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A Landau fluid model for electromagnetic plasma microturbulence
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A fluid model is developed for the description of microturbulence and transport in magnetized, long
mean-free-path plasmas. The model incorporates both electrostatic and magnetic fluctuations, as
well as finite Larmor radius and kinetic effects. Multispecies Landau fluid equations are derived
from moments of the electromagnetic gyrokinetic equation, using fluid closures which model kinetic
effects. A reduced description of electron dynamics, appropriate for the study of microturbulence on
characteristic ion drift and Alfve scales, is derived via an expansion in the electron to ion mass
ratio. The reduced electron equations incorporate curvaWiBg,and linear and nonlined X B

drift effects, needed to model the electron contribution to the drive and damping of ion gyroradius
scale instabilities in tokamaks. The Landau fluid model is linearly benchmarked against gyrokinetic
codes, and found to reproduce the toroidal finite beta ion temperature gradient and kinetic
ballooning instabilities. ©2001 American Institute of Physic§DOI: 10.1063/1.1374233

I. INTRODUCTION which include magnetic fluctuations and nonadiabatic elec-

The development of an accurate and numerically effitrons. It should be noted that the collisionless ITG mode and

cient model of plasma microturbulence and transport in thdn€ ion drift resonance driven KBM instability, considered in
kinetic, long mean-free-path regime characteristic of the core®€C: VI, b,Oth require kinetic effects not pres.er?t in the stan-
of magnetic fusion devices is a long standing challenged@rd Braginskii model for an accurate description.

Progress has been made via the development of the nonlinear Here we dg\gfle'op, an extension of earlier electrostatic gy-
gyrokinetic equatio* and its numerical solution using rofluid model$®3! to incorporate magnetic fluctuations and

direct®® particle in cell?’~2and “gyrofluid” 11 methods. Nonadiabatic passing electron dynamid@his model can al-

Gyrofluid models take velocity space moments of the five-ernately be viewed as an extension of Wagtzal."* to in-
dimensional gyrokinetic equation to produce a reduced threeclude more ion moments, the mirror force, different models
dimensional fluid description. Kinetic effects are modeledof toroidal kinetic effects, and a numerically efficient re-
via appropriately chosen fluid closures. Here we use the terrluced electron modeglA set of general multispecies electro-
“Landau fluid,” which emphasizes the use of fluid closures magnetic gyrofluid equations are derived from velocity space
which model Landau damping, interchangeably with “gyro- moments of the nonlinear gyrokinetic equation in Sec. lll.
fluid,” which emphasizes that the fluid equations are mo-The moment hierarchy is truncated using a set of closures
ments of the gyrokinetic equation in gyrocenter space. derived to model kinetic effects, including collisionless
The importance of incorporating magnetic fluctuationsphase mixing due to parallel streaming and toroidal drifts, as
(also called finiteB effects, whereg is the ratio of plasma well as linear and nonlinear finite-Larmor-radi(SLR) ef-
pressure to magnetic pressuie descriptions of ion gyrora- fects. The general set of gyrofluid equations can be used to
dius scale dynamics, has been identified by numerous auwlescribe electron as well as ion dynamics. However, for
thors. Magnetic fluctuations impact the growth rates of premany problems a more numerically efficient reduced model
dominantly electrostatic linear instabilities, for example theis appropriate for the electrons. The derivation of a reduced
finite 3 stabilization of the collisionless toroidal ion tempera- electron model which can be implemented in practical nu-
ture gradien({ITG) mode}™*°and introduce electromagnetic merical simulations of electromagnetic ion drift and Alfve
instabilities, such as the kinetic ballooning modescale turbulence is a key result of this paper. Section IV
(KBM).*"~??In addition, magnetic fluctuations are expecteddescribes the physical motivation and mathematical deriva-
to significantly impact nonlinear dynamics and zonal flowtion of the reduced electron equations. These reduced elec-
generatiorf>** Linear and nonlinear electromagnetic effectstron equations include the effects of electron temperature and
are well documented in the extensive literature on collisionafjensity gradients, electroix B motion, Landau damping,
plasmas. The strong impact of magnetic fluctuations in colg|ectron—ion collisions and the parallel electron currents
lisional Braginsk_i?s simulations(see Refs. 23, 26-29 and \yhich, along with parallel ion currents, give rise to the par-
refe_rences therein for de_ta|ls on recent work in electromagy)jg| magnetic potential. The system of equations is com-
netic edge turbulengemotivates the development of models peted with the gyrokinetic Poisson equation and parallel
for the dynamics of kinetic, long mean-free-path plasma%mpere's Law in Sec. V. The Landau fluid system of equa-
tions is then benchmarked with linear gyrokinetic theory in
dElectronic mail: snyder@fusion.gat.com Sec. VI. Linear growth rates and frequencies are compared
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for both the toroidal finiteB collisionless ITG mode and the + O(e) is exactly conserved and enters the equations only as

kinetic ballooning mode. Additional benchmarks and resultsa parameter. An as yet undefined collision oper@¥) has

from nonlinear toroidal turbulence simulations using thebeen added to the right-hand side.

electromagnetic Landau fluid model developed here are pre- Equation(2) is solved throughO(e?) in the gyrokinetic

sented in Ref. 32. ordering defined above. When ordering terms in the gyroki-
netic equation, all frequencies are comparedtq and all
lengths top;. Hence, for examplegF/dt~wF; is O(&?),

Il. THE GYROKINETIC EQUATION because@F,/dt=0, F,/Fy~¢, andw/Q;~&. Any gradient
operator acting orFy or B is O(e) becausep;/L~¢. A

The starting point for the derivation of the fluid equa- ngrg]lel gradient orf, is O(&?) becausdp;~ . However,
tions is the nonlinear electromagnetic gyrokinetic equation og perpendicular gradient acting df; is O(e) because
Brizard®® based upon earlier gyrokinetic work by many k. pi~1. Becaus&F is O(e), X is needed only ta(e),

authors! =343 g : A
o L while v, must include terms throug®(&°).
The standard gyrokinetic ordering is invoked as follows: The fluctuating magnetic fieldB is described to lowest

o kv ep 6B Fp p; order in terms of a magnetic potential along the equilibrium

O o T B EF. L e<l, kip~1 (D fieq, 6B=V x Ab, whereb is a unit vector along the equi-

QO T B Fy L
wherew is a characteristic frequency of the fluctuations, an ibrium field. Note thatA, andA, are fluctuating quantities.
w q y ' he equilibrium magnetic field is denoted Byor Bb, never

k, andk, are typical fluctuation wave numbers parallel and i tential. Th turbati | th ilib
perpendicular to the equilibrium magnetic fiefd; is the ion as a magnetic potential. 1he perturbation aong the equiiib-
rium field (6B;) is small for <1, as can be seen from

cyclotron frequencypy = VT;/m; is the ion thermal speed, perpendicular force balance, and, is neglected here.

and pi=uvy; /), is the thermal ion gyroradiud. is a typical ) .
equilibrium scale length, such as the density scale length The gyrocenter velocity is then given by
. (By)
B

L,=—V(Inny)~!, the temperature scale lengti )

=—V(InTy) L, or the plasma minor radiusa) or major X=v)| b+ —5—

radius R). T andB are typical equilibrium temperatures and

magnetic fields, an&, is the equilibrium distributionF, is ~ Where the angular brackets denote gyroangle averages. The

the fluctuating distribution function is the electrostatic po- first term on the right represents free streaming along the

tential (which is assumed to have no equilibrium compo-total magnetic field. The segond term is the gyroaveraged

neny, and 6B is the fluctuating component of the magnetic EX B drift velocity, ve=(c/B)bX V(). vq is the combined

field. curvature and/ B drift velocity. In generalyy can be written
Gyrokinetics averages over the fast gyromotion of the b2

particles around a strong magnetic field, reducing the kinetic vd=—”6><(6~VB)+ EBXVB

equation from three to two velocity space dimensions, and Q Q

+Ve+vy, (©)

leaving the magnetic moment as a rigorously conserved v2+ uB 02
guantity. The gyrokinetic ordering takes advantage of the = ﬁer VB+ %sz(VxBx B). (4)

spatial anisotropy created by the strong magnetic field. Par-
allel to the field, particles can stream freely, and fluctuatingsing the equilibrium relation¥ p=(1/c)JXB and VX B
wavelengths are londg L ~ 1. Perpendicular to the field, par- = (4#/c)J, this can be written

ticle motion is strongly restricted, and wavelengths scale 2, B 9
H H v v ~
with the gyroradiusk, pi~1. o vg=) "; BXVB+ L bxVp. )
The fluctuating distribution function is ordered small OB OB

compared to the equilibrium distribution, which here is takeNthe second term on the right is small fgr<12® and is

as a Maxwellian. Nonetheless, perpendicular gradients ofgyiected here for simplicity and to maintain consistency
fluctuating quantities are the same order as perpendiculgg;, neglectingsB, . A cancellation occurs between tRep
gradients of the equilibriumk( F;~Fg/L), and hence the o, invg and a finitesB, term173” Hence it does not im-

perpendicular nonlinearities due to tke<B drift and field prove accuracy to keep thep term until 5B, has been fully
line bending are kept, while parallel nonlinearities are small;,.j ded. The definition

and are ordered out here.

Brizard’s electromagnetic gyrokinetic equation can be ;Uf+ B
written in the form V= OB2 BXVB, ©®
aF . . oF is used henceforth.
E+X'VF+U”£H_C(F)’ @ The gyrocenter parallel acceleration can be written
whereF is the gyrocenter distribution function in the gyro- . e HA) ef. (B))
center phase space coordinat&suy( ,u,¢). Within the gy- I T me gt m b+ B -V(e)
rokinetic ordering p<<();), the gyrophase angléis effec- < >
tively averaged over, and does not appear explicitly e 0B, _ N
(dF/9¢=0). The gyrocenter magnetic moment=v2/2B p| ot =g |- VBHuy(b-Vb)-ve. ™
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The first two terms on the right-hand side represent the totab refer to the single ion species unless otherwise noted. The
parallel electric field, which includes both a magnetic induc-full, normalized equations for the multispecies case are given
tion term — 1/c(d(A;)/dt), and an electrostatic term evalu- in Sec. Il E.

ated along the total magnetic field. The next term is the total Becausek, pi~1, finite-Larmor-radius(FLR) effects
mirror force, and the final term is important for phase spacanust be accounted for, both in the moment equations and in

conservatiorfo-3® the closures.
Using the definitionsB=V X Ab, the terméB, can be In order to simplify the process of taking velocity space
written as follows: moments, all functions of velocity spacg,Jq,u,v;, etc)
R . N L. are moved to the same side of the spatial and temporal op-
5Bl:bx(5BXb):_bXVA”+bXbVbA”, (8) erators.

The first two terms in Eq(11), B(dF/dt) =(d/dt)FB

or upon gyroaveraging R
andBvb- VF=B-V(FBuv,/B) are easily put in a form suit-

(8B, )=—bxV(A)+bxb-Vb(A). (9 able for taking moments. The next three terms require modi-
The second term on the right hand side62) and does fication.
not enter Eq(2) to the required order. Noting that spatial derivatives are taken wjthand v,
The gyroangle averages are expressed in terms of a gfixed, we can write for any field
roaveraging operatar, as follows: VIoA=J,VA+AVJ,, (12)
(d)=Jo(a@) b, (A)=Jo(@) Ay, where
wherea is the operator defined by PN o
. . \/Z,I,L_B VJO(Q):EVQZJ:L(CV)EVB. (13)
a=—i 1 . _
Q The term representing free streaming along the fluctuat-
or, in Fourier space ing magnetic field,—v”/B(Bx VJoA)), can be combined
\/Z,LL_B with the EX B drift by introducing the operator notation:
a= Uy kJ_pi . , U , C . , , C. ,
ti d'=¢d— ?A”, VEZEbXVJo(i) , V¢=§b><v¢ . (19

The operatodg,
1 f2n Using Eqgs.(12) and(13)
Jo(a)zz— d{ exp(i @ cos?) c. a
mJo Bv'E-VF:Bbe JoV¢'+d1554'VB|-VF. (15

- 1 [ia)\?"
=nzo nn (7) TheJ, term above can be neglected as itlés®) due to the
B presence ofp’, VB, and VF, each of which areD(g).
_ 1 (V2uB|® on Noting thatJ,VF =VJy,F — («/2B)FJ,VB, and introducing
T & (nhH2 20 Vit (10 the operator notation

2

is a simple Bessel function in Fourier space. In real spage, . v

does not in general commute with other operators, and must
be manipulated with carel, operates only on the electro-
static potentiakp and the parallel magnetic potentid) .

Defining the unit vector along the total magnetic field ¢
b=b+((5B,)/B) and the total parallel electric fiel, Bg
= —(1/c)(a/¢9t)J0AH—5~VJO¢, the gyrokinetic equation

allows us to write

bx IV’ VF

; C. Ca .
can be written B BX V' V(IF)~F o d,bx V' - VB
JF ~
E‘I‘(U“b‘l‘VE“‘Vd)‘VF e o
=v,,-V(JoFB)+ +FB J0+31§)iwd¢’. 17
e ~ I JF
+ S Eimub-VB+u(b-Vb)-ve |- ==C(F).  (11) Invoking the approximation outlined in Eqel)—(6), and
V) . . .
noting thati w4B=0, theVB and curvature drift term can be
IIl. ELECTROMAGNETIC GYROFLUID EQUATIONS written
_ , , , , Bvy- VF=iwg[FB(vZ+ uB)]. (18)
Gyrofluid equations are derived by taking velocity space _ _ _
moments of Eq(11), and implementing closures to model Turning now to the(JF/dv,) terms, we note first that
kinetic effects. For simplicity of notation, the derivation for a all components ob, except the lowest order mirror force
single ion species is presented here. The subscigpomit-  — ub- VB areO(&?) and therefore involve only the equilib-

ted in this section, and all quantitiés, (), T, etc) are taken  rium distribution, which is taken to be
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No

2.5 2 2
— —vil2vE— uBlv
0=——5=5 UI'%t t,

(277Ut2)3/2

(19

The electric field terms can be written as follows to

O(&?)
_BEB.V(JO¢)£:—Eé’_FOBE).V(JOd))
m ﬂv” m t?U”
Z—EB-V(@BJOQS)—I—SJO(ﬁ@
m (9UH m (9UH
XB 1—’:—? b-VInB, (20
t

JF e

" e dFq .
90, o (0XVIoA) - VIpd= am(bXJoVAu)'JoV¢

e dF,

m o, JoaJos(DXVA)) -V,
(21)
where the notatior:]OA” andJ,, is used to indicate the field

on which the Bessel function operator acts. Al terms
above have been dropped as they @(e°).

e¢’

J :
EFB"’ BVHFUH+V¢,'V(FBJ0)+2FBJ0|wdT

[Foa )2

. IF
X (bXVA))-V¢—uB?—
(90“

a.
+FBJi5iwq

1%

mc 071)“

dFq
FOBJoﬁ

e
JE— + J—
al BJOd)) mJo? v
dFq

—BJ
(90”

euB

V” InB_ OC_T

Nearly all terms with velocity space dependence are now

grouped on the same side of spatial and temporal operat
so that moments may easily be taken. The exception igthe
term which appears i’ =¢—(v,/c)A, and v[i,=(c/B)6
XV¢'. However,v;, commutes with]y, J; and all spatial

operators, and may be easily moved to the appropriate plagg,, parts,F,=F+F,
) nc-

inside velocity space integrals. The collision operagF)

JF
Z0p

i O.)dA” -

P. B. Snyder and G. W. Hammett

The mirror force terms can be written

FB b-VB)= BzaFBVIB 22
&vu(’“')_’“avu'n’ (22
o BXVIA).-VB= 0 3 (vBxB).VA
&vu’u( 0 H)' = v, B 0( ) I
ﬂFO e,LLB
= W”BJOFI a)dA” , (23)

where the]; VB term has cancelled exactly.

Finally, the phase space conservation term can be rewrit-
ten, omitting the finite3 component for consistency with the
treatment of the curvature drift

N BB VD) vem — %, € By vB.V 24
a0, vy(b- )-VE——mvug XVB-VJpep (24

B T (9UH

_(FoBJovu) - FoBJo} i wdd).
(25)

Combining all the above terms, and definifig=b-V,
the electromagnetic gyrokinetic equation can be written in
the following cumbersome but useful form:

ep’ e . 1 )

T_FC_TUHFBJOdeA“—’_U_tZI wd[FB(vH +/.LB)]
[.LB e &FO

(1— U_t2> VH InB+ E EJOAHJO‘X’

d e
a(FBJOvH)flwd¢—0. (26)

No -
ors FOZFM:(ZT

This leaves only second-order terms in the equation.

We furthermore divide the first-order distributién into
HereF . is defined to be an equi-
librium part of the distribution with no time dependence and

has been omitted here. Collisions are considered in Segagients which scale asLl/It is further defined to be an

npo.
Equation(26) contains terms througt)(?) in the gy-

rokinetic ordering. Assuming a time independent equilibrium

distribution F with gradients that scale asLl/only two

first-order terms remain. These terms represent free stream-

ing along the equilibrium field, and the lowest order mirro
force. To first order, the equation can be written

dF,
BVHFOUH_/‘LBZEVH In B:O, (27)

exact solution of the equation

IF1nc
(?U”

1.
BVHFlnch—FFlwd[FoB(var,uB)]—,uBz V,InB
t

r

0.

(28)

Note that theF ;.. contribution to all other terms i©(&°) or
higher and can be neglected. This removes all terms with no
time dependence, and leaves us with an evolution equation

for the fluctuating first-order distributioh, containing only

a condition which is satisfied exactly by the equilibrium second-order terms which are either linear or quadratic in the

Maxwellian

fluctuating quantities, ¢, andA,
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ed
?

J -~ ~ ~ . €9 v €A a.
EfB—i_BVvall—i_qu'V[(FO—i_f)BJO]_VAH'V +2FoBJo|wd?_FoBEJo|wdT+FoBJ1§|wd

(F0+?)B%Jo

FoB 3, Sin o g 2 gy & oy A eV(aFOBJ + 23,6708 1- By inB
0B hiiog— U_t2[ (vj+uB)] me a0, 20t m ! o, op |+ o<¢>wH w7 i In

$ S BXTAY Vo uB2 B 083 10— kB awias L =0 29
m o, oA 0p(OXVA))-Vé—pn g0, 1INB= S0 OledT_EH( 0BJov))iwyg—-=0. (29

Terms containings and A, have been separated by defining equilibrium and fluctuating componeng=F,+T, noting
V,=(c/B)bxX V¢ andvAH=(c/B)b>< VA, . Nonlinear terms  thatF,,. and its moments do not enter the equations to the

enter through V¢'V[TBJO]1 VAH'V[?B(UM/C)JO]u and required order and can be neglected. Velocity space mo-

N ments of
e/m(o'?FO/(?v H)JOAH‘JOQb(bX VA”) -V ¢
It is also possible to derive Eq29) starting with the FoF. - 0
conservative form of the gyrokinetic equation. Making sure o M_(zm,t?)we
to include the second-order part @B, ) from Eq.(9), it is

possible to prove Liouville’s theorem to the required order are all well defined. We define the following moments of the
fluctuating distribution:

ﬁzf’fdsv, noa‘|:fTU|‘ d3v,

25 2 2
—vl2vg —MB/vl’

*

. J
S +V-[B*X]+a[B*iJu]=0, (30)

where B* =B+ (md/e)v,b- VX b contains the parallel ve-

locity correction. The gyrokinetic equation can then be writ- ~ ~
on’ 9y g m:mf Fo? d, r»lszfsﬂd%,

J . J . _
EFB*‘FV-[FB*X]"' E”[FB*UH]:O- (3D aH:_vathOuH_’_mf fvfd3v,

Again working within the context of the loy8 approxima-
tion bx (b-Vb)=(1/B%)Bx VB, and rearranging terms, one G, = —mvfnoﬁHanJ TBuv, d,
finds Eq.(29) to second order as expected.

A further check on Eq(29) is to calculate the linear 5 w4 B _ -
nonadiabatic response in the local limit. Dividing the distri- ru,u:mJ fo; dv, rM=mJ fBuuvjdv,
bution into adiabatic and nonadiabatic pieceb=g
—FoJoed/ Ty, linearizing, transforming, and taking the 7 —mj?Bz 242
V,InB=0 limit, we find the expected nonadiabatic distribu- L poTo
tion

F w—wl- eJ U”A 32 EL‘L:_2mvfn0u|‘+mf’fBZ,LL2U‘| dSU,

g= om;od"g 1 (32

wherew] = w, [1+ 7(vi/2vZ+ uBlv?—3/2)], wg,= wq(v? 3= —15mu¢ngl, + mf To? d,

+,uB)/vt2, and we have introduced the diamagnetic fre-
quency iw, =—(cTo/eBny)Vny-bx V, and the ratio of _ ~ ~
scale Ieng;hglan/LT. Si.= _3mU?”0UH+mJ fBu v d,

where d® =2mdv, B du. The definitions of theg and s
moments above have been chosen for consistency of notation

Fluid moment equations can now be derived by takingwith Beer?® Each moment is coupled to higher moments
velocity space moments of E€R9). In this section a careful through the terms in Eq29) which contain factors ob or
distinction is made between equilibrium and fluctuating com-u, including terms due to parallel free streaming, toroidal
ponents, and equilibrium quantities are written with a sub-drift, FLR effects, and the mirror force. This moment hierar-
script 0. Bothv,= \To/m andp;=v/{ are defined in terms chy is truncated using closures described in the following
of equilibrium quantities. It should also be noted that be-sections in order to generate a useful set of equations.
cause all terms in Eq29) areO(&?), only their lowest-order Taking integrals of Eq. (29 of the form
components need be kept, e g+ Ty. 27 [dv,dp v{l,uk, and defining the shorthand

Velocity space moments are often defined in terms of thé A)=27[Adv, Bdu yields the following set of moment
total distribution functionF. Here we again separakeinto  equations:

A. The moment equations
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Al 1 apy G+ 3poly 2 m 3
BV” +V¢ V(FJ()) H'V(FU”\]0> E"’BVHT'FmV(i,'V(FU”Jo)_EVA”'V<FU“\]0>
al\. e 1. =\ a e 1
+<F° 2‘]°+J1§)>deT_o+T_olwd(p+pi)_o’ +m<FoU|;|Z 230+31§)>iwd-|-—¢+—ziwd(7|,|+7u)

(33) .
e¢d
571 1 +2(T, + pgl + 23V i wg—=
H+BVH p +V¢ V<FU”JO> —VA‘ V(FUH 0> 2(ql pou”)VH InB 2m<FoU”\]0>|(1)d TO 0, (35)
a\\  eA 1
_<Fovﬁ J0+\]1§ >|wdCT Tolwd Jﬁ
1
+ B2V +poly) | +mBv,- V{Fud
(qll+qL+4p0uH)+<FOJ0> ||<FoJo>¢ K3 [BZ(qL Pothy) o V(F1do)
mc <9t
B o
e uB e ~ _me . —
—E¢<FOJ0(1—7€—)>V| InB— —=(FoJoa Jos)b o VA V<FMU||JO>+mB<FoM 2Jo+J12)>
P eA ep 1
XVA: V¢+ VHInB+(FO,uBJ0>|wd T =0, (39 XlwdT +—zlwd(r”l+rLL) 0, (36)

eA

cTy

m
(qHJrSpou‘)ﬁLBVH |'3”+mv¢ V(Fv}do)— raZ% V(Fuildo)— m<FOv(‘]0+J12>>|wd

1. _ _ ~ uB
+ 3l g(S 5.+ 18rnvfn0uu)+ <Fovf~]o> +3eVn<FoUu 0d— 3e< Fovj ( 1- o2 )Jo> $VInB
t t

3e A . eA
- §<F0UﬁJ0A”J0¢>bX VA“' V¢+ 3F||,LVI\ In B+3mB<F0,LLUﬁJ0>| O)dﬁzo, (37)

eA
J0+Jl 2)>|0)d Cto

1 eB dA uB
+ —2' 0y($), +3, 1 +5mu¢ngli) + _<F0MJO> +eBVH<FoMJO>¢ eB< FOM( 1- —2‘) Jo> $V,InB

mB
(ql+p0uH)+B VH Bz 7 +mBv,- V(Fu,udo) - < VA V(Fuiudo)— mB< Fouf

- ~ . eA
—e(Foudoa Jog)DX VA- V@+T, |V InB+mB*Fou®Jo)i 4T, = 0. (39

B. Finite Larmor radius terms terms from theEXB and v, terms with theJ, terms in

Closures are developed for the finite Larmor radiusPoisson’s equation and Ampere s Law which motivates the
terms appearing in Eq$33)—(38), using the techniques of basic approximation (Jo)~(J5)*~I'o(b)"? where b
Dorland® as adapted to the toroidal case by B¥ewe =k p{. Following and extending Ref. 39, we choose
choose to evolve ion moments in guiding center space rather
than real space in order to better describe both linear and (FoJo)=nol'g>, (39
nonlinear FLR effects, including the Bakshi—Linsker
effect’® Nonetheless, our FLR terms, when expanded, con-  (FoJov2)=neT'§?, (40)
tain higher velocity space moments and these must be care-
fully closed to properly model kinetic behavior. 2 02 R

Turning first to the Maxwellian FLR terms, we must  (FoJop)= B ﬁb(brl/z)— é(2F$/2+Vf), (41)
close terms of the form¢Fqv? ulJo) and (Fou? wlJ;a),
wherei=0,1,2 andj=0,1,2. Note that purely Maxwellian
FLR terms with odd powers af; vanish identically, as
is even invy, while J; andJ,« are independent af. 4 o8

The FLR closures are chosen in careful consideration of (FoJ )= Ut (bFl’Z (21‘1’2+@2) 43)
the entire system of equations. It is the combination)f oJov i "B 4b Lo

<F0Jovﬁ‘>:3novfl—‘1/2, (42)
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4 2 eraging terms are acted on by a perpendicular gradient op-
2 vtf| 9 12 12 - : . :
(Fodou®)~ g2|Popz(blo)+2b ab(bro ) erator, requiring that gradients of both fluctuating and equi-
librium quantities be kept. In considering these terms, we
vf 1o aa & redefineb=(2/Q) (T, /m), in terms of the total perpen-
= gz(2lg ™+ Vi+ V). (449 dicular temperaturd, , which contains both an equilibrium

R . part (T, as the equilibrium is assumed isotropand a fluc-
~ The modified Laplacian operatofé? and V; are de- tuating part,T, = (P, — Tofi)/ny. The gradient ob is then
fined as follows: calculated as follows:
1/2

b

b -~ 2b
b, (45 Vb= =(VTo+VT,)~ 5 VB. (56)
0

Closing these FLR terms analogously to E@®)—(44) leads

2 1/2
V o= babZ(bF )¢, (46) to, for example,

where the notationb =T3¢ has been introduced for the Vg V(JoF) =V, V[n['g4b)], (57
gyroaveraged electrostatic potential. The analogous notation
A= FO %A, is used for the gyroaveraged magnetic potential.

The J, terms are evaluated following Ref. 30, using the
following trick:

wheren is the total densityn,+T7. Introducing the diamag-

netic frequencyiw, =—(cTy/eBn,)Vny-bxV, and ratio
=L,/Ly, whereLy is the scale length of the equilibrium

temperature, this leads to three linear terms

J
(Flia)~——| (FJo(La)). (47 ,€p ng ., ed
! I g 0 Vg V{JoF)=—ngiw, T'y ——?n,Vfuo*T—o
Again using(FJo)~T3? yields e
p ﬁrl/z +noVZiwg=—+N_. (58)
~_ 2| 1Y 0 _ g2 To
(Fodia)~ at 0 ({b)=— b Ve,
= 49) Nonlinear terms arise both fromandb, and can be written
1/2 T
5 N N =Vg- Vn+ [V Vg |- VT, . (59
(Fodywia)~—2vib b =—v2V?, (49 ’
2 To account for the/AH-V andv,-V terms with higher pow-
J Ut ers ofv, and u, we note that the linear terms from E¢S8)
F — T.(F I My
(Fodipa)= 7 (=1 B9 [ 1(Fodol{a))] can be generalized as follows:
2 1/2 2 . e¢ ag e¢
Uyt Jd Ut 2 2 . — i A h—=i R
_ E_b( ) EVL’ (50) Vg4 VNneg(b) nog(b)iw, T, non,bablw* T,
1/2 on b9 Jag. eop 60
<F0le” ay~—6v; b =—3v 4VE , (51 +2ng b log=— Ty (60)

4 The treatment of the nonlinear terms is somewhat more
2 Uy 2 2 R . .
(Fodwipa)~—2gVi. (52)  subtle, as these can involve higher moments which are not
evolved. Following Ref. 39, and introducing the notation
The Maxwellian terms which contain more than one fac-N(x) for the nonlinear terms generated by- V(F Jox)
tor of Jy are closed analogously

1 .
_ =T g2y 1.uR
<|:OJOAHJO¢>:nOFéf”r3{§' (53) NL(vy) =ngVe- VU, + ZTO[VJ_V(IJ] vy, , (61)
Fov2don J eplzpliz 54
( 0V YoA, 0¢> Novy 0A" 0¢ (54) NL(mv”) Ve - Vpn"’ [V Vol- VTL, (62)

2
Uy ~ ~

(Fowdondos) = 5g[(206"+ VAT (0™ VE) o) (B8 N (mByu)=vq- VP, + 4 T2v4]-Va, (63)
whgre the subscripth or A, again designates the field on . NL(mvf)=vq,-VﬁH+3povq,-VTJH+%[ﬁqu,]-V"ql,
which the operator acts. These closures can be thought of in (64)
terms of separate expansions of the two Bessel function op-
erators, through first order im, so that no cross term enters.

Thev,-V(FJg--+) andvAH~V(FJ0---> terms introduce

two additional complications. These terms contain both the rao 5 55 5
Maxwellian and the perturbed distribution, and the gyroav- +3[Vive] VG, +[Vive]-Vd, . (69

~ ~  Po .~ ~
NL(mBUuM):VquQDLPthb'VUHJF7[VEV¢]'VUH
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The v4-V--- nonlinear terms are closed identically to the lengths are normalized o, /L,,, L, andp;, respectively:

above with the substitutio® — A, . However, thev ,-V ---

terms in theq, andq, equations contain higher moments A

which are closed using results from the next section. (tky.k,)
To simplify the equations, we introduce the following

normalization. Time, parallel lengths, and perpendicularand the fluctuating quantities are normalized as follows:

, (66)

t
= L_n’kHLn!kLpi

A BOBAF e e¢> AH nu P q T K] 67
1n u 1rys T 1
(®.A, p.Q.1.8)= i\ To’ piB Ny’ v’ Nomv2’ nemud’ nomu’ ngmo?
|
Normalized quantities appear on the left. The caret designat-
ing a normalized quantity is dropped for simplicity of nota- n(z,t)= f fdv=ng+n,— f dv e~ iketeg=o?/(20),
tion. Note that these normalizations mesh with the gyroki-
netic ordering such that all characteristic drift scales are (69)

O(1). Becausepg is formally taken to beO(1), all shear

2.2
) The perturbed density; =n,_ge ¥*it2 decays with a
Alfvén scales are(1) as well. b N1=N1¢-0) y

Gaussian time dependence. This decay due to linear Landau
damping is not captured by a simple fluid model with a finite
number of moments, and hence it must be accounted for in
Closures must be introduced for the highest moments, the fluid closure if it is to be included in a fluid model.
ands, in order to have a complete and useful set of gyrofluid A number of different “Landau closures” which model
equations. The terms requiring closure divide naturally intdinear Landau damping in fluid models have been
three categories, the parallel terrfigr, , and V,r, , , the  developed'~**Here the four moment model of Refs. 13, 30,
toroidal terms wy(r +r;.), wg(ry.+r..), wg(s,  and 44 is employed. This closure accurately models linear
+s.), and wy(s;,+s, ), and the mirroring terms Kinetic response functions, conserves energy, and takes a
riyVyinB, r, . V,InB, andr, , V,InB. Following the work  simple, frequency independent form in Fourier space, allow-
of Beer; 30 we separately treat each group of terms, makingng for easy implementation in nonlinear initial value simu-
closure approximations that accurately model the physicdations. The introduction of electromagnetic effects does not
processes that each set of terms represents. significantly alter the process of deriving linear Landau clo-
sures. Response functions are simply written in terms of the
total E; rather thang. In Ref. 47, Landau closures are de-
Closures which provide an accurate model of linear Lanyjyeq for the general electromagnetic case with both parallel
dau damping are chosen for the parallel terﬁig” i and  and perpendicular magnetic fluctuations. Here we consider
Vuf\u, where we have introduced the notatlrm v, only perpendicular fluctuations, hence the magnitude of the
—Va, V=V,— bx VA,-V. Landau damping along the mag- fluctuating fieldB is zero to first order in the perturbation.
netic field occurs due to the velocity dependence ofkijpe The general response functions and _cl(_)sures are given in Sec.
term in the kinetic equation. Components with differémt |V Of Ref. 47. Here we take thB, =0 limit of that result, for

stream along the field at different velocities, causing mo-the case in which the equilibrium distribution is isotropic. In
ments ofF to phase mix away. this limit the result is identical to the earlier result of Ref. 12

C. Closures

1. Parallel Landau closures

As an illustration, consider the one-dimensional kinetic |kn|QH

M oL sty fo(z.) (68) |

TV o= olZ,v), [ q

oz f=Pi+p.—n—V2D, — — (7D)

wheref, provides the initial condition. The solution to this ki
simple equation f(z,v,t)=fo(z—vt,0)H(t), provides where ¢,=(32—9m)/(37—8), D,=2\w/(37—8), and
Green's functions which can be used to solve more generdd, = \/7/2. Note that here and elsewhere the dissipative
problems with additional source terms, such as the electriterms in the closure~|k|/k;) are written in their Fourier
field —(e/m)E;(dFy /dv). Consider an initial condition space form for conciseness. In configuration space these
with a small single harmonic perturbatiorfy=(n, terms are convolution integrals.

+n,e%)Fy(v). The general solution is just[n, Because the dissipative part of the closure ab(itie
+n,e@ Y] which simply oscillates in time ab=kv and  |k|/k, term3 is written in terms of moments with no equi-
does not damp. However, upon taking velocity space molibrium component, the fluctuating field makes no contribu-
ments, the velocity integration introduces mixing of thetion to the linear Landau closures. Hence the linear Landau
phases as follows: closure is equally accurate in the electrostatic and electro-
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magnetic cases. However, there is an additional nonlinear

Landau damping term due #, which is discussed in Sec.
VII of Ref. 47. This and other nonlinear Landau damping
mechanisms are not accounted for in the fluid closures give

here. As discussed in Ref. 39, nonlinear phase-mixing ma?

be important at large amplitudes or largep, and exten-

A Landau fluid model for electromagnetic plasma . . . 3207

r,,=4p,—2n. (78)

Taken together, the closure approximations provide
Hwodels of linear and nonlinear FLR effects, as well as par-
llel phase mixing, drift resonance, and trapped particle ef-
ects. The accuracy of these closures is tested extensively

sions to include some nonlinear phase mixing effects are otprough linear benchmarks with kinetic theory given in Sec.

interest for future work.

2. Toroidal closures
The velocity dependence of théB and curvature drifts

also introduces phase mixing. This process is modeled using

toroidal closures of Bee¥, which include dissipative pieces

proportional to|wy|/wg .

VI and Ref. 32.

D. lon collisions

lon—ion collisions are modeled with a simple particle,
momentum and energy conserving Bohm-Gross—Krook
(BGK) operator®

Beer’s closures include both Maxwellian parts and dis-

sipative pieces derived by careful fitting with all parts of the

C(Fj)=—§ vik(Fi=Fwmijk)s (79

kinetic toroidal response function, and can be written in the

following form:

|w

| gl
rH,II+rH,L:7pH+pL_4n_2|w_d(VlTH_FVZTL)v (72
B |l
rH,J_+rJ_,J__pH+5pJ__3n_2|w_d(V3TII+V4TJ_)i (73
|l
Sit s, =1 o (vsUy+veQy+v70, ), (74)
oy
S t+Ss =i oy (vgUy+ voQy+ v100, ), (75

where the complex coefficients take the form=v,
+ivilwg|//wg. The coefficients chosen are, in
form (v, ,v;), v1=(2.019;-1.620), v,=(0.433,1.018),v3

the

wherej andk are species indices, ang is the collision rate
of specieg with speciek. Collisions cause the distribution
to relax to a shifted Maxwellian with the appropriate total
(equilibrium+fluctuating) momentum and energy. Upon lin-
earizing, the single species operator can be written

e o

wheren, u;, andT=(T;+2T,)/3 are normalized fluctuat-
ing moments, and?=uv’+4B%u?.

lon—electron collisions are negligible due to the small-
ness of the electron—ion mass ratio. Electron—ion collisions
are considered in Sec. IVC.

02
—
2v¢

Ui
I’H—U”—-f—T
1%

C(F)=- Vii{ Fi—
t

E. Final gyrofluid equations

Incorporating the parallel, toroidal, and mirror term clo-

sures defined above, and including moments of the ion—ion

=(—0.256,1.487), v,=(—0.070,-1.382), vs=(—8.927, = - . ; i
collision operator, yields the final set of single species elec-

12.649), ve=(8.094,12.638), v;=(13.720,5.139), vg [ / _
—(3.368-8.110), wy=(1.974-1.984), wv,=(8.269, romagnetic gyrofiuid equations. |
2.06). As shown in Figs. 2.1 and 2.2 of Ref. 30, these clo- "€ derivation in the previous sections has focused on a
sures provide a good fit to the linear toroidal response funcSiNdle ion species for simplicity. In general, tokamak plas-

tions, including a reasonable model of the toroidal branch cuf?@s contain mul::ple '?1” Zpeme_s, as well asl electrons. (;”_
at wl wg= —KCo Al some cases, such as the deuterium—tritium plasmas used in

As noted in Ref. 30, this set of toroidal closures accy-fusion experiments, the bulk plasma may contain more than

rately models the fast linear collisionless damping of zonaPN€ dominant ion species. In addition, impurity ions are ex-
flows fort<qR/v,\/e, but does not account for the residual PECted t0 play an important role, especially near the plasma

undamped component of the zonal flow noted by Rosenblutf99¢: . , o i
and Hinton® Efforts to incorporate this residual flow and The extension to multiple species is reasonably straight-

other neoclassical effects into a new toroidal closure aréorward. A_ sgpargte set of gyrofluid equations is SOIVeC_j for
ongoing’® e_a<_:h specieg, noting that charge, massm, and the equi-
librium moments(ngy, Ty) and scale lengths are functions of
the specieg.

Here each species is normalized to its oy vy, etc.,

The mirroring terms r,V,InB, r,,V,InB, and but one ion species is chosen as a reference. The reference
r, .. V,InB incorporate trapped ion effects and magneticspecies is designated with the subsciipand the following
pumping. However, they do not introduce new dissipativedimensionless constants are introducedl=To; /Toi, v;
processes and hence they are closed with simple Maxwelliag v,; /vy, andp;=p;/p; . Z is the ratio of the species charge
closures, again following Ref. 30 to the unit chargeZ=e;/|e|, and the reference speciess
assumed to havE=1. 7; is the usual ratio of scale lengths
n;=Lnj/Ltj. The basic macroscopic length is taken to be
the electron density scale lendth., and the following nor-

3. Mirroring closures

ry,=6p;—3n, (76)

(77

N=p+p.—n,
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malized scale length is defined for each ion spech§,
:Lnj/Lne-

The multispecies equations are then written as follows:

P. B. Snyder and G. W. Hammett

dp, ~ g;+3y
. Tujbyy

VTL

1'\2
+ EVLVCD

vi

i,

+2vi(q, +u)VInB-

Lnj

dn ~ U s 1., R
—+v; BVH_+ VLV(D VTL_U]' _VLVA ti i
dt 2 4+? iwg®+iwgp;vi(7p;+p.—4n)
1+—V2)' (2+ Vf)lwdq) +2|wgpjvil (v T+ voT )= —5vs(p—PL), (83
Lnj dp ~ q +UH 1»\ A
BT+ SV | VR [V VT,
+iwgpjvj(p+p.)=0, (81 A
—j[3VIvA]-V(a, +u)
V2 2 iw
I _ pH 1,\ 1’\ - 1+_+77]<1+_L+VJ2_ = *q)
+vaVHE+ Evaq, -Va, —v; EvaA VT, L
+(3+ 392+ V)i wg® +i wgpjv;(5p. +p;—3n)
o\ 1. A
+£~V”<D+Ea—A”+ 1+7/,(1+V—> lw, oA, +2|wapjuj| (vaT +vaT )= 5vs(pi— P, (84)
7j T ot 2 |_nj dg,
E+(3+CH)U V\\TI\+‘/_DIIUJ|kII|qH
+ +Z€E® V,InB+iwgpiv;(q+0a, +4uy) lw
— V. InB+iwgpiv: u o
P T 2 vit Capyos AT AL A +'dejUj(—3q”—3‘h+6UH)+(3+C|\)7IJ‘I:—*UJAM
nj
=0, (82 +]wapjvj|(vsuy+ veq+ v70,) = —vgqy, (85
|
d;qi v V2 ) EAZ 22 o ¥2_ 192
. +v;V, T, +v2D, vjlk/|q, + ZVLUfI) Vu+(Vive)-Va, —vj(VI—3VI)v,- VT,
42 %JZ_ iw* ZUJ V2 dAH
+ 77j(1+VJ_)(1+77j)__UjAH+T? +V® —iwgpjoj Ay | +iwghoi(—aq—a, +uy)
L nj i
Z[s, Vi .
+ pJ__pH+: Vid-— > vV InB+|wgpjvi|(veu + vedy+ vigd, )= —vsd, (86)
L i

whered/dt=(d/dt) +vg- V.
We emphasize that in the above equations, the fluid quantities (o,,p, ,...) are all forspeciesj, and an impliedj
subscript as been dropped. For clarity, we explicitly write here their relation to the physical quantities

Nyj U Piaj P11j Tnlj Ty jaj CIRY
(n u 1T 1T ’ )_ _ne< ’ ’ (87)
R Noj " vy Nojmug Nomius” Toj " Top " noymiug; " Ngjmyvy,
|
where 0 subscripts refer to equilibrium values and 1 sub- L. e
i i X b A ): —ne *= 1/2¢ Fl/ZA (88)
scripts refer to unnormalized fluctuating values. The gyroav- T Ty 0 A

eraging operatorE¥?, V2 andV?, which act only on the
fields ¢ and A, are also species dependent through theilV. THE ELECTRON LANDAU FLUID EQUATIONS

. . . . . . 2 2 .

implied argumenb; , which in Fourier space &7 pj .Smc.e. Electron dynamics can be described by the full set of
® and A are gyroaveraged quantities, they also implicitly gyrofluid equations in the previous section. However, the full
depend on specigs via set of ion and electron equations will then contain widely
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separated spatial and temporal scales which make fully replasma. This is a severe numerical burden, though perhaps

solved explicit numerical simulation challenging. one that it may be possible to contemplate bearing in the near
For many problems, a reduced set of equations, descrilfuture, as computational power continues to increase. Impos-

ing fluctuations on a smaller range of scales is appropriatang the mass ratio orderingm,/m;~ §<1, allows the fast

Here we will develop a reduced electron model appropriatelectron transit motion to be analytically removed.

for the description of fluctuations on the ion drift and shear

Alfvén scales often associated with tokamak plasma micro-

turbulence. An analytic expansion in the electron to ion masg- General ordering

ratio is constructed, allowing electron dynamics on the char-  The use of the electron—ion mass ratio as an ordering

acteristic ion and Alf\,/B scales to be treated eXpIiCitIy, while parameter has a |0ng history in p|asma physics_ It has been

the fast electron transit time scale and the small spatial scalggvoked in many forms of the magnetohydrodynamic equa-

associated with the electron gyroradius and the electron skifions as well as in the more detailed equations of Kadomtsev

depth are removed from the set of fluid equations to beand Pogutsé! and in many other fluid and simplified kinetic

solved numerically(This is not to suggest that microturbu- formulations. In the context of gyrokinetics, the mass ratio

lence onp, andc/wy,e scales does not exist or is not impor- expansion has generally been used to justify the neglect of

tant in some phenomena. When these scales are importagiectron FLR terms, and treatment of electron dynamics with

the full electron gyrofluid equations, or another appropriatehe drift kinetic equation. Here we wish to consistently apply

physics model should be usgd. the orderingm,/m;,~ (5% to all terms in the drift fluid
The resulting electromagnetic electron Landau fluidequations.

equations include the effects of electron temperature and The fundamental assumption is that the fluctuating

density gradients, electroBx B motion, Landau damping, scales of interest are those typical of ion thermal, drift and

electron—ion collisions, and the parallel electron currentgyro-motion, and those of shear Alfvevaves. Length and

which, along with parallel ion currents, give rise to the par-time scales associated with electron thermal and gyromotion

allel magnetic potential. The equations given here focus oRyre taken to be small.

the dynamics of the passing electrons. Developing an elec-  For a typical perpendicular wave number, we impose

tromagnetic model of trapped electron dynamics analogouge following ordering:

to the electrostatic model of Bé&ris left as an important 1

piece of future work. K. "~ pi~Clwpi>pe,Clwpe, (89

_ o _ wherew), is the plasma frequency. The lengths on the left are

A. Analytic expansion in the electron mass ratio independent of the electron mass, while the two lengths on

We invoke an analytic expansion in the electron—ionthe right are proportional ta/m,. Note that the skin depth
mass ratio, similar to the technique employed by Kadomtse$/@p; can be written ag;/2/; for the single species case,
and Poguts&! This expansion removes the small electronWhere the specieg; =8y Ty /B*. Formally taking 8
gyroradius scale and the fast electron transit time scale frorm O(1), theabove ordering of lengths follows directly from
the equations, leaving an efficient model appropriate for the/Me/mM;~O(3).
study of turbulence on ion and shear Alfvscales. For a typical fluctuation frequency we choose the or-

A lowest order model, containing no finite electron massdering
terms, will be derived first. This simple model will . 0~Kjvgi~ 0, ~ 0pi~ 0pe~ K Cs~Kv A<K V1o~ ®ETG,
then be extended to include higher order dissipative terms in (90)

sec. IVC. . where wp is the curvature andVB drift frequency,
1. Electron FLR and transit cs=\Toe/m; is the cold ion sound speed, and

To efficiently study fluctuation scales on the order of thev ,=B/\4mwnym; is the Alfven speed. We definegg to be
ion gyroradius, we employ a subsidiary formal ordering ina frequency characteristic of the electron temperature gradi-
the smallness of the electron—ion mass ratio in order to reent (ETG) mode. These short wavelength modes typically
move electron finite Larmor radius terms. The gyroaveraginthavek,~1/p., and hencevgrg~+\m;/me w, , wherew, is
operatorJ, can be expandedﬂkfp§+ ---. In the gyroki- the diamagnetic frequency taken wikhp;~ 1. The quanti-
netic ordering employed herk, p;~1 the first electron FLR ties on the left are independentmf while those on the right
term isO(m,/m;). We introduce the subsidiary ordering pa- are proportional tan, /2.
rameterd~ yme/m; and note that electron FLR effects first The desired time and length scale orderings above fol-
enter atO(5%). low directly from me/m;~ (5% and g;~O(1). Thecon-

The small electron mass also implies a fast electron therstraints on the validity of this expansion are found through
mal speed ¢;.>v;), and rapid electron streaming along the inspection of Eqs(89) and (90). The separation of scales
magnetic field. The speed of this streaming motion along théetween the shear Alfwefrequency and the electron transit
field introduces a Courant constraint on the size of the timdrequency(and equivalently between and the electron skin
step which can be used in an explicit numerical simulationdepth requires 8.>2m./m;. In fusion relevant plasmas,
Adding electron parallel dynamics to a simulation which pre-this condition is generally satisfied everywhere except very
viously modeled only ions reduces this time step constrainhear the plasma edge. Another constraint is provided by the
by a factor of yTom;/Tim,~60 for a deuterium fusion condition w, <k . Using a typical ballooning,~1/gR,
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and w, ~kgypivyi /L, this requireskyp;yms/m;<L,/qR. The electron inertia term, which is associated with the elec-
For largekypi=1, this condition can break down in the edge tron skin depth, and the curvature aNd drift terms are
region whereq is often large, whileL,, can become rather both small by a factor ofm,/m;~ 5% Neglecting these
short. higher-order terms, and expanding the pressure, noting that
p; =T+ ne/ 7 because of the normalization to ion tempera-
- . ture, the momentum equation can be recast as a time evolu-
B. Derivation of the electron equations tion equation for the magnetic potential

The formal expansion in mass ratio can now be used t

derive a set of equations which describe electron dynam|cs_+vu¢_ “Vine= VT —(1+ 7o)iw, —

consistent with the time and space scale orderings describedt T ¢ T

above. o _ _ +(T, —T,)V,InB=0. (96)
All fluctuations, including those in the electron moments € N

Ne, Eue, Pe., etc., are taken to occur on the ion/Alfvecales. The equations forTHe and LI needed to complete the

It is thus convenient to normalize fluctuating electron mo-above set come from trtﬁe andqle moment equations. The
ments to the ion quantities,; andm;, so that a consistent p, andp, moment equations provide information on the
ordering is easily maintained.The fluctuating electron mo- next order evolution of the temperature fluctuations.

ments are normalized as follows: Theq_andq,  equations contain the higher moments
(Ae,0c,Pes0e.e,Se) re ands, which are closed as in Sec. lllC. However, the
o - - - - electron closure terms are not in genafgfl). Consider, for
_Lnffe Ue  Pe Ge Te Se example, the Maxwellian closure for the momept . This
pi\ Mo’ v Nomivg " NoMiv " Nomiv'y " Nomivys ) closure is derived by taking the first-order quctuafing part of

(91  the generalized Maxwellian resum,‘|e=3pfe/mene. The

factor of 1M, insures that this term i€©(52). In the nor-

where the normalized quantities on the left arey(lL). In ; !
malized units

the general multiple ion species case, the quantitiegand
vy above refer to the reference ion species, as in Sec. Il E. m, m

This normalization differs from that employed in Sec. r||,ue—>6RTue+3mne, (97)
lIlE, where each species’ moments are normalized to its N ¢
own mass and thermal velocity. Lengths, times, and th@nd similarly forr,, andr, , . The Landau damping por-
fields ¢ and A, are normalized as in the ion equations. Thetion of the closure is smaller than the Maxwellian part by
unsubscripted normalized operators are again defined igm./m;, and is neglected here, though it is reconsidered in
terms of theZ=1 ion charge ¢), the reference ion species Sec. IV C.

mass () and temperatureT(,;), and the equilibrium elec- Before normalizing or substituting in the closures, the
tron density () and density scale length.f) q;, equation can be written to lowest order

. Ln CTOi ~ q B 2

i@, =—— Vny-bxV, (92) = Tu ~ P NoToe. €A

* Uij eBI’b 0 BVHFe_STOeBV” meeB +37]e me |(1)* CTOi

. Ln CToi

. _Ln <VB.V. O Tol

194~ eB BXVB-V 3 +3 rue_%ple)V"‘B:O, (98

e

The normalized electron density equation is .
y €d where thed/dt and wy terms again drop out, as they are

dNe ~ W, higher order inmg/m; .
i TVeVNe+BY 5 —iw, ¢ Substituting the Maxwellian closures, normalizing and
simplifying gives
tiwg(2¢p—2n./7—T, —T, )=0, (94) -
o VTt 7el 0, A/ 7=0. (99

where the carets on normalized quantities have been dropped
for conciseness of notation. The notati®n="V,— BXVA” The second term on the left is the gradient of the equilibrium

-V has been employed. Note that no factorsmfappear in  temperaturd o, along the perturbed fieldyx VA-VToe, O
the above equation, and all terms are of the same order. equivalently the gradient along the total fie¥gTpe, asTge
The momentum equation can be written is constant along the equilibrium field. Equati¢®9) can

thus be written in the more physically intuitive form
me Ui, m, ~ Py, A

~ 1
Vi(Ty,+ Toe) = 5 (Bo+ By) - V(T +Toe) =0. (100
Me A <
+ o wg(qy T 0y +4u /1)~ T Vig+p, VInB Quite simply, the total temperature is constant along the total
' magnetic field including fluctuations. This result is expected

=0. (95  from our ordering of the velocities,; ,v o<<ve. The speeds
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of the microturbulence being evolved are all slow compared The above equations provide a simple description of
to v, and furthermore the Alfue speed at which the mag- electromagnetic electron dynamics on shear Alfad ion
netic field fluctuates is also much less than the electron theiscales. While only two moment equations need be solved,
mal speed. Hence as the field fluctuates across the equililthe physics content of a full six moment model has been
rium temperature gradient, the electrons are able to almoshcorporated to lowest order img/m,; .
instantaneously re-thermalize, leaving no electron tempera- Though the model is simple, it represents a substantial
ture gradient along the total field. Note that this condition isimprovement over the adiabatic electron models/¢= ¢
quite different from the occasionally employed closures—{(¢)<uacd that have been used to describe the passing elec-
V,Te=0, orT,=0, both of which fail to properly account for trons in many previous gyrofluid and gyrokinetic particle
the magnetic fluctuations across the equilibrium temperaturéimulations. In addition to finit¢ effects and Alfve wave
gradient, and lead to errors when is finite. dynamics, the above model also incorporates electon
Turning now to the%e moment equation, and again ><B,_curv_ature, ach_B drift motion, as well as_theEXB
inserting Maxwellian closures, normalizing, and keepingnonllnearlty and nonlinear terms due to magnetic flutter. The

only the dominant terms, the equation becomes accuracy of this model in describing both finjgeion drift
’ waves and shear Alfvewaves is gauged in Sec. VI with a

series of linear benchmarks.

Furthermore, the numerical challenge of resolving short
electron space and time scales has been entirely removed.
Again the second term is simply the derivative along theThe electron mass appears nowhere in Efj64—(106) or
perturbed field of the equilibrium temperaturgyg). A mir-  in the normalization§Eq. (91)], and it is apparent that the
ror force term enters as well. electron scalegpe, ¢/wpe, Kjvte, were), all of which con-

Equations(99) and (101) can be recast by definine  tain the electron mass, have been successfully removed from
=(Ty,+ T, )/2 and 6Te=(T, —T,). Note that once Eq. the equations which are numerically evolved.

(99) has been substituted into the momentum equation, the It can be shown, in a proof analogous to that of
temperature enters the momentum equation only as a mirroGowley?>? that this electron model preserves magnetic flux
ing term 8TV, In B, and enters the density equation only assurfaces.

—iwyTe. The equations foll, and 6T, are

Nel w4 A

VT, + L +(T,,~T,)V,InB=0. (101)

~ N w, Ay ST, C. Electron collisions and Landau damping
VTet ———+ —-V,InB=0, (102 _
2 One consequence of keeping only the lowest order terms

~ in the mass ratio expansion is the absence of any damping
(V,+V,InB) 6T=0. (103  mechanism in the electron channel. It is well known that
damping terms, even when linearly small, can significantly
impact the nonlinear dynamics of an otherwise dissipation-
~ ’ : less system. While the gyrofluid system has dissipation
ViTe=—nedw,A/7. Because the model only describes through ion collisions and ion Landau damping, it is ex-
passing electrons, we employ this simple limit. pected that damping in the electron channel may play an
The full set of normalized electron equations is then important role as well.

u The dominant electron damping mechanisms are ex-
%JFVE'VHJ Bﬁuﬁ—iw* ¢+2iwd( b E_Te =0, pepted tq bg Landau damping and pitch angle scattering _col—
at B T lisions with ions. These effects are introduced by extending
(109 the mass ratio expansion to include termscfym./m;).

Equations(94) and (96) remain unchanged, but additional

In either the small mirror force limit\{; In B—0) or the high
collisionality limit (6T,—0), the above equations reduce to

A% 4 1% L = t introduced into the cl for andT, . Th
— V= —Vine= ~iw, A =0, (105  terms are introduced into the closures Tor and T . The

lowest order‘l’ﬁ‘:)zT(fg:Tgo) is given by Eq(106). The full
- Te. expressions for the first order correctiong) and T(*) can
Vi Te= o A, (106) e .

T be derived from Eq981)—(86). Here thew, ,wq—0 limitis
taken, leaving only the correction due to Landau damping

where thewyT, term in Eq.(104) is evaluated by numeri- along the field

cally inverting Eq.(106). It is assumed that any fluctuating
component ofT, which is constant on a field line does not
contribute significantly to the4T, term.

We emphasize that, provided an appropriate numerical . , , o
inversion ofp Eq.(106) can pbe achieved, Eg szparate closureand Tﬁle) =0, where the operatdk| is again written in its
approximations are required for nonlinear terms. In this low-Fourier space form for conciseness. A more precise descrip-
est order expansion in’le/rni , nonlinear closure terms such tion of finite electron mass effects is pOSSible either by USing
as those associated with nonlinear Landau damping drop otft€ full expressions folf{) and T{"), or by employing the
naturally, and no separate assumptions about the smallnesgl six moment equation s¢Eqgs.(81)—(86)] to describe the
of nonlinear terms are needed. electrons. As in the general multispecies case, discussed in

7 m
vTD= 77 ﬁ|ku|uue, (107
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Sec. llIC1, nonlinear phase mixing effects are not incorpo-drifts, parallel ion flow, and an improved Landau damping
rated in this closure. The range of resonant electron velocimodel which properly phase-mixdsxB driven perturba-
ties Av~ w/k <vy is fairly small in core plasmas, and one tions.

might worry about nonlinear particle trapping causing elec- The model can be reduced to the familiar adiabatic re-
tron Landau damping to turn off. However, even a smallsponse in the appropriate limits. Taking the limjss—0,
amount of collisions can be important for such narrow resowhich implies A;—0 from Eq. (114), and m/m;—0, Eq.
nances. The rate of scattering out of the resonant region €10 reduces to the adiabatic electron responég ¢
veiv2/(Avy)?, and for a wide range of core parameters this is—n./7)=0; or, with the appropriate choice of constants,
large compared to relevant linear or nonlinear rates eveny=7(¢—(¢)). The adiabatic response can also be derived
thoughvg; is small. While one would thus expect linear Lan- in the formal limit k;— .

dau damping to hold, nonlinear kinetic effects can be subtle, Upon neglect of the “small scale” effects associated
and comparisons between the simulation results using thiwith theVp term in the momentum equatidhere these are
reduced electron model and fully kinetic calculations includ-the V”ne andiw, A, termg, and in the limitm,/m,—0, Eq.

ing collisions will be interesting future work. (110 reduces to the parallel ideal magnetohydrodynamic
Electron—ion collisions are modeled with a Lorentz pitCh(MHD) Ohm's Law E, = — (9A, /ot) — v $=0. Including
1= I I

angle scattering operator. Adding this operator 10 the rlghtthe collisional term gives the parallel resistive MHD Ohm’s
hand side of the drift kinetic equation and taking moments
Law. Adding the — 1/T(V”ne—|w* A)) terms gives a

leads to the following collision term in the normalized elec- -
tron momentum equation: version of the extended MHD Ohm’s Law appropriate for
’ (,!)<kHUte.

me
_Veim(ulle_ulli)v (108 , ,
i V. POISSON’'S EQUATION AND AMPERE’S LAW
where v; is the effective scattering rate, normalized to The system of equations is completed using the gyroki-
vilL,. Becausevg~m, Y2, this term is ordered,i~ 61  netic Poisson’s equation and Ampere’s Law. In the limit of
so that the collision term enters @(5). This caveat allows small Debye lengthk\ p<1, the gyrokinetic Poisson’s equa-
a formally consistent ordering in the mass ratio. It is recogtion becomes a quasineutrality constraint
nized that the collision term may be smaller than other ne-
glected terms. The collision term is kept to assess the impact =ni—(1-To)¢, (112
of this damping mechanism in the electron channel. Whereni is the gyrophase independent part of the real space
Including the pitch angle scattering model and the first-ion density. The (+1') ¢ term, often called the polariza-
order temperature correctiditq. (107)] in Egs. (94) and tion density, arises from the gyrophase dependent part of the
(96), in the limit of small mirror force, yields the following distribution function, and accounts for the difference be-
set of electron equations: tween guiding center density and ion particle density.
Following Beer’® the transformation from gyrocenter to

dng ~ Ui, n i i i i 1 ima-
WWE Vi + BVHE—iw* ¢+2iwd< o 79__'_6) o, :iizilllspace is accomplished with the simple Papjroxima
. n= ! 2b T 113
aAH 1 1 mme N 1reR"M T 2+ p)2 (113
V||¢ ——lo A |kH|Un 2 2 . S .
T whereb=Kk{ pi . This approximation is first order accurate in
m b for both n; and L and it behaves properlyn(—0) for
= ver (U, Uy, (110  largeb.
' Within the gyrokinetic ordering, the parallel Ampere’s
N - Law is®3
VIA=- e(Un ), (114

The wyT(!) term has been neglected, and g ) intro-
duces a two moment Landau damping mdd@lote that the ~ Where Be=8mngT o /B2,

Landau damping operatork(|) acts on an odd moment The transformation to real space is again accomplished
(u;), which has no equilibrium component, so that there iswith a Padeapproximation

no linear magnetic flutter contribution to the Landau closure, 1 2h

avoiding a concern expressed by Finn and GerbiHow- U= T5pp U~ (2+b)2qH' (115

ever, magnetic flutter does introduce an additional nonlinear
Landau damping term, as discussed in Ref. 47. The size of Poisson’s equatiofEq. (112)] and Ampere’s LawEq.
this term has been calculated in simulations and found to bél14)], together with six ion moment equatiofiggs. (81)—
small. (86)], the two electron moment equatiorh&qgs. (109—
This electron model can be viewed as an extension of th€110)], and theT, condition[Eq. (111)], provide a complete
equations of Kadomtsev and Pogdfs® include toroidal description of the ten unknownsi(, Ups Pygs Pogs Qs Ay
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o
[

Ne, Uy, Te, ¢, andA)). The system is solved by evolving

the eight partial differential equations in time, while using
Eqg. (112 to solve for¢, Eq. (114 to solve foruHe, and Eq.

(111 to solve forT,.

It is shown in Sec. Il C of Ref. 55 that this system of
equations exactly reproduces the kinetic dispersion relation
in the local fluid limit (K?v?<w?<kivZ, |og<|wl|, k2 p?
<1). The ability of the equations to model nonlocal kinetic
toroidal drift instabilities is tested in the following section 57015 20 25
with a series of linear benchmarks. q

A A

A

— Kinetic
a Gyrofluid

Growth Rate (c /L)
g

FIG. 1. Linear growth rates of the toroidal ITG mode as a function of the
safety factorq, for =0 and 8=0.8%, with ,=2.5, 7,=2, kyp;=0.5,
VI. LINEAR BENCHMARKS WITH KINETIC THEORY €,=0.2,s=0.6, andr=1. The gyrofluid model is compared to linear ki-
netic theory ind— o geometry, witha=q?Be/e,[1+ 7o+ 7(1+ ;)] cho-
Benchmarking the model against linear kinetic theory issen to be consistent with andg.
an important step in verifying the accuracy and reliability of
both the electromagnetic gyrofluid physics model and the

simulation code used to implement the model. The structure of the eigenfunctions g¢fand A, in bal-

An extensive series of linear benchmarks in the electrogoning space has also been analyzed. For the parameter set
static case is given in Ref. 30, so we focus here on the |mpa%:o.8%, m=2.5, 7o=2, kypi=0.5, €,=0.2, s=0.6,
of finite plasmag. Finite-B effects on the collisionless ion =15, and7=1, the gyrofluid eigenfunctions have been
temperature gradienTG) instability are benchmarked in compared to Fig. 5 of Ref. 16. Good agreement is found in
toroidal flux tgbe geometr.y. In add|t|0n,. the growth rates andygiyy the shape and parity of the real and imaginary eigen-
real frequencies of the kinetic ballooning moeBM) are  fnctions of ¢ and A, as well as in the ratid\,/p<1. We
benchmarked in toroidal geometry. Both the case with NGgte that the real part af has even parity, while the real part
temperature gradient and the more interesting case with finitg¢ A, is odd, and in the normalized units, the ratio
ion temperature gradient are investigated. It is shown that thgmax/Aﬂmales- The eigenfunctions extend roughlyr2in
gyrofiuid model is able to reproduce the finite growth ratesya|iooning angle before becoming negligible. The shape and
of the KBM below the ideal MHDg-limit in this case. parity of these eigenfunctions and the rafig/ p<1 are all

It is important to note that this set of benchmarks Pro-typical of the finite8 ITG mode.
vides a test of the electron physics model, as well as the ion " A second set of toroidal benchmarks employing the
physics model. While a simple adiabatic electron model Cayidely used GS2 linear gyrokinetic code developed by
produce the correct ITG growth rate in the electrostatic limit,x otschenreuth&f is given in Ref. 32. Good agreement is

this is not the case for the fini{-ITG and KBM modes  fond in the growth rate and frequency spectra of the figite-
considered here, as discussed for example in Sec. Il C of Refrg mode.

55. A description of electroW B and curvature drift motion
and proper consideration of magnetic flutter across equilib-
rium electron temperature gradients are required to acc
rately calculate growth rates of both the fingelTG and
KBM instabilities. The electromagnetic gyrofluid model also introduces in-
- ) . stabilities in the shear Alfuebranch of the dispersion rela-

A. The finite- B ITG instability tion not found in the electrostatic case. An example is the

The toroidal ion temperature gradigiitG) instability is  kinetic ballooning mode¢kKBM),}"~?? here defined to be an
widely thought to play an important role in core transport.instability in the shear Alfve branch of the dispersion rela-
Capturing the finiteg effects on this mode has been a prin- tion, analogous to the ideal MHD ballooning mode, with the
cipal motivation for developing an electromagnetic turbu-addition of kinetic effects such as FLR, drift resonance, and
lence model. Landau damping. The KBM is driven unstable largely by

Linear kinetic theory for the electromagnetic case inbad curvature effects in the presence of density and/or tem-
nonlocal toroidal geometry is quite involved, and a fairly perature gradients, though kinetic effects impact the instabil-
limited set of codes is available. A code developed by Kim,ity threshold and growth rat¢Because the plasma equilib-
Horton, and Dond?® solves a simplified set of integral equa- rium is taken to be Maxwellian, there is no fast particle
tions in ballooning coordinates, using ar o equilibrium  drive, and hence no unstable toroidal Alfvesigenmode
model. Figure 1 shows a benchmark using parameters s€fAE).] The KBM is expected to play an important role in
lected from Fig. 68 in Ref. 16. The plot shows linear transportin cases where it is driven unstable below the ideal
growth rate vs the safety factgr at two values of3. Quan-  MHD threshold by the toroidal ion drift resonance. Bench-
titative agreement in the finitg-case is found to be as good marks are performed both in the flat temperature gradient
as in the electrostatic case. The trend emphasized in Ref. 16ase, where the KBM goes unstable exactly at the ideal
that finite3 effects become more important at higheeris ~ MHD B., and the finite ion temperature gradient case, where
reproduced by the gyrofluid model. the KBM is unstable belovgB.. .

5. The kinetic ballooning mode
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FIG. 2. Linear growth ratépositive and frequencynegativé spectraof the ~ FIG. 3. Frequencynegative and linear growth ratépositive spectra for

toroidal kinetic ballooning mode. The gyrofluid model is compared to thethe tor0|d_al kinetic ballooning mode in the presence of a finite ion tempera-

kinetic code of Ref. 21, in a simple circular equilibriumgt 6.25%. Other ~ ture gradient. Parameters chosen gre-2, 7.=0, €,=0.25,s=1, q=2,

parameters are=1, =2, =1, €,=0.25, ;= 7,=0. and 7= 1. The gyrofluid model is compared to a linear kinetic calculation at
two values of3=3.125%,6.25%.

1. Benchmarks with zero fon temperature gradient Again quantitative agreement is reasonably good, with the

A set of benchmarks is performed against the kineticgyrofiuid model successfully reproducing the trends empha-
code developed by Hong, Horton, and Chblt should be  sjzed in Ref. 21.

noted that this code does not solve the complete kinetic

equations, but rather focuses on the coupling between driff); SUMMARY AND CONCLUSION

and shear Alfva waves, and neglects ion transit and bounce . )
frequency resonant effects. . A model has been develope_d to describe electromagnetic

Figure 2 shows a comparison with Fig. 1 in Ref.[#1e microturbulence and transport in long mean-free-pqth plag-
figure captions on Figs. 1 and 2 on p. 1593 of this articleM@s: The model consists of a set of electromagnetic multi-
have been reversed: the figure in the upper right is Fig. 1SPecies gyrofluid and electron Landau fluid equations de-
while the figure in the lower left is Fig.]2Growth rate and fived Dby taking moments of _thg nonlinear toroidal
frequency spectra are compared in a simple circular geonf/€ctromagnetic gyrokinetic equatidri; along with the gy-
etry at 8=6.25%. Good agreement is found for the fre- Fokinetic Poisson equation and Ampere’s Law. _
quency, which is nearly dispersionless with a phase velocity A full hierarchy of six multispecies electromagnetic gy-
of roughly —0.6c,p./L, in the ion diamagnetic direction. roflwq equations is derived, which can be used to (_jescnbe
Agreement for the growth rate is also good, though somé’Oth ions .and. electrons. However, a key result of thls paper
variance is seen at short wavelengths. A comparison of thi§ the derivation of a reduced set of electron equations, ap-
growth rate and frequency of the KBM as a functionis propriate for the efficient description of the passing glectrop
given in Ref. 32, and good agreement is found. response to turbul_enc_e on s_t_:gles characteristic of ion drift
and kinetic ballooning instabilities. The reduced set of elec-
tron equations is derived via an analytic expansion in tem-
poral (0~ w, ,0q,Kuy . kova<kpe) and spatial kK *~p;

The KBM becomes particularly interesting in the pres->p.,c/w,e) scales, formally carried out as an expansion in
ence of finite ion temperature gradient because, as shown hjfe electron—ion mass ratio, treating plaspas an order
Andersson and Weilart,finite #; is a necessary and suffi- unity quantity. This expansion results in a simple set of elec-
cient condition for instability of the shear Alfmebranch be-  tron fluid equations which describe electromagnetic electron
low the ideal MHD g limit. Hence this mode may play a dynamics on the typical ion drift and shear Alfviength and

significant and direct role in driving transport in plasmastime scales, while analytically removing the numerically
which are ideal MHD stable.

A set of benchmarks is again performed, using param-
eters and results from Ref. 21. Figure 3 shows frequency and 10
growth rate spectra for the toroidal KBM at two values of

2. Benchmarks with finite ion temperature gradient

RN - - ]
B=23.125%,6.25%. Other parameters are identical to Fig. 2, :i,, T

except thaty;=2. Agreement between the two models is g 06 i 4

fairly good, with the gyrofluid model correctly accounting = o4l — Kinetic,e =01 B

for the dramatic increase in growth rates at finjte A com- 3 ';"g;:‘r‘::f'l"l;izn: %2051

parison of the growth rate of the finitg- toroidal KBM is © 02L | Gyrofiuid, e, =025

given in Ref. 32, and good agreement is found, with the 0.0 . .

gyrofluid model accurately reproducing the finite growth rate 0.0 05 ¢ 10 15

of the mode both below and above the ideal balloonihg ) o ) i
limit. FIG. 4. Linear growth rate of the kinetic ballooning mode vs magnetic

. . shear, at two values of,=0.1,0.25, for8=9.375%,k,p;=0.3, =2, 7
A final benchmark, Fig. 4, shows the growth rate depen—_ 7=2, and 7,=0. The gyrofluid model is compared to linear kinetic

dence on the magnetic shear, for two different values,of  theory(Ref. 22.
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challenging electron transit time scale as well as the smabively in the gyrofluid literaturé®='43%313%An important
electron gyroradius and skin depth length scales. While thstrength of the reduced electron equation derivation given
resulting electron model is simple and relatively straightfor-here is that it requires no separate closure approximations for
ward to implement numerically, it describes substantialnonlinear terms in the limin,/m;— 0. One important caveat
physics not incorporated in the adiabatic electron models thdbr the multispecies gyrofluid equations is that the closures
have been used to describe the passing electrons in maeynployed here reproduce the fast linear collisionless damp-
previous gyrofluid and gyrokinetic simulations. In addition ing of zonal flows fort<qR/v\e, but do not account for

to finite-3 effects and Alfve wave dynamics, the model also the residual undamped component of the zonal flow noted by
incorporates electroEx B, curvature, an& B drift motion, ~ Rosenbluth and Hintoff, which can be important at low

as well as théE X B nonlinearity and nonlinear terms due to collisionality. Efforts to incorporate neoclassical effects such
magnetic flutter. The use of an electron temperature closuras this residual flow into the toroidal closure are ongdhg.
appropriate foiw ~ w,<kv allows for the proper inclusion Nonlinear Landau damping processes may also be important,

of the VT, as well as thé&/n,, drive of the kinetic ballooning Particularly in weak turbulence/low-collisionality regimes
mode. where the rate of scattering out of the resonant region is

In the lowest order form, including no finite electron Small. Important avenues for future work include nonlinear

mass effects, the reduced electron equations lead to an eldge€nchmarking with gyrokinetic codes to assess the impact of
tron response in which the total, equilibrium plus ﬂuctuaﬂng,nonhnear kinetic effects, and incorporation of an appropriate

electron temperature is constant along the total magnetig'odel for trapped electrons. . .
field, (By+B)-V(Toet T, )=0. This intuitive result is ex Simulations of nonlinear toroidal microturbulence using
’ 0 : Oe e/ — ¥+ -

. . the reduced electron model have been carried out, and are
pected from our ordering of the velocitie®/k~uvi,va described in Refs. 32 and 55

<vye, iMplying the characteristic time scale of both plasma
and magnetic fluctuations is long compared to the time scalﬁCKNOWLEDGMENTS
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