped that adding magnetic fluctuations

to the simulations will dramatically improve agreement in the edge.

There are also expected to be important electromagnetic effects on the E×
B flows. Recent work by [Das et al. 1999] has suggested that magnetic stresses

may result in a reduction of zonal flows. This work further suggests that turbulent

zonal flow generation may be quenched for purely Alfvénic turbulence. This could

have a dramatic impact on nonlinear saturation and steady state transport levels,

particularly as the ideal β limit is approached.

7The START tokamak has recently achieved a volume averaged β ∼ 25%, with local val-
ues exceeding 50% in the inner core, and similar values are expected in future low-aspect-ratio
tokamaks.

8Fusion power scales with β2, and most reactor studies indicate that achieving high β is crucial
for an economical fusion reactor.
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Particle transport is another critical issue. The use of the electrostatic ap-

proximation in conjunction with adiabatic electrons9 leads to a non-physical predic-

tion of zero particle transport.10 Inclusion of a model of non-adiabatic trapped elec-

trons leads to finite particle transport, but it is not clear that this transport should

always be large compared to the passing particle transport. Relaxing the electro-

static approximation and the adiabatic passing electron approximation should allow

for more accurate calculation of particle transport, and may eventually lead to a

transport model which accurately accounts for both heat and particle transport.

A Simple Illustration

The importance of electromagnetic effects on typical tokamak core instabilities is

illustrated in Fig. 1.2.11 This schematic plot shows the instability growth rate as

a function of the plasma β. The ITG mode is unstable at zero β (for sufficiently

sharp temperature gradients), and it is stabilized as β increases. The mode labeled

KBM is a shear Alfvén ballooning instability. It becomes unstable at a finite β and

its growth rate increases with β in the range shown. The mode labeled MHD is not

a different mode, but rather the growth rate that one would calculate for the KBM

using the ideal-MHD model, which omits important kinetic effects. The point at

which the MHD line intersects zero is thus the ideal-MHD β limit (βc).

A traditional approach has been to calculate this βc, and conclude that

the tokamak must operate at β < βc. Of course even at β < βc the plasma is

often observed to be turbulent, and this microturbulence has been studied with

electrostatic (β = 0) models of the ITG.

9In the electrostatic (β = 0) limit, the Alfvén wave becomes a very high frequency mode
relative to drift waves. The assumption of adiabatic electrons is often made to remove this very
fast mode from the system and make numerical simulations more feasible. Finite β slows the
Alfvén wave, allowing its inclusion in practical simulations. Hence the inclusion of finite-β and
relaxation of the adiabatic electron assumption go hand in hand. See Ch. 2 for a more detailed
explanation.

10This is because, for adiabatic electrons, density is proportional to the electrostatic potential
(ne ∼ φ), while the E×B motion across the magnetic field is proportional to ∂φ

∂y where y is the
poloidal direction. The total cross field flux is then proportional to

∫
φ∂φ

∂y dy which is exactly zero.
The ion particle flux is then also zero, as should be evident from Poisson’s Equation (see Ch. 3).

11Trapped particle effects and trapped electron modes are neglected here for simplicity.
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Figure 1.2: This schematic drawing sketches the typical effects of finite β on insta-
bilities commonly seen in tokamaks. Mode growth rate is plotted vs. β with other
equilibrium parameters held fixed. The mode labeled ITG is the ion temperature
gradient mode. The mode labeled KBM is the kinetic Alfvén ballooning mode. The
dotted line labeled MHD is not a different mode, but rather the growth rate one
would calculate for the KBM using an ideal-MHD model without kinetic effects.
The ideal MHD critical β and the electrostatic limit of the ITG mode are indicated
with circles.
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The reality is more complex. In the region of interest, where β approaches

βc, the ITG growth rate is significantly smaller than in the electrostatic limit. Fur-

thermore, in the presence of finite ion temperature gradients, the kinetic Alfvén

ballooning mode is driven unstable well below βc. This second instability is funda-

mentally different in character than the ITG and its nonlinear behavior could be

qualitatively different. A complete transport simulation must include both of these

modes and the interaction between them.

1.1.4 A Brief History of Electromagnetic Microturbulence

Simulations

While most prior microturbulence simulations have been electrostatic, there have

been a number of efforts to include electromagnetic effects.

Pure fluid simulations based on Braginskii’s equations have recently included

magnetic fluctuations [Zeiler et al. 1996; Rogers and Drake 1997; Xu et al.

1998], and these simulations have proved very useful for understanding transport

near the edge, where Braginskii’s equations are valid. One principal result of this

work is that electromagnetic effects are crucial for understanding edge transport.

In particular, the simulations of [Zeiler et al. 1996; Rogers and Drake 1997]

have identified the MHD α parameter, which is proportional to β, as a critical

parameter in the L-H confinement bifurcation often observed in experiments.

[Scott 1997] has also developed an electromagnetic model which focuses

on studying edge turbulence. This model emphasizes electron dynamics, including

a rough model of electron Landau damping, and published results use a simplified

cold ion model. Three dimensional simulations of electron drift wave turbulence

have yielded a number of interesting results. Recent model improvements [Scott

1999] include a more extensive gyrofluid ion model, and general geometry. The

focus of Scott’s work is on the plasma edge where ω∗ ∼ k‖vte, and nonlinearly

sustained turbulence is thought to occur.

Another approach is to begin with a basic MHD-like model, which is electro-

magnetic but lacks small scale dynamics and kinetic effects, and add enhancements
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which make the model more appropriate for microturbulence studies. A method for

adding a model of Landau damping to MHD-like equations is given in Appendix C.

[Chang and Callen 1992a] have developed a model which adds kinetic effects

and lowest order small scale dynamics to a fluid model using a Chapman-Enskog

approach. These models have tended to focus on particular problems such as mag-

netic island formation and microtearing modes, rather than turbulent transport.

Work has also been done on developing electromagnetic gyrofluid models.

[Brizard 1992] derived a general geometry electromagnetic gyrokinetic equation,

and calculated the first few moment equations, but did not close the moment hi-

erarchy. [Waltz et al. 1995] included magnetic fluctuations in a set of gyrofluid

equations, but these contain time and space scales which make nonlinear simulation

difficult.

Effort has also been made to generalize δF gyrokinetic particle simulations

to include electron dynamics and/or magnetic fluctuations. The thesis work of

[Cummings 1995] presents an electromagnetic δF model based on a gyrokinetic

formulation utilizing a parallel momentum (pz) rather than a parallel velocity (v‖)

[Hahm et al. 1988], along with simulation results in one and two dimensions.

The computational intensity of particle simulations makes three-dimensional fully-

explicit simulation difficult, and a number of methods have been developed to

improve computational efficiency. [Cohen and Dimits 1997] have developed an

implicit method in sheared slab geometry. [Lee et al. 1999] are developing a

split weight scheme, which splits the standard δf response into adiabatic and non-

adiabatic parts, and treats only the small non-adiabatic part dynamically. [Chen

and Parker 1999] are developing a hybrid scheme using δF ions and a zero mass

fluid model for the electrons.

The direct route of gridding and solving the five-dimensional electromagnetic

gyrokinetic equation has been recently undertaken by [Jenko and Scott 1998;

Dorland et al. 1999], with first applications focusing on edge simulations or

electron temperature gradient mode (ETG) simulations where the range of time

scales is not as extreme as for the core ITG and KBM simulations considered here.
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1.2 Guiding Principles in Model Development

Our primary goal is to produce a realistic model of microturbulence-driven trans-

port which includes both magnetic fluctuations and non-adiabatic passing electrons.

We choose an essentially gyrofluid approach, with the expectation that this

will yield a model which includes the most important kinetic effects, while remaining

practical for realistic nonlinear simulations in toroidal geometry. While δF particle

simulations are more fundamental, gyrofluid simulations are less computationally

demanding, and the use of multiple simulation methods can help develop physical

insight into nonlinear dynamics. Gyrofluid codes run quickly enough on modern

massively parallel supercomputers that, even with the expected slowdown due to

the addition of electron dynamics and Alfvén waves, large numbers of realistic

three-dimensional nonlinear simulations should be possible.12

A principal difference between this work and most previous electromagnetic

tokamak microturbulence simulations [Scott 1997; Zeiler et al. 1996; Rogers

and Drake 1997; Xu et al. 1998] is that the previous simulations have focused on

the highly collisional edge region of the plasma where traditional Braginskii fluid

treatments are expected to be valid. In some cases, these models have then added

additional physics in an attempt to extend their validity inward. By contrast, the

antecedents of our model focused on the relatively collisionless core region, where

kinetic effects and finite-Larmor-radius effects play a critical role. We have added

electromagnetic effects, non-adiabatic passing electron dynamics, and models of

electron-ion collisions and electron Landau damping in an attempt to both improve

the accuracy of core simulations and to extend the validity of the simulations further

into the edge region.

A basic model of non-adiabatic passing electron dynamics would introduce

fast time scales associated with the electron transit time into the simulations. Due

to the Courant condition, these scales would require a dramatic reduction (roughly

a factor of 60 for a deuterium plasma) in the time step of an explicit numerical

12Electromagnetic δF gyrokinetic simulations and/or direct gyrokinetic Vlasov simulations
should eventually provide an excellent nonlinear benchmark. We also note that the combina-
tion of a δF model of the ions with a Landau fluid model of the electrons (such as the one
developed in Ch. 3) may prove very useful.
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simulation. These very fast time scales are not generally associated with microtur-

bulence, and we employ a careful, consistent analytic expansion to remove them.

This expansion maintains typical ion time scales, such as those associated with

drift and sound waves, and Alfvén times scales (which are faster by 1/
√

β), while

eliminating thermal electron time scales (which are faster by
√

mi/me). This ex-

pansion requires β À me/mi, a condition generally met by fusion relevant plasmas

everywhere except very near the edge. The resulting electron model is fairly ele-

gant and simple, yet represents a very substantial improvement over the adiabatic

electron models (ne ∝ φ − 〈φ〉surface) that have been used to describe the passing

electrons in most previous gyrofluid and gyrokinetic particle simulations. In addi-

tion to finite-β effects and Alfvén wave dynamics, the model incorporates electron

E × B, curvature, and ∇B drift motion, as well as the E × B nonlinearity and

magnetic flutter nonlinearities.

Ion dynamics are described by a set of toroidal gyrofluid equations derived

by taking velocity space moments of the electromagnetic gyrokinetic equation.

The moment hierarchy is truncated using closures analogous to those developed

by [Hammett and Perkins 1990; Dorland 1993; Beer 1995], which model the

effects of Landau damping, linear and nonlinear finite-Larmor-radius (FLR) effects,

toroidal drifts and drift resonances, and trapped ion effects.

This model, which is described in detail in Ch. 3, allows the nonlinear sim-

ulation of electromagnetic ITG and shear Alfvén wave turbulence, including the

impact of non-adiabatic passing electrons.

1.3 Outline

Chapter 2 provides a simple description of the physics of microinstabilities, focusing

on the ion temperature gradient and kinetic ballooning modes. The effects of finite

β are studied in detail in the local fluid limit, and the limitations of some previous

models are considered. This chapter is not intended to break new ground, but rather

to provide the physical insight needed to understand finite-β microturbulence, and

to motivate the derivation of the electromagnetic gyrofluid equations.
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Chapter 3 presents a detailed derivation of the physics model used to study

electromagnetic microturbulence. Ion equations are derived by taking moments of

the electromagnetic gyrokinetic equation and implementing closures analogous to

those derived by [Hammett and Perkins 1990; Dorland 1993; Beer 1995].

Electron equations, including models of collisions and Landau damping, are derived

by taking moments of the electromagnetic drift kinetic equation, using a formal

expansion in the smallness of the mass ratio me/mi. The gyrokinetic versions of

Poisson’s equation and Ampere’s law close the system.

In Chapter 4 the model is extensively benchmarked against linear kinetic

theory. Benchmarks are performed both in sheared slab and toroidal geometry.

The comparisons emphasize effects not included in previous electrostatic models.

In particular, the effect of finite-β on the growth rates and frequencies of the ITG

mode are studied, as are the growth rates and frequencies of the kinetic Alfvén

ballooning mode.

Chapter 5 provides computational details of the nonlinear turbulence sim-

ulations, and discusses the results of those simulations. A set of runs at several

values of plasma β is presented, and the impact of finite β and electron dissipation

on plasma microturbulence is discussed. Turbulent transport is found to decrease

with β at low β < βc/2, but to increase with β as the MHD ballooning critical βc

is approached. This increase is found to be dramatic when the effects of electron

Landau damping and electron-ion collisions are taken into account. Ion density

and temperature fluctuation spectra from the simulations are found to agree with

several measured trends.

Chapter 6 presents a direct comparison of simulation results with experi-

mental data. The focus is on the edge region where electrostatic simulations have

had little success in accounting for observed transport trends. It is demonstrated

that electromagnetic physics plays an important role at typical L-mode edge param-

eters. Unlike electrostatic simulations, the electromagnetic simulations predict ion

heat fluxes which can increase with radius, and are often in reasonable quantitative

agreement with the values inferred from power balance.

The final chapter draws conclusions, emphasizing the importance of electro-

magnetic physics, and the need for a more complete understanding of the nonlinear
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evolution of electromagnetic turbulence, including zonal flow dynamics. The quan-

titative adjustment in core transport and the qualitative change in edge transport

expected from finite-β effects, and its implications are briefly discussed. Future

directions are also considered, including possible extensions of the physics model

and interesting avenues for future investigations.

A brief summary of some of the key results from this thesis has been pub-

lished in [Snyder et al. 1999b; Snyder et al. 1999a]. While most of the research

presented in this thesis focuses on an electromagnetic gyrofluid turbulence model,

work has also been done on Landau fluid models of collisionless MHD, which has

been published in [Snyder et al. 1997] and is included in Appendix C.



Chapter 2

Simple Physics of Relevant

Microinstabilities

T HE PHYSICS OF PLASMA INSTABILITIES has been a rich field

of inquiry dating back to the very beginnings of the fusion program.

The plasma literature explores the subject in enormous depth. The

discussion here centers on those microinstabilities which are most likely

to impact turbulent transport in tokamaks. Furthermore, because the electrostatic

limit of these microinstabilities has been explored extensively, we focus on the

impact of finite-β on predominantly electrostatic modes such as the ITG, as well as

on electromagnetic shear Alfvén instabilities, such as the kinetic ballooning mode

(KBM).

The linear physics of both toroidal finite-β ion temperature gradient (ITG)

modes and kinetic Alfvén instabilities has been treated in the literature. However,

due to the long history of the study of Alfvén instabilities, the literature is filled

with a large number of different approximations, and a great deal of varied and

sometimes inconsistently-applied terminology. The purpose of this chapter is not

to break new scientific ground, but rather to clarify and give a brief review of the

finite-β instability physics relevant for understanding and motivating work in the

succeeding chapters.

Many useful references are available on the linear instability issues considered

here. Notable for background is a review article on long wavelength microinstabil-

ities by [Tang 1978], particularly Secs. 2.3 and 5.1, and more specific articles on

21
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finite-β effects on the slab [Dong et al. 1988; Reynders 1994] and toroidal [Dong

et al. 1992; Kim et al. 1993] ITG mode, and articles on kinetic Alfvén instabilities

by [Tang et al. 1980; Cheng 1982; Hahm and Chen 1985; Kotschenreuther

1986; Hong et al. 1989; Zonca et al. 1996]. Also of interest is an article on

collisional effects on these modes by [Rewoldt et al. 1987]. The results of the

local fluid analysis of [Kim et al. 1993] are employed extensively in Sec. 2.3.

2.1 Shear Alfvén Waves and Instabilities

The shear Alfvén wave is perhaps the simplest of all magnetized plasma oscillations

to understand intuitively. To a good approximation, a hot plasma can often be

considered to be “frozen-in” to a strong magnetic field. That is, the plasma basically

oscillates along with the field. The Alfvén wave can then be thought of as a simple

analogue of an oscillating guitar string, with the magnetic field providing the tension

force, and the plasma providing the inertia. For the shear Alfvén wave, fluctuations

are perpendicular to the background field, and propagate along the field. For a

homogeneous plasma in a straight magnetic field, the shear Alfvén frequency can

be written ω2
A = k2

‖B
2/4πn0mi = k2

‖v
2
A, where k‖ is the wave number along the

field, and the electron mass has been neglected because me ¿ mi.

There also exist compressional Alfvén oscillations, with ω2 = (k2
⊥ + k2

‖) v2
A.

However, the compressional waves tend to be both very fast1 and very stable in

tokamaks, as it takes a great deal of energy to compress the strong toroidal field.

Hence compressional oscillations are not generally associated with microinstability

behavior, and are ordered out in the standard gyrokinetic treatment.2 Here we focus

on the shear wave, which can contribute to microturbulence directly and through

coupling to other modes.

The dispersion relation for a simple shear Alfvén wave in a straight mag-

netic field, with no equilibrium gradients, can be easily derived from a simple fluid

1In a tokamak, the strong anisotropy imposed by the magnetic field leads to long parallel and
short perpendicular scale lengths (k2

‖ ¿ k2
⊥).

2It is possible to treat the small k⊥ compressional Alfvén wave in a standard gyrokinetic
framework, and also to treat the general compressional wave within an extended gyrokinetics, as
described by [Qin 1998; Qin et al. 1999].
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description, such as ideal MHD. In the context of a local fluid description based

on gyrokinetics,3 it can be derived as follows.4 For the simplest case, ω ∼ k‖vA À
k‖vti, ω∗, there is no gyrocenter ion response (ni = 0 using definitions from Ch. 3).

The ion response comes entirely from the polarization term in the gyrokinetic Pois-

son’s equation. For small k2
⊥ρ2

i ¿ 1, Poisson’s equation with n̄i = 0 can be written:

ne = −n0
eφ

T0i

b, (2.1)

where b = k2
⊥ρ2

i . In this simple limit (ω ∼ k‖vA À k‖vti, ω∗), the electrons are

described by a linearized continuity equation,

∂ne

∂t
+ n0ik‖u‖e

= 0, (2.2)

and a parallel electron momentum equation,

n0me

∂u‖e

∂t
+ ik‖p‖e − n0e(

1

c

∂A‖

∂t
+ ik‖φ) = 0. (2.3)

In the limit ω ¿ k‖vte, the electrons thermalize quickly along the field, leaving

∇‖T‖e = 0 and ik‖p‖e = T0eik‖ne. The system is completed with the parallel

component of Ampere’s Law, which for case u‖i ¿ u‖e can be written:

k2
⊥A‖ = −4πn0e

c
u‖e

. (2.4)

Eqs. 2.1-2.4 yield the dispersion relation

ω2 = k2
‖v

2
A

1 + bs

1 + bs
me

mi

2
βe

, (2.5)

where bs = k2
⊥ρ2

s, ρ2
s = c2

s/Ωci, c2
s = T0e/mi, βe = 8πn0T0e/B

2, and the useful

identity c2
s/v

2
A = βe/2 has been employed. This reduces to the familiar MHD

3A detailed derivation of the kinetic Alfvén wave dispersion relation from gyrokinetics is given
in [Hahm and Chen 1985]. The equations given here can be viewed as the b → 0, ω∗ ¿ ω, ν → 0
limit of Hahm and Chen’s results.

4See Sec. 3.1 and following for a description of gyrokinetics, and a derivation of fluid equations
which reduce in the appropriate limits to the simple equations given here.
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result, ω2 = k2
‖v

2
A in the usual limit bs ¿ 1.5

The focus of this thesis is on the regime where βe À me/mi, which corre-

sponds to the electron thermal speed being much faster than the Alfvén speed vA.

This regime is appropriate for most magnetic fusion plasmas except very near the

edge. In this limit, Eq. 2.5 simplifies to ω2 = k2
‖v

2
A(1 + bs), and the electron inertia

term in Eq. 2.3 can be neglected. Eq. 2.3 can then be considered an evolution

equation for A‖, and Ampere’s Law determines u‖e. Even if the electron inertia

term is kept, Eq. 2.3 does not involve the numerically challenging electron transit

time scales (ω ∼ k‖vte), as these have been removed via the isothermal assumption

∇‖Te = 0.

It is interesting to note that in ideal MHD, the third and fourth terms in

Eq. 2.3, corresponding to E‖ = 0, are dominant, while for ITG/drift wave dynamics,

the second and fourth terms of Eq. 2.3 are often dominant (corresponding to an

adiabatic electron response, ne ∝ φ). In this thesis, we keep all these terms, and

can thus study the interaction between drift waves and MHD-type effects.

It is also interesting to note that, when extending the study of drift wave

phenomena beyond the simple adiabatic electron assumption, it is actually numer-

ically helpful to also include magnetic fluctuations. This is because dropping the

∂A‖/∂t term in Eq. 2.3 while keeping the electron inertia term corresponds to tak-

ing the βe → 0 limit of the dispersion relation in Eq. 2.5, leading to waves with

ω2 = k2
‖v

2
te/k

2
⊥ρ2

s. This is the “electrostatic shear Alfvén wave,” [Lee 1983] and

is very high frequency relative to drift waves, particularly at low k⊥, making it

numerically challenging to resolve in simulations. In this work, we keep magnetic

fluctuations, and for β À me/mi this makes the frequency of the shear Alfvén root

much lower, making it easier to handle in explicit numerical simulations.

The simple model discussed above (Eqs. 2.1-2.4) yields roots that are purely

real, and are thus neither unstable nor damped. Instability requires additional

physics, most importantly a source of free energy, such as an equilibrium density

5However, it is still necessary to keep the term proportional to b in Eq. 2.1 in order to get the
lowest order shear Alfvén wave. It turns out that in the b → 0 limit, it is the first two terms in
Eq. 2.3 that can be neglected relative to the last two terms (the last two terms are equivalent to
the ideal MHD constraint E‖ = 0), so that the k2

⊥ from Eq. 2.1 ends up cancelling the k2
⊥ term in

Eq. 2.4 to give a dispersion relation independent of k2
⊥.
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or temperature gradient, and an accessibility mechanism, which may or may not

involve wave-particle resonance, to tap the free energy.

A basic description of shear Alfvén instabilities is provided by the widely-

used ideal MHD model, described in detail by [Freidberg 1987]. Here we consider

equilibria which are current-free to lowest order, and focus on the pressure driven

instabilities.6 In the tokamak geometry considered here, the kinetic analog of the

well-known ideal MHD ballooning mode is the primary Alfvén instability of interest.

This instability is driven by the pressure gradient7 in regions of bad magnetic

curvature. The most unstable modes have a mode structure that balloons out in

the bad curvature regions while remaining small in the good curvature regions. In

tokamaks, ballooning modes typically have k‖ ∼ 1/qR and k−1
⊥ ¿ a, where q is

the safety factor, and a is the minor radius. A very simple local analysis in the

ideal MHD limit finds that the ballooning mode is unstable for β > βc, with (see

Sec. 2.3.2):

βc ' εn

q2[1 + ηi + τ(1 + ηe)]
, (2.6)

where εn = Ln/R is the density scale length divided by the plasma major radius,

ηi = Ln/LT i and ηe = Ln/LTe are the usual ratios of density and temperature

scale lengths, and τ = Ti/Te. A more detailed analysis finds that magnetic shear

(ŝ), ion drift resonance, and other effects play a role in ballooning mode stability,

as discussed in Sec. 2.3. Nonetheless, the basic behavior of the ballooning mode,

providing a β (or, more precisely, α = −q2Rβ′) limit above which it is difficult

to operate a plasma experiment, survives. Because the fusion energy produced by

a reactor scales with β2, this and related β limits have hindered efforts to design

an attractive toroidal magnetic fusion reactor. For this reason, a firm and thor-

ough understanding of ballooning instabilities, including their nonlinear behavior

and kinetic effects which may drive them unstable below the ideal βc, is of great

6The usual derivation of the gyrokinetic equation and the Maxwellian equilibrium assumed in
Ch. 3 do not include current driven instabilities, as no zeroth order equilibrium current is present
to provide the energy source for such instabilities. Developing a model which includes zeroth
order flows and currents is left for future work.

7In a more detailed kinetic model, the density and temperature gradients must be considered
separately.
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importance.

While a detailed stability analysis requires consideration of the mode struc-

ture, a rough description of the ballooning instability is possible with a local fluid

treatment. The effects of magnetic field, density and temperature gradients enter

the simple fluid model through ω∗ and ωd terms. An accurate description of Alfvén

instabilities, even in the fluid limit, requires ion physics, and we revisit the fluid

model in Sec. 2.3 after discussing the ITG mode in Sec. 2.2.

A Note on Terminology

As more physics is added to the model, the mode frequency may differ significantly

from the simple ω = ±k‖vA limit, and the growth rate can be quite different from

the ballooning mode growth rate predicted by ideal MHD theory. We nonetheless

continue to refer to these roots as the shear Alfvén wave, or, when unstable, the

shear Alfvén instability (sometimes omitting “shear” for conciseness). The shear

Alfvén roots are defined to be those which reduce in the straight magnetic field,

b → 0, cold ion, me → 0, no equilibrium gradient limit to ω = ±k‖vA. The term

“kinetic” is sometimes also used to emphasize the importance of velocity space

effects such as Landau damping and drift resonance. There are multiple types

of shear Alfvén instabilities. One type, known as the toroidal Alfvén eigenmode

(TAE), resides in the gap in the Alfvén wave continuum created by toroidicity, and

can be driven unstable by resonant interaction with non-Maxwellian fast particle

distributions.8 Here we focus on “kinetic ballooning modes” (KBM) which are

driven unstable largely by bad curvature effects in the presence of density and/or

temperature gradients. Note however that kinetic effects such as ion drift resonance

and Landau damping can also contribute to the destabilization of the KBM.

In the literature, varying notation has been introduced to describe this in-

stability. In the ideal MHD limit it is often called the “ideal ballooning mode”

or just the “ballooning mode”, and when kinetic effects are added it is referred

8The TAE is generally believed to be linearly stable in the predominantly Maxwellian plasmas
considered here, and for this reason it is not a focus of this work. However, TAE dynamics can
be quite complex nonlinearly and are an active subject of investigation. See for example [Zonca

and Chen 1993; Hahm and Chen 1995; Fu and Park 1995].
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to as the “kinetic ballooning mode”. However, in the historic progression of the

literature, the term “kinetic ballooning mode” has been used to describe the insta-

bility in many different limits, often including some kinetic effects and not others,

and sometimes including non-Maxwellian beam or α-particle distributions. Here

the terms “kinetic ballooning mode” or “kinetic Alfvén instability” refer to the

instability of the shear Alfvén wave in which bad curvature plays a critical role, in

a plasma whose components are approximately Maxwellian but with density and

temperature gradients across the flux surfaces, and with all relevant kinetic effects

considered, including Landau damping and drift resonance.

When this shear Alfvén wave is driven unstable by a particular kinetic effect,

it is sometimes given a separate name in the literature. Of particular importance is

the effect referred to in Secs. 1.1.3 and 2.3, and benchmarked in Fig. 4.8; whereby, in

the presence of a finite ion temperature gradient, the ion drift resonance drives the

kinetic Alfvén mode unstable below the ideal MHD ballooning limit. This effect has

been labeled the “Alfvén ITG mode” [Zonca et al. 1998], and, in an experimental

context on the JET tokamak, the “β-induced ITG mode”. Here we do not employ

these terms, as we believe they could generate confusion with the much different

ITG mode, an instability in a different branch of the dispersion relation with very

different properties, as described in the following section. Instead, recognizing that

at all ranges of parameters there is a complex mix of driving and damping effects,

we refer to the mode simply as the kinetic Alfvén instability or kinetic ballooning

mode (KBM), whether it occurs above or below the ideal MHD critical β.

2.2 The ITG Mode

The toroidal ion temperature gradient (ITG) instability has received a great deal

of attention in recent years, as it has come to be viewed as the most likely drive for

turbulent ion heat transport in the core of tokamaks. The ITG mode is an instability

in the sound wave branch of the dispersion relation, with a real frequency that

scales roughly with the ion diamagnetic drift frequency. Unlike the slab ITG mode

(often called the ηi mode) which is driven by parallel sound wave dynamics, the

toroidal ITG is driven primarily by bad curvature. The rather complex instability
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Figure 2.1: Simple diagram of the toroidal ITG instability mechanism on the outer
midplane of a tokamak. The velocity dependence of the downward ∇B and cur-
vature drifts cause ion density to build up below the hot spots and above the cold
spots. This produces an electric field, which E × B convects hotter plasma into
the hot spots, and colder plasma into the cold spots. On the inner midplane where
∇p0 is reversed with respect to ∇B, colder plasma is convected into the hot spots,
and the feedback mechanism is shut off. [Figure courtesy of M. A. Beer]

mechanism, which involves the combination of the velocity dependent curvature

and ∇B drifts and the E×B drift, is illustrated in Fig. 2.1.

The electrostatic toroidal ITG mode can be approximately described by a

simple set of two ion fluid moment equations (density and pressure), coupled to an

adiabatic electron response. Such a description is given in Sec. 1.3 of [Beer 1995],

and leads to a growth rate of

γITG ≡
√

2ωdiω∗iηi

τ + b
, (2.7)

in the strongly unstable (R/LTi
, ηi À 1) limit. For the low β, high aspect ratio

tokamak geometry considered in this simple illustration, the combined curvature

and ∇B drift frequency for ions is ωdi = −(ρivti/R)(kr sin θ + kθ cos θ), and the

ion diamagnetic drift frequency is ω∗i = −kθρivti/Lni. Here ηi = Lni/LT i is the



2.3. Local Fluid Analysis of the Finite-β ITG and KBM 29

ratio of the ion density scale length (Lni) to the ion temperature scale length (LT i),

τ = Ti/Te, b = k2
⊥ρ2

i has been assumed to be small, vti =
√

Ti/mi is the ion thermal

speed, ρi = vti/Ωi is the ion thermal gyroradius, Ωi = ZeB/mic is the ion cyclotron

frequency, and r and θ are the radial and poloidal coordinates.

With normal profiles (positive Ln and LT ), ηi, b and τ are all positive, and

instability requires that ω∗i and ωdi have the same sign. This occurs whenever ∇P

and ∇B are aligned, that is, in the “bad curvature” region. The stabilizing effect of

Ti > Te is evident from the factor of τ in the denominator, and this effect persists in

the presence of kinetic effects, as has been shown in various geometries by [Hahm

and Tang 1989; Romanelli 1989; Biglari et al. 1989]. Furthermore, since both

ωdi and ω∗i are proportional to k⊥, it is clear that the growth rate is zero at k⊥ = 0,

then increases with k⊥ before leveling off. With full consideration of finite Larmor

radius effects, the peak in the growth rate is found to occur around k⊥ρi ∼ 1/2.

Beyond this basic description of the electrostatic ITG instability, our main

interest is in the impact of finite β. The required electromagnetic description of

the ITG is fairly involved even in the fluid limit, and requires a proper treatment

of both ion and electron dynamics. In the next section, we derive the dispersion

relation in the local fluid limit, and describe both the finite-β ITG mode and the

kinetic ballooning mode.

2.3 Local Fluid Analysis of the Finite-β ITG and

KBM

A great deal of physical insight about both the finite-β ion temperature gradient

mode (ITG) and the kinetic ballooning mode (KBM) can be gained by exploring

dynamics in the local fluid limit.

In the local limit, k‖, k⊥, ω∗ and ωd are treated as constants. The local fluid

dispersion relation can be derived directly from the gyrokinetic Vlasov-Poisson-

Ampere system by taking the appropriate fluid limits, k2
‖v

2
ti ¿ ω2 ¿ k2

‖v
2
te, |ωd| ¿

|ω|, and k2
⊥ρ2

i ¿ 1, as in [Kim et al. 1993].
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Here we derive the local dispersion relation starting with the moment equa-

tions derived in Ch. 3. This serves as a demonstration that, as expected, the

electromagnetic gyrofluid model correctly reproduces the local dispersion relation

in the fluid limit. Furthermore, the use of a set of fluid equations allows for explo-

ration of the impact of additional approximations sometimes made in fluid models.

For simplicity, we invoke the normalizations introduced in Eqs. 3.66-3.67

and 3.101. All quantities in this section are normalized unless otherwise noted, and

a single species of Z = 1 ions is assumed.

In the simple fluid case, neglecting collisions and Landau damping, the ap-

propriate electron density and velocity response follow directly from Eqs. 3.114-

3.116:

ne = τφ − τ(1 − ω∗e
ω

)ψ (2.8)

u‖e =
τω

k‖
(1 − ω∗e

ω
)(φ − ψ) − 2ωd

k‖
(1 − ω∗pe

ω
)ψ, (2.9)

where ψ = A‖ω/k‖, ω∗pe = ω∗e(1+ηe), and the electron diamagnetic frequency ω∗e =

−ω∗/τ , where ω∗ is the single species ion diamagnetic frequency. The combined ion

∇B and curvature drift frequency is denoted by ωd = −τωde.

The appropriate single species ion response can be calculated from Eqs. 3.87-

3.92 by neglecting collisions, and the Landau and drift resonance closures. We first

substitute ψ = A‖ω/k‖, and simultaneously expand in the three small parameters

k2
⊥ ¿ 1 (k2

⊥ρ2
i ¿ 1 in unnormalized units), |ωd/ω| ¿ 1, and k2

‖/ω
2 ¿ 1 (k2

‖v
2
ti ¿

ω2 in unnormalized units). By keeping terms through first order in the small

parameters, we capture the important physics related to curvature, sound wave

dynamics, and FLR effects in the ion density response:

ni = −ω∗
ω

φ +
k2

⊥

2

ω∗pi

ω
φ +

k2
‖

ω2
(1 − ω∗pi

ω
)(φ − ψ) +

2ωd

ω
(1 − ω∗pi

ω
)φ,

(2.10)

where ω∗pi = ω∗(1+ηi). Because the largest terms in u‖i are smaller than the largest
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terms in u‖e by a factor of k2
‖/ω

2, only the lowest order ion velocity response,

u‖i =
k‖

ω
(1 − ω∗pi

ω
)(φ − ψ) (2.11)

is needed in Ampere’s Law.

We now wish to substitute the above electron and ion density response into

the gyrokinetic Poisson’s equation, which, for k2
⊥ ¿ 1, is ne = n̄i − k2

⊥φ. To first

order in k2
⊥, the real space ion density n̄i can be written in terms of the gyrocenter

density ni and perpendicular temperature T⊥i as in Eq. 3.124:

n̄i =
1

1 + k2
⊥/2

ni − 2k2
⊥

(2 + k2
⊥)2

T⊥i ' (1 − k2
⊥

2
)ni − k2

⊥

2
T⊥i (2.12)

= ni − k2
⊥

2
p⊥i ' ni +

k2
⊥

2

ω∗pi

ω
φ,

where the lowest order ion perpendicular pressure response, p⊥i = −(ω∗pi/ω)φ, has

been substituted in the final step. Substituting for n̄i and ne, we find the gyrokinetic

Poisson equation in the fluid limit:

[
τ(1 − ω∗e

ω
) − k2

‖

ω2
(1 − ω∗pi

ω
)

]
(φ − ψ) + (k2

⊥ − 2ωd

ω
)(1 − ω∗pi

ω
)φ = 0.

(2.13)

Similarly, substituting u‖e and u‖i into Ampere’s Law, (2k2
⊥k‖/τβeω)ψ = ū‖i − u‖e,

noting that ū‖i = u‖i to the required order, yields:

2k2
⊥k2

‖

τβe

ψ = ω2

[
τ(1 − ω∗e

ω
) − k2

‖

ω2
(1 − ω∗pi

ω
)

]
(φ − ψ) + 2ωd(ω − ω∗pi)ψ,

(2.14)

or, substituting Eq. 2.13,

2k2
⊥k2

‖

τβe

ψ = −2ωd(ω − ω∗pi)φ + 2ωd(ω − ω∗pe)ψ + ω(ω − ω∗pi)k
2
⊥φ.

(2.15)

Combining Eqs. 2.13 and 2.15 gives the general electromagnetic dispersion relation

in the local fluid. The above result, derived from our electromagnetic gyrofluid
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model, is identical to that found directly from the gyrokinetic Vlasov-Poisson-

Ampere system by [Kim et al. 1993].

Before exploring the full dispersion relation, it is useful to take simpler limits.

2.3.1 The Electrostatic Limit

In the limit β → 0 at finite k⊥ and k‖, one possible limit for Eq. 2.15 is ψ → 0,

leading to the usual electrostatic drift wave result.9

However, it is useful to be more specific about the requirements for the

validity of the electrostatic limit, ψ ¿ φ. Noting that βi = τβe, Eq. 2.15 can be

rewritten:

ψ = βi
ω(ω − ω∗pi)k

2
⊥ − 2ωd(ω − ω∗pi)

2k2
⊥k2

‖ − βi2ωd(ω − ω∗pe)
φ. (2.16)

In general, each term in the numerator must be small compared to the denominator

to satisfy the electrostatic limit. For the first term in the numerator, this requires

βiω
2/2k2

‖ ¿ 1, or ω2 ¿ 2k2
‖/βi. In unnormalized units this is ω2 ¿ k2

‖v
2
A, where vA

is the usual Alfvén speed. Turning to the last term in the numerator, 2ωdω∗pi, the

requirement for the electrostatic limit is βiωdω∗(1+ηi)/k
2
⊥k2

‖ ¿ 1. In the local limit,

ω∗ = kθ, ωd = εnω∗, k⊥ ∼ kθ, and k‖ ' εn/q, where εn = Lne/R, this requirement

becomes βiq
2(1+ηi)/εn ¿ 1. Or, noting that εn/q

2(1+ηi) is roughly the local ideal

ballooning limit (βic), the requirement becomes βi ¿ βic.

Hence the electrostatic limit does not require simply that the value of β be

small. Rather, it requires both that the frequency of interest be small compared to

the shear Alfvén frequency, and that the plasma be far from the ideal ballooning

limit, βc. Because laboratory fusion plasmas are often close to this β limit, the

electrostatic approximation can break down even though β may be quite small.

This is especially true near the edge of fusion plasmas, where β is generally small,

9Another possibility is for ψ to remain finite while ω → ∞, in which case Eqs. 2.15 and 2.13
reduce to the simple shear Alfvén wave, ω2 = 2k2

‖/τβe(1 + k2
⊥/τ), or in unnormalized units,

ω2 = k2
‖v2

A(1 + bs).
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yet large values of q and sharp gradients (small εn) push the plasma close to the

ideal ballooning limit.

In the electrostatic limit (ψ ¿ φ), Eq. 2.13 becomes,

τ(1 − ω∗e
ω

) − k2
‖

ω2
(1 − ω∗pi

ω
) + (k2

⊥ − 2ωd

ω
)(1 − ω∗pi

ω
) = 0. (2.17)

In the limit of a homogeneous plasma in a straight magnetic field (ω∗ = ωd = 0), the

above reduces to the simple ion acoustic wave ω2 = k2
‖/τ (ω2 = k2

‖c
2
s in unnormalized

units) for small k⊥. In the slab limit, ωd = 0, the unstable root of Eq. 2.17 is the

slab ITG or “ηi” mode, with the instability drive provided by the k2
‖ω∗pi term.

With finite ωd, Eq. 2.17 is the dispersion relation for the electrostatic ITG mode

in the local fluid limit. The 2ωdω∗pi term provides the toroidal drive for the ITG

instability.

In a torus, the 2ωdω∗pi driving term is generally dominant, and parallel

dynamics can be omitted in an approximate description (k2
‖/ω

2 → 0). The simple

toroidal ITG dispersion relation with small k⊥ and k‖ is then:

ω =
1

2τ

[
−ω∗ + 2ωd ±

√
(−ω∗ + 2ωd)2 − 8τωd ω∗pi

]
. (2.18)

In the strongly unstable (R/LTi
, ηi → ∞) limit, this reduces to Eq. 2.7 (with b → 0)

as expected.

2.3.2 The Kinetic Ballooning Mode

The ballooning mode in the local fluid limit can be approximately described by

making the usual ideal MHD approximation E‖ ' 0, or φ ' ψ.

Eq. 2.15 then reduces to:

ω(ω − ω∗pi) =
2k2

‖

βi

− 2ω2
d

k2
⊥

(ω∗pi − ω∗pe), (2.19)
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and the critical βi for instability is:

βic =
k2

⊥k2
‖

ωd(ω∗pi − ω∗pe) − ω2
∗pik

2
⊥/4

' ε2
n/q2

εn [1 + ηi + (1 + ηe)/τ ] − k2
⊥(1 + ηi)2/8

,

(2.20)

where the approximations kθ ∼ k⊥ and k‖ ' εn/q have been used in the final step.

For long wavelength modes (k2
⊥ ¿ 1), this threshold βi agrees with MHD theory in

the local limit (βic = εn/q2[1 + ηi + (1 + ηe)/τ ]), and demonstrates that the MHD

α parameter, which in normalized units is

α =
q2βi

εn

[1 + ηi + (1 + ηe)/τ ] , (2.21)

provides a much better gauge of proximity to ideal ballooning instability (α ' 1),

and validity of the electrostatic approximation (which requires α ¿ 1) than does β

alone. A nonlocal treatment brings in additional parameters, such as the magnetic

shear ŝ. However, the above local approximation for the ballooning mode β limit,

α ' 1, provides a reasonable, factor of two type estimate of the nonlocal MHD βc

in ŝ − α geometry over a wide range of typical values of 1/2 . ŝ . 3.

The local fluid model predicts a marginal real frequency for the KBM of

ω ' ω∗pi/2, quite different from the ideal MHD prediction of ω = 0.

Kinetic effects such as Landau damping and ion drift resonance, which can

significantly change the behavior of the KBM from that predicted in the local fluid

limit, are discussed briefly in Sec. 2.3.5.

2.3.3 The Finite-β ITG

Combining Eqs. 2.13 and 2.15, the general electromagnetic dispersion relation in

the local fluid limit can be written:

τ(1 − ω∗e
ω

) − k2
‖

ω2
(1 − ω∗pi

ω
) (2.22)

=

[
(
2ωd

ω
− k2

⊥)(1 − ω∗pi

ω
)

] [
1 − ω(τω + ω∗) − k2

‖(1 − ω∗pi

ω
)

(2k2
⊥k2

‖/βi) − 2ωd(ω − ω∗pe)

]
.
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Comparing with Eq. 2.17 we can see that the final term in brackets represents the

electromagnetic, or “finite-β” effect.

For a toroidal ITG mode, with ω ¿ ω∗pi, at very low βi ¿ 1, the effect

of the electromagnetic correction is to reduce the ITG driving term (2ωd ω∗pi) by

a factor of roughly 1 − βi(τω2 + ωω∗ + k2
‖ω∗pi/ω)/2k2

⊥k2
‖ . The toroidal ITG drive

vanishes entirely when:10

βi =
2k2

‖k
2
⊥

ω(τω + ω∗) + 2ωd(ω − ω∗pe) − k2
‖(1 − ω∗pi/ω)

. (2.23)

Note that for typical ITG frequencies, ω ∼ ω∗, and for small k‖ and k2
⊥, this

expression is very similar to the βi threshold for kinetic ballooning instability given

in Eq. 2.20. The stabilization of the toroidal ITG mode and the onset of kinetic

ballooning instability are closely linked, both in the local fluid limit and in a full

kinetic treatment.

2.3.4 Growth Rates in the Local Fluid Limit

A quantitative exploration of growth rates in the local fluid limit provides physical

insight about the behavior of both the ITG and KBM instabilities, and also allows

for a simple evaluation of various approximations often made in fluid and gyrofluid

turbulence models.

Fig. 2.2 shows the growth rate of the dominant instability as a function of β

in the local fluid limit, with the normalized parameters τ = 1, k⊥ = 0.5, k‖ = 0.1,

ω∗ = kθ = 0.5, εn = 0.2, ηi = ηe = 3. The solid line shows the correct local fluid

growth rate as calculated from Eq. 2.22. The ITG mode dominates at low β and

is stabilized with increasing β. The KBM becomes unstable near β ' 1.8% and its

growth rate increases with β.11

10When the toroidal ITG is strongly stabilized by finite β, it is possible for the slab ITG mode
to become important, as pointed out by [Cummings 1995]. However, in the local fluid limit, this
provides only a small modification of the overall β at which complete stabilization of the ITG
occurs. Furthermore, it is critical to note that in the region where the ITG is strongly stabilized,
consideration of kinetic effects is very important, as discussed in the following section.

11The “island of stability” between the ITG and KBM is, unfortunately, but a mirage. It
vanishes with the addition of kinetic effects.
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Figure 2.2: β dependence of the linear growth rate of the dominant mode in the local
fluid limit. The solid line shows the correct local fluid growth rate, while the dotted
and dashed lines show growth rates predicted by models which are missing certain
finite-Larmor-radius terms. Parameters chosen are τ = 1, k⊥ = 0.5, k‖ = 0.1,
ω∗ = kθ = 0.5, εn = 0.2, and ηi = ηe = 3. The ITG mode dominates for β . 1.7%,
while the KBM is dominant for β > 1.8%.
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Many past models of plasma turbulence have only partially accounted for

ion finite Larmor radius (FLR) effects. To first order in b = k2
⊥ρ2

i , finite Larmor

radius effects enter both in the gyrocenter ion density response [through the (1 +

ηi∇̂2
⊥/2)iω∗Γ

1/2
0 φ term in Eq. 3.87] and in the gyrokinetic Poisson’s equation. In

Poisson’s equation, first order FLR effects enter through the first order polarization

term (−k2
⊥ρ2

i φ) and through the conversion from real space n̄i to the gyrocenter

space ni as in Eq. 2.12. While nearly all models include the polarization term, some

have omitted either the ion response FLR terms or the real space transformation

term, or both. Omitting both effects leads to the predicted dominant growth rate

illustrated by the dotted line in Fig. 2.2. While this predicted growth rate is quite

accurate in the electrostatic limit (β → 0), it is seriously in error at larger values of

β, missing the finite-β stabilization of the ITG entirely. The dashed line in Fig. 2.2

shows the growth rate that is predicted if either the ion response FLR term or

the real space transformation FLR term, but not both, is included.12 Again this

partial FLR model provides accurate growth rate predictions at very small β, but

introduces large errors at finite β. Hence, a proper treatment of FLR effects is of

great importance for an electromagnetic fluid turbulence model. Models which do

not account for all FLR effects at least through first order in k2
⊥ρ2

i risk introducing

serious errors for finite-β cases, even though such models may be able to treat the

electrostatic ITG mode with reasonable accuracy.

Simple electron fluid models developed for the regime ω ¿ k‖vte sometimes

assume that the perturbed electron temperature vanishes (T̃e = 0). This neglects

the impact of fluctuating magnetic field lines moving across equilibrium electron

temperature gradients. The fast motion of the electrons along the perturbed field

lines allows the electrons to thermalize to a uniform temperature along the per-

turbed field, locally cancelling the equilibrium electron temperature gradient when

the fluctuating field moves across it. This leads to the appropriate electron tem-

perature response given by Eq. 3.116. If T̃e = 0 is instead assumed, the electron

temperature gradient drive of the kinetic ballooning mode is missed, and the pre-

dicted growth rate, shown by the dotted line in Fig. 2.3, is in error when ηe is finite.

It has also been commonly assumed that, because ωd ¿ k‖vte, electron ∇B and

curvature drifts can be neglected. This assumption removes the electron density

12Linearly, each term contributes an identical factor of −(ω∗pi/ω)k2
⊥φ to Eq. 2.13.
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Figure 2.3: Linear growth rate of the dominant mode vs. β in the local fluid limit.
The solid line again shows the correct local fluid growth rate. The dotted line
shows the growth rate predicted by a model which assumes the perturbed electron
temperature is zero. The dashed line shows the prediction of a fluid model which
omits electron ∇B and curvature drifts entirely. Parameters are identical to those
in Fig. 2.2.
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and temperature gradient drive of the KBM, and leads to the growth rate prediction

shown by the dashed line in Fig. 2.3. Note that both of the above approximations

work well at very small β values, but lead to large errors as β approaches the MHD

ballooning limit, β = βc.

A final common approximation made in fluid models is the neglect of the ion

current in Ampere’s Law. As noted, the ion current is smaller than the dominant

piece of the electron current by a factor of k2
‖/ω

2 in the local fluid limit. Thus,

for small values of k‖ typical of ballooning modes (k‖ ∼ εn/q), the ion current

is often negligible. More specifically, when k2
‖/ω

2 ¿ 2ωd/ω the ion current can

generally be neglected. The growth rate calculated without ion current is almost

indistinguishable from the growth rate with ion current for the parameters used

in Figs. 2.2 and 2.3. However, at larger values of k‖, the ion current can have a

significant impact, and we believe it unwise to neglect the ion current in a numerical

simulation which treats a wide range of k‖. The neglect of the ion current is also

not consistent with fluid equations which incorporate Landau damping physics.

The electromagnetic gyrofluid model developed in Ch. 3 avoids the above

assumptions, and is thus able to exactly reproduce the behavior of the ITG and

KBM in the local fluid limit.

2.3.5 Kinetic Effects

The local fluid analysis in the previous sections orders out important kinetic ef-

fects such as Landau damping and ion drift resonance. Including these effects

significantly alters the fluid growth rates, as has been discussed extensively in the

literature, for example [Hong et al. 1989; Kim et al. 1993]. Landau damping

tends to reduce the predicted fluid growth rates, though it increases growth rates

in the “island of stability” between the ITG and KBM instabilities, eliminating

the island. Ion drift resonance causes the KBM to go unstable below the ideal

ballooning limit when ηi is finite.

Models of Landau damping and drift resonance are included in the electro-

magnetic gyrofluid model as described in Ch. 3. The ability of these models to

properly account for the relevant kinetic effects is gauged with a series of nonlocal
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linear benchmarks presented in Ch. 4. See in particular Fig. 4.8, which demon-

strates the effect of drift resonance reducing the KBM threshold below the ideal

ballooning limit.



Chapter 3

Derivation of the Electromagnetic

Gyrofluid Equations

T HE ELECTROMAGNETIC GYROFLUID EQUATIONS are derived

from a series of velocity space moments of the nonlinear gyrokinetic

equation. The moment hierarchy is truncated using a set of closures

derived to model kinetic effects, including collisionless phase mixing

due to parallel streaming and toroidal drifts, as well as linear and nonlinear finite-

Larmor-radius (FLR) effects.

The ion equations are derived first, as a natural extension of the electrostatic

toroidal gyrofluid equations of [Beer 1995] to include magnetic fluctuations.

Electron equations are derived from the electromagnetic drift kinetic equa-

tion using an analytic expansion which removes small spatial scales and fast tempo-

ral scales from the system. These equations include the effects of electron temper-

ature and density gradients, electron E×B motion, Landau damping, electron-ion

collisions and the parallel electron currents which, along with parallel ion currents,

give rise to the parallel magnetic potential.

The system is closed with the gyrokinetic Poisson equation and parallel

Ampere’s Law.

41
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3.1 The Gyrokinetic Equation

The starting point for the derivation of the fluid equations is the nonlinear electro-

magnetic gyrokinetic equation of [Brizard 1992], based upon earlier gyrokinetic

work by many authors, notably [Hahm et al. 1988; Brizard 1988; Lee 1983;

Dubin et al. 1983; Frieman and Chen 1982; Catto and Tsang 1977].

The standard gyrokinetic ordering is invoked as follows:

ω

Ωi

∼ k‖vti

Ωi

∼ eφ

T
∼ δB

B
∼ F1

F0

∼ ρi

L
∼ ε ¿ 1, k⊥ρi ∼ 1, (3.1)

where ω is a characteristic frequency of the fluctuations, and k‖ and k⊥ are typical

fluctuation wavenumbers parallel and perpendicular to the equilibrium magnetic

field. Ωi is the ion cyclotron frequency, vti =
√

Ti/mi is the ion thermal speed, and

ρi = vti/Ωi is the thermal ion gyroradius. L is a typical equilibrium scale length,

such as the density scale length Ln = −∇(ln n0)
−1, the temperature scale length

LT = −∇(ln T0)
−1, or the plasma minor radius (a) or major radius (R). T and

B are typical equilibrium temperatures and magnetic fields, and F0 is the equilib-

rium distribution. F1 is the fluctuating distribution function, φ is the electrostatic

potential (which is assumed to have no equilibrium component), and δB is the

fluctuating component of the magnetic field.

Gyrokinetics averages over the fast gyromotion of the particles around a

strong magnetic field, reducing the kinetic equation from three to two velocity

space dimensions, and leaving the magnetic moment µ as a rigorously conserved

quantity. The gyrokinetic ordering takes advantage of the spatial anisotropy created

by the strong magnetic field. Parallel to the field, particles can stream freely, and

fluctuating wavelengths are long, k‖L ∼ 1. Perpendicular to the field, particle

motion is strongly restricted, and wavelengths scale with the gyroradius k⊥ρi ∼ 1.

The fluctuating distribution function is ordered small compared to the equi-

librium distribution, which here is taken as a Maxwellian. Nonetheless, perpendicu-

lar gradients of fluctuating quantities are the same order as perpendicular gradients

of the equilibrium (k⊥F1 ∼ F0/L), and hence the perpendicular nonlinearities due
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to the E×B drift and field line bending are kept, while parallel nonlinearities are

small, and are ordered out here.

Brizard’s electromagnetic gyrokinetic equation can be written in the form:

∂F

∂t
+ Ẋ · ∇F + v̇‖

∂F

∂v‖
= C(F ), (3.2)

where F is the gyrocenter distribution function in the gyrocenter phase space co-

ordinates (X, v‖, µ, ζ). Within the gyrokinetic ordering (ω ¿ Ωi), the gyrophase

angle ζ is effectively averaged over, and does not appear explicitly (∂F/∂ζ = 0).1

The gyrocenter magnetic moment µ = v2
⊥/2B+O(ε) is exactly conserved and enters

the equations only as a parameter. An as yet undefined collision operator C(F )

has been added to the right hand side.

Eq. 3.2 is solved through O(ε2) in the gyrokinetic ordering defined above.

When ordering terms in the gyrokinetic equation, all frequencies are compared to

Ωi, and all lengths to ρi. Hence ∂F
∂t

∼ ωF1 is O(ε2), because ∂F0

∂t
= 0, F1/F0 ∼ ε,

and ω/Ωi ∼ ε. Any gradient operator acting on F0 or B is O(ε) because ρi/L ∼ ε.

A parallel gradient on F1 is O(ε2) because k‖ρi ∼ ε. However, a perpendicular

gradient acting on F1 is O(ε) because k⊥ρi ∼ 1. Because ∇F is O(ε), Ẋ is needed

only to O(ε), while v̇‖ must include terms through O(ε2).

The fluctuating magnetic field δB is described to lowest order in terms of a

magnetic potential along the equilibrium field, δB = ∇ × A‖b̂, where b̂ is a unit

vector along the equilibrium field.2 The perturbation along the equilibrium field

(δB‖) is small for β ¿ 1, as can be seen from perpendicular force balance, and δB‖

is neglected here. A local kinetic analysis by [Horton et al. 1985] has found δB‖

to be unimportant for β of the order of the MHD critical βc or smaller. However,

the toroidal kinetic code of [Kotschenreuther et al. 1995] has included δB‖

and found it to be somewhat important for β ∼ βc, particularly at low aspect ratio

1See [Qin et al. 1999] for a discussion of a formulation of gyrokinetics which relaxes the
low frequency approximation, and includes gyrophase dependence. This introduces perpendicular
dynamics and allows a full description of compressional Alfvén and Bernstein waves.

2Note that A‖ and A⊥ are fluctuating quantities. The equilibrium magnetic field is described
here by B or Bb̂, never as a magnetic potential.
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[Kotschenreuther 1998]. We wish to include δB‖ in future work to achieve

better accuracy, particularly in high β, low aspect ratio cases.

The gyrocenter velocity is then given by

Ẋ = v‖(b̂ +
〈δB⊥〉

B
) + vE + vd, (3.3)

where the angular brackets denote gyroangle averages. The first term on the right

represents free streaming along the total magnetic field. The second term is the

gyroaveraged E×B drift velocity, vE = c
B
b̂×∇〈φ〉. vd is the combined curvature

and ∇B drift velocity. In general, vd can be written

vd =
v2
‖

Ω
b̂ × (b̂·∇b̂) +

µ

Ω
b̂ ×∇B (3.4)

=
v2
‖ + µB

ΩB2
B ×∇B +

v2
‖

ΩB2
b̂ × (∇× B × B).

Using the equilibrium relations ∇p = 1
c
J×B and ∇×B = 4π

c
J, this can be written

vd =
v2
‖ + µB

ΩB2
B ×∇B +

v2
‖

ΩB2
b̂ ×∇p. (3.5)

The second term on the right is small for β ¿ 1,3 and is neglected here for simplicity

and to maintain consistency with neglecting δB‖.
4 The definition

vd
.
=

v2
‖ + µB

ΩB2
B ×∇B (3.6)

is used henceforth.

3The use of this β ¿ 1 approximation may seem inconsistent with our desire to handle moder-
ate β cases. However, it allows us to treat β values up to the MHD critical βc for all except very
low aspect ratio cases, where βc ∼ 1. The critical point is that while the electrostatic approxi-
mation requires β ¿ βc, the above equilibrium approximation requires only that β ¿ 1. That is,
our equations are valid for me/mi ¿ β ∼ βc ¿ 1, and can be extended to β ∼ 1 by adding δB‖
and separately treating the curvature and ∇B drifts.

4A cancellation occurs between the ∇p term in vd and a finite δB‖ term [Tang et al. 1980;
Kotschenreuther 1998]. Hence it does not improve accuracy to keep the ∇p term until δB‖
has been fully included.
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The gyrocenter parallel acceleration can be written:

v̇‖ = − e

mc

∂ 〈A‖〉
∂t

− e

m
(b̂ +

〈δB⊥〉
B

) · ∇ 〈φ〉 − µ(b̂ +
〈δB⊥〉

B
) · ∇B + v‖(b̂·∇b̂) · vE.

(3.7)

The first two terms on the right hand side represent the total parallel electric field,

which includes both a magnetic induction term −1
c

∂〈A‖〉
∂t

, and an electrostatic term

evaluated along the total magnetic field. The next term is the total mirror force,

and the final term is important for phase space conservation, as shown in [Hahm

1988; Beer 1995].

Using the definition δB = ∇×A‖b̂, the term δB⊥ can be written as follows:

δB⊥ = b̂ × (δB × b̂) = −b̂ ×∇A‖ + b̂ × b̂·∇b̂A‖, (3.8)

or upon gyroaveraging,

〈δB⊥〉 = −b̂ ×∇〈A‖〉 + b̂ × b̂·∇b̂ 〈A‖〉 . (3.9)

The second term on the right hand side is O(ε2) and does not enter Eq. 3.2 to the

required order.

The gyroangle averages are expressed in terms of a gyroaveraging operator

J0 as follows:

〈φ〉 = J0(α)φ, 〈A‖〉 = J0(α) A‖,

where α is the operator defined by

α
.
= −i

√
2µB

Ωi

∇⊥ =

√
2µB

vti

k⊥ρi.

The operator J0 is simply a Bessel function in Fourier space:

J0(α) =
1

2π

∫ 2π

0

dζ exp(iα cos ζ) =
∞∑

n=0

1

(n!)2

(
iα

2

)2n

(3.10)

=
∞∑

n=0

1

(n!)2

(√
2µB

2Ω

)2n

∇2n
⊥ .
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In real space, J0 is an operator which does not in general commute with other

operators, and must be treated with care. It should be noted that J0 operates only

on the electrostatic potential φ and the parallel magnetic potential A‖ in Eq. 3.2.

Defining the unit vector along the total magnetic field b̃ = b̂ + 〈δB⊥〉
B

and

the total parallel electric field Ẽ‖ = −1
c

∂
∂t

J0A‖ − b̃ · ∇J0φ, the gyrokinetic equation

can be written:

∂F

∂t
+ (v‖b̃ + vE + vd) · ∇F (3.11)

+
[ e

m
Ẽ‖ − µb̃ · ∇B + v‖(b̂·∇b̂) · vE

] ∂F

∂v‖
= C(F ).

3.2 The Ion Gyrofluid Equations

Gyrofluid equations are derived by taking velocity space moments of Eq. 3.11, and

implementing closures to model kinetic effects. For simplicity of notation, the single

ion species case is presented here. The subscript i is omitted in this section, and

all quantities (vt, Ω, T etc.) are taken to refer to the ions unless otherwise noted.

The full, normalized equations for the multi-species case are given in Sec. 3.2.6.

For the ions, k⊥ρi ∼ 1, and finite-Larmor-radius (FLR) effects must be

accounted for, both in the moment equations and in the closures. The gyroaveraging

operator J0(α) appears repeatedly, and it must be treated carefully as it is a function

of both configuration and velocity space (through µ).

In order to simplify the process of taking velocity space moments, it is best

to move all functions of velocity space (F, J0, µ, v‖ etc.) to the same side of the

spatial and temporal operators. We also multiply through by a factor of B in order

to simplify the µ integral.

The first two terms in Eq. 3.11, B ∂F
∂t

= ∂
∂t

FB and Bv‖b̂ · ∇F = B ·
∇(FBv‖/B) are easily put in a form suitable for taking moments. The next three

terms require modification.



3.2. The Ion Gyrofluid Equations 47

Noting that spatial derivatives are taken with µ and v‖ fixed, we can write

for any field A:

∇J0A = J0∇A + A∇J0, (3.12)

where

∇J0(α) =
∂J0

∂α
∇α = J1(α)

α

2B
∇B. (3.13)

The term representing free streaming along the fluctuating magnetic field,

−v‖
B
b̂×∇J0A‖, can be combined with the E×B drift by introducing the notation:

φ′ = φ − v‖

c
A‖, v′

E =
c

B
b̂ ×∇J0φ

′, v′
φ =

c

B
b̂ ×∇φ′ (3.14)

Using Eqs. 3.12 and 3.13 we can then write:

Bv′
E · ∇F = B

c

B
b̂ × (J0∇φ′ + J1

α

2B
φ′∇B) · ∇F. (3.15)

The J1 term above can be neglected as it is O(ε3) due to the presence of φ′, ∇B,

and ∇F , each of which are O(ε). Noting that J0∇F = ∇J0F − (α/2B)FJ1∇B,

and introducing the notation

iωd
.
=

v2
t

ΩB2
B ×∇B · ∇, (3.16)

allows us to write

B
c

B
b̂ × J0∇φ′ · ∇F = B

c

B
b̂ ×∇φ′ · ∇(J0F ) − F

cα

2B
J1b̂ ×∇φ′ · ∇B(3.17)

= B
c

B
b̂ ×∇φ′ · ∇(J0F ) +

e

T
FBJ1

α

2
iωdφ

′

=
c

B
b̂ ×∇φ′ · ∇(J0FB) +

e

T
FB(J0 + J1

α

2
)iωdφ

′

= v′
φ · ∇(J0FB) +

e

T
FB(J0 + J1

α

2
)iωdφ

′

Invoking the approximation outlined in Eqs. 3.4-3.6, and noting that iωdB =
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0, the ∇B and curvature drift term can be written:

Bvd · ∇F = iωd[FB(v2
‖ + µB)]. (3.18)

Turning now to the v̇‖
∂F
∂v‖

terms, we note first that all components of v̇‖

except the lowest order mirror force −µb̂ ·∇B are O(ε2) and therefore involve only

the equilibrium distribution, which is taken to be:

F0 =
n0

(2πv2
t )

3/2
e−v2

‖/2v2
t −µB/v2

t . (3.19)

The electric field terms can be written as follows to O(ε2):

−B
e

m
b̂·∇(J0φ)

∂F

∂v‖
= − e

m

∂F0

∂v‖
Bb̂·∇(J0φ) (3.20)

= − e

m
b̂·∇(

∂F0

∂v‖
BJ0φ) +

e

m
J0φ

∂F0

∂v‖
B(1 − µB

v2
t

)b̂·∇ ln B

∂F

∂v‖

e

m
(b̂ ×∇J0A‖) · ∇J0φ =

e

m

∂F0

∂v‖
(b̂ × J0∇A‖) · J0∇φ (3.21)

=
e

m

∂F0

∂v‖
J0A‖J0φ(b̂ ×∇A‖) · ∇φ,

where the notation J0A‖ and J0φ is used to indicate the field on which the Bessel

function operator acts. All J1 terms above have been dropped as they are O(ε3).

The mirror force terms can be written:

∂F

∂v‖
B(−µb̂·∇B) = −µB2 ∂F

∂v‖
b̂·∇ ln B (3.22)

∂F

∂v‖
µ(b̂ ×∇J0A‖) · ∇B =

∂F0

∂v‖

µ

B
J0(∇B × B) · ∇A‖ (3.23)

= −∂F0

∂v‖
BJ0

eµB

cT
iωdA‖,

where the J1∇B term has vanished exactly.
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Finally, the phase space conservation term can be rewritten, omitting the

finite β component for consistency with the treatment of the curvature drift:

∂F

∂v‖
Bv‖(b̂·∇b̂) · vE = −∂F0

∂v‖
v‖

c

B2
B ×∇B · ∇J0φ (3.24)

= −∂F0

∂v‖
v‖

c

B2
B ×∇B · (J0∇φ + J1

α

2B
∇B)

= −∂F0

∂v‖
BJ0v‖

e

T
iωdφ.

= − e

T

[
∂

∂v‖
(F0BJ0v‖) − F0BJ0

]
iωdφ (3.25)

Combining all the above terms, and defining ∇‖ = b̂·∇, the electromagnetic

gyrokinetic equation can be written in the following cumbersome but useful form:

∂

∂t
FB + B∇‖Fv‖ + v′

φ · ∇(FBJ0) + 2FBJ0iωd
eφ′

T
(3.26)

+ FBJ1
α

2
iωd

eφ′

T
+

e

cT
v‖FBJ0iωdA‖

+
1

v2
t

iωd[FB(v2
‖ + µB)] − e

mc

∂

∂v‖
(F0BJ0

∂A‖

∂t
)

− e

m
∇‖(

∂F0

∂v‖
BJ0φ) +

e

m
J0φ

∂F0

∂v‖
B(1 − µB

v2
t

)∇‖ ln B

+
e

m

∂F0

∂v‖
J0A‖J0φ(b̂ ×∇A‖) · ∇φ − µB2 ∂F

∂v‖
∇‖ ln B

− ∂F0

∂v‖
BJ0

eµB

cT
iωdA‖ − ∂

∂v‖
(FBJ0v‖)

e

T
iωdφ = 0.

Nearly all terms with velocity space dependence are now grouped on the

same side of spatial and temporal operators so that moments may easily be taken.

The exception is the v‖ term which appears in φ′ = φ − v‖
c
A‖ and v′

φ = c
B
b̂ ×

∇φ′. However, v‖ commutes with J0, J1 and all spatial operators, and may be

easily moved to the appropriate place inside velocity space integrals. The collision

operator C(F ) has been omitted here. Collisions are considered in Sec. 3.2.4.

Eq. 3.26 contains terms up to O(ε2) in the gyrokinetic ordering. Assuming

a time independent equilibrium distribution F0 with gradients that scale as 1/L,
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only two first order terms remain. These terms represent free streaming along the

equilibrium field, and the lowest order mirror force. To first order, the equation

can be written:

B∇‖F0v‖ − µB2∂F0

∂v‖
∇‖ ln B = 0, (3.27)

a condition which is satisfied exactly by the equilibrium Maxwellian

F0 = FM =
n0

(2πv2
t )

3/2
e−v2

‖/2v2
t −µB/v2

t .

This leaves only second order terms in the equation.

We furthermore divide the first order distribution F1 into two parts, F1
.
=

f̃ + F1nc. Here F1nc is defined to be an equilibrium part of the distribution with no

time dependence and gradients which scale as 1/L. It is further defined to be an

exact solution of the equation:

B∇‖F1ncv‖ +
1

v2
t

iωd[F0B(v2
‖ + µB)] − µB2∂F1nc

∂v‖
∇‖ ln B = 0.

(3.28)

Note that the F1nc contribution to all other terms is O(ε3) or higher and can be

neglected. This removes all terms with no time dependence, and leaves us with

an evolution equation for the fluctuating first order distribution f̃ , containing only

second order terms which are either linear or quadratic in the fluctuating quantities
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f̃ , φ, and A‖:

∂

∂t
f̃B + B∇‖f̃v‖ + vφ · ∇[(F0 + f̃)BJ0] − vA‖ · ∇[(F0 + f̃)B

v‖

c
J0] (3.29)

+ 2F0BJ0iωd
eφ

T
− F0B

v‖

c
J0iωd

eA‖

T
+ F0BJ1

α

2
iωd

eφ

T

− F0B
v‖

c
J1

α

2
iωd

eA‖

T
+

iωd

v2
t

[f̃B(v2
‖ + µB)] − e

mc

∂F0

∂v‖
BJ0

∂A‖

∂t

− e

m
∇‖(

∂F0

∂v‖
BJ0φ) +

e

m
J0φ

∂F0

∂v‖
B(1 − µB

v2
t

)∇‖ ln B

+
e

m

∂F0

∂v‖
J0A‖J0φ(b̂ ×∇A‖) · ∇φ − µB2 ∂f̃

∂v‖
∇‖ ln B

− ∂F0

∂v‖
BJ0

µB

c
iωd

eA‖

T
− ∂

∂v‖
(F0BJ0v‖)iωd

eφ

T
= 0.

Terms containing φ and A‖ have been separated by defining vφ = c
B
b̂ × ∇φ and

vA‖ = c
B
b̂ ×∇A‖. Nonlinear terms enter through vφ · ∇[f̃BJ0], vA‖ · ∇[f̃B

v‖
c
J0],

and e
m

∂F0

∂v‖
J0A‖J0φ(b̂ ×∇A‖) · ∇φ.

It is also possible to derive Eq. 3.29 starting with the conservative form of

the gyrokinetic equation. Making sure to include the second order part of 〈δB⊥〉
from Eq. 3.9, it is possible to prove Liouville’s theorem,5

∂B∗

∂t
+ ∇ · [B∗Ẋ] +

∂

∂v‖
[B∗v̇‖] = 0, (3.30)

where B∗ = B + (mc/e)v‖b̂ · ∇ × b̂ contains the parallel velocity correction. The

gyrokinetic equation can then be written:

∂

∂t
FB∗ + ∇ · [FB∗Ẋ] +

∂

∂v‖
[FB∗v̇‖] = 0. (3.31)

Again working within the context of the low β approximation b̂ × (b̂·∇b̂) =

(1/B2)B × ∇B, and rearranging terms, one finds Eq. 3.29 to second order as ex-

pected.

A further check on Eq. 3.29 is to calculate the linear non-adiabatic response

5to the required order, O(ε3)
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in the local limit. Dividing the distribution into adiabatic and non-adiabatic pieces,

f̃ = g − F0J0eφ/T0, linearizing, transforming, and taking the ∇‖ ln B = 0 limit, we

find the expected non-adiabatic distribution:

g = F0
ω − ωT

∗
ω − k‖v‖ − ωdv

e

T
J0(φ − v‖

c
A‖), (3.32)

where ωT
∗ = ω∗[1 + η(v2

‖/2v
2
t + µB/v2

t − 3/2)], ωdv = ωd(v
2
‖ + µB)/v2

t , and we have

introduced the diamagnetic frequency iω∗
.
= −(cT0/eBn0)∇n0 ·b̂×∇, and the ratio

of scale lengths η = Ln/LT .

3.2.1 The Ion Moment Equations

Ion fluid equations can now be derived by taking velocity space moments of Eq. 3.29.

In this section a careful distinction is made between equilibrium and fluctuating

components, and equilibrium quantities are written with a subscript 0. Both vt =√
T0/m and ρi = vt/Ω are defined in terms of equilibrium quantities. It should

also be noted that because all terms in Eq. 3.29 are O(ε2), only their lowest order

components need be kept, eg. T → T0.

Velocity space moments are often defined in terms of the total distribution

function F . Here we again separate F into equilibrium and fluctuating components

F = F0 + f̃ .6 Velocity space moments of

F0 = FM =
n0

(2πv2
t )

3/2
e−v2

‖/2v2
t −µB/v2

t

are all well defined. We define the following moments of the fluctuating distribution:

ñ =
∫

f̃ d3v n0ũ‖ =
∫

f̃v‖ d3v

p̃‖ = m
∫

f̃v2
‖ d3v p̃⊥ = m

∫
f̃Bµ d3v

q̃‖ = −3mv2
t n0ũ‖ + m

∫
f̃v3

‖ d3v q̃⊥ = −mv2
t n0ũ‖ + m

∫
f̃Bµ v‖ d3v

r̃‖,‖ = m
∫

f̃v4
‖ d3v r̃‖,⊥ = m

∫
f̃Bµ v2

‖ d3v

r̃⊥,⊥ = m
∫

f̃B2µ2 d3v s̃⊥,⊥ = −2mv4
t n0ũ‖ + m

∫
f̃B2µ2v‖ d3v

s̃‖,‖ = −15mv4
t n0ũ‖ + m

∫
f̃v5

‖ d3v s̃‖,⊥ = −3mv4
t n0ũ‖ + m

∫
f̃Bµ v3

‖ d3v,
6F1nc and its moments do not enter the equations and can be neglected.
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where d3v = 2πdv‖ B dµ. The modifications to the q and s moments above have

been chosen for consistency of notation with [Beer 1995], in which the first order

fluctuating moments are defined to have components due both to f̃ and to factors

of ũ‖ multiplying F0.

We can now proceed to take moments of Eq. 3.29. Each moment is coupled

to higher moments through the terms which contain factors of v‖ or µ, including

terms due to parallel free streaming, toroidal drift, FLR effects, and the mirror

force. This moment hierarchy is truncated using closures described in the following

sections in order to generate a useful set of equations.

Taking integrals of Eq. 3.29 of the form 2π
∫

dv‖ dµ vj
‖µ

k, and defining the

shorthand 〈A〉 .
= 2π

∫
Adv‖ Bdµ yields the following set of moment equations:

∂ñ

∂t
+ B∇‖

n0ũ‖

B
+ vφ · ∇ 〈FJ0〉 − 1

c
vA‖ · 〈Fv‖J0〉 (3.33)

+
〈
F0(2J0 + J1

α

2
)
〉

iωd
eφ

T0

+
1

T0

iωd(p̃‖ + p̃⊥) = 0,

n0
∂ũ‖

∂t
+ B∇‖

p̃‖

mB
+ vφ · ∇ 〈Fv‖J0〉 − 1

c
vA‖ · ∇

〈
Fv2

‖J0

〉
(3.34)

−
〈
F0v

2
‖(J0 + J1

α

2
)
〉

iωd
eA‖

cT0

+
1

T0

iωd(q̃‖ + q̃⊥ + 4p0ũ‖)

+ 〈F0J0〉 e

mc

∂A‖

∂t
+

e

m
∇‖ 〈F0J0〉φ − e

m
φ

〈
F0J0(1 − µB

v2
t

)

〉
∇‖ ln B

− e

mB

〈
F0J0A‖J0φ

〉
b̂ ×∇A‖ · ∇φ +

p̃⊥

m
∇‖ ln B + 〈F0µBJ0〉 iωd

eA‖

cT0

= 0,

∂p̃‖

∂t
+ B∇‖

q̃‖ + 3p0ũ‖

B
+ mvφ · ∇ 〈

Fv2
‖J0

〉
(3.35)

− m

c
vA‖ · ∇

〈
Fv3

‖J0

〉
+ m

〈
F0v

2
‖(2J0 + J1

α

2
)
〉

iωd
eφ

T0

+
1

v2
t

iωd(r̃‖,‖ + r̃‖,⊥) + 2(q̃⊥ + p0ũ‖)∇‖ ln B + 2m
〈
F0v

2
‖J0

〉
iωd

eφ

T0

= 0,
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∂p̃⊥

∂t
+ B2∇‖

[
1

B2
(q̃⊥ + p0ũ‖)

]
+ mBvφ · ∇ 〈FµJ0〉 (3.36)

− mB

c
vA‖ · ∇ 〈Fµv‖J0〉 + mB

〈
F0µ(2J0 + J1

α

2
)
〉

iωd
eφ

T0

+
1

v2
t

iωd(r̃‖,⊥ + r̃⊥,⊥) = 0,

∂

∂t
(q̃‖ + 3p0ũ‖) + B∇‖

r̃‖,‖

B
+ mvφ · ∇ 〈

Fv3
‖J0

〉
(3.37)

− m

c
vA‖ · ∇

〈
Fv4

‖J0

〉 − m
〈
F0v

4
‖(J0 + J1

α

2
)
〉

iωd
eA‖

cT0

+
1

v2
t

iωd(s̃‖,‖ + s̃‖,⊥ + 18mv4
t n0ũ‖) +

3e

c

〈
F0v

2
‖J0

〉 ∂A‖

∂t

+ 3e∇‖
〈
F0v

2
‖J0

〉
φ − 3e

〈
F0v

2
‖(1 − µB

v2
t

)J0

〉
φ∇‖ ln B

− 3e

B

〈
F0v

2
‖J0A‖J0φ

〉
b̂ ×∇A‖ · ∇φ + 3r̃‖,⊥∇‖ ln B

+ 3mB
〈
F0µv2

‖J0

〉
iωd

eA‖

cT
= 0,

∂

∂t
(q̃⊥ + p0ũ‖) + B2∇‖

r̃‖,⊥

B2
+ mBvφ · ∇ 〈Fv‖µJ0〉 (3.38)

− mB

c
vA‖ · ∇

〈
Fv2

‖µJ0

〉 − mB
〈
F0v

2
‖µ(J0 + J1

α

2
)
〉

iωd
eA‖

ct0

+
1

v2
t

iωd(s̃‖,⊥ + s̃⊥,⊥ + 5mv4
t n0ũ‖) +

eB

c
〈F0µJ0〉 ∂A‖

∂t

+ eB∇‖ 〈F0µJ0〉φ − eB

〈
F0µ(1 − µB

v2
t

)J0

〉
φ∇‖ ln B

− e
〈
F0µJ0A‖J0φ

〉
b̂ ×∇A‖ · ∇φ + r̃⊥,⊥∇‖ ln B

+ mB2
〈
F0µ

2J0

〉
iωd

eA‖

cT0

= 0.

3.2.2 Finite Larmor Radius Terms

Closures are developed for the finite Larmor radius terms appearing in Eqs. 3.33-

3.38, using the techniques of [Dorland and Hammett 1993] as adapted to the
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toroidal case by [Beer 1995]. We note that we have chosen to evolve ion moments

in guiding center space rather than real space in order to better describe both

linear and nonlinear FLR effects, including the Bakshi-Linsker effect [Bakshi et al.

1977; Linsker 1981]. Nonetheless, our FLR terms, when expanded, contain higher

velocity space moments and these must be carefully closed to properly model kinetic

behavior.

Turning first to the Maxwellian FLR terms, we must close terms of the forms〈
F0v

2i
‖ µjJ0

〉
and

〈
F0v

2i
‖ µjJ1α

〉
, where i = 0, 1, 2 and j = 0, 1, 2. Note that purely

Maxwellian FLR terms with odd powers of v‖ vanish identically, as FM is even in

v‖, while J0 and J1α are independent of v‖.

The FLR closures are chosen in careful consideration of the entire system of

equations. It is the combination of J0 terms from the E×B and vA‖ terms with

the J0 terms in Poisson’s equation and Ampere’s Law which motivates the basic

approximation 〈J0〉 ≈ 〈J2
0 〉1/2 ≈ Γ0(b)

1/2, where b = k2
⊥ρ2

i . Following and extending

[Dorland and Hammett 1993], we choose:

〈F0J0〉 = n0Γ
1/2
0 , (3.39)

〈
F0J0v

2
‖
〉

= n0v
2
t Γ

1/2
0 , (3.40)

〈F0J0µ〉 =
n0v

2
t

B

∂

∂b
(bΓ

1/2
0 ) =

v2
t

2B
(2Γ

1/2
0 + ∇̂2

⊥) (3.41)

〈
F0J0v

4
‖
〉

= 3n0v
4
t Γ

1/2
0 , (3.42)

〈
F0J0v

2
‖µ

〉
=

n0v
4
t

B

∂

∂b
(bΓ

1/2
0 ) =

v4
t

2B
(2Γ

1/2
0 + ∇̂2

⊥), (3.43)

〈
F0J0µ

2
〉 ≈ v4

t

B2

[
b

∂2

∂b2
(bΓ

1/2
0 ) + 2b

∂

∂b
(bΓ

1/2
0 )

]
=

v4
t

B2

(
2Γ

1/2
0 + ∇̂2

⊥ +
ˆ̂∇

2

⊥

)
.

(3.44)
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The modified Laplacian operators ∇̂2
⊥ and

ˆ̂∇
2

⊥ are defined as follows:

1

2
∇̂2

⊥Φ = b
∂Γ

1/2
0

∂b
φ, (3.45)

ˆ̂∇
2

⊥Φ = b
∂2

∂b2
(bΓ

1/2
0 )φ, (3.46)

where the notation Φ = Γ
1/2
0 φ has been introduced for the gyroaveraged electro-

static potential. The analogous notation A‖ = Γ
1/2
0 A‖ is used for the gyroaveraged

magnetic potential.

The J1 terms can be evaluated following [Beer 1995], using the following

trick:

〈FJ1α〉 ≈ − ∂

∂ζ

∣∣∣∣
ζ=1

〈FJ0(ζα)〉 . (3.47)

Again using 〈FJ0〉 ≈ Γ
1/2
0 yields:

〈F0J1α〉 ≈ − ∂

∂ζ

∣∣∣∣
ζ=1

Γ
1/2
0 (ζ2b) = −2b

∂Γ
1/2
0

∂b
= −∇̂2

⊥, (3.48)

〈
F0J1v

2
‖α

〉 ≈ −2v2
t b

∂Γ
1/2
0

∂b
= −v2

t ∇̂2
⊥, (3.49)

〈F0J1µα〉 ≈ − ∂

∂ζ

∣∣∣∣
ζ=1

v2
t

B

∂

∂T⊥
(T⊥ 〈F0J0(ζα)〉) = −2

v2
t

B

∂

∂b

(
b2∂Γ

1/2
0

∂b

)
= −2

v2
t

B
ˆ̂∇

2

⊥,

(3.50)

〈
F0J1v

4
‖α

〉 ≈ −6v4
t b

∂Γ
1/2
0

∂b
= −3v4

t ∇̂2
⊥, (3.51)

〈
F0J1v

2
‖µα

〉 ≈= −2
v4

t

B
ˆ̂∇

2

⊥, (3.52)
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The Maxwellian terms which contain more than one factor of J0 are closed

analogously:

〈
F0J0A‖J0φ

〉
= n0Γ

1/2
0A‖Γ

1/2
0φ , (3.53)

〈
F0v

2
‖J0A‖J0φ

〉
= n0v

2
t Γ

1/2
0A‖Γ

1/2
0φ , (3.54)

〈
F0µJ0A‖J0φ

〉
=

v2
t

2B
[(2Γ

1/2
0 + ∇̂2

⊥)A‖ + (2Γ
1/2
0 + ∇̂2

⊥)φ], (3.55)

where the subscript φ or A‖ again designates the field on which the operator acts.

These closures can be thought of in terms of separate expansions of the two Bessel

function operators, through first order in b, so that no cross term enters.

Turning now to the vφ ·∇ 〈FJ0 . . .〉 and vA‖ ·∇ 〈FJ0 . . .〉 terms, we note that

there are two additional complications. These terms contain both the Maxwellian

and the perturbed distribution, and the gyroaveraging terms are acted on by a

perpendicular gradient operator, requiring that gradients of both fluctuating and

equilibrium quantities be kept. In considering these terms, we redefine b
.
= 1

Ω

√
T⊥
m

,

in terms of the total perpendicular temperature T⊥, which contains both an equi-

librium part (T0, as the equilibrium is assumed isotropic) and a fluctuating part,

T̃⊥ = (p̃⊥ − T0ñ)/n0. The gradient of b is then calculated as follows:

∇b =
b

T0

(∇T0 + ∇T̃⊥) − 2b

B
∇B. (3.56)

Closing these FLR terms analogously to Eqs. 3.39-3.44 leads to, for example:

vφ · ∇ 〈J0F 〉 = vφ · ∇(nΓ
1/2
0 (b)), (3.57)

where n is the total density, n0 + ñ. Introducing the diamagnetic frequency iω∗
.
=

−(cT0/eBn0)∇n0 · b̂ × ∇, and ratio ηi = Ln/LT , where LT is the scale length of
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the equilibrium temperature, this leads to three linear terms:

vφ · ∇ 〈J0F 〉 = −n0iω∗Γ
1/2
0

eφ

T0

− n0

2
ηi∇̂2

⊥iω∗
eΦ

T0

+ n0∇̂2
⊥iωd

eφ

T0

+ NL.

(3.58)

Nonlinear terms arise both from ñ and b, and can be written:

NL = vΦ · ∇ñ +
n0

2T0

[∇̂2
⊥vΦ] · ∇T̃⊥. (3.59)

To account for the vA‖ · ∇ and vφ · ∇ terms with higher powers of v‖ and µ, we

note that the linear terms from Eq. 3.58 can be generalized as follows:

vφ · ∇n0g(b) = −n0g(b)iω∗
eφ

T0

− n0ηib
∂g

∂b
iω∗

eφ

T0

+ 2n0b
∂g

∂b
iωd

eφ

T0

.

(3.60)

The treatment of the nonlinear terms is somewhat more subtle, as these can involve

higher moments which are not evolved. Following [Dorland and Hammett 1993],

and introducing the notation NL(x) for the nonlinear terms generated by vφ ·
∇ 〈FJ0x〉:

NL(v‖) = vΦ · ∇ñ +
1

2T0

[∇̂2
⊥vΦ] · ∇q̃⊥, (3.61)

NL(v2
‖) = vΦ · ∇p̃‖ +

n0

2
[∇̂2

⊥vΦ] · ∇T̃⊥, (3.62)

NL(µ) = vΦ · ∇p̃⊥ +
1

2
[∇̂2

⊥vΦ] · ∇q̃⊥, (3.63)

NL(v3
‖) = vΦ · ∇q̃‖ + 3p0vΦ · ∇ũ‖ +

3

2
[∇̂2

⊥vΦ] · ∇q̃⊥, (3.64)

NL(v‖µ) = vΦ · ∇q̃⊥ + p0vΦ · ∇ũ‖ +
p0

2
[∇̂2

⊥vΦ] · ∇ũ‖ (3.65)

+
1

2
[∇̂2

⊥vΦ] · ∇q̃⊥ + [
ˆ̂∇

2

⊥vΦ] · ∇q̃⊥.
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The vA · ∇ . . . nonlinear terms are closed identically to the above with the substi-

tution Φ → A‖. However, the vA · ∇ . . . terms in the q̃‖ and q̃⊥ equations contain

higher moments which are closed using results from the next section.

To simplify the equations, we introduce the following normalization. Time,

parallel lengths, and perpendicular lengths are normalized to vt/Ln, Ln and ρi

respectively:

(t̂, k̂‖, k̂⊥) = (
tvt

Ln

, k‖Ln, k⊥ρi), (3.66)

and the fluctuating quantities are normalized as follows:

(φ̂, Â‖, n̂, û, p̂, q̂, r̂, ŝ) =
Ln

ρi

(
eφ

T0

,
A‖

ρiB
,

ñ

n0

,
ũ

vt

,
p̃

n0mv2
t

,
q̃

n0mv3
t

,
r̃

n0mv4
t

,
s̃

n0mv5
t

).

(3.67)

Normalized quantities appear on the left. The caret designating a normalized quan-

tity is dropped for simplicity of notation. Note that these normalizations mesh with

the gyrokinetic ordering such that all characteristic drift scales are O(1). Because

β is formally taken to be O(1), all shear Alfvén scales are O(1) as well.

With the above normalization, and the FLR closures discussed above, the

gyrofluid equations can be written:

dn

dt
+ B∇̃‖

u‖

B
+ [

1

2
∇̂2

⊥vΦ] · ∇T⊥ − [
1

2
∇̂2

⊥vA] · ∇q⊥ (3.68)

−
(
1 +

ηi

2
∇̂2

⊥

)
iω∗Φ +

(
2 +

1

2
∇̂2

⊥

)
iωdΦ + iωd(p‖ + p⊥) = 0,

du‖

dt
+ B∇̃‖

p‖

B
+ [

1

2
∇̂2

⊥vΦ] · ∇q⊥ − [
1

2
∇̂2

⊥vA] · ∇T⊥ +
∂A‖

∂t
+ ∇̃‖Φ (3.69)

+
(
1 + ηi +

ηi

2
∇̂2

⊥

)
iω∗A‖ +

(
p⊥ +

1

2
∇̂2

⊥Φ

)
∇‖ ln B

+ iωd(q‖ + q⊥ + 4u‖) = 0,
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dp‖

dt
+ B∇̃‖

q‖ + 3u‖

B
+ [

1

2
∇̂2

⊥vΦ] · ∇T⊥ + 2(q⊥ + u‖)∇‖ ln B (3.70)

−
(
1 + ηi +

ηi

2
∇̂2

⊥

)
iω∗Φ +

(
4 +

1

2
∇̂2

⊥

)
iωdΦ + iωd(r‖,‖ + r‖,⊥) = 0,

dp⊥

dt
+ B2∇̃‖

q⊥ + u‖

B2
+ [

1

2
∇̂2

⊥vΦ] · ∇p⊥ + [
ˆ̂∇

2

⊥vΦ] · ∇T⊥ (3.71)

− [
1

2
∇̂2

⊥vA] · ∇(q⊥ + u‖) −
[
1 +

1

2
∇̂2

⊥ + ηi

(
1 +

1

2
∇̂2

⊥ +
ˆ̂∇

2

⊥

)]
iω∗Φ

+

(
3 +

3

2
∇̂2

⊥ +
ˆ̂∇

2

⊥

)
iωdΦ + iωd(r‖,⊥ + r⊥,⊥) = 0,

dq‖

dt
+ ∇̃‖(r‖,‖ − 3p‖) + (−r‖,‖ + 3r‖,⊥ + 3p‖ − 3p⊥)∇‖ ln B (3.72)

+ 3ηiiω∗A‖ + iωd(s‖,‖ + s‖,⊥ − 3q‖ − 3q⊥ + 6u‖) = 0,

dq⊥

dt
+ ∇̃‖(r‖,⊥ − p‖) + [

1

2
∇̂2

⊥vΦ] · ∇u‖ + [
ˆ̂∇

2

⊥vΦ] · ∇q⊥ (3.73)

− [
ˆ̂∇

2

⊥ − 1

2
∇̂2

⊥]vA · ∇T⊥ +

[
ηi(1 +

ˆ̂∇
2

⊥) + (1 + ηi)
1

2
∇̂2

⊥

]
iω∗A‖

+
1

2
∇̂2

⊥

(
dA‖

dt
+ ∇̃‖Φ − iωdA‖

)
+ (−2r‖,⊥ + r⊥,⊥ + p‖ − p⊥)∇‖ ln B

+

(
ˆ̂∇

2

⊥Φ − 1

2
∇̂2

⊥Φ

)
∇‖ ln B + iωd(s‖,⊥ + s⊥,⊥ − q‖ − q⊥ + u‖) = 0,

where we have introduced the notation d
dt

= ∂
∂t

+ vΦ · ∇ and ∇̃‖ = ∇‖ − vA‖ · ∇ =

∇‖ − b̂ ×∇A‖ · ∇.

3.2.3 Closures

We must now introduce closures for the highest moments, r and s, in order to

have a complete and useful set of gyrofluid equations. The terms requiring closure

divide naturally into three categories, the parallel terms ∇̃‖r‖,‖ and ∇̃‖r‖,⊥, the

toroidal terms ωd(r‖,‖ + r‖,⊥), ωd(r‖,⊥ + r⊥,⊥), ωd(s‖,‖ + s‖,⊥), and ωd(s‖,⊥ + s⊥,⊥),

and the mirroring terms r‖,‖∇‖ ln B, r‖,⊥∇‖ ln B, and r⊥,⊥∇‖ ln B. Closely following
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the work of [Beer 1995], we separately treat each group of terms, making closure

approximations that accurately model the physical processes that each set of terms

represents.

Parallel Landau Closures

Closures which provide an accurate model of linear Landau damping are chosen for

the parallel terms, ∇̃‖r‖,‖ and ∇̃‖r‖,⊥. Landau damping along the magnetic field

occurs due to the velocity dependence of the k‖v‖ term in the kinetic equation.

Components with different k‖ stream along the field at different velocities, causing

moments of F to phase mix away.

As an illustration, consider the one dimensional kinetic equation

∂f

∂t
+ v‖

∂f

∂z
= δ(t)f0(z, v), (3.74)

where f0 provides the initial condition. The solution to this simple equation

f(z, v, t) = f0(z − vt, v)H(t), provides Green’s function which can be used to

solve more general problems with additional source terms, such as the electric field

−(e/m)E‖
∂FM

∂v
. Consider an initial condition with a small single harmonic pertur-

bation f0 = (n0+n1e
ikz)FM(v). The general solution is just (n0+n1e

ik(z−vt)), which

simply oscillates in time at ω = kv and does not damp. However, upon taking ve-

locity space moments, the velocity integration introduces mixing of the phases as

follows:

n(z, t) =

∫
f dv = n0 + n1

eikz√
2πv2

t

∫
dv e−ikvte−v2/(2v2

t ). (3.75)

The perturbed density n1 = n1(t=0)e
−k2v2

t t2/2 decays with a Gaussian time depen-

dence. This decay due to linear Landau damping is not captured by a simple fluid

model with a finite number of moments, and hence it must be accounted for in the

fluid closure if it is to be included in a fluid model.

A method for deriving “Landau closures” which provide an accurate lin-

ear model of this effect has been developed by [Hammett and Perkins 1990;
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Hammett et al. 1992; Beer 1995], and is closely followed here.

The introduction of electromagnetic effects does not significantly alter the

process of deriving Landau closures. One simply writes response functions in terms

of the total E‖ rather than φ. In Appendix C, Landau closures are derived for the

general electromagnetic case with both parallel and perpendicular magnetic fluc-

tuations. Here we consider only perpendicular fluctuations, hence the magnitude

of the fluctuating field B̃ is zero to first order in the perturbation. The general

response functions are given in Sec. C.5.1 and closures are derived in Sec. C.5.2.

Here we simply take the B1 = 0 limit of the Sec. C.5.2 results, for the case in which

the equilibrium distribution is isotropic. In this limit the result is identical to the

earlier result of [Dorland 1993]:

r‖,‖ = 3(2p‖ − n) + c‖T‖ −
√

2D‖
i|k‖|q‖

k‖
(3.76)

r‖,⊥ = p‖ + p⊥ − n −
√

2D⊥
i|k‖|q⊥

k‖
(3.77)

where c‖ = (32− 9π)/(3π − 8), D‖ = 2
√

π/(3π − 8), and D⊥ =
√

π/2. This closure

provides a good fit to the linear response functions, as shown in [Hammett and

Perkins 1990; Hammett et al. 1993], as well as by the line labeled “4+2” in

Figs. C.1 and C.2.

Because the dissipative part of the closure above (the |k‖|/k‖ terms) is writ-

ten in terms of moments with no equilibrium component, the fluctuating field makes

no contribution to the linear Landau closures. Hence the linear Landau closure is

equally accurate in the electrostatic and electromagnetic cases. However there is an

additional nonlinear Landau damping term due to A‖ which is discussed in Sec. C.8.

This and other nonlinear Landau damping mechanisms are not accounted for in the

fluid closures given here.
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Toroidal Closures

The velocity dependence of the ∇B and curvature drifts also introduces phase

mixing. This process is modeled using the toroidal closures derived by [Beer

1995], including dissipative pieces proportional to |ωd|/ωd.

Beer’s closures include both Maxwellian parts and dissipative pieces derived

by careful fitting with all parts of the kinetic toroidal response function, and can

be written in the following form:

r‖,‖ + r‖,⊥ = 7p‖ + p⊥ − 4n − 2i
|ωd|
ωd

(ν1T‖ + ν2T⊥) (3.78)

r‖,⊥ + r⊥,⊥ = p‖ + 5p⊥ − 3n − 2i
|ωd|
ωd

(ν3T‖ + ν4T⊥) (3.79)

s‖,‖ + s‖,⊥ = −i
|ωd|
ωd

(ν5u‖ + ν6q‖ + ν7q⊥) (3.80)

s‖,⊥ + s⊥,⊥ = −i
|ωd|
ωd

(ν8u‖ + ν9q‖ + ν10q⊥) (3.81)

where the complex coefficients take the form ν = νr + iνi|ωd|/ωd. The coefficients

chosen are, in the form (νr, νi), ν1 = (2.019,−1.620), ν2 = (0.433, 1.018), ν3 =

(−0.256, 1.487), ν4 = (−0.070,−1.382), ν5 = (−8.927, 12.649), ν6 = (8.094, 12.638),

ν7 = (13.720, 5.139), ν8 = (3.368,−8.110), ν9 = (1.974,−1.984), ν10 = (8.269, 2.06).

As shown in Figs. 2.1 and 2.2 of [Beer 1995], these closures provide a good fit to

the linear toroidal response functions, including a reasonable model of the toroidal

branch cut at ω/ωd = −k2
‖v

2
t /4ω

2
d.

The issue of toroidal flow damping introduced by this closure is discussed

briefly in Appendix A.

Mirroring closures

The mirroring terms r‖,‖∇‖ ln B, r‖,⊥∇‖ ln B, and r⊥,⊥∇‖ ln B incorporate trapped

ion effects and magnetic pumping. However, they do not introduce new dissipative

processes and hence they are closed with simple Maxwellian closures, again following
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[Beer 1995]:

r‖,‖ = 6p‖ − 3n, (3.82)

r‖,⊥ = p‖ + p⊥ − n, (3.83)

r⊥,⊥ = 4p⊥ − 2n. (3.84)

Taken together, the closure approximations provide models of linear and

nonlinear FLR effects, as well as parallel phase mixing, drift resonance, and trapped

particle effects. The accuracy of these closures is tested extensively through linear

benchmarks with kinetic theory given in Ch. 4. Note especially Figs. 4.6 and 4.8

in which the performance of the gyrofluid model with the closures given above can

be compared to that of the MHD model with its simple collisional closures.

3.2.4 Ion Collisions

Ion-ion collisions are modeled with a simple particle, momentum and energy con-

serving BGK operator [Gross and Krook 1956]:

C(Fj) = −
∑

k

νjk(Fj − FMjk), (3.85)

where j and k are species indices, and νjk is the collision rate of species j with

species k. Collisions cause the distribution to relax to a shifted Maxwellian with

the appropriate total (equilibrium+fluctuating) momentum and energy. Upon lin-

earizing, the single species operator can be written:

C(F ) = −νii

{
F1 −

[
n + u‖

v‖

vt

+ T

(
v2

2v2
t

− 3

2

)]
F0

}
, (3.86)

where n, u‖, and T = (T‖ + 2T⊥)/3 are normalized fluctuating moments, and

v2 = v2
‖ + 4B2µ2.

Ion-electron collisions are negligible due to the smallness of the electron-ion

mass ratio. Electron-ion collisions are considered in Sec. 3.3.3.
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3.2.5 Final Ion Gyrofluid Equations

Incorporating the parallel, toroidal, and mirror term closures defined above, and

including moments of the ion-ion collision operator, the final set of single species

electromagnetic ion gyrofluid equations can be written as follows:

dn

dt
+ B∇̃‖

u‖

B
+ [

1

2
∇̂2

⊥vΦ] · ∇T⊥ − [
1

2
∇̂2

⊥vA] · ∇q⊥ (3.87)

−
(
1 +

ηi

2
∇̂2

⊥

)
iω∗Φ +

(
2 +

1

2
∇̂2

⊥

)
iωdΦ + iωd(p‖ + p⊥) = 0

du‖

dt
+ B∇̃‖

p‖

B
+ [

1

2
∇̂2

⊥vΦ] · ∇q⊥ − [
1

2
∇̂2

⊥vA] · ∇T⊥ +
∂A‖

∂t
+ ∇̃‖Φ (3.88)

+
(
1 + ηi +

ηi

2
∇̂2

⊥

)
iω∗A‖ +

(
p⊥ +

1

2
∇̂2

⊥Φ

)
∇‖ ln B

+ iωd(q‖ + q⊥ + 4u‖) = 0

dp‖

dt
+ B∇̃‖

q‖ + 3u‖

B
+ [

1

2
∇̂2

⊥vΦ] · ∇T⊥ + 2(q⊥ + u‖)∇‖ ln B (3.89)

−
(
1 + ηi +

ηi

2
∇̂2

⊥

)
iω∗Φ +

(
4 +

1

2
∇̂2

⊥

)
iωdΦ + iωd(7p‖ + p⊥ − 4n)

+ 2|ωd|(ν1T‖ + ν2T⊥) = −2

3
νii(p‖ − p⊥)

dp⊥

dt
+ B2∇̃‖

q⊥ + u‖

B2
+ [

1

2
∇̂2

⊥vΦ] · ∇p⊥ + [
ˆ̂∇

2

⊥vΦ] · ∇T⊥ (3.90)

− [
1

2
∇̂2

⊥vA] · ∇(q⊥ + u‖) −
[
1 +

1

2
∇̂2

⊥ + ηi

(
1 +

1

2
∇̂2

⊥ +
ˆ̂∇

2

⊥

)]
iω∗Φ

+

(
3 +

3

2
∇̂2

⊥ +
ˆ̂∇

2

⊥

)
iωdΦ + iωd(5p⊥ + p‖ − 3n)

+ 2|ωd|(ν3T‖ + ν4T⊥) =
1

3
νii(p‖ − p⊥)
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dq‖

dt
+ 3∇̃‖T‖ + c‖∇‖T‖ +

√
2D‖|k‖|q‖ + iωd(−3q‖ − 3q⊥ + 6u‖) (3.91)

+ 3ηiiω∗A‖ + |ωd|(ν5u‖ + ν6q‖ + ν7q⊥) = −νiiq‖

dq⊥

dt
+ ∇̃‖T⊥ +

√
2D⊥|k‖|q⊥ + [

1

2
∇̂2

⊥vΦ] · ∇u‖ + [
ˆ̂∇

2

⊥vΦ] · ∇q⊥ (3.92)

− [
ˆ̂∇

2

⊥ − 1

2
∇̂2

⊥]vA · ∇T⊥ +

[
ηi(1 +

ˆ̂∇
2

⊥) + (1 + ηi)
1

2
∇̂2

⊥

]
iω∗A‖

+
1

2
∇̂2

⊥

(
dA‖

dt
+ ∇̃‖Φ − iωdA‖

)
+

(
p⊥ − p‖ +

ˆ̂∇
2

⊥Φ − 1

2
∇̂2

⊥Φ

)
∇‖ ln B

+ iωd(−q‖ − q⊥ + u‖) + |ωd|(ν8u‖ + ν9q‖ + ν10q⊥) = −νiiq⊥

3.2.6 The Multi-species Ion Equations

The derivation in the previous sections has focused on the single ion species case

for simplicity. In general, tokamak plasmas may contain multiple ion species. In

some cases, such as the deuterium-tritium plasmas used in fusion experiments, the

bulk plasma may contain more than one dominant species. In addition, impurity

ions are expected to play an important role, especially near the plasma edge.

The extension to multiple ion species is fairly straightforward. A separate

set of gyrofluid equations must be solved for each species j, keeping in mind that

charge e, mass m, and the equilibrium moments (n0, T0) and scale lengths are

functions of the species j.

Each species is normalized to its own n0, vt etc., but one ion species is chosen

as a reference. The reference species is designated with the subscript i, and the

following dimensionless constants are introduced, τj = T0j/T0i, vj = vtj/vti, and

ρ̂j = ρj/ρi. Z is the ratio of the species charge to the unit charge, Z = ej/|e|, and

ηj is the usual ratio of scale lengths ηj = Lnj/LTj. The basic macroscopic length

is taken to be the electron density scale length Lne, and the following normalized

scale length is defined for each ion species, L̂nj = Lnj/Lne.
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The multi-species equations can then been written as follows:

dn

dt
+ vjB∇̃‖

u‖

B
+ [

1

2
∇̂2

⊥vΦ] · ∇T⊥ − [
1

2
∇̂2

⊥vA] · ∇q⊥ (3.93)

−
(
1 +

ηj

2
ρ̂2

j∇̂2
⊥

) iω∗
L̂nj

Φ +

(
2 +

1

2
ρ̂2

j∇̂2
⊥

)
iωd

ρ̂jvjZ

τj

Φ + iωdρ̂jvj(p‖ + p⊥) = 0,

du‖

dt
+ vjB∇̃‖

p‖

B
+ [

1

2
∇̂2

⊥vΦ] · ∇q⊥ − [
1

2
∇̂2

⊥vA] · ∇T⊥ +
vjZ

τj

∇̃‖Φ (3.94)

+
vjZ

τj

∂A‖

∂t
+

(
1 + ηj(1 +

ρ̂2
j∇̂2

⊥

2
)

)
iω∗
L̂nj

vjA‖

+

(
p⊥ +

Z

τj

ρ̂2
j∇̂2

⊥

2
Φ

)
vj∇‖ ln B + iωdρ̂jvj(q‖ + q⊥ + 4u‖) = 0,

dp‖

dt
+ vjB∇̃‖

q‖ + 3u‖

B
+ [

1

2
∇̂2

⊥vΦ] · ∇T⊥ + 2vj(q⊥ + u‖)∇‖ ln B (3.95)

−
(

1 + ηj(1 +
ρ̂2

j∇̂2
⊥

2
)

)
iω∗
L̂nj

Φ +

(
4 +

ρ̂2
j∇̂2

⊥

2

)
iωd

ρ̂jvjZ

τ
Φ

+ iωdρ̂jvj(7p‖ + p⊥ − 4n) + 2|ωd|ρ̂jvj(ν1T‖ + ν2T⊥) = −2

3
νs(p‖ − p⊥),

dp⊥

dt
+ vjB

2∇̃‖
q⊥ + u‖

B2
+ [

1

2
∇̂2

⊥vΦ] · ∇p⊥ + [ρ̂2
j
ˆ̂∇

2

⊥vΦ] · ∇T⊥ (3.96)

− [
1

2
∇̂2

⊥vA] · ∇(q⊥ + u‖) −
[
1 +

ρ̂2
j∇̂2

⊥

2
+ ηj

(
1 +

ρ̂2
j∇̂2

⊥

2
+ ρ̂2

j
ˆ̂∇

2

⊥

)]
iω∗
L̂nj

Φ

+

(
3 +

3ρ̂2
j∇̂2

⊥

2
+ ρ̂2

j
ˆ̂∇

2

⊥

)
iωd

ρ̂jvjZ

τj

Φ + iωdρ̂jvj(5p⊥ + p‖ − 3n)

+ 2|ωd|ρ̂jvj(ν3T‖ + ν4T⊥) =
1

3
νs(p‖ − p⊥),

dq‖

dt
+ (3 + c‖)vj∇̃‖T‖ +

√
2D‖vj|k‖|q‖ + iωdρ̂jvj(−3q‖ − 3q⊥ + 6u‖) (3.97)

+ 3ηj
iω∗
L̂nj

vjA‖ + |ωd|ρ̂jvj(ν5u‖ + ν6q‖ + ν7q⊥) = −νsq‖,
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dq⊥

dt
+ vj∇̃‖T⊥ +

√
2D⊥vj|k‖|q⊥ + [

1

2
∇̂2

⊥vΦ] · ∇u‖ + [ρ̂2
j
ˆ̂∇

2

⊥vΦ] · ∇q⊥ (3.98)

− ρ̂2
j

[
ˆ̂∇

2

⊥ − 1

2
∇̂2

⊥

]
vA · ∇T⊥ +

[
ηj(1 + ρ̂2

j
ˆ̂∇

2

⊥)(1 + ηj)
ρ̂2

j∇̂2
⊥

2

]
iω∗
L̂nj

vjA‖

+
Zvj

τj

ρ̂2
j∇̂2

⊥

2

(
dA‖

dt
+ ∇̃‖Φ − iωdρ̂jvjA‖

)
+ iωdρ̂jvj(−q‖ − q⊥ + u‖)

+

(
p⊥ − p‖ +

Z

τj

(ρ̂2
j
ˆ̂∇

2

⊥Φ − ρ̂2
j∇̂2

⊥

2
Φ)

)
vj∇‖ ln B

+ |ωd|ρ̂jvj(ν8u‖ + ν9q‖ + ν10q⊥) = −νsq⊥.

3.3 The Electron Landau Fluid Equations

For the electrons, a careful analytic expansion is constructed to allow a Landau fluid

treatment. Electron dynamics on the characteristic ion and Alfvén scales are treated

explicitly, while the fast electron transit time scale and the small spatial scales

associated with the electron gyroradius and the electron skin depth are removed

from the set of fluid equations to be solved numerically.

The electromagnetic electron Landau fluid equations include the effects of

electron temperature and density gradients, electron E×B motion, Landau damp-

ing, electron-ion collisions, and the parallel electron currents which, along with

parallel ion currents, give rise to the parallel magnetic potential. The equations

given here focus on the dynamics of the passing electrons. Developing an electro-

magnetic model of trapped electron dynamics analogous to the electrostatic model

of [Beer 1995] is left as an important piece of future work.

3.3.1 Analytic Expansion in the Electron Mass Ratio

Having undertaken the rather arduous task of deriving a set of electromagnetic

multi-species ion gyrofluid equations, it is perhaps tempting to simply substitute

the electron charge, mass, and equilibrium quantities into Eqs. 3.93-3.98 and con-

sider oneself finished with the electrons. However, such an approach is numerically

challenging, and may involve spending a large amount of computational power
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resolving scales that are unnecessary for an accurate description of Alfvén-ITG

turbulence.7 Here we invoke an analytic expansion in the electron/ion mass ratio,

similar to the technique employed by [Kadomtsev and Pogutse 1985]. This

expansion removes the small electron gyroradius scale and the fast electron transit

time scale from the equations, leaving an efficient model appropriate for the study

of turbulence on ion and Alfvén scales.

Electron FLR

Examining the gyrokinetic ordering given by Eq. 3.1, we first note that k⊥ρi is O(1).

An analogous treatment of the electrons would take k⊥ρe ∼ 1. However, because of

the large separation between ρe and ρi (by a factor of 1
Z

√
Ti0mi

Te0me
∼ 60 for a typical

deuterium plasma), it is numerically quite challenging to fully resolve both scales

in the same simulation. Furthermore, the focus of this work is on turbulence with

perpendicular scales on the order of the ion gyroradius. Both experimental obser-

vations and theoretical considerations suggest that microturbulence with k⊥ρi ≤ 1

dominates turbulent transport in many cases.8 Because we wish to resolve only

scales on the order of the ion gyroradius or larger, it is unnecessary and compu-

tationally costly to evaluate the finite Larmor radius (J0 and J1) terms for the

electrons.

For the above reasons, we employ a subsidiary formal ordering in the small-

ness of the electron/ion mass ratio in order to remove electron finite Larmor radius

terms. The gyroaveraging operator J0 can be expanded 1+ k2
⊥ρ2

e + .... Noting that,

in the gyrokinetic ordering employed here, k⊥ρi ∼ 1, it is apparent that the first

electron FLR term is O(me/mi). Electron FLR terms are thus higher order in an

expansion in me/mi. We introduce the subsidiary ordering parameter δ ∼ √
me/mi

and note that electron FLR effects first enter at O(δ2). Hence it is possible to retain

terms through O(δ) without introducing electron FLR terms.

7Nonetheless, such an approach may prove quite useful for simulating faster and/or smaller
scale turbulence such as that driven by the electron temperature gradient (ETG) mode.

8This is not to suggest that microturbulence on ρe scales does not exist or could not be
important in some cases. Recent experimental observations in plasmas with ion transport barriers
in fact suggest such electron scale turbulence may play a role. However, such electron scale
turbulence requires a different modeling approach and is not considered here.
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Electron Transit

The small electron mass also implies a fast electron thermal speed (vte À vti), and

rapid electron streaming along the magnetic field. The speed of this streaming

motion along the field puts a constraint on the size of the time step which can be

used in an explicit numerical simulation. Adding electron parallel dynamics to a

simulation which previously modeled only ions reduces this time step constraint

by a factor of
√

Temi/Time ∼ 60 for a deuterium fusion plasma. This is a very

severe numerical burden, though perhaps one that it may be possible to contemplate

bearing in the near future, as computational power continues to increase.

Here we again impose the mass ratio ordering
√

me/mi ∼ δ ¿ 1, allowing

the fast electron transit motion to be analytically removed.

General Ordering

The use of the electron/ion mass ratio as an ordering parameter has a long history

in plasma physics. It has been invoked in nearly all forms of the magnetohydro-

dynamic equations as well as in the more detailed equations of [Kadomtsev and

Pogutse 1985], and in many other fluid and simplified kinetic formulations. In

the context of gyrokinetics, the mass ratio expansion has generally been used to

justify the neglect of electron FLR terms, and treatment of electron dynamics with

the drift kinetic equation. However, the mass ratio ordering has often been ne-

glected in the derivation of fluid equations from the drift kinetic equation. Here

we wish to consistently apply the ordering me/mi ∼ O(δ2) to all terms in the drift

fluid equations before relaxing this ordering to include additional physical effects

in Sec. 3.3.3.

The fundamental assumption is that the fluctuating scales of interest are

those typical of ion thermal, drift and gyro-motion, and those of Alfvén waves.

Length and time scales associated with electron thermal and gyromotion are taken

to be small.
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For a typical perpendicular wavenumber k⊥, we impose the following order-

ing:

k−1
⊥ ∼ ρi ∼ c/ωpi À ρe, c/ωpe, (3.99)

where ωp is the plasma frequency. The lengths on the left are independent of the

electron mass, while the two lengths on the right are proportional to
√

me. Note

that the skin depth c/ωpj can be written as ρj

√
2/βj for the single species case,

where the species βj = 8πn0jT0j/B
2. Formally we take β ∼ O(1), and then the

above ordering of lengths follows directly from
√

me/mi ∼ O(δ).

For a typical fluctuation frequency ω we choose the ordering:

ω ∼ k‖vti ∼ ω∗ ∼ ωDi ∼ ωDe ∼ k‖cs ∼ k‖vA ¿ k‖vte ∼ ωETG,

(3.100)

where ωD is the curvature and ∇B drift frequency, cs =
√

T0e/mi is the cold ion

sound speed, and vA = B/
√

4πn0mi is the Alfvén speed. We define ωETG to be a

frequency characteristic of the electron temperature gradient (ETG) mode. These

short wavelength modes typically have kθ ∼ 1/ρe, and hence ωETG ∼ √
mi/me ω∗,

where ω∗ is the diamagnetic frequency taken with kθρi ∼ 1. The quantities on the

left are independent of me while those on the right are proportional to m
−1/2
e .

The desired time and length scale orderings above are both formally ac-

complished simply by taking me/mi ∼ O(δ2) and βj ∼ O(1). The constraints

on the validity of this expansion are found through inspection of Eqs. 3.99 and

3.100. The separation of scales between the Alfvén frequency and the electron

transit frequency (and equivalently between ρi and the electron skin depth) requires

βe À 2me/mi. In fusion relevant plasmas, this condition is generally satisfied ev-

erywhere except very near the plasma edge. Another constraint is provided by the

condition ω∗ ¿ k‖vte. Using a typical ballooning k‖ ≈ 1/qR, and w∗ ≈ kθρivti/Ln,

this requires kθρi

√
me/mi ¿ Ln/qR. For large kθρi ≈ 1, this condition can break

down in the extreme edge region where q is often large, while Ln can become rather

short.



72 Chapter 3. Derivation of the Electromagnetic Gyrofluid Equations

3.3.2 Derivation of the Electron Equations

The formal expansion in mass ratio can now be used to derive a set of equations

which describe electron dynamics consistent with the time and space scale orderings

described above.

It is critical to observe that the fluctuations we wish to evolve, including

those in the electron moments ñe, ũ‖e, p̃e etc., occur on the ion/Alfvén scales.

Hence the fluctuating electron moments should be normalized to ion quantities

vti and mi, so that a consistent ordering is easily maintained.9 We normalize the

fluctuating electron moments as follows:

(n̂e, ûe, p̂e, q̂e, r̂e, ŝe) =
Ln

ρi

(
ñe

n0

,
ũe

vti

,
p̃e

n0miv2
ti

,
q̃e

n0miv3
ti

,
r̃e

n0miv4
ti

,
s̃e

n0miv5
ti

),

(3.101)

where the normalized quantities on the left are all O(1). In the general multiple

ion species case, the quantities mi and vti above refer to the reference ion species,

as in Sec. 3.2.6.

This normalization is different than that employed in Sec. 3.2.6, where each

species’ moments are normalized to its own mass and thermal velocity. Hence

we must revisit the unnormalized moment equations, and carefully implement the

above electron moment normalization. Lengths, times, and the fields φ and A‖ are

normalized as in the ion equations. The unsubscripted normalized operators are

again defined in terms of the Z = 1 ion charge (e), the reference ion species mass

(mi) and temperature (T0i), and the equilibrium electron density (n0) and density

scale length (Ln):

iω̂∗ = −Ln

vti

cT0i

eBn0

∇n0 · b̂ ×∇, (3.102)

iω̂d =
Ln

vti

cT0i

eB3
B ×∇B · ∇. (3.103)

9A normalization to Alfvén scales vA and mi, or the sound wave scales cs and mi would also
be feasible.
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The normalized electron operators are defined to be ω̂∗e = ω̂∗/τ and ω̂de = −ω̂d/τ ,

where τ
.
= T0i/T0e.

The normalized electron density equation becomes:

∂ne

∂t
+ vE · ∇ne + B∇̃‖

u‖e

B
− iω∗φ + iωd(2φ − 2ne/τ − T‖e − T⊥e) = 0,

(3.104)

where the carets on normalized quantities have been dropped for conciseness of

notation. The notation ∇̃‖ = ∇‖ − b̂ ×∇A‖ · ∇ has been employed. Note that no

factors of me appear in the above equation, and all terms are of the same order.

The momentum equation can be written:

me

mi

∂u‖e

∂t
+

me

mi

vE · ∇u‖e + B∇̃‖
p‖e

B
+ (1 + ηe)iω∗

A‖

τ
(3.105)

+
me

mi

iωd(q‖e + q⊥e + 4u‖e/τ) − ∂A‖

∂t
− ∇̃‖φ + p⊥e∇‖ ln B = 0.

The electron momentum term, which is associated with the electron skin depth,

and the curvature and ∇B drift terms are both small by a factor of me/mi ∼
δ2. Neglecting these higher order terms, and expanding the pressure, noting that

p‖e = T‖e + ne/τ because of the normalization to ion temperature, the momentum

equation can be recast as a time evolution equation for the magnetic potential:

∂A‖

∂t
+ ∇̃‖φ − 1

τ
∇̃‖ne − ∇̃‖T‖e − (1 + ηe)iω∗

A‖

τ
+ (T‖e − T⊥e)∇‖ ln B = 0.

(3.106)

The equations for T‖e and T⊥e needed to complete the above set come from

the q‖e and q⊥e moment equations. The p‖e and p⊥e moment equations provide

information on the next order evolution of the temperature fluctuations.

The q‖e and q⊥e equations contain the higher moments re and se which are

closed as in Sec. 3.2.3. However, the electron closure terms are not in general O(1).

Consider for example the Maxwellian closure for the moment r‖,‖e. This closure

is derived by taking the first order fluctuating part of the generalized Maxwellian

result r‖,‖e = 3p‖
2
e/mene. The factor of 1/me insures that this term is O(δ−2). In
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the normalized units:

r‖,‖e → 6
mi

τme

T‖e + 3
mi

τ 2me

ne, (3.107)

and similarly for r‖,⊥e and r⊥,⊥e. The Landau damping portion of the closure is

smaller than the Maxwellian part by
√

me/mi, and is neglected here, though it is

reconsidered in Sec. 3.3.3.

Before normalizing or substituting in the closures, the q‖e equation can be

written to lowest order:

B∇̃‖
r̃‖‖e

B
− 3T0eB∇̃‖

p̃‖e

meB
+ 3ηe

n0T
2
0e

me

iω∗
eA‖

cT0i

+ 3(r̃‖⊥e −
T0i

me

p̃⊥e)∇‖ ln B = 0,

(3.108)

where the d/dt and ωd terms again drop out, as they are higher order in me/mi.

Substituting the Maxwellian closures, normalizing and simplifying gives:

∇̃‖T‖e
+ ηeiω∗A‖/τ = 0. (3.109)

The second term on the left is the gradient of the equilibrium temperature T0e along

the perturbed field, b̂ × ∇A‖ · ∇Toe, or equivalently the gradient along the total

field ∇̃‖T0e, as T0e is constant along the equilibrium field. Eq. 3.109 can thus be

written in the more physically intuitive form:

∇̃‖(T‖e
+ T0e) =

1

B
(B0 + B1) · ∇(T‖e

+ T0e) = 0. (3.110)

Quite simply, the total temperature is constant along the total magnetic field in-

cluding fluctuations. This result is precisely what is expected from our ordering of

the velocities vti, vA ¿ vte. The speeds of the microturbulence being evolved are

all slow compared to vte, and furthermore the Alfvén speed at which the magnetic

field fluctuates is also much less than the electron thermal speed. Hence as the

field fluctuates across the equilibrium temperature gradient, the electrons are able

to almost instantaneously re-thermalize, leaving no electron temperature gradient

along the total field. Note that this condition is quite different from the occasion-

ally employed closures ∇‖T̃e = 0, or T̃e = 0, both of which fail to properly account
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for the magnetic fluctuations across the equilibrium temperature gradient, and can

lead to errors when ηe is finite, as shown in Fig. 2.3 in the local fluid limit.

Turning now to the q⊥e moment equation, and again inserting Maxwellian

closures, normalizing, and keeping only the dominant terms, the equation becomes:

∇̃‖T⊥e + ηeiω∗A‖/τ + (T⊥e − T‖e
)∇‖ ln B = 0. (3.111)

Again the second term is simply the derivative along the perturbed field of the

equilibrium temperature (T0e). A mirror force term enters as well.

Eqs. 3.109 and 3.111 can be recast by defining Te = (T‖e
+T⊥e)/2 and δTe =

(T⊥e − T‖e
). Note that once Eq. 3.109 has been substituted into the momentum

equation, the temperature enters the momentum equation only as a mirroring term

δTe∇‖ ln B, and enters the density equation only as −iωdTe. The equations for Te

and δTe are:

∇̃‖Te + ηeiω∗A‖/τ +
δTe

2
∇‖ ln B = 0, (3.112)

(∇̃‖ + ∇‖ ln B) δTe = 0. (3.113)

The simplest solution to Eq. 3.113 is δTe = 0. This solution is always valid, and

is especially satisfactory because it is the only valid solution in the limit of high

electron collisionality. Also, in the limit of small mirror force, δTe does not ap-

pear in the moment equations. Because this model describes only passing electron

dynamics, the mirror force is expected to play a small role.10

The full set of normalized electron equations is then:

∂ne

∂t
+ vE · ∇ne + B∇̃‖

u‖e

B
− iω∗φ + 2iωd(φ − ne

τ
− Te) = 0,

(3.114)
10However, we intend to include a finite mirror force term in the electron momentum equation in

the future, to more accurately model electron dynamics, particularly in low aspect ratio tokamaks.
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∂A‖

∂t
+ ∇̃‖φ − 1

τ
∇̃‖ne − 1

τ
iω∗A‖ = 0, (3.115)

∇̃‖Te = −ηe

τ
iω∗A‖, (3.116)

where the Te term in Eq. 3.114 is calculated by numerically inverting Eq. 3.116.

The above set of equations represents a fairly simple and elegant model of the

electron dynamics on Alfvén and ion scales. While only two moment equations need

be solved, the physics content of a full six moment model has been incorporated to

lowest order in me/mi.

Though the model is simple, it represents a very substantial improvement

over the adiabatic electron models (ne/τ = φ − 〈φ〉surface) that have been used to

describe the passing electrons in most previous gyrofluid and gyrokinetic particle

simulations. In addition to finite-β effects and Alfvén wave dynamics, the above

model also incorporates electron E×B, curvature, and ∇B drift motion, as well as

the E×B nonlinearity and four additional nonlinear terms due to magnetic flutter.

The accuracy of this model in describing both finite-β drift waves and shear Alfvén

waves is gauged in Ch. 4 with an extensive series of linear benchmarks.

Furthermore, the numerically crippling effects of short electron space and

time scales have been entirely removed. Because the electron mass appears nowhere

in Eqs. 3.114-3.116 or in the normalizations, it is apparent that the electron scales,

(ρe, c/ωpe, k‖vte, ωETG), all of which contain the electron mass, have been success-

fully removed from the equations which are numerically evolved.

It is shown in Appendix B that the above electron model preserves magnetic

flux surfaces.

3.3.3 Electron Collisions and Landau Damping

One consequence of keeping only the lowest order terms in the mass ratio expansion

is the absence of any damping mechanism in the electron channel. It is well known

that damping terms, even when linearly small, can have a dramatic impact on
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the nonlinear dynamics of an otherwise dissipationless system. While the gyrofluid

system has dissipation through ion collisions and ion Landau damping, it is expected

that damping in the electron channel may play an important role as well.

The dominant electron damping mechanisms are expected to be Landau

damping and pitch angle scattering collisions with ions.

Both of these mechanisms can be included via a formal relaxation of the mass

ratio ordering in which terms small by
√

me/mi are kept, while those proportional

to me/mi are neglected. Formally, the subsidiary expansion in δ ∼ √
me/mi is

now truncated at O(δ2), and terms of O(δ) are retained. Note that the finite me

terms neglected in the derivation of Eqs. 3.114-3.116, except for the Landau closure

terms, were small by a full power of me/mi and do not re-enter with this relaxed

ordering.

The [Hammett and Perkins 1990] Landau damping operator comes in at

O(δ). For a two moment model, the Landau closure appears in the momentum

equation and takes the form:

n0

√
π

2

me

mi

cs|k‖|ũ‖e, (3.117)

where the units are appropriate for insertion into Eq. 3.105. In the normalized

units of Eq. 3.115, this becomes:

−
√

π

2τ

me

mi

|k‖|u‖e. (3.118)

Note that we have introduced the Landau damping operator in an odd moment (u‖),

which has no equilibrium component, so that there is no linear magnetic flutter

contribution to the Landau closure, avoiding a concern expressed by [Finn and

Gerwin 1996]. However, magnetic flutter does introduce an additional nonlinear

Landau damping term, as discussed in Sec. C.8. The size of this term has been

calculated in simulations and found to be small. However, including it in future

simulations is of interest, as discussed in Secs. C.8 and 7.2.

Electron-ion collisions are modeled with a Lorentz pitch angle scattering

operator. Adding this operator to the right hand side of the drift kinetic equation
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and taking moments leads to the following collision term in the normalized electron

momentum equation:

−νei
me

mi

(u‖e − u‖i), (3.119)

where νei is the effective scattering rate, normalized to vti/Ln. Formally we may

choose to order νei ∼ δ−1 so that the collision term enters at O(δ). Of course this

is simply a caveat to maintain a formally consistent ordering in the mass ratio. It

is recognized that the collision term is often smaller than other neglected terms.

The collision term is kept in some cases simply to explore the importance of this

damping mechanism in the electron channel.

Including the above models of Landau damping and pitch angle scattering in

the electron momentum equation, the final set of electron equations can be written:

∂ne

∂t
+ vE · ∇ne + B∇̃‖

u‖e

B
− iω∗φ + 2iωd(φ − ne

τ
− Te) = 0,

(3.120)

∂A‖

∂t
+ ∇̃‖φ − 1

τ
∇̃‖ne − 1

τ
iω∗A‖ −

√
π

2τ

me

mi

|k‖|u‖e = νei
me

mi

(u‖e − u‖i),

(3.121)

∇̃‖Te = −ηe

τ
iω∗A‖. (3.122)

This electron model can be viewed as an extension of the equations of

[Kadomtsev and Pogutse 1985] to include toroidal drifts, parallel ion flow,

and an improved Landau damping model which properly phase-mixes E×B driven

perturbations.11

11[Hammett and Perkins 1990; Hammett et al. 1992] showed that a Landau damping model
like that employed in Eq. 3.121 provides an n-pole approximation to the Z-function response for
all frequencies, and unlike the q‖ = µ̂E‖ Landau closure employed by [Kadomtsev and Pogutse

1985], is of the proper form to model the linear propagator and properly phase mix E×B driven
perturbations.
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The model can be reduced to the familiar adiabatic response in the appro-

priate limits. Taking the limits β → 0, which implies A‖ → 0 from Eq. 3.125,12 and

me/mi → 0, Eq. 3.121 reduces to the adiabatic electron response ∇‖(φ−ne/τ) = 0;

or, with the appropriate choice of constants, ne = τ(φ − 〈φ〉). The adiabatic re-

sponse can also be derived in the formal limit k‖ → ∞.

Upon neglect of the “small scale” effects associated with the ∇p term in

the momentum equation (here these are the ∇̃‖ne and iω∗A‖ terms), and in the

limit me/mi → 0, Eq. 3.121 reduces to the parallel ideal MHD Ohm’s Law E‖ =

−∂A‖
∂t

− ∇̃‖φ = 0. Including the collisional term gives the parallel Resistive MHD

Ohm’s Law. Adding the −1/τ(∇̃‖ne− iω∗A‖) terms gives a version of the extended

MHD Ohm’s Law appropriate for ω ¿ k‖vte. Some versions of extended MHD treat

the electrons quite similarly to the above model, though, with the exception of the

version described in Appendix C, they generally do not include a Landau damping

term.13

3.4 Poisson’s Equation and Ampere’s Law

The system of equations is completed using the gyrokinetic Poisson’s Equation and

Ampere’s Law.

In the limit of small Debye length, kλD ¿ 1, the gyrokinetic Poisson’s

equation becomes a quasineutrality constraint [Lee 1983]:

ne = n̄i − (1 − Γ0)φ, (3.123)

where n̄i is the gyrophase independent part of the real space ion density. The

(1 − Γ0)φ term, often called the polarization density, arises from the gyrophase

dependent part of the distribution function, and accounts for the difference between

guiding center density and ion particle density.

12This of course assumes u‖e and u‖i remain finite as β → 0. See Sec. 2.3.1 for a more detailed
discussion of this electrostatic/adiabatic electron limit.

13Other versions of extended MHD include the electron inertia term which has been neglected
here, and some versions do not assume ω ¿ k‖vte, and hence can have electron temperature
gradients along the magnetic field.
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Following [Beer 1995], the transformation from gyrocenter to real space is

accomplished with the simple Padé approximation:

n̄i =
1

1 + b/2
ni − 2b

(2 + b)2
T⊥i

, (3.124)

where b = k2
⊥ρ2

i . This approximation is first order accurate in b for both ni and T⊥i
,

and it behaves properly (n̄i → 0) for large b.

Within our gyrokinetic ordering, the parallel Ampere’s Law can be written

[Brizard 1992]:

∇2
⊥A‖ = −τβe

2
(ū‖i

− u‖e), (3.125)

where βe = 8πn0T0e/B
2.

The transformation to real space is again accomplished with a Padé approx-

imation:

ū‖i
=

1

1 + b/2
u‖i −

2b

(2 + b)2
q⊥i

. (3.126)

Poisson’s Equation (Eq. 3.123) and Ampere’s Law (Eq. 3.125), together with

the six ion moment equations (Eqs. 3.87-3.92), the two electron moment equations

(Eqs. 3.120-3.121), and the Te condition (Eq. 3.122), provide a complete description

of the ten unknowns (ni, u‖i, p‖i, p⊥i, q‖i, q⊥i, ne, u‖e, Te, φ, and A‖). The system

is solved by evolving the eight partial differential equations in time, while using

Eq. 3.123 to solve for φ, Eq. 3.125 to solve for u‖e, and Eq. 3.122 to solve for Te.

The full set of equations is evaluated with an extensive set of linear bench-

marks in Ch. 4, and solved nonlinearly in Chs. 5 and 6.



Chapter 4

Linear Benchmarks with Kinetic

Theory

B ENCHMARKING THE MODEL against linear kinetic theory is an

important step in verifying the accuracy and reliability of both the

electromagnetic gyrofluid physics model and the simulation code used

to implement the model.

An extensive series of linear benchmarks in the electrostatic case has been

performed by [Beer 1995], so we focus here on the impact of finite plasma β.

Finite-β effects on the ion temperature gradient (ITG) instability are benchmarked

both in slab and toroidal flux tube geometry. In addition, the growth rates and real

frequencies of the kinetic Alfvén instability are benchmarked in toroidal geometry.

Both the case with no temperature gradient and the more interesting case with

finite ion temperature gradient are investigated. It is shown that the gyrofluid

model is able to reproduce the finite growth rates of the kinetic Alfvén mode below

the ideal MHD β-limit in this case.

It is important to note that this set of benchmarks provides a test of the

electron physics model, as well as the ion physics model. While a simple adiabatic

electron model can produce the correct ITG growth rate in the electrostatic limit,

this is not at all the case for the finite-β ITG and KBM cases considered here, as

discussed in Sec. 2.3.4. A description of electron ∇B and curvature drift motion and

proper consideration of magnetic flutter across equilibrium electron temperature

81
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gradients are required to accurately calculate growth rates of both the finite-β ITG

and KBM instabilities.

It is not straightforward to do benchmarks for linearly stable modes which

could play some role in nonlinear saturation. An important example is the zonal

flow mode, which is discussed in Appendix A.

4.1 The Finite-β ITG Instability

As discussed in the first two chapters, the ion temperature gradient (ITG) instabil-

ity is believed to play a critical role in core transport. Capturing the finite-β effects

on this mode has been a principal motivation for developing an electromagnetic

turbulence model.

Comparisons of predicted linear growth rates and frequencies of the finite-β

ITG are made with linear kinetic integral codes in both sheared slab and toroidal

geometry.

4.1.1 Benchmarks in Slab Geometry

We first test the electromagnetic gyrofluid model against linear kinetic theory in a

nonlocal sheared slab geometry. This comparison emphasizes the electromagnetic

effects on the ITG mode while omitting for now the effects of toroidal geometry.

The comparison uses a linear integral code developed by [Reynders 1994].

This code calculates the growth rates and frequencies for all the radial eigenmodes

of the system, and it has been successfully benchmarked against the earlier work

of [Dong et al. 1988], which considered only the fundamental eigenmode.

Fig. 4.1 shows a comparison of predictions of linear growth rate as a function

of kyρi at β = 0 and at β = 0.2%. The other parameters chosen are ηi = ηe = 3,

Ti/Te = 1 and Ls/Ln = 40. The linear kinetic theory growth rates for two separate

radial eigenmodes (l = 1 and l = 2) are shown, as well as the gyrofluid predictions.

Because the gyrofluid code is an initial value code, it is expected to converge to
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Figure 4.1: Linear growth rate spectra of the slab ITG mode, for β = 0 and β = .2%,
with ηi = ηe = 3, τ = 1, Ls/Ln = 40. The growth rate, in normalized units of
vti/Ln, is plotted as a function of kyρi. The electromagnetic gyrofluid model is
compared to two radial eigenmodes calculated by Reynders’ linear integral code.

the fastest growing eigenmode. Good quantitative agreement is found, with the

gyrofluid model accounting for both the strong finite-β reduction in growth rate

and the shift in the peak to longer wavelengths.

The sheared slab system often contains a number of eigenmodes with similar

growth rates, complicating the comparisons. Fig. 4.2 shows both the linear growth

rates (positive) and real frequencies (negative) for the same parameters as Fig. 4.1.

The electrostatic (β = 0) case is plotted above, and the β = .2% case is below.

Here it can be seen that different eigenmodes dominate at different values of kyρi,

and that in some cases the growth rates of different eigenmodes are so close that

the initial value gyrofluid code oscillates between two modes. For cases with a

clearly dominant eigenmode, good agreement is found in both growth rate and real

frequency for both electrostatic and electromagnetic cases.
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(a)

(b)

Figure 4.2: Linear growth rate (positive) and real frequency (negative) spectra of
the slab ITG mode, for β = 0 (a) and β = .2% (b), with ηi = ηe = 3, τ =
1, Ls/Ln = 40. The gyrofluid model is compared to multiple radial eigenmodes
calculated with Reynders’ linear integral code.
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4.1.2 ITG Benchmarks in Toroidal Geometry

Ultimately, the model is to be employed in simulations in toroidal geometry, and it

is here that benchmarks are most important.

Linear kinetic theory for the electromagnetic case in nonlocal toroidal ge-

ometry is quite involved, and a fairly limited set of codes is available. Two kinetic

codes are considered here.

The first kinetic code, developed by [Kim, Horton, and Dong 1993],

solves a simplified set of integral equations in ballooning coordinates, using an

s−α equilibrium model. This code makes a number of approximations in order to

develop a simpler set of equations. Among the most important are the neglect of

v‖ and v⊥ variation along the field lines, and the ordering ω ∼ ωDi ∼ ωDe ¿ |k‖vte|.
While these approximations are similar to those used in the derivation of the elec-

tron equations in our model, they nonetheless make this code somewhat less fun-

damental. However, for the parameters chosen in the benchmark case (particularly

r/R = 0), the approximations are expected to be well justified.

Fig. 4.3 shows a benchmark using parameters selected from Fig. 6a in [Kim

et al. 1993]. The plot shows linear growth rate vs. the safety factor q, at two values

of β. Quantitative agreement in the finite-β case is found to be as good as in the

electrostatic case. The trend emphasized by [Kim et al. 1993], that finite-β effects

become more important at higher q is clearly reproduced by the gyrofluid model.

The structure of the eigenfunctions of φ and A‖ in ballooning space has also

been analyzed. For the parameter set β = 0.8%, ηi = 2.5, ηe = 2, kθρi = 0.5,

εn = 0.2, s = 0.6, q = 1.5, and τ = 1, the gyrofluid eigenfunctions have been

compared to Fig. 5 of [Kim et al. 1993]. Good agreement is found in both the

shape and parity of the real and imaginary eigenfunctions of φ and A‖ as well as in

the ratio A‖/φ ¿ 1. We note that the real part of φ has even parity, while the real

part of A‖ is odd, and in the normalized units, the ratio φmax/A‖max ' 15. The

eigenfunctions extend roughly 2π in ballooning angle before becoming negligible.

The shape and parity of these eigenfunctions and the ratio A‖/φ ¿ 1 are all typical

of the finite-β ITG mode.
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Figure 4.3: Linear growth rates of the toroidal ITG mode as a function of the safety
factor q, for β = 0 and β = .8% , with ηi = 2.5, ηe = 2, kθρi = 0.5, εn = 0.2, s = 0.6,
and τ = 1. The gyrofluid model is compared to linear kinetic theory of [Kim et al.
1993] in ŝ−α geometry, with α = q2βe/εn[1+ηe + τ(1+ηi)] chosen to be consistent
with β and q.
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Figure 4.4: Linear growth rate (positive) and frequency (negative) spectra of the
toroidal ITG mode, for β = 0, β = .4%, and β = .6%. The gyrofluid result
is compared with results from M. Kotschenreuther’s linear gyrokinetic code (runs
performed by W. Dorland). Parameters are ηi = ηe = 5, R/Ln = 3, s = 1, q = 2,
α = 0, me/mi = 0 and τ = 1.

A second set of toroidal benchmarks employ the widely used GS2 linear

gyrokinetic code developed by M. Kotschenreuther [Kotschenreuther et al.

1995]. GS2 is an initial value code which solves integral equations in ballooning

coordinates. It is a very complete code which can include both finite electron mass

and parallel magnetic perturbations. The code can be run in general geometry, but

is operated in a simple circular equilibrium for the comparisons shown here.

Fig. 4.4 shows a comparison of linear growth rate and frequency spectra

at three values of β. Good agreement is found at all three β values, and the

dramatic finite-β stabilization of the ITG seen in this case is well reproduced by

the gyrofluid code. Both codes have been run with zero electron mass and with

δB‖ = 0 to simplify the comparison. It should be noted that although the absolute

values of β shown are small, they represent a significant fraction of the ideal MHD

β limit for this case (βc ' 0.8%).
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Figure 4.5: Linear growth rate (positive) and frequency (negative) spectra of the
toroidal shear Alfvén mode. The gyrofluid model is compared to the kinetic code
of [Hong et al. 1989], in a simple circular equilibrium at β = 6.25%. Other
parameters are s = 1, q = 2, τ = 1, εn = 0.25, ηi = ηe = 0.

4.2 The Kinetic Alfvén Instability

The electromagnetic gyrofluid model also introduces shear Alfvén wave instabilities

not found in the electrostatic case, as described in Sec. 2.1. These kinetic Alfvén

instabilities are expected to play an important role in transport in cases where

they are driven unstable below the ideal MHD threshold by the toroidal ion drift

resonance. Benchmarks are performed both in the flat temperature gradient case,

where the kinetic Alfvén wave goes unstable exactly at the ideal MHD βc, and

the finite ion temperature gradient case, where the kinetic Alfvén wave is unstable

below βc.
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4.2.1 Benchmarks with Zero Ion Temperature Gradient

A set of benchmarks is performed against the kinetic code developed by [Hong

et al. 1989]. It should be noted that this code does not solve the complete kinetic

equations, but rather focuses on the coupling between drift and shear Alfvén waves,

and neglects ion transit and bounce frequency resonant effects.

Fig. 4.5 shows a comparison with Fig. 11 in [Hong et al. 1989]. Growth rate

and frequency spectra are compared in a simple circular geometry at β = 6.25%.

Excellent agreement is found for the frequency, which is nearly dispersionless with a

phase velocity of roughly −.6csρs/Ln in the ion diamagnetic direction. Agreement

for the growth rate is also good, though some variance is seen at short wavelengths.

The slight disagreement at higher kθρi may be due at least in part to differences in

the numerical resolutions used in the two codes. In cases such as Figs. 4.1, 4.2, and

4.4, where the numerical resolution used in the kinetic codes is known, an attempt

is made to use equivalent resolution in the gyrofluid code. However, the resolution

used by [Hong et al. 1989] is unknown. High resolution gyrofluid runs2 are shown

in Fig. 4.5, although agreement is somewhat better at lower resolution.

Fig. 4.6 shows the growth rate and frequency of the Alfvén mode as a func-

tion of β, at kθρi = .5. An s − α equilibrium model is used, and the ideal MHD

prediction is shown for comparison. Because ηi = 0, kinetic theory and ideal MHD

agree about both the critical βc = 3.7% for instability, and the β value at which

the second stability region is entered. Agreement between the gyrofluid model and

kinetic theory is very good for both frequency and growth rate.

4.2.2 Benchmarks with Finite Ion Temperature Gradient

The kinetic Alfvén wave becomes particularly interesting in the presence of finite

ion temperature gradient, because as shown by [Andersson and Weiland 1988],

finite ηi is a necessary and sufficient condition for instability of the shear Alfvén

1The figure captions on Figs. 1 and 2 on p.1593 of this article have been reversed. The figure
in the upper right is Fig. 1, while the figure in the lower left is Fig. 2.

2The gyrofluid runs in Fig. 4.5 use a box length of 6π radians along the field, with 128 parallel
grid points. Further increases in box size and resolution do not significantly affect the results.



90 Chapter 4. Linear Benchmarks with Kinetic Theory

0 5 10 15 20
β (%)

-0.6

-0.4

-0.2

-0.0

0.2

0.4

0.6

F
re

qu
en

cy
 a

nd
 G

ro
w

th
 R

at
e 

(c
s/

L n
)

Figure 4.6: Frequency (negative) and linear growth rate (positive) of the toroidal
Alfvén mode vs. β, with ηi = ηe = 0, kθρi = 0.5, εn = 0.25, s = 1, q = 2, and
τ = 1. An s − α equilibrium model is used, and for these parameters, α = 16 β.
The gyrofluid model is compared to linear kinetic theory by [Hong et al. 1989].
The ideal MHD prediction is also shown.
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Figure 4.7: Frequency (negative) and linear growth rate (positive) spectra for the
toroidal Alfvén mode in the presence of a finite ion temperature gradient. Param-
eters chosen are ηi = 2, ηe = 0, εn = 0.25, s = 1, q = 2, and τ = 1. The gyrofluid
model is compared to linear kinetic theory by [Hong et al. 1989] at two values of
β = 3.125%, 6.25%.

branch below the ideal MHD β limit. Hence this mode may play a significant and

direct role in driving transport in plasmas thought to be ideal MHD stable.

A set of benchmarks is again performed, using parameters and results from

[Hong et al. 1989]. Fig. 4.7 shows frequency and growth rate spectra for the

toroidal shear Alfvén mode at two values of β = 3.125%, 6.25%. Other parameters

are identical to Fig. 4.5, except that ηi = 2. Agreement between the two models is

fairly good, with the gyrofluid model correctly accounting for the dramatic increase

in growth rates at finite ηi. In Fig. 4.8 the growth rate of the toroidal Alfvén mode

is shown as a function of β. Parameters are identical to Fig. 4.6, except that a

finite ion temperature gradient has been added (ηi = 2). The Alfvén mode is now

unstable both well below the ideal MHD βc and well into the ideal MHD second

stability region. The gyrofluid model is able to capture both of these effects. Note

that the initial value gyrofluid code converges to the Alfvén mode only when it
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Figure 4.8: Linear growth rate of the toroidal Alfvén mode vs. β. Parameters
identical to Fig. 4.6 except that ηi = 2. An s − α equilibrium model is used, and
for these parameters, α = 32β. The gyrofluid model is compared to linear kinetic
theory by [Hong et al. 1989]. The ideal MHD prediction is also shown.
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Figure 4.9: Linear growth rate of the toroidal Alfvén mode vs. magnetic shear, at
two values of εn = 0.1, 0.25, for β = 9.375%, kθρi = 0.3, q = 2, τ = 1, ηi = 2, and
ηe = 0. The gyrofluid model is compared to linear kinetic theory by [Hong et al.
1989].

is dominant. Below β ∼ 1.5%, the ITG becomes the dominant mode at these

parameters.

A final benchmark, Fig. 4.9, shows the growth rate dependence on the mag-

netic shear, for two different values of εn. Again quantitative agreement is reason-

ably good, with the gyrofluid model successfully reproducing the trends emphasized

by [Hong et al. 1989].

4.3 Summary

A series of benchmarks has been performed against four linear kinetic codes. Gen-

erally good agreement in growth rates and real frequencies has been found between

the gyrofluid model and four kinetic codes. In particular, the gyrofluid model has

been found to successfully reproduce the finite-β stabilization of the ITG mode in
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both slab and toroidal geometry. Growth rates and frequencies of the kinetic toroi-

dal Alfvén mode match reasonably well with kinetic theory, and the finite ηi effects

on both the critical β and the second stability region are successfully reproduced.

Good agreement in the linear mode structure of φ and A‖ has also been found.



Chapter 5

Nonlinear Simulations

N ONLINEAR SIMULATION of electromagnetic turbulence and trans-

port can now be undertaken, using the model developed in Ch. 3 and

tested linearly in Ch. 4. High resolution, three dimensional simula-

tions are used to investigate the nonlinear behavior of microinstabili-

ties driven linearly by both finite-β ITG and kinetic shear Alfvén instabilities.

These simulations reveal a number of interesting changes in microinstability

behavior with the introduction of electromagnetic effects. At moderate β, the finite-

β stabilization of the ITG mode leads to a significant reduction in heat fluxes from

their β = 0 levels. However, as β approaches the ideal MHD ballooning critical βc,

a significant increase in heat flux occurs. This increase is dramatic when electron

dissipation from electron Landau damping and electron-ion collisions is included

in the model. The increase is accompanied by a marked reduction in dominant

time-scales of the turbulence.

The electromagnetic simulations, like earlier electrostatic simulations, pro-

duce density fluctuation spectra which peak at kθρi ' 0.1 − 0.2, and which are

strongly anisotropic in kr and kθ, in qualitative agreement with measurements by

[Fonck et al. 1993]. Furthermore, the electromagnetic simulations produce ion

temperature fluctuation spectra which are similar in shape to the density spectra,

with a ratio (T̃ /T0)/(ñi/n0) = 2±.5 relatively independent of the simulation param-

eters, in agreement with the observations of [Evensen et al. 1998]. A narrowing

in the peak of the fluctuation spectrum with increasing β is also observed.

95
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Figure 5.1: The rectangular computational domain mapped onto a flux tube in a
torus, with q0 = 2.4 and shear, ŝ = 1.5. The ends of the flux tube are cut off
at poloidal angle −π and π, and the sheared cross-sections of the flux tube in the
poloidal plane are indicated. [Figure courtesy of M. A. Beer.]

5.1 The Flux Tube Geometry

Nonlinear simulations are carried out in a computationally efficient flux tube ge-

ometry using the field-aligned coordinates developed by [Beer et al. 1995].

This geometry takes advantage of the highly anisotropic nature of micro-

turbulence in a strong magnetic field. Correlation lengths tend to be very long in

the direction of B and short perpendicular to B. Hence a computational domain

extending along the field is chosen, with a relatively short extent perpendicular to

the field.

The computational domain is illustrated in Fig. 5.1. This long, thin, twisting

flux tube is mapped onto a simple rectangular domain using the transformation

described in detail by [Hammett et al. 1993; Beer et al. 1995], building on

earlier work by [Roberts and Taylor 1965] and [Cowley et al. 1991]. The

transformation can be written:

x =
q0

B0r0

(ψ − ψ0), y = −r0

q0

(α − α0), z = θ, (5.1)
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where ψ = (2π)−2
∫

dτB · ∇θ is the poloidal flux, ψT = (2π)−2
∫

dτB · ∇φ is

the toroidal flux, dτ is the volume element, q(ψ) = dψT /dψ, q0 = q(ψ0), α =

φ − q(ψ)θ − ν(ψ, θ, φ), B0 is the field at the magnetic axis, r0 is distance from the

magnetic axis to the center of the box, and φ and θ are the physical toroidal and

poloidal angles. All physical quantities, and ν(ψ, θ, φ), are periodic over 2π in φ

and θ. The x and y coordinates are perpendicular to the field, while z = θ marks

distance along the field. It is often useful to think of x as a radial coordinate and y

as a poloidal coordinate, though this is only approximate. The above coordinates

are linearly equivalent to the ballooning transformation [Connor et al. 1979], and

similar to the coordinates employed by [Waltz and Boozer 1993] and [Dimits

1993].

Periodic boundary conditions are used in both perpendicular directions, re-

quiring a box size large compared to perpendicular turbulent correlation lengths.

The periodic parallel boundary condition must be treated with great care to avoid

making all field lines into rational field lines connected with themselves. The pro-

cedure involves connecting different kx modes with the same ky at ±Nπ, and is

explained in detail in [Beer et al. 1995].

The flux tube geometry allows for computationally efficient simulations in

realistic three-dimensional geometry. In addition, the flux tube domain allows for

the equilibrium densities and temperatures to be described simply in terms of their

equilibrium values and gradients. This limits the total number of parameters in the

simulations, allowing for efficient parameter scans to accumulate physical insight

and construct simplified transport models.

The primary limitation of flux tube geometry is its inability to properly

treat cases where the turbulent correlation lengths become non-negligible relative

to equilibrium scale lengths. Either an enhanced flux tube or annulus geometry

with varying equilibrium parameters, or a full torus simulation is required to treat

such cases.
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5.2 Computational Details

The eight partial differential equations derived in Ch. 3 are solved pseudospectrally

in flux tube geometry using an explicit two step Runge-Kutta algorithm that is

second order accurate in time. A semi-implicit treatment analogous to that of

[Schnack et al. 1987] is used in the electron moment equations, to relax the

time step constraint imposed by shear Alfvén wave propagation. For toroidal sim-

ulations, the semi-implicit numerical damping coefficient is generally set to zero,

but the leapfrog treatment of the ∇‖(φ − ne/τ) term is maintained. For the sin-

gle ion species case, the numerical treatment of the electron momentum equation,

Eq. 3.121, at time step j + 1 is:

Aj+1
‖ = Aj

‖ + ∆t

{
1

2
ik‖

[
1

1 − Γ0

+
1

τ

]
(nj

e + nj+1
e )

}
(5.2)

− ∆t

{
ik‖

1

1 − Γ0

[nj
e + (1 − Γ0)φ

j] − 1

τ
ikyA

j
‖...

}
,

where the ellipses refer to the nonlinear, collision, and Landau damping terms,

which are all calculated at time step j. Note that this leapfrog method is employed

within both the predictor and corrector steps of the Runge-Kutta algorithm.

The simulation code is based on the electrostatic Gryffin toroidal gyrofluid

code originally developed by M. A. Beer, W. Dorland, and G. W. Hammett. The

code has been enhanced to include magnetic fluctuations and non-adiabatic pass-

ing electron dynamics. The linear and nonlinear electromagnetic terms described

in Ch. 3 have been implemented, including the electron E × B nonlinearity, and

magnetic flutter nonlinearities in both the ion and electron equations. Electromag-

netic nonlinear FLR terms have been implemented, but are generally found to be

unimportant, and for this reason the [1
2
∇̂2

⊥vA] ·∇ terms have been omitted from the

nonlinear results presented here. The nonlinear term in the electron temperature

equation (Eq. 3.122) has also been found to be unimportant, and neglected in the

simulations presented here.

The simulation code employs a Fourier space representation in the two per-

pendicular directions, x and y, and a real space representation along the field in z.

Nx evenly spaced radial modes, spanning the space −kxmax, −kxmax + 1, ..., −1,
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Figure 5.2: Scaling of the performance of the electromagnetic version of the Gryffin
code with processor number. Runs are carried out on the NERSC Cray-T3E
mcurie. A minimum of five processors is needed to meet the memory requirements
of the simulation at the resolution (Nx = 85, Ny = 127, Nz = 64) employed. The
dotted line shows the theoretical maximum performance assuming perfect parallel
scaling up from 5 processors.

0, 1, ..., kxmax − 1, kxmax are employed, along with Ny poloidal modes. Only the

Ny/2+1 positive ky = 0, 1, ..., kymax − 1, kymax need to be physically evolved in the

complex wave number space, due to the reality condition. However, the numerical

grid on which the fast Fourier transforms (FFT’s) are performed is larger by three

halves in each perpendicular direction to allow for de-aliasing (NFFTx = 3/2×Nx ,

NFFTy = 3/2 × Ny). An evenly spaced grid of Nz points is used along the field.

The total numerical grid size is thus NFFTx × NFFTy × Nz = 9/4 Nx Ny Nz.

The Gryffin code has been parallelized using the message passage inter-

face (mpi),1 with an option to use Cray/SGI SHMEM when available, and its

performance scales well to fairly large numbers of processors. The code has been

parallelized along both poloidal mode number (ky) and radial mode number (kx), al-

lowing it to employ a very large numbers of processors. Nonlinear results presented

1The electrostatic version of the code was made parallel by W. Dorland and Q. P. Liu. The
electromagnetic enhancements were parallelized by W. Dorland and the author.
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here include parallel runs on the Cray T3E and SGI Origin 2000 architectures, gen-

erally using 16, 32 or 64 processors, though performance of large runs scales well

to larger numbers of processors. A typical scaling of performance with processor

number is shown in Fig. 5.2. These runs use the parameters of the β = 0.4% case

presented in the next section, with a resolution of Nx = 85, Ny = 127, Nz = 64.

The performance of larger runs generally scales more favorably to larger numbers

of processors. A scaling study by [Dorland 1999], employing a larger problem

size, has found nearly linear parallel scaling up to 128 processors for a fixed sized

run, and up to 512 processors for a case where the problem size scales with the

number of processors employed (Nproc ∝ NxNyNz). Dorland’s scaling study em-

ployed electrostatic Gryffin runs, but we expect electromagnetic runs to scale very

similarly.

The data format of Gryffin has been converted to netCDF, and a graph-

ical user interface has been written in Interactive Data Language (IDL) for post-

processing.

5.2.1 Numerical Convergence

Numerical convergence of the electromagnetic Gryffin code has been tested in all

three spatial dimensions as well as in the time step. The convergence tests here

employ a parameter set used in the nonlinear simulations in Sec. 5.3, with β = 0.4%

(β/βc = 0.36), ŝ = 1, q = 2, Ln/R = 1/3, ηi = ηe = 3, and r/R = 0.

Fig. 5.3 illustrates numerical convergence in time step. The figure demon-

strates that a factor of two reduction in the time step does not significantly change

the time averaged transport. Furthermore, the fluctuation spectra and RMS val-

ues of the fluctuating quantities are also not significantly changed. The time

steps used in the production simulations in the latter part of this chapter and

in Ch. 6 vary somewhat with parameters, but generally fall within the range

∆t = 0.0025 ± 0.0010Ln/vti typified by the larger time step in Fig. 5.3.

The convergence with perpendicular resolution is shown in Fig. 5.4a. Similar

values of kxmax ' 1.4 and kymax ' 1 are used at all perpendicular grid sizes, and

thus convergence with the spacing of modes in wavenumber space (∆kx, ∆ky) is
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Figure 5.3: Numerical convergence in time step is illustrated with a plot of the ion
heat conductivity as a function of time, employing numerical time steps which differ
by a factor of two, ∆t = 0.0025Ln/vti and ∆t = 0.00125Ln/vti. No significant
change in the time averaged value of χi in the steady state, t > 100 Ln/vti, is
observed. The numerical resolution is Nx = 85, Ny = 63, Nz = 16.
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Figure 5.4: The numerical convergence with perpendicular (a) and parallel (b)
resolution is illustrated with a plot of ion heat conductivity (χi) averaged over
the nonlinear steady state [100 < t (Ln/vti) < 150] at varying resolutions, with
an error bar indicating the RMS fluctuation level. Figure (a) shows four differ-
ent perpendicular resolutions, (Nx, Ny) = (11, 7), (21, 15), (63, 31), (85, 63), with no
significant change in χi observed between the two highest resolutions. Nz = 32
and ∆t = 0.0025Ln/vti is used in all four cases. Figure (b) shows five parallel
resolutions, Nz = 3, 4, 8, 16, 32, all with Nx = 85, Ny = 63 and ∆t = 0.0025Ln/vti.
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demonstrated. Extending the domain to somewhat larger kxmax and kymax has been

found to not significantly alter the results. The highest perpendicular resolution

shown (Nx = 85, Ny = 63) is that used in the production runs in this chapter and

Ch. 6. Convergence with parallel grid spacing (∆z) is illustrated by Fig. 5.4b. The

simulations converge at a fairly low parallel resolution (Nz > 8), consistent with

the expectation that the turbulence has an extended, ballooning structure along

the magnetic field. Nonetheless, a somewhat higher parallel resolution (Nz = 32)

is used in the production runs to attempt to insure adequate convergence in all

regimes.

Numerical convergence in perpendicular box size is illustrated with contour

plots of the turbulent ion density fluctuations in Fig. 5.5. Unlike the convergence

tests discussed above, these runs include electron Landau damping and electron-ion

collisions. The larger box size (a) is the resolution employed in the production sim-

ulations discussed in this chapter and in Ch. 6. The turbulent fluctuation spectra,

as well as average transport levels, are virtually unchanged in the two cases.

5.3 Simulation Results

Previous gyrofluid simulations of core turbulence have generally been electrostatic,

and have studied nonlinear physics exclusively in the β → 0 limit. It is therefore of

great interest to study the impact of finite β on turbulence and transport in typical

tokamak parameter regimes.

A scan vs. β is performed, using β values ranging from 0 (electrostatic) up

to very near the ideal MHD ballooning limit βc = 1.1%.2 The remainder of the

simulation parameters are chosen to be typical of the core of a large aspect ratio

tokamak fusion plasma, and are held fixed as β is varied. The values chosen are

2This somewhat low value of βc is due to the sharp gradients (R/Ln = 3, R/LT = 9), and
the lack of stabilizing factors such as elongation in this simple shifted circle equilibrium. It
is important to keep in mind that it is the parameter α = q2βe/εn [1 + ηe + τ(1 + ηi)] which
determines the MHD stability limit at a given ŝ, and for the given parameters, α = 48β. In
microinstability physics, the proximity to the β limit (β/βc), which is proportional to α at a given
ŝ, is the critical parameter, as explained in Sec. 2.3.
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Figure 5.5: Numerical convergence in perpendicular box size is illustrated with
contour plots of the turbulent ion density on the outer midplane (θ = 0), at t =
125 Ln/vti. Simulation parameters are from the β = 0.4% case discussed in Sec. 5.3,
with electron Landau damping and electron-ion collisions included. The resolutions
employed are (a) Nx = 85, Ny = 63, Nz = 32, and (b) Nx = 63, Ny = 31, Nz = 32.
Contour levels are identical in the two plots.



104 Chapter 5. Nonlinear Simulations

ŝ = 1, q = 2, Ln/R = 1/3, ηi = ηe = 3, and r/R = 0,3 where ŝ is the magnetic

shear, q is the safety factor, Ln is the electron density scale length, R is the plasma

major radius, r is the plasma minor radius, and ηi and ηe are the ratios of Ln to the

ion and electron temperature scale lengths LT i and LTe. A single species of Z = 1

ions is assumed, with τ = Ti0/Te0 = 1. The s − α model geometry is employed,

with the Shafranov shift (α) parameter chosen to be consistent with β. For these

parameters, α = q2βe/εn [1 + ηe + τ(1 + ηi)] = 48β.

Nonlinear simulations have been performed both without (Sec. 5.3.1) and

with (Sec. 5.3.2) electron dissipation, which enters through the electron Landau

damping (−
√

π
2τ

me

mi
|k‖|u‖e) and electron-ion collision [νei

me

mi
(u‖e − u‖i)] terms in

Eq. 3.121. The deuterium/electron mass ratio is used to calculate these terms,

along with a collisionality of νei = 0.18, in units of vti/Ln. This collisionality is

chosen to be typical of a hot tokamak core plasma, and corresponds to ν∗ ' 0.2

at r/R = 0.2. Note that for these parameters, assuming a typical ballooning

k‖ ∼ 1/qR, the electron Landau damping term is roughly 70 times stronger than

the electron-ion collision term, though it is weak compared to other terms in the

electron momentum equation.

5.3.1 Simulations without Electron Dissipation

It is simplest to first investigate the case with no electron-ion collisions or electron

Landau damping, formally the me/mi → 0 limit. The linear physics for this case

is exhibited in Fig. 5.6. Linear growth rates and frequencies of the dominant mode

are calculated using the initial-value electromagnetic gyrofluid code.

At β = 0, there is a strongly unstable ITG mode, which is stabilized by

increasing β. This ITG instability is identified by its real frequency (ω ∼ ω∗ ∼ kθρi

in the normalized units in the figure), and by noting that the instability can be

stabilized by reducing ηi. The ITG mode is dominant up to β ∼ .8% (β/βc ∼ 0.7).

The kinetic shear Alfvén wave becomes unstable as the ideal MHD βc = 1.1% is

3Setting r/R = 0 in the code eliminates the mirror force (∇‖ lnB) terms and sets the trapped
particle fraction to zero. This is an appropriate approximation near the core of most tokamaks.
One reason for setting r/R exactly to zero, rather than to a small value, is to simplify comparisons
with codes which do not include the mirror force or trapped particles.
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Figure 5.6: Linear growth rate (a) and frequency (b) spectra of the dominant mode
at the six values of β which are used in nonlinear simulations. For 0 ≤ β ≤ 0.8%
(0 ≤ β/βc ≤ 0.73) the ITG mode is dominant, while at β = 1% (β/βc = 0.91)
the kinetic shear Alfvén instability becomes dominant, as can be seen from the
dramatic shift in frequency. The ideal MHD critical βc = 1.1%.
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Figure 5.7: Time evolution of the ion heat conductivity (χi) in normalized units
of (ρ2

i vti/Ln) for simulations at four values of β = 0%, 0.4%, 0.8%, 1%, with no
electron dissipation. The ideal MHD βc = 1.1%, and at the given parameters,
α = q2βe/εn [1 + ηe + τ(1 + ηi)] = 48β.

approached, and its growth rate increases with β. While the Alfvén instability is

destabilized near β ∼ .6%, it does not become the dominant instability until around

β ∼ 1% (β/βc ∼ 0.9). The dominance of the Alfvén instability at β = 1% is easily

seen from Fig. 5.6b. A large jump in frequency occurs when the Alfvén instability

becomes dominant, because for these parameters, the marginal frequency of the

Alfvén instability [ω ∼ ω∗pi = (1 + ηi) ω∗i ∼ −4 kθρi in the normalized units of the

figure] is much larger than the ITG frequency. Both modes propagate in the ion

diamagnetic direction, which corresponds to a negative frequency in the convention

used here.

The time evolution of the ion heat conductivity (χi) calculated from nonlin-

ear gyrofluid simulations is shown in Fig. 5.7. In each case an initial exponential

growth phase ends with a peak, followed by a relatively steady nonlinearly saturated

state. The values of χi and other flux related quantities are generally averaged over

the steady state phase, which here begins at t ∼ 100 Ln/vti.

Fig. 5.8 shows the corresponding time evolution of the ion density fluctuation
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Figure 5.8: The time evolution of the ion density fluctuation spectrum 〈n2
i (kθ)〉, is

illustrated for β = 0.4% (β/βc = 0.36). The six values of time are, in normalized
units of Ln/vti, t=25 (a), t=50 (b), t=75 (c), t=100 (d), t=125 (e), and t=150 (f).
The spectrum initially peaks near the maximum of the linear growth rate spectrum
at kθρi ' 0.4, before a shift to longer wavelengths occurs, resulting in a peak at
kθρi ' 0.2 in the nonlinear steady state (t > 100).
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spectrum, 〈n2
i (kθ)〉, for one of the cases, β = 0.4% (β/βc = 0.36). At t = 25, the

simulation is in the linear, exponential growth phase, and the peak in the spectrum

coincides with the maximum linear growth rate of kθρi ' 0.4. At t = 50 the

simulation has reached its initial peak in χi, and the nonlinear phase has begun.

At t = 75 the shift to longer wavelengths is underway, and by t = 100 the simulation

has settled into an approximately steady state with a peak in the spectrum near

kθρi ' 0.2. This characteristic nonlinear downshift in the peak of the fluctuation

spectrum has been seen in electrostatic simulations by several authors [Parker

et al. 1993; Dimits et al. 1994; Beer 1995], and its characteristics do not change

significantly for the electromagnetic case shown here. The observed downshift may

be due to an inverse cascade, or it may simply be related to the fact that low kθ

modes have larger mixing length saturation amplitudes (∼ γ/k2
⊥) but also have

lower growth rates and thus take longer to reach saturation.

The time-averaged χi is plotted as a function of β in Fig. 5.9. Two mixing-

length estimates of the expected χi are shown for comparison. The dotted line is

a very simple estimate, c1γmax/k
2
θ , where γmax is the maximum linear growth rate

from Fig. 5.6a, kθ is the poloidal wave number at which the maximum growth rate

occurs, and the coefficient c1 = 7.7 is chosen so that the mixing length estimate

agrees with the simulation at β = 0.

There is rough agreement between the simulation results, and expectations

based on this simple mixing length estimate. As expected, at low values of β, χi

decreases with β, as the ITG mode driving the turbulence is stabilized by increasing

β. However, the reduction in χi is significantly larger than would be expected from

the reduction in the linear ITG growth rate.

As β approaches the ideal MHD critical βc = 1.1%, χi begins to increase

with β, as expected from the onset of kinetic Alfvén instability. This turnaround

appears to occur at a somewhat lower β value than would be expected from linear

theory. A comparison of the β = 0.6% and β = 0.8% cases in Figs. 5.6 and 5.9

reveals that while the linear growth rate of the dominant ITG mode has decreased

significantly, χi is virtually unchanged. We believe this behavior is related to the

kinetic Alfvén instability. While the Alfvén instability is subdominant to the ITG

mode at β = 0.8%, the Alfvén wave is nonetheless unstable with a significant growth
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Figure 5.9: Ion heat conductivity (χi) from gyrofluid simulations with no electron
dissipation is plotted vs. β. A simple mixing length estimate based on γmax/k

2
θ ,

and a mixing length estimate based on (γ/ 〈k2
⊥〉)max, both fitted to the simulation

flux at β = 0, are shown for comparison. The ideal MHD βc = 1.1%, and at the
given parameters, α = q2βe/εn [1 + ηe + τ(1 + ηi)] = 48β.
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rate, providing an additional drive for turbulence.4 This Alfvén drive appears to

lead to nonlinear saturation at somewhat higher amplitudes.

The dashed line shown in Fig. 5.9 is a different mixing length estimate based

on the maximum over all kθ of the function γ(kθ)/ 〈k2
⊥〉, where 〈k2

⊥〉 = k2
θ(1+ ŝ2 〈θ2〉)

is averaged over the linear eigenmode. Again a multiplicative coefficient c0 = 6.7 is

chosen so as to make the estimate agree with the simulation at β = 0, so that the

impact of finite-β on the simulation results can be compared with that expected

from mixing length theory. The maximum of γ/ 〈k2
⊥〉 occurs here at rather long

wavelengths, .13 < kθρi < .17, and hence exhibits somewhat different behavior from

the estimate based on γmax/k
2
θ . In particular, while the kinetic Alfvén ballooning

mode is dominant for kθρi > .2 at β = 1%, this mode has a very small growth

rate at the lower values of kθ where γ/ 〈k2
⊥〉 has its maximum. Hence Max(γ/ 〈k2

⊥〉)
continues to decrease with β due to the finite-β stabilization of the ITG mode, all

the way up to β = 1%. Therefore this estimate is unable to account for the increase

in ion heat transport seen in the simulations at β ∼ 1%.

The steady state ion density fluctuation spectra 〈n2
i (kθ)〉 at four values of β =

0%, 0.4%, 0.8%, 1% are shown in Fig. 5.10. The peak in the fluctuation spectrum

occurs in all cases near kθρi ' 0.2, well below the peaks of the linear growth rate

spectra shown in Fig. 5.6. We note that the shape of these spectra qualitatively

agree, in both the electrostatic and finite-β cases, with the spectra measured on

TFTR by [Fonck et al. 1993]. Note also that the peaks in the steady state

spectra occur not far from the value of kθρi at which the maximum of γ/ 〈k2
⊥〉

occurs, kθρi = .13, .15, .16, .16 respectively. The most notable finite-β effect is a

significant narrowing of the peak, particularly for the two cases in which we believe

the kinetic ballooning mode drive plays an important role in determining the steady

state (β = .8%, 1%). This narrowing of the peaks as the ideal MHD βc = 1.1% is

approached appears to be qualitatively consistent with the experimental observation

[Evensen et al. 1998] of narrower peaks in the edge region, where the plasma is

generally closer to the ideal βc, than in the core.

4At β = 0.6% the Alfvén growth rate is very small and is unlikely to significantly impact the
nonlinear saturated state.
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Figure 5.10: Ion density fluctuation spectra, 〈n2
i (kθ)〉, in the nonlinear saturated

state, are plotted at β = 0% (a), β = .4% (b), β = .8% (c), and β = 1.0% (d). The
ideal MHD βc = 1.1%.

β=0%

0.0 0.2 0.4 0.6 0.8
kθ ρi

0

5

10

15

20

25

<
T

2 i >

(a)

β=0.4%

0.0 0.2 0.4 0.6 0.8
kθ ρi

0

2

4

6

8

10

<
T

2 i >

(b)

β=0.8%

0.0 0.2 0.4 0.6 0.8
kθ ρi

0

1

2

3

4

5

<
T

2 i >

(c)

β=1%

0.0 0.2 0.4 0.6 0.8
kθ ρi

0

2

4

6

8

<
T

2 i >

(d)

Figure 5.11: Ion perpendicular temperature fluctuation spectra, 〈T 2
⊥i(kθ)〉, in the

nonlinear saturated state, are plotted at β = 0% (a), β = .4% (b), β = .8% (c),
and β = 1.0% (d). The ideal MHD βc = 1.1%.
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Fig. 5.11 shows the steady state ion perpendicular temperature fluctuation

spectra 〈T 2
⊥i(kθ)〉, at the same four values of β = 0%, 0.4%, 0.8%, 1%. The spectra

are similar to the density fluctuation spectra, except for the larger magnitude of

the fluctuations. Both ni = (Ln/ρi) ñi/n0i and T⊥i = (Ln/ρi) T̃⊥i/T0i have been

normalized to their equilibrium values, and their relative magnitudes can be usefully

compared. Comparing Fig. 5.11 with Fig. 5.10, we find that the relative value

of the RMS fluctuations at the peaks,
√〈T 2

⊥i(kθ)〉Max/
√〈n2

i (kθ)〉Max is roughly

1.6, 1.9, 2.0, and 2.1 for the four cases.5

The similarity in shape between the ion density and temperature fluctuation

spectra, the size of the ratio
√〈T 2

⊥i(kθ)〉/
√〈n2

i (kθ)〉 ∼ 2, and the fact that the

ratio changes little with β all appear to be consistent with the observations of

[Evensen et al. 1998]. The BES and CHERS measurements in TFTR discussed

by [Evensen et al. 1998] found that the ion temperature fluctuation spectrum is

similar in shape to the ion density fluctuation spectrum across the plasma radius,

and that the measured ratio, (T̃ /T0)/(ñi/n0) = 2 ± .5, varies little from the core

(where the plasma is likely to be further from βc) to the edge (where the plasma is

likely to be close to βc).
6 Note that only β is varied in this set of simulations, while

the other parameters have been held fixed. A more thorough investigation of the

agreement between simulation and experiment would use the measured equilibrium

parameters at different radii and compare simulation results to measurements at

the same radius. Nonetheless, the agreement with several observed trends is quite

encouraging.

The transition from ITG-driven turbulence (β = 0%) to Alfvénic turbulence

5The perpendicular temperature has been used because it is the dominant component of T =
2/3T⊥ + 1/3T‖ and because it is easily extracted from the code data set. However, there is
significant anisotropy in the fluctuating ion temperature, and using the total T rather than T⊥
would moderately reduce the ratio of temperature fluctuations to density fluctuations. For the
finite β cases, the ratio still falls within the observed range of 2±.5. Note also that adding electron
dissipation, as in Sec. 5.3.2, tends to increase the ratio somewhat. A more detailed comparison of
simulations to the results of [Evensen et al. 1998] is expected in the near future.

6Note that the apparent agreement between the electromagnetic gyrofluid simulations and the
measurements is in contrast to disagreement between the linear-theory based predictions discussed
in [Evensen et al. 1998] and the measurements. The linear and quasi-linear theory was unable
to predict the observed trend of (T̃ /T0)/(ñi/ni0) ∼ 2 independent of radius.
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(β = 1%) is illustrated in Fig. 5.12.7 The figure shows equipotential contours at

θ = 0, plotted against radius and time. The most notable feature of the transition

is the dramatic reduction in correlation times with increasing β. The dominant

time-scale of the turbulence (measured by the typical length in the time direction

of equipotential surfaces) drops from ∆t ' 5 − 15 in the electrostatic (β = 0) case

to ∆t ' 1 − 3 at β = 1%. This difference is roughly proportional to the difference

in frequency between the ITG mode and the kinetic Alfvén instability (which is

linearly dominant only at β = 1%, but is unstable and subdominant at β = 0.8%),

shown in Fig. 5.6b. Note that the short time scales of the “Alfvénic” turbulence

appear to be dominant at β = 0.8% as well as β = 1%.

5.3.2 Simulations with Electron Dissipation

The impact of electron dissipation is assessed by including the electron Landau

damping and electron-ion collision terms derived in Sec. 3.3.3. The deuterium to

electron mass ratio is used to calculate these terms, along with a collisionality of

νei = 0.18, in units of vti/Ln.

The linearly stabilizing effect of electron Landau damping and electron-ion

collisions is illustrated in Fig. 5.13. At all values of β studied, the inclusion of

electron dissipation significantly reduces the maximum linear instability growth

rate, though it also reduces the value of kθ at which the maximum occurs. The

overall impact on a linear mixing length transport estimate is shown in Fig. 5.15.

The nonlinear time evolution of the ion heat conductivity χi is shown for

four values of β in Fig. 5.14. Note that in the electrostatic case (β = 0), adiabatic

electrons are used, and therefore the β = 0 trace is identical to that in Fig. 5.7.

The average value of the steady state χi is plotted as a function of β in

Fig. 5.15. Also shown is a mixing length estimate of χi proportional to the maximum

of γ/ 〈k2
⊥〉, with a multiplicative coefficient, c0 = 6.7, chosen so that the mixing

length estimate agrees with the simulation χi at β = 0. The mixing length estimate

7A better illustration is provided in Fig. 5.16 for the case with electron dissipation. The
qualitative features of the transition to Alfvénic turbulence are identical with or without electron
dissipation.
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Figure 5.12: Equipotential contours are plotted vs. radius and time at θ = 0, for the
case without electron dissipation. The contours follow the evolution of turbulent
eddies, and illustrate the reduction in turbulent correlation times that occurs with
increasing β/βc.
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Figure 5.13: The maximum linear instability growth rate, Max{γ(kθ)}, is plot-
ted as a function of β for cases both with and without electron dissipation, which
enters through electron Landau damping and electron ion collisions. The deu-
terium/electron mass ratio is used calculate these terms, along with a normalized
collisionality νei = .18 vti/Ln. Electron dissipation reduces the maximum growth
rate at all values of β shown. The ideal MHD βc = 1.1%.
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Figure 5.14: Time evolution of the ion heat conductivity (χi) in normalized units
of (ρ2

i vti/Ln) for simulations at four values of β = 0%, 0.4%, 0.8%, 1%, with elec-
tron dissipation. The ideal MHD βc = 1.1%, and at the given parameters,
α = q2βe/εn [1 + ηe + τ(1 + ηi)] = 48β.

accounts for the initial trend of χi decreasing with β at β ≤ 0.6% quite well, but is

dramatically in error for β ≥ 0.8% (β/βc ≥ 0.73).

The inclusion of electron Landau damping and electron-ion collisions reduces

both the maximum linear growth rate (shown in Fig. 5.13) and the maximum of

γ/ 〈k2
⊥〉 at all values of β shown,8 as can seen by comparing the dashed lines in

Figs. 5.15 and 5.9.

Nonlinearly, the effect of the electron Landau damping and electron-ion

collision terms can be quite significant. Comparing the solid lines in Figs. 5.15

and 5.9, we see that at small values of β . 0.6%, χi is not strongly affected by

the inclusion of electron dissipation. However, at larger values of β, the effect is

dramatic. Increases in χi by a factor of ∼ 5 at β = 0.8% and a factor of ∼ 8 at

β = 1% are seen with the inclusion of electron Landau damping and electron-ion

collisions.

8Except of course for β = 0 where adiabatic electrons are used.
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Figure 5.15: Ion heat conductivity (χi) from gyrofluid simulations with electron
Landau damping and electron-ion collisions is plotted vs. β. A mixing length esti-
mate based on Max(γ/ 〈k2

⊥〉), fitted to the simulation flux at β = 0, is shown for
comparison.

A firm explanation for this dramatic increase in χi at high β/βc, in the pres-

ence of electron Landau damping and electron-ion collisions, has not yet been estab-

lished, and is an important avenue for future work, as discussed in Sec. 7.2. How-

ever, possible explanations involving zonal flow dynamics have been suggested by

[Waltz 1998; Diamond 1998; Das et al. 1999] and others. Collisions increase the

size of the non-adiabatic electron component, and non-adiabatic electron dynamics

are thought to limit the inverse cascade which drives the zonal flows. Furthermore,

collisions can directly damp the otherwise weakly or un-damped components of the

zonal flows, as noted by [Lin et al. 1999; Diamond et al. 1998]. This damping,

in conjunction with electromagnetic effects on zonal flows discussed by [Das et al.

1999], may hinder zonal flow generation. In particular, [Das et al. 1999] note

that magnetic stresses compensate electrostatic stresses and reduce the zonal flow

amplification, effectively quenching zonal flow generation for purely Alfvénic turbu-

lence. Thus in the two highest β cases, which seem to be dominated by “Alfvénic”

turbulence [ψ = (ω/k‖)A‖ ∼ φ], it is possible that zonal flow generation is weak,

and that the additional zonal flow damping provided by collisions is sufficient to
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prevent zonal flows from saturating the turbulence until it reaches very large ampli-

tudes. Further work on both simulations and theory is needed to determine whether

such a mechanism is correct, or whether another, such as the stabilization of sec-

ondary Kelvin-Helmholtz instabilities in finite-β cases with dissipation, suggested

by [Rogers and Drake 1997], might be important.

The behavior of χ as a function of β/βc ∝ αMHD shown in Fig. 5.15 offers a

possible explanation for a number of trends observed in experiments. For example,

it might provide an explanation for the ubiquitous trend of χi increasing with radius

near the edge of tokamak experiments.9 Because of sharp gradients and high q, the

edge plasma is often close to ideal MHD instability. Hence, sharp increases in χi

as the ideal β limit is approached (βc = 1.1% in Fig. 5.15) would be expected to

increase predicted transport in the edge region. This possibility is explored via a

direct comparison of simulation results to measured transport in the outer region

of a TFTR L-mode plasma in Ch. 6.

Fig. 5.16 shows equipotential contours at θ = 0 plotted as a function of ra-

dius and time, at four values of β = 0%, 0.4%, 0.8%, 1%, for simulations including

electron Landau damping and electron-ion collisions. Note that a much longer time

period is shown here than in Fig. 5.12 for the case without electron dissipation.

Again there is a marked reduction in the dominant time-scale of the turbulence

(measured by the typical length in time of equipotential surfaces) from ∆t ' 5−15

in the electrostatic (β = 0) case to ∆t ' 1 − 3 at β = 1%, which is roughly pro-

portional to the difference in frequency between the ITG and kinetic shear Alfvén

modes. The qualitative transition to “Alfvénic” time-scales appears to have largely

occurred by β = 0.8%, even though the ITG mode in linearly dominant until

β ' 1.0%.

Thus far we have focused on ion heat conductivity (χi), primarily because

this has been the focus of previous ITG-based transport simulation efforts. This is in

part because electrostatic simulations which use a purely adiabatic electron response

(ne ∝ φ) cannot predict either particle transport or electron thermal transport.

9Electrostatic simulations generally predict a small χi which decreases with radius near the
edge.
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Figure 5.16: Equipotential contours are plotted vs. radius and time at θ = 0, for
the case with electron dissipation. The contours follow the evolution of turbulent
eddies, and illustrate the reduction in turbulent correlation times that occurs with
increasing β. The ideal MHD βc = 1.1%.
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Figure 5.17: Particle diffusivity (D) and electron heat conductivity (χe) from gy-
rofluid simulations with electron Landau damping and electron-ion collisions is
plotted as a function of β. The ideal MHD βc = 1.1%.

Because cross-field transport is driven by E×B convection,10 and vEr ∼ ∂
∂θ

φ, any

part of a field which is proportional to φ has a flux surface averaged cross field flux

proportional to
∫

φ∂φ
∂θ

dθ which is exactly zero. Electron temperature fluctuations

are zero in a simulation with purely adiabatic electrons, and thus electron thermal

transport must also be taken to be zero (χe = 0).

In electromagnetic simulations using the electron model derived in Ch. 3,

the electron response is no longer entirely adiabatic, and electron temperature fluc-

tuations are incorporated, so that both a finite particle diffusivity D (identical for

electrons and ions for the single ion species cases considered here), and an electron

heat conductivity χe are well defined. All of the fluxes (Qi, Qe, and Γ) are found

to be dominated by E×B convection, with the magnetic flutter contribution finite

but negligible.

The electron thermal conductivity χe and the particle diffusivity D, which

10In the electromagnetic case there is an additional “magnetic flutter” transport term propor-
tional to

〈
u‖

∂
∂θA‖

〉
. This term has been calculated in the gyrofluid simulations, but found to be

small (generally ∼ 2 orders of magnitude smaller than the E × B convected flux) for the cases
considered here.
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is the same for ions and electrons in this two species case, are shown in Fig. 5.17,

for the case with electron Landau damping and electron-ion collisions.11 While

χe is significantly smaller than χi (shown in Fig. 5.15), it is of the same order of

magnitude, as is the particle diffusivity. This behavior is fairly typical of measured

transport in tokamak experiments, except in some enhanced confinement regimes.

11The code calculates a very small, but finite particle and electron heat flux for the case without
electron dissipation. Preliminary quasilinear estimates do not contradict this result. However,
deeper theoretical understanding would be desirable in the future because there is reason to
suspect, based on arguments similar to that presented in Appendix B, that the particle flux
should be zero in this case.





Chapter 6

Comparison with Experiment

C OMPARISON with experimental data provides the ultimate test of

the validity and relevance of simulation results. Direct comparisons

between toroidal electromagnetic simulations and tokamak data are

presented in this chapter, along with suggested directions for future

comparisons.

As discussed in Sec. 1.1.2, there have been a number of comparisons be-

tween electrostatic gyrofluid simulations and experimentally measured transport

fluxes. These have involved both direct comparisons, and indirect comparisons

using parametric transport models, such as GLF23 [Waltz et al. 1997] and IFS-

PPPL [Kotschenreuther et al. 1995], which use gyrokinetic calculations of

linear growth rates and quasilinear transport fluxes, with mixing length characteri-

zations of the nonlinear saturation level fit to toroidal gyrofluid simulations [Beer

1995].

Electromagnetic effects can significantly modify the gyrofluid simulation re-

sults, as demonstrated in Ch. 5. The inclusion of magnetic fluctuations and non-

adiabatic passing electrons may allow the simulations to more accurately describe

and predict transport in the core region of tokamaks, as well as extending the

regime of validity of the simulations further toward the plasma edge. Improve-

ments in the accuracy of direct comparisons with measured fluxes, as well as the

eventual development of more accurate parametric transport models are expected.

In Ch. 5, two sets of nonlinear simulations scanning over the parameter β ∝
αMHD are presented, and a number of qualitative similarities between the simulation

123
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results and the fluctuation measurements of [Fonck et al. 1993; Evensen et al.

1998] are discussed. Here a simple, more direct comparison between experiment and

gyrofluid simulations is undertaken. Measured temperature, density, and magnetic

field profiles are used as input equilibrium parameters for electromagnetic gyrofluid

simulations. The ion and electron heat fluxes predicted by the simulations are

then compared to the heat fluxes inferred from power balance using experimental

measurements.

While these simulations incorporate important electromagnetic and non-

adiabatic passing electron physics not considered in prior investigations, they are

by no means complete in all respects. Rather, they represent a demonstration of

the current status and capabilities of the electromagnetic simulation code. Fu-

ture avenues for further improvement are mentioned here and discussed further in

Sec. 7.2.

The comparison uses TFTR L-mode shot #65018, with the input parameters

coming from SNAP try 3. The shot is similar to #65012 discussed in [Scott et al.

1993]. Deuterium is the primary ion species, and heating is provided by 14MW of

deuterium neutral beams. The plasma major radius R = 2.45m, the minor radius

a = 0.80m, and the toroidal field on axis B0 = 4.75T . Measured equilibrium profiles

are shown in Figs. 6.1-6.3.

This shot has been chosen primarily because it was the subject of an ex-

tensive set of comparisons with electrostatic gyrofluid simulations, presented in

Ch. 6 of [Beer 1995]. Beer compared the experimentally inferred χi and χe to

that predicted by a set of electrostatic gyrofluid simulations with trapped electrons

at several radial points throughout the plasma. Taking into account a number of

factors, including uncertainty in measured equilibrium gradients, and the presence

of sawtooth modes in the center (r/a < .25) of the plasma, Beer concluded that

the results of the simulations were broadly consistent with the experiment in the

core region, r/a < .7. However, as Beer states, “outside r/a = .7, the predicted χ

is clearly too low.” Furthermore, while the experimental χ increases sharply with

radius outside r/a = .7, the electrostatic simulations exhibit the opposite trend.

The electromagnetic simulations shown here focus on the outer region, .75 <

r/a < .95. A primary goal is to determine to what extent the inclusion of electro-
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Figure 6.1: Measured electron (solid), ion (dotted), and beam (dashed) density
profiles (a), and electron and ion temperature profiles (b) for TFTR shot #65018.
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Figure 6.2: Measured electron and ion density (a) and temperature (b) scale lengths
for TFTR shot #65018.
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Figure 6.3: Measured radial profiles of the safety factor q and magnetic shear ŝ (a),
and profiles of ηi = Lni/LT i and ηe = Lne/LTe for TFTR shot #65018.

magnetic effects allows improved predictions of the value of χ in this region, and

leads to an understanding of the ubiquitous trend of χ increasing with radius, seen

in the edge of many tokamaks. It might at first seem surprising to suggest that elec-

tromagnetic effects would be important in the edge region, given the small values

of plasma β, as shown in Fig. 6.4a. However, it is not β itself, but rather the MHD

ballooning parameter α = −q2Rβ′ which provides a good estimate of the drive for

the Alfvén ballooning instability, and of the overall importance of electromagnetic

effects.1 Due to high q and very sharp density and temperature gradients in the

edge, α increases with radius, despite the drop in β, as shown in Fig. 6.4b.

Flux tube simulations are performed, using an s − α equilibrium model,

with the flux tubes centered at four values of r/a = 0.775, 0.825, 0.875, and 0.925,

for which SNAP data is available. The electromagnetic simulations employ the full

electron physics model derived in Sec. 3.3.2, including electron Landau damping

and electron-ion collisions, using the measured collisionality. Ion-ion collisions have

been neglected, as have trapped electrons. This shot has a fairly low impurity

concentration (Zeff = 1.73), and impurities are not considered in the analysis. The

beam density is very small for r/a > .75, as shown in Fig. 6.1, and is neglected.

1A full kinetic analysis shows that other parameters, including ηi play an important role as
well, as discussed in Secs. 2.1 and 2.3.
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Figure 6.4: Total plasma β, electron βe and main ion βi profiles (a), and profile of
the MHD α parameter (b) for TFTR shot #65018.

The ion thermal conductivity χi calculated from electromagnetic gyrofluid

simulations is compared to the χi inferred from experimental power balance in

Fig. 6.5. The prediction of a set of electrostatic gyrofluid simulations using an

adiabatic electron response (no trapped electrons) is also shown, as is the prediction

of the theoretical model of [Biglari, Diamond, and Rosenbluth 1989], χi =

kθρi[q(1 + ηi)/(τ ŝ)]ρ2
i vti/Ln, where kθρi = 0.2 has been used, as its value is not

predicted by the theory. The electromagnetic and electrostatic simulations predict

similar χi values at r/a = 0.775 and 0.825, but the electromagnetic simulations

predict a much larger χi, in better agreement with experiment, for r/a = 0.875 and

r/a = 0.925.2

While the electrostatic simulations3 and BDR theory both predict a small

χi which decreases monotonically with radius (for r/a > .7), as the drive for the

2Note that at r/a = 0.875 and r/a = 0.925, the simulations are in a regime of strong sensitivity
to input parameters, and relatively large RMS fluctuations in the steady state fluxes. The simula-
tion at r/a = 0.875 in particular does not reach a very stable steady state during the time period
of the simulation (t < 440Ln/vti) and the value of χi shown in Fig. 6.5 should be considered
approximate.

3We emphasize that the electrostatic simulation results shown here do not include trapped
electrons, to allow for a more direct comparison with the electromagnetic simulations which include
only passing electrons. Beer’s electrostatic simulations with trapped electrons predict a χi which
is slightly higher, but which also decreases with r for r/a > .7.
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Figure 6.5: Comparison of measured and predicted χi in the outer region of TFTR
L-mode shot #65018. The measured χi from SNAP is compared to results from
electromagnetic and electrostatic gyrofluid simulations. The prediction of Biglari-
Diamond-Rosenbluth theory, with kθρi = 0.2, is also shown.
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ITG instability decreases, the electromagnetic simulations predict a χi which can

dramatically increase with radius. This increase occurs in a region where the values

of αMHD and electron-ion collisionality are large, and increasing with radius. This

behavior appears to be closely related to the dramatic increase in χi with α for

α > 0.3 (β > 0.6%) seen in Fig. 5.15.4

There are a number of important factors that should be taken into account in

assessing the level of agreement between the measured χi values and the electromag-

netic simulation predictions shown in Fig. 6.5. There are significant uncertainties in

the measured equilibrium parameters used as input in the simulations. These un-

certainties are magnified because most of the simulation parameters (ŝ, εn, ηi, ηe, α)

are gradients of the local equilibrium quantities that are actually measured. Fur-

thermore, the simulations are in a regime of extreme sensitivity to input parameters

similar to that seen for α > 0.3 (β > 0.6%) in Fig. 5.15. In this regime, a relatively

small change in the equilibrium gradients, for example εn or α, can lead to a much

larger change in the predicted χ.

There are also a number of potentially important physical effects which are

neglected in the simulations. Trapped electrons and impurity species can add addi-

tional instability mechanisms, as well as significantly modifying nonlinear dynamics.

Ion-ion collisions can damp zonal flows, possibly increasing steady-state turbulent

fluxes. The use of a simple shifted circle (ŝ − α) equilibrium model, rather than

a more detailed equilibrium geometry, can alter the dynamics, often significantly

overstating the stabilizing effect of the Shafranov shift. Also, the use of local flux

tube simulations prevents nonlocal effects such as the propagation of turbulence

from one region to another. For example, it is possible that turbulence which is

strongly driven in the extreme edge region propagates inward and contributes to

the observed transport [Mattor and Diamond 1994; Garbet et al. 1994].5

Fig. 6.6 compares the electron heat conductivity χe inferred from measured

4Note that in the parameter scans in Ch. 5, only β is varied while all other parameters are
held fixed, so that α is always proportional to β. Here α increases with r while β decreases. In
both cases it is α which is of primary importance, as discussed in Sec. 2.3.

5Simple scaling estimates suggest a radial propagation distance of ∼ 10 − 30ρi. This is quite
small compared to the size of the tokamak, but may become significant relative to other scales
near the edge.
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power balance to that predicted by electromagnetic gyrofluid simulations. Electro-

static simulations with only adiabatic electrons do not predict a finite χe, and are

thus not included in the figure. The electrostatic gyrofluid simulations of [Beer

1995], which include trapped electrons, predict a small χe which decreases from

χe ' 0.4 at r/a = 0.775 to χe ' 0.1 at r/a = 0.925. The χe predicted by the elec-

tromagnetic simulations is also significantly smaller than that inferred from power

balance, though it reproduces the general trend of increasing with radius. Note

that, as in Ch. 5, the electromagnetic gyrofluid χe is dominated by E × B con-

vected flux. The magnetic flutter contribution is finite, but smaller by more than

an order of magnitude. The disparity between the gyrofluid prediction and the ex-

perimental χi inferred from power balance may be partially due to the measurement

uncertainties and neglected physical effects mentioned above. It may also be due

to the presence of high frequency turbulence, such as might be driven by electron

drift instabilities or perhaps nonlinear instabilities. Such modes are not well de-

scribed by the current electromagnetic gyrofluid model, but may be described by a

future model which relaxes the assumption k‖vte ¿ 1 and includes electron inertia.

Such high frequency modes, which generally propagate in the electron diamagnetic

direction, have been observed near the edge of TFTR [Evensen et al. 1998].

6.1 Summary

A direct comparison between observed transport and the predictions of electro-

magnetic gyrofluid simulations using measured equilibrium parameters, has been

undertaken in the outer region (.75 < r/a < .95) of a TFTR L-mode discharge.

It has been found that electromagnetic effects can significantly enhance predicted

turbulent transport in the edge region, bringing predictions more in line with obser-

vations. Furthermore, the electromagnetic simulations correctly capture the trend

of χi increasing with radius in the outer region, in contrast to electrostatic simula-

tions and BDR theory, which predict a small χi decreasing with radius for r/a > .7.

Electromagnetic gyrofluid predictions of χe also reproduce general trends seen in

the experiment, though the χe values predicted by the simulations are significantly

lower than those inferred from experimental power balance.
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Figure 6.6: Comparison of measured and predicted electron thermal conductivity
χe in the outer region of TFTR L-mode shot #65018. The measured χe from SNAP

is compared to the predictions of electromagnetic gyrofluid simulations.
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While the inclusion of additional physical effects such as trapped electrons,

impurities, general geometry, and ion-ion collisions are are needed to make the

simulations physically complete, these results are quite encouraging. The electro-

magnetic simulations clearly indicate that electromagnetic effects can dramatically

increase turbulent fluxes in the outer region, where earlier electrostatic simulations

have had the most difficulty accounting for observed transport.



Chapter 7

Conclusions and Future Directions

P ROGRESS toward a more complete understanding of the physics of

turbulent transport in tokamaks is made in this thesis, via the devel-

opment of a comprehensive electromagnetic turbulence model, and its

implementation in realistic nonlinear simulations. The model incor-

porates magnetic fluctuations and non-adiabatic passing electron dynamics, which

have been neglected in previous realistic simulations. The fast temporal scales asso-

ciated with electron transit motion are treated via an analytic expansion, allowing

for efficient numerical solution of the equations.

The resulting model accurately reproduces the linear kinetic growth rates

and frequencies of the finite-β toroidal ion temperature gradient (ITG) and kinetic

ballooning (KBM) instabilities, and can be used to describe the nonlinear evolution

of turbulence on both ion and Alfvén scales.

Nonlinear electromagnetic simulations have been compared to experiment,

and found to reproduce a number of observed characteristics of turbulent fluctuation

spectra. Electromagnetic effects are found to increase predicted ion transport in

the outer region of the tokamak plasma, bringing simulation results more in line

with experimental observations.

The fundamental conclusion of this work is that electromagnetic effects have

a strong impact on microturbulence-driven transport, with both significant reduc-

tions and dramatic enhancements in transport possible, depending on β/βc. Fur-

thermore, the electromagnetic effects on transport observed in simulations are in

many cases not easily explained by simple mixing length estimates, emphasizing

133
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the need for further work with numerical simulations and development of improved

analytic theories.

7.1 Summary and Conclusions

A comprehensive and numerically efficient electromagnetic gyrofluid model has been

developed and used to investigate turbulent transport in tokamaks. The model

consists of a set of electromagnetic ion gyrofluid and electron Landau fluid equations

derived by taking moments of the nonlinear toroidal electromagnetic gyrokinetic

equation [Brizard 1992; Hahm et al. 1988], along with the gyrokinetic Poisson

Equation and Ampere’s Law.

The hierarchy of six ion moment equations is truncated with kinetic closures,

based on those of [Beer 1995; Hammett and Perkins 1990; Dorland 1993],

which have been carefully derived to incorporate both parallel and toroidal kinetic

effects. The full set of electromagnetic ion gyrofluid equations include models of

parallel Landau damping, ion drift resonance, ion-ion collisions, and linear and

nonlinear finite-Larmor-radius (FLR) effects. Magnetic fluctuations enter the ion

equations through the inductive electric field, as well as through several linear and

nonlinear magnetic flutter terms.

A new set of electron equations is derived via a careful analytic expansion in

temporal (ω ∼ ω∗, ωd, k‖vti, k‖vA ¿ k‖vte) and spatial (k−1
⊥ ∼ ρi À ρe, c/ωpe) scales.

This expansion results in an elegant set of electron fluid equations which describe

electromagnetic electron dynamics on the typical ion and Alfvén length and time

scales, while analytically treating the numerically challenging electron transit time

scale as well as the small electron gyroradius and skin depth length scales. While

the resulting electron model is simple and fairly easy to implement numerically, it

represents a very substantial improvement over the adiabatic electron models that

have been used to describe the passing electrons in most previous gyrofluid and

gyrokinetic particle simulations. In addition to finite-β effects and Alfvén wave

dynamics, the model also incorporates electron E × B, curvature, and ∇B drift

motion, as well as the E×B nonlinearity and four additional nonlinear terms due
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to magnetic flutter. The use of an electron temperature closure appropriate for

ω ∼ ωA ¿ k‖vte allows for the proper inclusion of the ∇Te as well as the ∇ne drive

of the kinetic ballooning mode. Models of parallel electron Landau damping as well

as electron-ion collisions are included.

The model has been benchmarked with linear gyrokinetic calculations, and

good agreement has been found for the growth rates and real frequencies of both

the finite-β toroidal ion temperature gradient (ITG) and kinetic Alfvén ballooning

(KBM) instabilities. The model is able to reproduce the behavior described by

[Andersson and Weiland 1988; Hong et al. 1989; Zonca et al. 1996], in which

the kinetic ballooning mode is driven unstable below the ideal MHD ballooning limit

(βc) by ion drift resonance.

The electrostatic toroidal gyrofluid code (Gryffin) of [Beer 1995; Dor-

land 1993; Hammett et al. 1994] has been extended to incorporate the finite-β

terms in the ion equations, the new electromagnetic electron model, and Ampere’s

Law. Nonlinear toroidal electromagnetic simulations have been carried out in flux

tube geometry, and the results have been compared to electrostatic simulations,

mixing-length estimates and experiments.

A series of nonlinear simulations has been performed which scan in β ∝
αMHD, over the range 0 ≤ β/βc ≤ 0.9. The remainder of the simulation parameters

are chosen to be typical of a tokamak core region with a strong ITG instability,

and simulations are performed both with and without electron dissipation, which

enters via electron Landau damping and electron-ion collisions. Electromagnetic

effects are found to significantly reduce transport for β/βc . 0.5, with the relative

decrease similar to that expected from linear mixing length estimates due to the

finite-β stabilization of the ITG instability. For larger β/βc > 0.5, transport can

increase with increasing β. In simulations which include electron Landau damping

and electron-ion collisions, this increase in transport can be quite dramatic.

Electron Landau damping plays a critical role in our electromagnetic gy-

rofluid simulations at large β/βc > 0.5, and low to moderate collisionality. Fur-

thermore, electron Landau damping may be an important effect in other types

of MHD or micro-turbulence simulations beyond those discussed here. Electron

Landau damping acts like an enhanced resistivity in the Ohm’s law, where the
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ratio of the Landau damping term to the usual collisional resistivity is roughly

|k‖|vte/νei ∼ (|k‖|qR)/[ν∗(r/R)3/2]. Thus electron Landau damping can dominate

at low to moderate collisionality, and at high |k‖|. Note also that the electron Lan-

dau damping term is expected to be more important than the electron inertia term

when ω < |k‖|vte.

The electromagnetic simulations, like earlier electrostatic simulations, pro-

duce density fluctuation spectra which peak at kθρi ' 0.1 − 0.2, and which are

anisotropic in kr and kθ, in qualitative agreement with the BES measurements on

TFTR by [Fonck et al. 1993]. Furthermore, the electromagnetic simulations pro-

duce ion temperature fluctuation spectra which are similar in shape to the density

spectra, with a ratio (T̃ /T0)/(ñi/n0) = 2± .5 relatively independent of the simula-

tion parameters, similar to the observations of [Evensen et al. 1998] using BES

and CHERS diagnostics on TFTR. The narrowing of the peaks in the fluctuation

spectra with increasing β/βc also appears to be consistent with the observations of

[Evensen et al. 1998], though further investigation over a wider range of param-

eters is needed to confirm both of these results.

A direct comparison between electromagnetic toroidal gyrofluid simulations

and the outer region (.75 < r/a < .95) of a TFTR L-mode discharge has been

undertaken, with encouraging results. In this region, electrostatic simulations and

most mixing-length estimates predict small values of ion heat transport which de-

crease with radius, in contrast with the experimentally inferred transport which is

large, and generally increasing with radius. The electromagnetic simulations predict

ion heat fluxes which can increase with radius, and which are often in good quan-

titative agreement with the values inferred from power balance. Electromagnetic

gyrofluid predictions of electron thermal conductivity (χe) also reproduce general

trends seen in the experiment, though the χe values predicted by the simulations

are significantly lower than those inferred from experimental power balance.
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7.2 Future Directions

The incorporation of magnetic fluctuations and non-adiabatic passing electron dy-

namics into realistic toroidal turbulence simulations, as discussed in this thesis,

represents a significant advance. Nonetheless much work is still needed to develop

more complete simulations and a more thorough physical understanding of tokamak

turbulence and transport.

Proposed extensions of this work can be broken down into three broad cat-

egories: extensions of the nonlinear toroidal simulation code, use of nonlinear sim-

ulation results to analyze tokamak transport experiments and to explore attractive

regimes for the operation of a cost-effective fusion reactor, and thorough examina-

tion of nonlinear dynamics, including comparisons with both theoretical analyses

and other nonlinear simulations.

Several extensions of the present electromagnetic gyrofluid code to enhance

its flexibility and physics content should be possible in the near future. Areas of in-

terest include multiple ion species, general geometry, trapped electrons, equilibrium

E×B shear effects, electron inertia, and parallel magnetic perturbations, as well

as investigation into higher-order models for the passing electrons. As discussed

below, many of these capabilities already exist in the gyrofluid code and should

be ready for immediate use, perhaps with some additional benchmarking in the

electromagnetic case.

Impurity species are well known to both affect ITG growth rates [Tang et al.

1980; Rewoldt and Tang 1990; Kotschenreuther 1992] and to drive addi-

tional instabilities [Migliuolo 1992]. Our electromagnetic gyrofluid equations

have been derived for arbitrary number of species (Sec. 3.2.6), and collisionless

impurity dynamics are already included in the simulation code, though the multi-

species electromagnetic case has not yet been thoroughly benchmarked. Collisions

between ion species may also be important, particularly for electromagnetic modes

[Rewoldt et al. 1987], so an interspecies collision model may need to be devel-

oped, perhaps through an extension of the work of [Chang and Callen 1992a;

Chang and Callen 1992b], or by simply taking moments of the gyroaveraged

Lorentz collision operator.
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All electromagnetic runs discussed here have been carried out in s−α geome-

try, for simplicity and to allow for easy comparisons with linear kinetic codes. How-

ever, general equilibrium geometry has been implemented in the Gryffin code, and

running the code in general geometry should require only additional benchmark-

ing. The inclusion of profile variation in the simulation domain, via either enhanced

flux tube, annulus, or full torus geometry is also of great interest, particularly for

studying edge turbulence and enhanced confinement regimes.

Trapped electrons can dramatically alter ITG and KBM growth rates, as

well as drive trapped electron modes. [Beer 1995] has developed a model for elec-

trostatic trapped electron dynamics. In the limit of small trapped particle fraction

and small β, it should be possible to combine this model with our electromagnetic

passing electron model. So far, efforts to do so have proved numerically challeng-

ing, and further work is needed. The eventual development of a practical, fully

electromagnetic trapped electron model is a high priority.

Work on extending the electrostatic Gryffin code to include equilibrium E

×B shear flows is currently being undertaken by M. Beer. Extending this work to

the electromagnetic version of the code is of great interest.

Including the electron inertia term in the electron momentum equation

is straightforward, and should allow investigation of the “universal drift mode”,

though it may introduce numerical challenges.

At small values of β, the perpendicular component of the magnetic fluctua-

tions (δB⊥) tends to be much larger than the parallel component (δB‖), and only

δB⊥ has been implemented in the gyrofluid code. However, linear studies show

that δB‖ plays an important role in Alfvén mode stability, particularly for high β

equilibria [Kotschenreuther 1998; Tang et al. 1980]. It should be possible

to use moments of Brizard’s [Brizard 1992] full gyrokinetic equation, including

δB‖ terms, to derive the δB‖ terms needed in the moment equations and Pois-

son’s equation, and to use a perpendicular Ampere’s Law to complete the system

of equations. Explicitly including δB‖ removes the cancellation which allowed the

combination of the ∇B and curvature drift terms, and these will now need to be

considered separately. The result will be a significantly more complex set of fluid

equations, but the increase in computational difficulty should be minor.
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The two-moment model used thus far for the electromagnetic passing elec-

trons is elegant and simple, in addition to being quite accurate for describing the

KBM and finite-β ITG, including the ∇ne and ∇Te drive of the KBM and the

important electron contribution to the finite-β stabilization of the ITG. There are,

however, cases for which a higher order electron model would be required. A prime

example is the study of the electron temperature gradient (ETG) instability, which

has been proposed as a possible mechanism for electron heat transport in some

regimes. An accurate model of ETG requires the inclusion of finite electron mass

terms, and at least four electron moments. In fact, since the electromagnetic terms

have been implemented in Gryffin for multiple species, it is possible to simulate

such cases by simply treating the electrons as an additional species with very small

mass and negative charge.

It is also of interest to study the impact of nonlinear Landau damping on

the simulations. Because our Landau damping closures are always implemented

in odd moments (u‖, q‖, q⊥) with no equilibrium components, magnetic flutter

does not enter the linear Landau closure (avoiding a concern discussed by [Finn

and Gerwin 1996]), but does contribute an additional nonlinear Landau damping

term. The size of this magnetic flutter nonlinear Landau damping term has been

evaluated in the simulations and found to be small for the cases considered here.

Nonetheless, a number of authors [Mattor 1992; Jenko and Scott 1998] have

discussed the potential importance of this and other nonlinear Landau damping

terms, and it is of interest to include them in future simulations. One approach is

to move to coordinates which follow the perturbed field, so that the FFT’s needed

for the Landau closure term can be easily evaluated along the perturbed field, thus

incorporating the magnetic flutter term. Other issues and approaches are discussed

in Sec. C.8. Comparisons to gyrokinetic particle and Vlasov simulations which

include nonlinear Landau damping is also useful for assessing the importance of

these effects.

Making the above enhancements to the code should allow for more detailed

quantitative comparisons with experimental turbulence and transport measure-

ments, both in the core and the edge. Interesting regimes such as enhanced confine-

ment modes and L-H transitions could be thoroughly investigated. If comparisons
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with present experiments prove successful, the code could be used as a tool to pre-

dict transport in proposed experiments, and to search for low transport regimes

appropriate for a cost-effective fusion reactor.

A final avenue for future exploration is nonlinear dynamics. Preliminary

results suggest complex nonlinear phenomena are involved in the saturation of

electromagnetic turbulence. At high β/βc, increases in transport are observed as

linear growth rates drop, and dramatic increases in transport are observed with

the addition of dissipative terms which reduce linear growth rates. The role of

zonal flow dynamics in the electromagnetic case should be thoroughly investigated,

including comparisons with the analytic work of [Das et al. 1999], and incorpo-

ration of neo-classical gyrofluid closures [Beer and Hammett 1998] which better

account for the undamped “Rosenbluth-Hinton” component of the zonal flow. The

role of secondary instabilities should also be investigated. Rogers has proposed a

mechanism for the stabilization of secondary Kelvin-Helmholtz modes in the elec-

tromagnetic case with dissipation [Rogers and Drake 1997], which could be

explored by studying the stability of linear eigenmodes from the Gryffin code.

In addition, comparisons to existing and future electromagnetic turbulence

simulation codes should prove useful, both for debugging and to explore and com-

pare underlying physics models. Useful comparisons could be made with electro-

magnetic Braginskii fluid codes such as those of [Drake et al. 1995; Rogers and

Drake 1997; Zeiler et al. 1996; Xu et al. 1998] to better understand nonlinear

dynamics, particularly in the edge regime. Furthermore, some of the techniques

developed and tested here, such as the electron Landau damping model, may help

extend the validity of these Braginskii codes to lower collisionality regimes. Com-

parisons to the fluid code of [Scott 1997], which now includes ion dynamics,

should be useful as well. The dynamics of nonlinear instabilities [Drake et al.

1995; Scott 1997], and their relevance to edge transport could also be explored

in detail. Comparisons with developing electromagnetic kinetic codes using either

a particle [Lee et al. 1999] or direct “Vlasov” approach [Jenko and Scott 1999;

Dorland et al. 1999] will be a high priority in the future.



Appendix A

Gyrofluid vs. δF Gyrokinetic

Comparisons and the RH Mode

In addition to direct comparisons with experiments, there have been comparisons of

results generated by different types of nonlinear turbulence simulations. These have

primarily involved cross-checks between the results of gyrofluid (GF) simulations

and δF gyrokinetic particle (GKP) simulations. Because of their computational

efficiency, gyrofluid simulations have been widely used in direct comparisons with

experiments and as the basis for parameterized transport models, such as GLF23

[Waltz et al. 1997] and IFS-PPPL [Kotschenreuther et al. 1995]. GKP

simulations are a more direct method of solving the gyrokinetic equation, but they

have been used less frequently in direct, extensive comparisons with experiments.

Cross-checks between GF and GKP (preferably involving more than one simulation

code of each type) provide an opportunity both to evaluate the underlying physics

models and to check for errors in the particular simulation codes.

An early comparison between GF and GKP codes in a simplified geometry

yielded encouraging results [Parker et al. 1994; Dorland 1993]. Excellent

agreement was found in comparisons of the thermal diffusivity (χ) in both 2-D

shearless slab and 3-D sheared slab geometries, though there were ∼ 40% differences

in the RMS φ.

More recent comparisons in toroidal geometry have found somewhat larger

discrepancies between GKP simulations and GF simulations using the fluid clo-

sures described in [Beer 1995]. These are described in more detail in [Dimits
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Figure A.1: Comparison of the predicted ion heat conductivity (χi) vs. steepness
of the ion temperature gradient (R/LT i) for gyrofluid (GF) and δF gyrokinetic
particle (GKP) simulations.
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et al. 1999; Beer and Hammett 1998] and briefly summarized here. One such

comparison is shown in Fig. A.1 for parameters similar to those from a DIII-D shot.1

Here the χi predicted by several different models is plotted against the normalized

temperature gradient (R/LT i). The symbols marked GF94 show simulation results

from Beer’s gyrofluid flux tube code with the closure described in [Beer 1995].

The solid line marked IFS-PPPL shows the predictions of the IFS-PPPL model

[Kotschenreuther et al. 1995], which uses linear theory to predict the critical

gradient, and a parametric fit to results from Beer’s code to predict the heat flux

above the critical gradient. The results of Dimits’ flux tube δF simulations are

marked GKP, and a simple curve fit through these points is also shown. All sim-

ulations are collisionless and electrostatic with adiabatic electrons (ne ∼ φ − 〈φ〉)
[Dorland 1993] and a single ion species, and use a simplified circular flux surface

geometry.

The qualitative behavior of all the simulation results is similar. They predict

zero transport up to a critical gradient, above which the transport increases rapidly

before gradually leveling off. However, the GF and GKP simulations disagree about

the precise location of the critical gradient. Furthermore, the GF simulations seem

to be slightly more “stiff”, that is they predict a somewhat more rapid rise in

transport as the gradient becomes supercritical.

Because of the different critical gradients predicted by the models, it is pos-

sible to select a value of the gradient near criticality, and find that the predictions

of χi differ by an arbitrarily large factor. A much more practically meaningful com-

parison of the predictions can be made as follows. In an experiment, a heat source2

near the center of the plasma will heat the plasma and sharpen the temperature

gradient, increasing R/LT i, until the outward heat flux exactly balances the heat

source and a steady state is reached. The temperature gradient at which this occurs

is a relevant physical quantity for comparing the models. Fig. A.2 shows this com-

parison between the IFS-PPPL model and the curve fit to Dimits’ δF simulations.

1This is not necessarily a typical case; it has been selected for study partly because disagreement
between the two models is large.

2such as neutral beams or RF power in current experiments, or fusion produced alpha particles
in a fusion reactor
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Figure A.2: Comparison of the ion temperature gradient predicted by the IFS-
PPPL model to the prediction of a curve fit to Dimits’ δF gyrokinetic particle
simulations. The plot shows that over a wide range of heat flux, the IFS-PPPL
model predicts an ion temperature gradient which is 20 − 30% less steep

The conclusion is that the IFS-PPPL model predicts a temperature gradient which

is ∼ 20 − 33% less steep.

It has been expected that gyrofluid simulations may become inaccurate very

close to the critical gradient. One reason for this is that the GF model relies on

strong nonlinear couplings to wash out the effects of nonlinear Landau damping and

other long time scale kinetic effects, and hence is expected to be more accurate as

the turbulence becomes stronger. Another reason is that GF predictions of linear

growth rates are less accurate very near marginal stability. Transport models based

on GF simulations, such as GLF23 and IFS-PPPL, use linear kinetic calculations

of the critical gradient to attempt to account for this.3

3This is in part why the IFS-PPPL curve in Fig. A.1 lies somewhat below the raw GF94
simulations.
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It is perhaps surprising then that in Fig. A.1 the GKP simulation results

differ significantly from the linear kinetic prediction of the critical temperature

gradient (given by the point at which the IFS-PPPL line intersects the axis). The

GKP simulations predict zero heat flux significantly above the point at which the

ITG mode becomes unstable. There is apparently a subtle nonlinear mechanism

which prevents this ITG mode from driving significant turbulent transport when

turbulence is weak.

An undamped component of the zonal flow has been identified as the mecha-

nism for this nonlinear up-shift in the critical gradient [Dimits et al. 1999]. There

is a component of the zonal flow that is linearly undamped in the absence of col-

lisions [Rosenbluth and Hinton 1998]. This Rosenbluth-Hinton (RH) mode is

driven up nonlinearly by the turbulence, and the RH flows then shear apart tur-

bulent eddies and reduce transport. When the linear drive is weak enough, there

is a temporary burst of turbulence which drives enough of the RH flow to com-

pletely damp any further turbulence, leading to the nonlinear up-shift observed in

the GKP results. When the ion temperature gradient is large enough, a balance can

be achieved between the turbulent drive and the turbulent damping of the zonal

flows, leading to a non-zero χi.

As noted in [Beer 1995], Beer’s original set of toroidal GF equations accu-

rately model the fast linear collisionless damping of zonal flows for t < qR/vti

√
ε.

The original closure does not, however, account for the residual undamped compo-

nent of the zonal flow. Recent efforts have been made to incorporate the residual

flow into a new closure [Beer and Hammett 1998; Beer and Hammett 1999].

The results of a first attempt at this are labeled GF98 in Fig. A.1. While this

closure only partially accounts for the residual flow, it does produce a nonlinear

up-shift in the critical gradient, and it brings GF and GKP results significantly

closer together. It is hoped that a more complete neoclassical closure which accu-

rately reproduces the residual flow at all relevant wavelengths may bring the models

yet closer together.

Recent full torus δF particle simulations by [Lin et al. 1999] have included

a realistic model of ion-ion collisions. It has been found that collisional damping of

the residual flow eliminates the nonlinear up-shift in the critical gradient. Hence,
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including realistic levels of collisions is expected to bring the GF and GKP results

closer together. Beer’s original GF closure can be viewed as an approximation of

the zonal flow damping at a fixed, moderate collisionality. However, as Lin has

found, the value of χi near marginal stability will depend on collisionality.4

It is noted that the closure used throughout this thesis is essentially Beer’s

original closure, and hence all nonlinear results include effective long-term damp-

ing of the RH flow. Nonlinear electromagnetic simulation results with a closure

including the undamped RH flow are expected in the near future.

Of course electromagnetic effects have a significant impact on zonal flow

dynamics, and may impact GF/GKP comparisons as well. Benchmarking the elec-

tromagnetic GF code with an equivalent GKP or 5-d gyrokinetic grid simulation

will be a priority once such codes become available.

A.0.1 Conclusions

Extensive comparisons of electrostatic GF and GKP simulations have been under-

taken and have provided a useful opportunity both to debug simulation codes and

to test and understand underlying physics models. Reasonable overall agreement

has been found, typified by the ∼ 25% disagreement in predicted temperature gra-

dient shown in Fig. A.2. A principal source of the disagreement has been identified

and at least partially accounted for.

It is expected that continued refinement will lead to better agreement in the

future, and that both types of simulations will be useful as complementary tools to

achieve further understanding of turbulence and transport.

4The zonal flows near marginal stability are apparently driven by an inverse cascade, and it
may be that the inclusion of non-adiabatic electrons (due to electromagnetic effects or trapped
electrons) will limit this inverse cascade, as has been shown for simple “iδ” models of electrons.
This would be expected to improve comparisons between GKP and GF which included nonadia-
batic electrons.
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Flux Conservation

The conservation of magnetic flux is an important property of many dissipationless

models of magnetized plasma dynamics. Here we will show that magnetic flux is

conserved by the dissipation-free version of our electron equations, Eqs. 3.114-3.116.

This proof closely follows that of [Cowley 1985].

The magnetic flux Ψ is defined by the surface integral:

Ψ =

∫
S

B · dS, (B.1)

where B is here defined to be the total magnetic field, including both equilibrium

and fluctuating components.

Conservation of flux requires that the total derivative dΨ/dt vanish in a

frame moving at some velocity vB, that is:

dΨ

dt
=

∫
S

∂B

∂t
· dS −

∮
dl · (vB × B) =

∫
S

[
∂B

∂t
−∇× (vB × B)

]
· dS(B.2)

= −c

∫
S

∇× (E +
vB

c
× B) · dS = 0.

This holds trivially in the electrostatic case, and for models such as ideal MHD

where

−c∇× E =
∂B

∂t
= ∇× (v × B). (B.3)
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It is also apparent that an appropriate vB for flux conservation exists (in particular

the E×B velocity, vE = cE×B/B2) whenever the electric field is purely perpen-

dicular, or when the parallel electric field can be written as a gradient, such that

∇× E‖ = 0.

For electromagnetic drift/gyrokinetic models, the situation is somewhat

more complex, as E‖ is finite, and ∇ × (b̂E‖) does not vanish in general. For

the first case considered in Sec. 3.3.2, with zero electron inertia and no electron

dissipation, the electron momentum equation is:

E‖ =
∇‖p‖e

ene

, (B.4)

where in this appendix, in contrast to Ch. 3, the moments ne, p‖e, T‖e etc., are

all defined to be the total moments including both equilibrium and fluctuating

parts, and ∇‖ is defined to be the gradient along the total magnetic field, including

fluctuations. Invoking Eq. 3.116, which follows from the ordering ω ¿ k‖vte, and

in the notation of this section is simply ∇‖T‖e = 0, we can write:

E‖ =
∇‖neT‖e

ene

= T‖e
∇‖ne

ene

=
T‖e

e
∇‖(ln ne) = ∇‖(

T‖e

e
ln ne). (B.5)

The curl of E is then:

∇× E = ∇×
[
E⊥ + b̂E‖

]
= ∇×

[
E⊥ + b̂∇‖(

T‖e

e
ln ne)

]
(B.6)

= ∇×
[
E⊥ + ∇(

T‖e

e
ln ne) −∇⊥(

T‖e

e
ln ne)

]

= ∇×
[
E⊥ −∇⊥(

T‖e

e
ln ne)

]
.

Because this is the curl of purely perpendicular quantity, it is always possible to

find a vB for which flux is conserved. Defining vB = vE + v′, where vE is the E×
B velocity, the condition for flux conservation is:

∇× (v′ × B) =
c

e
∇× (∇⊥T‖e ln ne), (B.7)

which can be satisfied by an appropriate v′.



Appendix C

Landau Fluid Models of

Collisionless

Magnetohydrodynamics

The main body of this thesis has been concerned with developing and implementing

a fluid model of electromagnetic microturbulence by starting with gyrokinetics,

where the electrostatic approximation has traditionally been employed, and adding

magnetic fluctuations and nonadiabatic passing electron dynamics.

Other approaches are possible. One such method is to start with a set

of MHD-like equations which include magnetic fluctuations, but lack small scale

dynamics and kinetic effects, and enhance them to include adequate physics for

microturbulence studies. The work below, also published in [Snyder et al. 1997],

details an approach which adds a model of Landau damping to collisionless MHD

equations. This model is most useful for large-scale MHD-type problems where

kinetic effects become important. The addition of small-scale effects would be

necessary for a complete electromagnetic microturbulence model.

C.1 Abstract

A closed set of fluid moment equations including models of kinetic Landau damping

is developed which describes the evolution of collisionless plasmas in the magneto-
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hydrodynamic parameter regime. The model is fully electromagnetic and describes

the dynamics of both compressional and shear Alfvén waves, as well as ion acoustic

waves. The model allows for separate parallel and perpendicular pressures p‖ and

p⊥, and, unlike previous models such as Chew-Goldberger-Low theory, correctly

predicts the instability threshold for the mirror instability. Both a simple 3+1

moment model and a more accurate 4+2 moment model are developed, and both

could be useful for numerical simulations of astrophysical and fusion plasmas.

C.2 Introduction

The dynamics of collisionless plasmas are of great interest both in astrophysics

and in laboratory fusion research. However, such plasmas are often studied using

models which implicitly assume high collisionality and which ignore important ki-

netic effects such as parallel Landau damping. In particular, models based on ideal

magnetohydrodynamics (MHD) assume collisional equilibration on a fast time scale

and are not in general applicable to collisionless plasmas. Chew-Goldberger-Low

(CGL) theory [Chew et al. 1956] relaxes the high collisionality assumption, but

assumes an adiabaticity condition which is rarely met, and neglects parallel Landau

damping, which can be important in the collisionless regime. Hence results from

CGL theory are not always reliable, as evidenced by the well known factor of six

error in the CGL prediction of the stability threshold for the mirror instability.

[Kulsrud 1962; Kulsrud 1983] Simplified models such as ideal MHD and CGL

are often employed despite their limitations because of the qualitative insights they

provide and the difficulty of working directly with a kinetic formulation. There are

some particle simulations of collisionless MHD phenomena, [Leboeuf et al. 1979;

Sydora and Raeder 1988; Fu and Park 1995; Naitou et al. 1995] but there

are also many fluid MHD simulations which could benefit from being extended into

lower collisionality regimes.

In this paper we will develop a relatively simple description of collisionless

plasma dynamics which includes parallel Landau damping. We wish to construct

a model which is valid over a wide parameter regime and can later be narrowed

and simplified for particular cases. As a starting point we will employ Kulsrud’s
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formulation of collisionless MHD [Kulsrud 1983; Kruskal and Oberman 1958;

Rosenbluth and Rostoker 1958]. Kulsrud’s formulation requires solving a

kinetic equation for the perturbed pressures p‖ and p⊥, or introducing further as-

sumptions such as adiabaticity to evaluate the pressures. We shall take moments

of Kulsrud’s kinetic equation, and close the moment hierarchy with Landau clo-

sures analogous to those derived by Hammett, Perkins and Dorland [Hammett

and Perkins 1990; Hammett et al. 1992; Dorland 1993], generalized to allow

anisotropic pressures and magnetic perturbations. This yields a fairly simple set of

moment equations with desirable nonlinear conservation properties, and a linear re-

sponse function very similar to the kinetic response of a collisionless bi-Maxwellian

plasma.

We shall refer to the model as Landau MHD, because the model incorporates

the effects of parallel Landau damping, and it is valid within the collisionless MHD

regime. It is useful to consider the Landau MHD model as an extension of CGL

theory which incorporates Landau damping, and can incorporate collisional effects

as well.

One of the limitations of the Landau MHD model we present is that it is

derived only in the standard ordering of ideal MHD, ε ∼ ω/Ωc ∼ kρ, where the

plasma varies on frequency scales ω small compared to the gyrofrequency Ωc, and

varies on spatial scales 1/k long compared to the gyroradius ρ. Thus it covers

phenomenon related to compressional and shear Alfvén waves and instabilities, ion

acoustic waves, and ion and electron kinetic effects such as Landau damping. How-

ever, it does not include drift-waves or other micro-instabilities (which have been

the focus of other Landau-fluid work) because they result from finite-Larmor/gyro

radius (FLR) effects which vanish in the usual MHD ordering. Also, though colli-

sional effects on the ion and electron heat fluxes and on the pressure tensor can be

kept in our model, there is no resistive component to the ideal Ohm’s law. This is

because the parallel current
∑

s nsesu‖s = 0 to lowest order in the 1/e expansion

of Kulsrud’s collisionless MHD, and collisions would alter the Ohm’s law only at

higher order in the ε ∼ ω/Ω ∼ kρ expansions. Thus the plasma is still an ideal

electrical conductor in our model and the magnetic field lines are frozen into the

plasma.
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Alternative orderings are possible to bring in FLR or resistive effects. One

approach would be to take fluid moments of the electromagnetic gyrokinetic equa-

tion [Hahm et al. 1988; Brizard 1992], which allows k⊥ρ ∼ 1, and work out

the appropriate closures.1 Another approach, taken by Chang and Callen [Chang

and Callen 1992a; Chang and Callen 1992b], in effect carries Kulsrud’s ex-

pansion to higher order in FLR, by using k⊥ρ ∼ k‖/k⊥ ∼ ∆ with ∆2 ∼ ε ∼ ω/Ωc.

This “extended-MHD” ordering orders the compressional Alfvén wave out of the

equations, but retains the slower Shear Alfvén and ion acoustic waves, and includes

resistive effects in the Ohm’s law as well as drift-wave instabilities with moderate

k⊥ρ ∼ ε1/2. Chang and Callen use an alternative derivation of Landau-fluid closures

which is actually linearly exact (employing the full Z functions). It reduces to our

formulation in the appropriate limits [Hammett et al. 1992]. Their approach

advances 3 moments (density, parallel flow, and temperature) for each species with

linear closures for the heat flux and stress tensor, while here we advance up to

6 moments (4 parallel and 2 perpendicular moments) for each species. These six

moment equations retain additional nonlinear effects, and simplify some of the ma-

nipulations of the stress tensor by keeping separate p⊥ and p‖ (which is also essential

to study the mirror instability that Kulsrud used to point out problems with the

CGL theory). They can be reduced to simpler systems with fewer moments in

various limits. Future work could try to extend our methods to the electromag-

netic gyrokinetic equation or merge with the methods of Chang and Callen for the

extended-MHD ordering.

There are previous authors who have tried some forms of Landau closures in

MHD equations. [Bondeson and Ward 1994] used viscous and pressure-damped

models of Landau damping in studying wall stabilization of external MHD modes

in advanced tokamak designs. An important feature of this work was the use of

Lagrangian variables so that the |k‖| operator involved in Landau-fluid closures

would (at least linearly) effectively operate along perturbed magnetic field lines,

which [Finn and Gerwin 1996] showed was important to do. However, Bondeson

and Ward’s model was a relatively low-order Landau-fluid model and was not en-

tirely consistent, assuming high collisionality in the derivation of the initial 1-fluid

equations and low collisionality elsewhere. A recent paper, [Medvedev and Dia-

1Note that this is the approach taken in the main body of this dissertation.
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mond 1996] has incorporated Hammett-Perkins type closures into a set of two fluid

equations, used to describe large amplitude shear Alfvén and magnetosonic waves

in interplanetary plasmas. Medvedev and Diamond’s equations assume isotropic

pressure, and are valid only in a limited parameter regime (β ≈ 1). The Landau

MHD model presented here should provide an extension of this previous work, use-

ful for the study of resistive wall stabilization, as well as for general problems of

MHD mode growth and saturation in both laboratory and astrophysical plasmas.

The organization of this paper is as follows. Section C.3 summarizes Kul-

srud’s collisionless MHD formulation. In Section C.4, a moment hierarchy based on

Kulsrud’s kinetic equation is derived and discussed. In Sections C.5 and C.6 clo-

sures for ‘4+2’ and ‘3+1’ models are derived, following [Hammett and Perkins

1990], and [Dorland 1993]. Section C.7 investigates collisional effects, including

the reduction of the model to an appropriate limit of the Braginskii equations.

Section C.8 discusses practical nonlinear implementation of the closure terms. In

Section C.9, the Landau MHD formulation is applied to analyze the mirror insta-

bility, and Section C.10 offers concluding remarks.

C.3 Collisionless MHD

As a starting point, we employ the collisionless MHD model described by Kulsrud

[Kulsrud 1983], based on earlier work by Kruskal and Oberman [Kruskal and

Oberman 1958] and by Rosenbluth and Rostoker [Rosenbluth and Rostoker

1958]. This formulation begins with the Vlasov-Maxwell system of equations, and

asymptotically expands in ρc/L, the smallness of the gyroradius relative to macro-

scopic scale lengths. This is accomplished by the formal expansion of the distribu-

tion function f , the magnetic field B, and the electric field E in the inverse charge

1/e. This is equivalent to taking all relevant frequencies in the problem to be very

small compared to the cyclotron frequency, Ωc, and the plasma frequency, ωp.

In this ordering, the Vlasov equation reduces to a condition on the zeroth

order parallel (relative to the magnetic field) electric field E‖0 = 0, and the fol-

lowing kinetic equation for the zeroth order distribution function of each species
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f0s(v‖, µ, r, t):

∂f0s

∂t
+ (v‖b̂ + vE)·∇f0s +

(
−b̂·DvE

Dt
− µb̂·∇B +

es

ms

E‖

)
∂f0s

∂v‖
= 0,

(C.1)

where es is the charge on species s, b̂ is a unit vector in the magnetic field direction

b̂ = B/B, vE
.
= c (E × B)/B2, µ

.
= v2

⊥/2B, and D
Dt

.
= ∂

∂t
+ (v‖b̂ + vE)·∇.

Combining moments of this kinetic equation with Maxwell’s equations and

taking the usual low Alfvén speed limit v2
A ¿ c2 yields Kulsrud’s set of collisionless

MHD equations:

∂ρ

∂t
+ ∇·(ρU) = 0, (C.2)

ρ

(
∂U

∂t
+ U·∇U

)
=

(∇× B) × B

4π
−∇·P (C.3)

∂B

∂t
= ∇× (U × B) (C.4)

P = p⊥I + (p⊥ − p‖)b̂b̂ (C.5)

p⊥ =
∑

s

ms

2

∫
f0sv

2
⊥ d3v (C.6)

p‖ =
∑

s

ms

∫
f0s(v‖ − U·b̂)2 d3v (C.7)

∑
s

es

∫
f0s d3v = 0 (C.8)
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where ρ is the total mass density, U = vE + u‖b̂ is the fluid velocity, and P is the

pressure tensor.

The above set of equations is exact to zeroth order in the expansion param-

eter, but the kinetic equation itself, Eq. (C.1), must be used to evaluate p‖ and p⊥

to close the system. Because Eq. (C.1) is difficult to solve directly, this system is

rarely employed without further simplification.

One such simplification is the introduction of the double adiabatic law (also

known as CGL theory [Kulsrud 1983; Chew et al. 1956]). In the CGL model,

Eq. (C.1) is replaced by two equations of state which determine p⊥ and p‖:

d

dt

(
p⊥

ρB

)
= 0 (C.9)

d

dt

(
p‖B

2

ρ3

)
= 0 (C.10)

where the total derivative is defined by d
dt

.
= ∂

∂t
+ (u‖b̂ + vE)·∇.

These equations of state are equivalent to setting the heat flow tensor Q

to zero. This assumption that both electron and ion heat flow are negligible is

strictly valid only when the mode phase velocity (ω/k‖) is much greater than the

electron and ion thermal speeds, a criterion rarely satisfied for Alfvén waves and

never satisfied for sound waves. Furthermore, the simple truncation of the moment

hierarchy implied by this assumption eliminates Landau damping from the problem,

leaving the system with no damping at all, which can lead to unphysical behavior.

However, CGL theory is often employed, even when it is invalid, because of its

simple, Lagrangian form. Of course this can lead to incorrect results, as in the well

known case of the mirror instability.

C.4 The Moment Hierarchy

We wish to develop a formulation which maintains much of the simplicity of the

CGL model, while increasing its range of applicability and including models of
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kinetic Landau damping. This will be accomplished by first taking moments of

Eq. (C.1) and, in the next section, closing the hierarchy using Landau closures

analogous to those developed for the electrostatic case by [Hammett and Perkins

1990].

Multiplying Eq. (C.1) by B and adding Eq. (C.4) multiplied by fs, leads to

a kinetic equation in phase space conserving form:

∂

∂t
fsB + ∇·

[
fsB

(
v‖b̂ + vE

)]
(C.11)

+
∂

∂v‖

[
fsB

(
−b̂·DvE

Dt
− µb̂·∇B +

es

ms

E‖

)]
= BC(fs),

The subscript zero on fs has been suppressed. All calculations involve only the

zeroth order distribution function in the original expansion in 1/e, though a sub-

sidiary ordering will be introduced to derive the Landau closures.

Note the addition of a collision operator to the right hand side of the kinetic

equation to allow for generalization to regimes where collisions play an important

role. Here a simple BGK collision operator [Gross and Krook 1956] is employed:

C(fj) = −
∑

k

νjk(fj − FMjk) (C.12)

where νjk is the effective collision rate of species j with species k. These collisions

cause fj to relax to a shifted Maxwellian with the effective temperature of species

j and the mass velocity of species k,

FMjk =
nj

(2πTj/mj)3/2
exp

[
−mj(v‖ − u‖k)

2

2Tj

− mjµB

Tj

]
(C.13)

where Tj = (T‖j + 2T⊥j)/3. The BGK collision operator in this form conserves

mass, momentum and energy.
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Defining the velocity space moments as follows,

ns =
∫

fs d3v nsu‖s =
∫

fsv‖ d3v

p‖s = m
∫

fs(v‖ − u‖)
2 d3v p⊥s = m

∫
fsµB d3v

q‖s = m
∫

fs(v‖ − u‖)
3 d3v q⊥s = m

∫
fsµB(v‖ − u‖) d3v

r‖,‖s = m
∫

fs(v‖ − u‖)
4 d3v r‖,⊥s = m

∫
fsµB(v‖ − u‖)

2 d3v

r⊥,⊥s = m
∫

fsµ
2B2 d3v,

Poisson’s equation and Ampere’s law reduce, to lowest order in 1/e, to the con-

ditions
∑

s nses = 0 and
∑

s nsesu‖s = 0. Specializing to the case of one species

of Z = 1 ions implies n = ne = ni and u‖ = u‖i = u‖e. The usual definitions for

total higher moments p‖ =
∑

s p‖s, p⊥ =
∑

s p⊥s, q‖ =
∑

s q‖s etc. are employed.

Note that, because u‖i = u‖e, the collision term serves primarily to isotropize the

distribution. Taking integrals of the form
∫

dv‖ dµ vj
‖µ

k . . . of Eq. (C.11) then leads

to the following set of exact moment equations:

∂n

∂t
+ ∇·(nU) = 0, (C.14)

∂u‖

∂t
+ U·∇u‖ + b̂·

(
∂vE

∂t
+ U·∇vE

)
+

1

nms

∇·(b̂p‖s) (C.15)

− p⊥s

nms

∇·b̂ − es

ms

E‖ = 0,

∂p‖s

∂t
+ ∇·(Up‖s) + ∇·(b̂q‖s) + 2p‖sb̂·∇U·b̂ (C.16)

− 2q⊥s∇·b̂ = −2

3
νs(p‖s − p⊥s),

∂p⊥s

∂t
+ ∇·(Up⊥s) + ∇·(b̂q⊥s) + p⊥s∇·U − p⊥sb̂·∇U·b̂ (C.17)

+ q⊥s∇·b̂ = −1

3
νs(p⊥s − p‖s),
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∂q‖s

∂t
+ ∇·(Uq‖s) + ∇·(b̂r‖,‖s) + 3q‖sb̂·∇U·b̂ − 3p‖s

nms

b̂·∇p‖s (C.18)

+ 3

(
p⊥sp‖s

nms

− p‖
2
s

nms

− r‖,⊥s

)
∇·b̂ = −νsq‖s,

∂q⊥s

∂t
+ ∇·(Uq⊥s) + ∇·(b̂r‖,⊥s) + q⊥s∇·(u‖b̂) − p⊥s

nms

b̂·∇p‖s (C.19)

+

(
p⊥

2
s

nms

− p⊥sp‖s

nms

− r⊥,⊥s + r‖,⊥s

)
∇·b̂ = −νsq⊥s,

where ρ = n(me + mi), U = vE + u‖b̂, and νi = νii + νie and νe = νee + νei.

Using the condition u‖i = u‖e to solve for E‖ [as given in Kulsrud’s Eq. (49)],

it is straightforward to show that the first two moment equations, Eqs. (C.14) and

(C.15) are equivalent to Eq. (C.2), and the parallel component of Eq. (C.3), that

is:

∂u‖

∂t
+ U·∇u‖ + b̂·

(
∂vE

∂t
+ U·∇vE

)
+

1

ρ

[
b̂·∇p‖ + (p‖ − p⊥)∇·b̂

]
= 0. (C.20)

C.4.1 Conservation Properties

Just as in the electrostatic case [Hammett and Perkins 1990], the moment hi-

erarchy has favorable conservation properties. Each moment equation acts as a

conservation relation, provided the hierarchy is closed by approximating the high-

est moments, without inserting additional terms such as viscosity.

Momentum is conserved by any closure which keeps Eqs. (C.2) and (C.3)

and closes for pressure or higher moments. Combining Eqs. (C.2) and (C.3) yields:

∂(ρU)

∂t
= −∇·

[
ρUU +

(
B2

8π
I − BB

4π

)
+ P

]
. (C.21)

Similarly, energy is conserved by any closure which uses approximations only

for the heat flow moments q‖s and q⊥s, or higher moments. To demonstrate this,

define the kinetic + thermal + magnetic energy density E = ρU2/2+B2/8π +p⊥ +
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p‖/2. Combining Eqs. (C.2),(C.3),(C.4),(C.16), and (C.17) yields:

∂E
∂t

= −∇·
[(

1

2
ρU2 + p⊥ +

1

2
p‖

)
U

]
−∇·

[
B × (U × B)

4π

]
−∇·(U·P) −∇·q

(C.22)

where q ≡ (q⊥ + q‖/2)b̂. Integrating over volume, we can take the left hand side

as the rate of change of the energy inside a volume, and the right hand side as the

flow of energy across the surface. We note that Kulsrud’s equations (66) and (67)

[Kulsrud 1983] (not employed elsewhere in the paper) appear to be in error.

C.5 The 4+2 Model

A closure for the moment hierarchy must now be derived to produce a complete

model. In general, a model which evolves more moments will be more accurate,

though more complex and more computationally intensive to implement. A 4+2

moment model, that is a model which evolves four parallel moments (n, u‖, p‖s, q‖s)

and two perpendicular moments (p⊥s, q⊥s), will be developed first. The 4+2 model

will truncate the moment hierarchy with Eqs. (C.18) and (C.19), and will require

closures for r‖,‖s and r‖,⊥s. Simpler models, such as a 3+1 moment model, can

be derived as the low frequency limit of the 4+2 model, following a procedure

developed by [Dorland 1993].

A closure for the 4+2 model will be derived following the procedure laid out

by Hammett and Dorland [Hammett and Perkins 1990; Dorland 1993]. This

procedure, derived for electrostatic perturbations, must be extended for use with

general electromagnetic perturbations in two dimensions (parallel and perpendicu-

lar). The collisionless case (ν ¿ ω) will be considered first, and collisional effects

will be investigated in Section C.7. The closure should conserve mass, momentum,

and energy, while providing a linear response which closely matches that expected

from kinetic theory.
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C.5.1 Linear Response from Kinetic Theory

We first use the guiding center kinetic equation, Eq. (C.1), to derive the kinetic lin-

ear response. We wish to linearize around a zeroth order distribution which allows

the decoupling of electron and ion pressures as well as the decoupling of parallel and

perpendicular pressures that one expects in a collisionless plasma. To accomplish

this we choose a bi-Maxwellian distribution with separate equilibrium parallel and

perpendicular temperatures T‖0s and T⊥0s. Since the plasma is collisionless, it is

not expected to be exactly Maxwellian, even for a particular species in a particular

direction. However, we wish only to calculate a linear response which we can ap-

proximate with our Landau closure. The linear response thus needs to provide the

correct general form of the linear Landau damping, allowing for independent vari-

ation of species pressures, and of the parallel and perpendicular pressures. Hence

the bi-Maxwellian is a convenient choice.

We introduce a subsidiary ordering in which the zeroth order distribution is

bi-Maxwellian with no zeroth order flows or gradients, fs = FMs + f1s, where:

FMs =
n0

(2π/ms)3/2T⊥0sT‖
1/2
0s

exp

[
−msB0µ

T⊥0s

− msv‖
2

2T‖0s

]
(C.23)

The moments (n = n0 + n1, U = U1 etc.), the magnetic field (B = B0 + B1), and

the parallel electric field (E‖ = E‖1) are similarly linearized, with the zeroth order

part uniform. Note again that this is a subsidiary ordering. All terms are zeroth

order with respect to the initial ordering in 1/e.

Eq. (C.1) is then linearized and Fourier analyzed to find f1s. Defining ẑ as

the unit vector in the parallel direction B0 = B0ẑ, and defining the wave vector

k = kzẑ + kxx̂:

f1s =

(
−v2

⊥

2

ikzB1

B0

+
es

ms

E‖

)
msv‖

T‖0s(−iω + ikzv‖)
f0s (C.24)

Taking moments, keeping in mind that
∫

d3v = 2π
∫

(B0 + B1)dµdv‖, yields:

n1s = − in0

kzT‖0s

esE‖R(ζs) +
B1n0

B0

[
1 − T⊥0s

T‖0s

R(ζs)

]
(C.25)
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p‖1s = − ip‖0s

kzT‖0s

esE‖
[
1 + 2ζ2

sR(ζs)
]
+

B1p‖0s

B0

[
1 − T⊥0s

T‖0s

(
1 + 2ζ2

sR(ζs)
)]

(C.26)

p⊥1s = − ip⊥0s

kzT‖0s

esE‖R(ζs) +
2B1p⊥0s

B0

[
1 − T⊥0s

T‖0s

R(ζs)

]
(C.27)

where ζs = ω/
√

2|kz|vt‖s
is the normalized frequency, and R(ζs) = 1 + ζsZ(ζs) is

the electrostatic response function. The usual plasma dispersion function is defined

[for Im(ζ) > 0] by Z(ζ) = (1/
√

π)
∫

dt exp(−t2)/(t− ζ), and the thermal velocities

are defined to be vt‖s
=

√
T‖0s/ms and vt⊥s =

√
T⊥0s/ms.

Note that it is possible to solve for E‖ using quasineutrality, and to solve for

B1 using Eq. (C.4). However, we find it most convenient and physically enlightening

to leave the response functions in the above form for matching to the moment model.

C.5.2 The 4+2 Landau Closure

We now choose a closure for our 4+2 hierarchy which will closely match the linear

response calculated in the previous section. As noted we require closures for both

r‖,‖s and r‖,⊥s. Additional terms such as viscosity would violate energy conservation

[Hammett and Perkins 1990; Hammett et al. 1992] and so will not be employed

in the 4+2 equations.

The linearized moment equations in the collisionless (ν = 0) limit are, omit-

ting the subscript on perturbed quantities and defining ∇‖
.
= b̂0 ·∇:

∂n

∂t
+ n0∇·U = 0, (C.28)

∂u‖

∂t
+

1

n0ms

∇‖p‖s +
(p⊥0s − p‖0s)

n0ms

∇‖B1

B0

− es

ms

E‖ = 0, (C.29)

∂p‖s

∂t
+ p‖0s∇·vE + ∇‖q‖s + 3p‖0s∇‖u‖ = 0, (C.30)
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∂p⊥s

∂t
+ 2p⊥0s∇·vE + ∇‖q⊥s + p⊥0s∇‖u‖ = 0, (C.31)

∂q‖s

∂t
+ ∇‖r‖,‖s −

3p‖0s

n0ms

∇‖p‖s (C.32)

+

(
−r‖,‖0s + 3r‖,⊥0s +

3p‖
2
0s

n0ms

− 3p‖0sp⊥0s

n0ms

) ∇‖B1

B0

= 0,

∂q⊥s

∂t
+ ∇‖r‖,⊥s −

p⊥0s

n0ms

∇‖p‖s (C.33)

+

(
r⊥,⊥0s − 2r‖,⊥0s −

p⊥
2
0s

n0ms

+
p⊥0sp‖0s

n0ms

) ∇‖B1

B0

= 0,

The bi-Maxwellian values r‖,‖0s = 3p‖0s/n0ms, r‖,⊥0s = p‖0sp⊥0s/n0ms and

r⊥,⊥0s = 2p⊥0s/n0ms are easily calculated. Fourier transforming into (k,t) space,

and using the linearized Eq. (C.4), k·vE = ωB1/B0, yields a simple set of equations

for each moment in terms of the other moments and the perturbed magnetic field.

The system is closed by writing the highest moments (r‖,‖s and r‖,⊥s) as a

linear sum of the lower moments, with coefficients that are in general functions of k

and the equilibrium quantities. Generalized linear response functions can then be

derived. The closure coefficients are determined by comparison with linear kinetic

theory in the high and low frequency limits.

Guided by previous work [Hammett and Perkins 1990; Dorland 1993],

we choose closures with a bi-Maxwellian part and an additional term which models

phase mixing. We first try a simple generalization of the 4+2 closure derived in

[Dorland 1993] for the electrostatic case, modified for the case of a bi-Maxwellian

equilibrium distribution:

r‖,‖s = 3v2
t‖s

(2p‖s − T‖0sn) + c‖n0v
2
t‖s

T‖s −
√

2D‖vt‖s

ik‖q‖s

|k‖| (C.34)

r‖,⊥s = v2
t⊥s

p‖s + v2
t‖s

p⊥s − v2
t‖s

T⊥0sn −
√

2D⊥vt‖s

ik‖q⊥s

|k‖| (C.35)
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The coefficients c‖, D‖, and D⊥ are determined by matching the perturbed

density and perpendicular pressure to the kinetic results in the adiabatic (|ζ| ¿ 1)

and fluid (|ζ| À 1) limits. It is possible to match the density response through

order ζ2 for small |ζ| and through order 1/ζ5 for large |ζ|. The p⊥ response can be

matched through order ζ for small |ζ| and through order 1/ζ2 for large |ζ|. This

yields c‖ = (32 − 9π)/(3π − 8), D‖ = 2
√

π/(3π − 8), and D⊥ =
√

π/2 (the same

result as in the earlier electrostatic derivation [Dorland 1993]).

The density response is then:

n1s = − in0

kzT‖0s

esE‖R4(ζs) +
B1n0

B0

[
1 − T⊥0s

T‖0s

R4(ζs)

]
(C.36)

where R4(ζs) is a four-pole model of the electrostatic response function R(ζs):

R4(ζs) =
4 − 2i

√
πζs + (8 − 3π)ζ2

s

4 − 6i
√

πζs + (16 − 9π)ζ2
s + 4i

√
πζ3

s + (6π − 16)ζ4
s

.

(C.37)

The linear kinetic response functions for the 4 parallel moments n, u‖, p‖s, q‖s are

all modeled equally well, with R4(ζs) replacing R(ζs) in the expressions for each.

The 4+2 density response is compared to linear kinetic response in Fig. (C.1).

Note that in the figures, the quasineutrality relation n1i = n1e has been used

to eliminate E‖ from the expressions for the response functions.

In the p⊥s response, R(ζs) is modeled partially by the four-pole function

R4(ζs) and partially by the two-pole function R2(ζs) = 1/(1−i
√

πζs−2ζ2
s ), yielding:

p⊥s = − ip⊥0s

kzT‖0s

esE‖R4(ζs) +
2B1p⊥0s

B0

[
1 − T⊥0s

T‖0s

(R4(ζs)

2
+

R2(ζs)

2

)]
(C.38)

As shown in Fig. (C.2), the p⊥s response is not matched as closely as the parallel

moment response for large ζs, but the fit is still quite good.

Note that we could have chosen a more general form for the r‖,‖s and r‖,⊥s

closures, involving all lower moments and the perturbed magnetic field. However,
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(a)

(b)

Figure C.1: The real (a) and imaginary (b) parts of the normalized linear density
response (n1/ikxξxn0), versus real normalized frequency (ζi = ω/

√
2|k‖|vT ‖i

). The
3+1 and 4+2 moment Landau MHD models are compared with linear kinetic theory.
Predictions of CGL theory and ideal MHD theory are also shown. Parameters
chosen are Z = 1, T⊥0/T‖0 = 1, T⊥0i = T⊥0e, T‖0i = T‖0e, and

√
mi/me = 40.
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(a)

(b)

Figure C.2: The real (a) and imaginary (b) parts of the normalized linear total
perpendicular pressure response (p⊥1/ikxξxp⊥0), versus real normalized frequency
(ζi = ω/

√
2|k‖|vT ‖i

). The 3+1 and 4+2 moment Landau MHD models are compared
with kinetic theory. Predictions of CGL theory and ideal MHD theory are also
shown. Note the significant variation in real p⊥ response between the 3+1 model and
the kinetic model, even for large ζ. Parameters are identical to those in Fig. (C.1).
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upon matching the linear kinetic response in the |ζ| ¿ 1 and |ζ| À 1 limits, these

general closures will reduce to the closure given here.

The complete 4+2 system of equations is Eqs. (C.2) through (C.5), plus

Eqs. (C.16) through (C.19) closed by the inverse Fourier transform of Eqs. (C.34)

and (C.35). The system can be solved numerically in k-space where the closure

functions are more easily evaluated.

C.6 The 3+1 Model

For many applications, a simpler, less computationally intensive model will prove

adequate. The simplest model which evolves p‖ and p⊥ involves truncating the

hierarchy with Eqs. (C.16) and (C.17), using closure approximations for q‖ and q⊥.

We refer to such a model as a ‘3+1 model’ because it evolves 3 parallel moments

(n, u‖, p‖) and 1 perpendicular moment (p⊥). Note that the CGL model is a 3+1

model which invokes the simple closure q‖ = q⊥ = 0.

The 3+1 closures can be derived following the procedure laid out in the

previous section, by writing q‖ and q⊥ as a sum of the lower moments and B1, and

solving for coefficients by matching with the linear kinetic density and perpendicu-

lar pressure response. However, the 3+1 closures for both q‖s and q⊥s can be more

simply derived as the ζs → 0 limit of the 4+2 model, following the moment reduc-

tion scheme outlined by [Dorland 1993]. [Parker and Carati 1995] showed

how to extend this scheme to an arbitrary number of moments, and used it to show

some similarities to renormalization methods.

Substituting the 4+2 closures into Eqs. (C.32) and (C.33), in (k, t) space,

and taking the limit |ζs| ¿ 1 yields:

q‖s = −n0

√
8

π
vt‖s

ik‖T‖s

|k‖| (C.39)
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q⊥s = −n0

√
2

π
vt‖s

ik‖T⊥s

|k‖| + n0

√
2

π
vt‖s

T⊥0s

(
1 − T⊥0s

T‖0s

)
ik‖B1

|k‖|B0
(C.40)

Note the term proportional to B1 in the q⊥ closure. This term is not found in

the electrostatic case, where B1 = 0, and it also vanishes for isotropic equilibrium

pressures. This term is needed to properly conserve µ linearly in the presence of

magnetic field compression and anisotropic pressure.

Substituting the closures Eqs.(C.39-C.40) into the 3+1 equations yields the

density response:

n1s = − in0

kzT‖0s

esE‖R3(ζs) +
B1n0

B0

[
1 − T⊥0s

T‖0s

R3(ζs)

]
, (C.41)

and the perpendicular pressure response:

p⊥s = − ip⊥0s

kzT‖0s

esE‖R3(ζs) +
2B1p⊥0s

B0

[
1 − T⊥0s

T‖0s

(R3(ζs)

2
+

R1(ζs)

2

)]
,

(C.42)

where R3(ζs) is a three-pole model of the electrostatic response function:

R3(ζs) =
2 − i

√
πζs

2 − 3i
√

πζs − 4ζ2
s + 2i

√
πζ3

s

(C.43)

and R1(ζs) is a one-pole model of R(ζs), R1(ζs) = 1/(1− i
√

πζs). The 3+1 density

and p⊥ responses are plotted in Figs. (C.1) and (C.2). Of course the response

functions, particularly for p⊥, do not fit the kinetic results as well as for the 4+2

model. However, the qualitative behavior is correct, and the behavior in both limits

(ζs ¿ 1) and (ζs À 1) is accurate.

The complete 3+1 system of equations is Eqs. (C.2) through (C.5), plus

Eqs. (C.16) and (C.17) closed by the inverse Fourier transform of Eqs. (C.39) and

(C.40). This set is significantly simpler than the 4+2 equations, while still con-

serving particles, momentum, and energy, and providing a reasonable model of the

linear kinetic response.
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Further moment reduction to 3+0, 2+1, 2+0 and even 1+0 models is pos-

sible. These simpler models can be useful in certain cases where conservation of

thermal energy isn’t important. However, the 3+1 and 4+2 models allow separate

evolution of p‖ and p⊥, which is often important in describing collisionless modes.

C.7 Collisional Effects

The 3+1 and 4+2 Landau fluid collisionless MHD models have been derived for

the completely collisionless case, where the collision rate is very small compared

to a typical mode frequency (ν ¿ ω). However, it is possible to introduce some

collisional effects into the models using a collision operator such as the BGK oper-

ator introduced in Section C.4. It is then possible to examine regimes with a wide

range of collisionality, provided that ν ¿ Ωc, as required by the initial ordering.

The accuracy with which collisional effects are modeled will of course be limited by

the accuracy of the initial collision operator employed. Furthermore, the modeling

of certain collisional effects, such as momentum transfer and resistive tearing of

magnetic field lines, is hampered by the use of only the lowest order collisionless

MHD expansion in inverse charge.

The moment hierarchy previously derived [Eqs. (C.14) through (C.19)] al-

ready includes the collision terms arising from a simple BGK collision operator.

However, the form of the equations is quite different from the forms normally used

in MHD. We will attack this discrepancy by rewriting Eqs. (C.16) through (C.19),

and showing that they reduce approximately to Braginskii’s transport equations

[Braginskii 1965] in the limit ω, |k|vts ¿ νs ¿ Ωc (ω is a typical mode frequency,

and k is a typical wave number).

First define an average pressure, ps = (p‖s + 2p⊥s)/3, a differential pressure

δps = p‖s − p⊥s, and a heat flow qs = q‖s/2 + q⊥s. We can then divide the pressure

tensor, Ps, into an isotropic part and an anisotropic part labeled Πs. That is

Ps = psI+ Πs = psI+ (−δpsI+ 2δpsb̂b̂)/3. Combining Eqs. (C.16) through (C.19)
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then yields:

dps

dt
+

5

3
ps∇·U = −2

3
∇·(b̂qs) − 2

3
Πs : ∇U (C.44)

dδps

dt
+

5

3
δps∇·U + Πs : ∇U + 3psb̂·∇U·b̂ − ps∇·U (C.45)

− 3q⊥s∇·U + ∇·
[
b̂(q‖s − q⊥s)

]
= −νsδps

∂qs

∂t
+ ∇·

[
b̂

(r‖,‖s

2
+ r‖,⊥s

)]
+

3

2
q‖sb̂·∇U·b̂ −

3
2
p‖s + p⊥s

nms

b̂·∇p⊥s (C.46)

+q⊥s∇·(u‖b̂) +

(
p⊥

2
s

nms

+
p⊥sp‖s

2nms

− 3p⊥
2
s

2nms

− r‖,⊥s

2
− r⊥,⊥s

)
∇·b̂ = −νsqs

C.7.1 The High Collisionality Limit

In the limit of high collisionality (ν À ω), the above three equations yield an

approximation to the Braginskii transport equations [Braginskii 1965], with the

condition ν ¿ Ωc, as required by the initial ordering.

Formally expanding all moments in the collision time (1/ν), it is apparent

from Eqs. (C.16-C.19) that q‖0s = q⊥0s = δp0s = 0. Eq. (C.45) then reduces, to

lowest order, to:

δp1s = −p0s

νs

(3b̂·∇U·b̂ −∇·U)

If νs from the original BGK collision operator is taken to be the reciprocal of Bra-

ginskii’s collision time (νs = 1/τsBrag
), the resulting expression for Πs = (−δpsI +

2δpsb̂b̂)/3 matches Braginskii’s result to within an order unity constant (.96 for

Z = 1 ions, and .73 for electrons).

Similarly, a heat flux nearly matching Braginskii’s can be derived in the
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same limit. To lowest order, Eq. (C.46) becomes:

∇·
[
b̂

(r‖,‖0s

2
+ r‖,⊥0s

)]
− 5

2

p0s

n0ms

b̂·∇p0s (C.47)

+
(
−r‖,⊥0s

2
− r⊥,⊥0s

)
∇·b̂ = −νsq1s

In this collisional limit, the r0 moments will take on their Maxwellian values (r‖,‖0s =

3p2
0/msn0, r‖,⊥0s = p2

0/msn0, r⊥,⊥0s = 2p2
0/msn0). Substituting yields:

q1s = −5

2

p0

νsms

∇‖T0s

which matches the Braginskii heat fluxes to within factors of order unity.

To match Braginskii’s results more precisely, one could replace the simple

BGK collision operator used here with a more precise Landau or Fokker-Planck

operator. This should allow reproduction of the collisional energy flow between

species (Qs) as well as the above heat flow and anisotropic pressure terms. How-

ever, modeling momentum exchange terms is problematic because the initial formal

expansion in 1/e used to derive the collisionless MHD equations implies u‖i = u‖e.

The effects of resistive momentum exchange thus require going to higher order in

the ideal MHD ordering, or using an alternative ordering procedure.

C.7.2 Collisionally Modified 3+1 Closure

Collisional effects have not been considered in the derivation of the Landau closures

themselves. In principle, it is possible to rederive the linear kinetic response func-

tions with collision terms, and choose Landau closures which match this collisional

linear response. However, a simpler procedure appears to be adequate.

This alternate approach [Beer 1995; Beer and Hammett 1996], is to

derive a collisionless closure for a many moment model (here the 4+2 model), and

then reduce the number of moments by taking the low frequency limit of the highest

moment equations, with the collisional terms included. This will incorporate some

collisional effects into the lower moment closure (here it will include the collisional

effects described by the q‖ and q⊥ equations into the 3+1 model). The modified
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3+1 closures resulting from this procedure are:

q‖s = −8n0v
2
t‖s

ik‖T‖s

(
√

8π|k‖|vt‖s
+ (3π − 8)νs)

(C.48)

q⊥s = − n0v
2
t‖s

ik‖T⊥s

(
√

π
2
|k‖|vt‖s

+ νs)
+

(
1 − T⊥0s

T‖0s

)
n0v

2
t‖s

T⊥0sik‖B1

B0(
√

π
2
|k‖|vt‖s

+ νs)
(C.49)

These closures allow a smooth transition from the collisionless regime where

Landau damping is important, to the collisional regime where Landau damping

vanishes.

Hence some collisional effects can be included within the Landau collisionless

MHD model, and the model can be extended for use in the marginally collisional

regime (ν ∼ ω) as well as the collisionless regime (ν ¿ ω). However, the accurate

modeling of some collisional effects, particularly those associated with momentum

exchange, is made difficult by the use of the collisionless MHD ordering. A model

based on Braginskii or resistive MHD is more appropriate for use in the highly

collisional regime (ν À ω).

C.8 Nonlinear Implementation of the Closure

The closures for both the 4+2 and 3+1 models employ terms containing |k‖|/k‖.

Numerical evaluation of these terms in k-space is straightforward for electrostatic

problems (such as ITG/drift-wave turbulence), since only a simple Fourier trans-

form along the equilibrium magnetic field direction is required. But as pointed out

by [Finn and Gerwin 1996], Landau damping must be evaluated along perturbed

field lines, i.e. Landau damping involves particles mixing due to their free-streaming

along the total (equilibrium + fluctuating) magnetic field, and so k‖ involves Fourier

transforms along these perturbed magnetic field lines. Conceptually, a parallel heat

flux is driven by a parallel temperature gradient: q‖ ∝ ∇‖T‖ = b̂ · ∇T‖. Linearizing

this yields q‖1 ∝ b̂0·∇T‖1+b̂1·∇T‖0. We see that considering only the Fourier trans-
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form of ∇T‖1 in the b̂0 direction would not be sufficient even linearly. In fact, in the

ideal MHD limit where the magnetic field is frozen into the fluid, if the temperature

is initially uniform along a magnetic field line it will always remain uniform along a

field line if the plasma motion is incompressible, so that the perpendicular gradient

term will exactly cancel the parallel gradient term: q‖1 ∝ b̂0 ·∇T‖1 + b̂1 ·∇T‖0 = 0.

To account for this, Bondeson and Ward [Bondeson and Ward 1994] employed

Lagrangian variables and applied a Landau damping model only to the component

of the temperature fluctuations driven by compression. Alternatively, one could use

the higher-order 4+2 moment equations which involve |k‖| operating on a higher

moment like q‖. Upon linearizing ∇‖q‖ = b̂0 · ∇q‖1 + b̂1 · ∇q‖0, we often have only

to consider the first term since q‖0 is zero for many types of equilibria.

However, the situation is more complicated for nonlinear electromagnetic

calculations. Then the nonlinear term b̂1 · ∇T‖1 can not formally be neglected

compared to b̂0 · ∇T‖1. To be rigorous, the transformation between the k-space

closure and its real space equivalent must be made along the perturbed field lines.

One way to do this would be with a Lagrangian coordinate system which moved

with the magnetic field and had one coordinate aligned with the magnetic field.

Then the standard fast Fourier transform (FFT) algorithm along this coordinate

could be used to evaluate the |k‖| closures. Alternatively, if the simulation uses a

fixed Eulerian grid, then at every time step where |k‖|T‖ is to be evaluated, one

would need to map T‖ from the simulation grid to a field-line-following coordinate

system, carry out the FFT, and then map the result back to the simulation grid.

One can avoid FFT’s by working directly with the real-space form of the

the closures. This is somewhat more expensive computationally, since it involves

convolutions in one direction [O(N4) operations, where N is the number of grid

points in each direction] rather than the faster FFT algorithm [O(N3 log N) oper-

ations]. But because the convolutions are done in only one direction instead of a

3-D convolution [O(N6) operations], this may be acceptable.

For example, the real-space form of the collisionless 3+1 moment closure for



C.8. Nonlinear Implementation of the Closure 173

q‖, Eq. (C.39), is the convolution [Hammett and Perkins 1990]

q‖s(z) = −n0

(
2

π

) 3
2

vt‖s

∫ ∞

0

dz′
T‖s(z + z′) − T‖s(z − z′)

z′
, (C.50)

where the integration is performed along the perturbed field line. Evaluation of

this integral (or its discrete analogue) in principle requires evaluation of the parallel

temperature fluctuation at an infinite number of points along the field. In practice

the integral can be cut off at a reasonable parallel correlation length [Beer 1995].

Truncating the integral at z′ = L means that the Landau damping is applied

primarily to modes with k‖ > 1/L, while modes with k‖ ¿ 1/L will experience

relatively little damping due to the Landau resonances. This approximation is

probably adequate in cases where the Landau-damping is only important for the

high-k‖ component of the fluctuation spectrum, and convergence can be tested by

varying L.

When collisions are important, the collisional form of the q‖ closure given

by Eq. (C.48) should be used. The real space form of this closure is then,

q‖s = −n0

(
2

π

) 3
2

vt‖s

∫ ∞

0

dẑ′g(ẑ′)
[
T‖s(ẑ + ẑ′) − T‖s(ẑ − ẑ′)

]
(C.51)

g(ẑ) =

∫ ∞

0

dk̂
k̂

k̂ + 1
sin(k̂ẑ)

where k̂
.
= kL‖ and ẑ

.
= z/L‖ have been normalized to the parallel collisional mean

free path

L‖
.
=

√
8π

3π − 8

vt‖s

νs

.

For small ẑ Eq. (C.51) behaves just as Eq. (C.50), but for large ẑ, g(ẑ) falls off

rapidly, as 1/ẑ3, and the closure integral may be quite accurately truncated after a

few mean free paths.

Eq. (C.50) includes nonlinear magnetic effects if the integral is evaluated

along perturbed magnetic field lines, but it still assumes that density and temper-

ature vary weakly along a field line so that constant equilibrium values of n0 and
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vt can be used. There are various possible extensions of this closure which could

be proposed to model cases with stronger parallel nonlinearities (for example, see

Sec. 3.4 of Smith’s thesis [Smith 1997]). The relative advantages or accuracy of

various possibilities has not yet been studied, but one reasonable nonlinear model

is

q‖s(z) = −
(

2

π

) 3
2
∫ ∞

0

dz′

m
1/2
s z′

[n(z + z′)(T‖
3/2
s (z + z′) − T‖

3/2
s0 ) (C.52)

− n(z − z′)(T‖
3/2
s (z − z′) − T‖

3/2
s0 )],

This has the physically reasonable property of weighting the convolution integral

by the density, so that particles streaming from low density regions contribute less

to the heat flux. This model (or some variant thereof) might be useful to model the

heat flux on field lines which intersect solid materials (where the plasma density

goes to zero), such as in the edge of fusion devices. A possible choice for T‖0 is∫
dz n(z)T‖(z)/

∫
dz n(z).

C.9 An Example: The Mirror Instability

To demonstrate the usefulness of our model, and the fundamental importance of ki-

netic effects in simple collisionless MHD problems, we will investigate the magnetic

mirror instability. Kulsrud [Kulsrud 1983] cites this example to demonstrate the

use of his guiding-center kinetic theory and to expose the limitations of simple fluid

theories such as CGL [Chew et al. 1956]. We will show here that our Landau fluid

models recover the exact instability threshold for the mirror mode, and provide a

good model of the mode’s linear growth rate above the threshold.

Consider a strongly-magnetized, homogeneous plasma consisting of electrons

and singly charged ions. Take the magnetic field to be uniform in the ẑ direction,

B0 = B0ẑ. The equilibrium distribution is taken to be an anisotropic bi-Maxwellian

with unequal parallel and perpendicular temperatures. For simplicity, take the

electron and ion temperatures to be equal in each direction, T‖0i = T‖0e = T‖0 and
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T⊥0i = T⊥0e = T⊥0. Define the x̂ direction by writing the wave vector k = kxx̂+kzẑ,

and define a ‘plasma displacement’ vector ξ by U = −iωξ.

Linearizing and Fourier transforming Eqs. (C.2) through (C.5) then yields

the following equations of motion:

−ρ0ω
2ξx = −ikxp⊥ + k2

z(p‖0 − p⊥0)ξx − (k2
x + k2

z)(B
2
0/4π)ξx

(C.53)

−ρ0ω
2ξz = −ikzp‖ + kxkz(p‖0 − p⊥0)ξx (C.54)

where the subscript on the perturbed pressures is again suppressed. Expressions

for the perturbed pressures p‖ and p⊥ are needed to close this system and solve

for the instability growth rate. We will close the system in four different ways:

first with linear kinetic theory, then using CGL theory, then with the 3+1 Landau

MHD model, and finally with the 4+2 Landau MHD model, in order to compare

the instability thresholds and linear growth rates determined by each.

To calculate a kinetic result, we proceed exactly as in Eqs. (C.24) through

(C.27). Using quasineutrality to solve for E‖, and using Eq. (C.4) for B1 =

−ikxξxB0, yields:

eE‖ = kxkzξxT⊥0

R(ζi) −R(ζe)

R(ζi) + R(ζe)
(C.55)

This leads to the following expressions for the perturbed pressures:

p⊥ = 2ikxξxp⊥0

[
T⊥0

T‖0

(R(ζi) + R(ζe)

4
+

R(ζi)R(ζe)

R(ζi) + R(ζe)

)
− 1

]
(C.56)

p‖ = ikxξxp‖0

[
T⊥0

T‖0

(
1 +

2R(ζi)R(ζe)(ζ
2
i + ζ2

e )

R(ζi) + R(ζe)

)
− 1

]
(C.57)
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Substituting for p⊥ in Eq. (C.53) leads to the dispersion relation:

ζ2
i + ζ2

e = 2
k2

x

k2
z

(
−T⊥

2
0

T‖
2
0

Ak(ζ) +
T⊥0

T‖0

+
B2

0

8πp‖0

)
+

(
T⊥0

T‖0

− 1 +
B2

0

4πp‖0

)
(C.58)

where the function Ak(ζ) is defined by

Ak(ζ) =
R(ζi)

2 + 6R(ζi)R(ζe) + R(ζe)
2

4(R(ζi) + R(ζe))
. (C.59)

For parallel propagation (|kz| À |kx|), the above reduces to the dispersion relation

for the ‘firehose’ instability, and the kinetic effects drop out within our ordering

(note that a different ordering can be used to analyze these much smaller kinetic

effects for limited parameter regimes- see [Medvedev and Diamond 1996]). All

of the models considered will reproduce the firehose linear growth rate exactly. In

the opposite limit (|kx| À |kz|), the dispersion relation becomes:

ζ2
i + ζ2

e = 2
k2

x

k2
z

(
−T⊥

2
0

T‖
2
0

Ak(ζ) +
T⊥0

T‖0

+
B2

0

8πp‖0

)
(C.60)

This relation has an infinite number of roots, due to the presence of plasma Z-

functions. The magnetic mirror instability is the root for which the real part of the

frequency goes to zero. Taking the limit ζ → 0, leads to the instability criterion for

the mirror mode,
p⊥2

0

p‖0

> p⊥0 +
B2

0

8π
. The linear mirror growth rate versus the degree

of anisotropy T⊥0/T‖0 is plotted in Fig. (C.3) for a fixed mass ratio at fixed total

plasma beta, β = [(2/3)p⊥0 + (1/3)p‖0]/(B
2
0/8π).

Chew-Goldberger-Low [Chew et al. 1956] theory can also be used to in-

vestigate the mirror instability. CGL’s simple truncation of the moment hierarchy

with q‖ = q⊥ = 0 leads to the following linearized expressions for the two perturbed

pressures:

p‖ = −ip‖0(kxξx + 3kzξz) (C.61)

p⊥ = −ip⊥0(2kxξx + kzξz) (C.62)
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Plugging these into the equations of motion leads to the following dispersion rela-

tion:

ζ2
i + ζ2

e = 2
k2

x

k2
z

(
−T⊥

2
0

T‖
2
0

1

6 − 2(ζ2
i + ζ2

e )
+

T⊥0

T‖0

+
B2

0

8πp‖0

)
(C.63)

+

(
T⊥0

T‖0

− 1 +
B2

0

4πp‖0

)

In the |kz| À |kx| limit, CGL theory correctly predicts the instability threshold

for the firehose instability. However, in the opposite limit |kx| À |kz|, CGL’s

description of the mirror mode is drastically in error. CGL predicts the mirror

mode goes unstable for
p⊥2

0

6p‖0

> p⊥0 +
B2

0

8π
, a factor of 6 error from kinetic theory, as

noted in [Kulsrud 1983]. The linear growth rate is plotted in Fig. (C.3).

The 3+1 Landau MHD model does markedly better in modeling the mirror

mode. The 3+1 dispersion relation is derived using quasineutrality and Eq. (C.41)

to solve for E‖, and using B1 = −ikxξxB0 to find:

eE‖ = kxkzξxT⊥0

R3(ζi) −R3(ζe)

R3(ζi) + R3(ζe)
(C.64)

Plugging this into the 3+1 model expressions for the perturbed pressures worked

out in Section C.6, and summing the 2 species pressures yields:

p⊥ = 2ikxξxp⊥0

[
T⊥0

T‖0

(R1(ζi) + R1(ζe)

4
+

R3(ζi)R3(ζe)

R3(ζi) + R3(ζe)

)
− 1

]
(C.65)

p‖ = ikxξxp‖0

[
T⊥0

T‖0

(
1 +

2R3(ζi)R3(ζe)(ζ
2
i + ζ2

e )

R3(ζi) + R3(ζe)

)
− 1

]
(C.66)

Substituting these results into the equations of motion leads to the following dis-

persion relation:

ζ2
i + ζ2

e = 2
k2

x

k2
z

(
−T⊥

2
0

T‖
2
0

A3(ζ) +
T⊥0

T‖0

+
B2

0

8πp‖0

)
+

(
T⊥0

T‖0

− 1 +
B2

0

4πp‖0

)
(C.67)
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Figure C.3: Linear growth rate of the mirror instability (k2
⊥ À k2

‖) as predicted
by kinetic theory, 3+1 and 4+2 Landau MHD models, and CGL theory (ideal
MHD cannot predict the mirror growth rate as it posits an isotropic pressure).
The normalized growth rate (ζi = Im(ω)/

√
2|k‖|vT ‖i

) is plotted versus the temper-
ature anisotropy (T⊥0/T‖0) at constant β = {(2/3)p⊥0 + (1/3)p‖0}/(B2

0/8π). The

parameters chosen are Z = 1, T⊥0i = T⊥0e, T‖0i = T‖0e, β = 1 and
√

mi/me = 40.
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where A3(ζ) ≡ [R1(ζi) +R1(ζe)]/4 +R3(ζi)R3(ζe)/[R3(ζi) +R3(ζe)]. As expected,

the 3+1 results are identical to the kinetic results, except that the electrostatic

response function R(ζs) is replaced everywhere by either a three-pole or a one-pole

model (R3(ζs) or R1(ζs)). In the limit |kz| À |kx|, the 3+1 model recovers the linear

kinetic firehose dispersion relation. Taking the opposite limit |kx| À |kz|, leads to

the mirror mode dispersion relation. Again the small frequency limit (ζ → 0), is

taken to investigate the mirror mode. Unlike CGL, the 3+1 model recovers the

correct stability threshold for the mirror instability (
p⊥2

0

p‖0

> p⊥0 +
B2

0

8π
). The mirror

mode linear growth rate predicted by the 3+1 model is compared to the other

models in Fig. (C.3).

The 4+2 model provides a yet more accurate model of the linear mirror mode

growth rate. The calculation of the dispersion relation is completely analogous to

that for the 3+1 model, and all of the results are identical to those given in the

previous paragraph, with the simple substitutions R3(ζs) → R4(ζs) and R1(ζs) →
R2(ζs). Again the instability threshold for the mirror mode matches the kinetic

result exactly, and the linear growth rates are compared in Fig. (C.3).

C.10 Discussion

A fluid description of plasma dynamics in the collisionless MHD regime, including

models of kinetic effects such as phase mixing and Landau damping, has been devel-

oped. This ‘Landau MHD’ model is based on Kulsrud’s formulation of collisionless

MHD [Kulsrud 1983; Kruskal and Oberman 1958; Rosenbluth and Ros-

toker 1958], and it is enhanced through the use of Landau closures analogous to

those developed by [Hammett and Perkins 1990]. The model is a significant im-

provement over previous models, such as CGL theory [Chew et al. 1956], because

it includes accurate models of linear kinetic effects, while maintaining desirable

nonlinear conservation properties and a fairly simple form in k-space. The model

describes all waves which appear within the collisionless MHD ordering, including

shear and compressional Alfvén waves, as well as ion acoustic waves. The effects

of collisions have also been considered, through the use of a simple BGK collision

operator. It has been shown that, in the high collisionality limit (ω ¿ ν ¿ Ωc),
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the model reproduces Braginskii’s stress tensor and thermal conductivities approx-

imately.

Both a 3+1 moment Landau MHD model and a more accurate but more

cumbersome 4+2 moment model have been developed. Both have been derived for

fairly general conditions, making no assumptions about adiabaticity or plasma beta,

and including models of both ion and electron Landau damping. Collisional effects

have been included in the moment equations through the use of a BGK collision

operator, and a collisionally modified version of the 3+1 closure has been derived.

One species of Z = 1 ions is assumed, but the generalization to multiple ion species

is possible. The model can be easily reduced to account for further restrictions on

adiabaticity, e.g. by replacing the full electron moment hierarchy with a simple

adiabatic electron response when appropriate. Additional simplifications are easily

made for isotropic pressures (T‖0 = T⊥0), or electrostatic perturbations (B1 =

0) etc. For nearly incompressible modes, a different ordering which eliminates

the compressional Alfvén time scale is possible, as outlined by [Medvedev and

Diamond 1996].

Some of the limitations of our model are imposed by the use of a general

collisionless MHD ordering together with a gyroaveraged kinetic equation. This

ordering eliminates all finite Larmor radius (FLR) effects (k⊥ρ → 0), including the

curvature and ∇B drifts. To bring FLR effects into the problem, it is necessary

to introduce an additional ordering which removes the compressional Alfvén time

scale.

Another complication is the evaluation of the |k‖|/k‖ terms found in the

Landau closures. As pointed out by [Finn and Gerwin 1996], the Landau damping

must be evaluated along perturbed field lines. Hence, for nonlinear calculations,

transforming the closure to real space requires an integral along the perturbed field

line. The numerical evaluation of these nonlinear closures may be burdensome in

some cases, as discussed in Section C.8.

It is anticipated that the model will be useful for nonlinear numerical simu-

lations. Some of the caveats involved in using Landau closures in nonlinear simula-

tions have been extensively discussed in the gyrofluid literature [Hammett et al.

1992; Dorland 1993; Beer 1995; Beer and Hammett 1996; Hedrick and
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Leboeuf 1992; Hammett et al. 1993; Parker et al. 1994; Krommes and Hu

1994; Mattor 1992], but these caveats are an area of ongoing research. There

are some regimes where certain nonlinear kinetic effects are not well modeled by

Landau-fluid closures [Mattor 1992]. But we generally believe [Dorland 1993;

Beer and Hammett 1996; Hammett et al. 1993; Parker et al. 1994] these

closures will be adequate for stronger turbulence regimes where rapid decorrela-

tion is occurring and the velocity space details of the distribution function are not

critically important.

It is hoped that the model will prove useful for simulating both laboratory

and astrophysical plasmas in the collisionless MHD regime. The model should be

able to predict the onset and structure of instabilities, as well as the heat and

particle transport caused by the instabilities.
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