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Critical gradient formula for toroidal electron temperature gradient modes
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Under certain conditions, the electron heat transport induced by electron temperature gradient
(ETG) streamers is sufficiently large and sensitive with respect to the normalized electron
temperature gradient to represent a possible cause for electron temperature profile consistency
(“stiffness”). Here, linear gyrokinetic simulations of toroidal ETG modes in tokamak core and edge
plasmas are presented. An algebraic formula for the threshold of the linear instability is derived from
the numerical solutions of the linear gyrokinetic equations which recovers previous analytical
results in the appropriate limits. @001 American Institute of Physics.
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I. INTRODUCTION In the linear, electrostatic, adiabatic limit, ETG modes
and ion temperature gradiefiTG) modes are basically iso-
Recent nonlinear gyrokinetic simulations have shownmorphic, i.e., known ITG results can be turned into ETG
that hyperfine-scale turbulencéat perpendicular spatial results(and vice versaby switching the role of ions and
scales comparable to or smaller than the ion gyroradiuselectrons. However, there are a number of effects in which
driven by electron temperature gradigliTG) modes can these two modes differ even linearlyl) nonadiabatic effects
yield electron heat flux levels which greatly exceed simple(ITG, trapped and passing electron dynamics on similar per-
mixing length estimates? This surprising finding is linked pendicular scales; ETG, ion dynamics on larger perpendicu-
to the presence of radially highly elongated vorticesiar scaley (2) electromagnetic effectéhe collisionless skin
(“streamers”) which lead to very efficient turbulent convec- depth lies between the electron and ion gyroradius for typical
tion down the gradient. Furthermore, under typical tokamakokamak parametersand(3) Debye shielding effects which
core conditions one can expect the linear critical temperaturgan stabilize the ETG mode if the electron Debye lengsh
gradient and the streamer onset condition to be almost thexceeds the electron gyroradips (see the corresponding
same’ (This is not the case, however, for plasmas with negaremarks in Ref. L. Nonadiabatic and electromagnetic effects
tive shear or steep gradient regionETG streamers may |l be addressed below, whereas Debye shielding effects
therefore play a role in explaining the “stiffness” af, pro-  will be neglected since in generalpy/pe~ BT/né’12951
files that is observed in many experiments. This term is useflyhereB; is the toroidal magnetic field in units of Tesla and
to describe the fact thaf, profiles sometimes do not react Neo is the electron density in units of Im™2). Debye
much to a substantial increase in the applied heating powejhielding effects therefore play a small role except close to
(and corresponding radial heat flu sharp increase of the he edge where the density is very low and the profile gradi-
turbulent electron heat flux with increasing normaliZed  ents are very steep so that the linear poloidal wave-number
gradient as observed in Ref. 3 could be consistent with thi%pectrum is shifted to larger values where it is more suscep-
experimental observation. Given the possible relevance afple to Debye length effects. However, in deriving our criti-
the linear threshold of toroidal ETG modes, we perform acg| gradient formula for ETG modes, we will focus on stan-

large number of linear gyrokinetic simulations to study itSqard core parameters for which the linear ETG threshold is
dependence on various plasma parameters, and find a coRizpected to be most relevant.

pact algebraic formula. We discuss the results with respect to
previous analytical results and to experimental observations.

Note that for sufficiently flat density profiles, trapped
electron modesTEMSs) also exhibit a linear threshold and
are therefore capable of producifig profile stiffness’ In ||, LINEAR GYROKINETIC SIMULATIONS: CRITICAL
the presence ofwo critical T, gradients(from both ETG GRADIENTS
modes and TEMs), the mode with the smaller value of
(R/LTe)crit may be the most interesting. Here, however, we  To investigate the dependence of the critical gradient for
restrict our attention to the linear ETG threshold. The studytoroidal ETG modes on various plasma parameters, we em-
of the linear TEM threshold will be the subject of anotherploy a linear gyrokinetic codeGS2* It solves the gyroki-
paper. netic Vlasov—Maxwell equation$ and includes both pass-

ing and trapped particles, electromagnetic effects, as well as

University of Maryland, College Park, Maryland 20742, a Lorentz collision operator. AlthougsS2 is designed to

bprinceton Plasma Physics Laboratory, Princeton University, P.O. Box 451WOrK in general tOI'(am"’.‘k geometry, we will focus mainly on
Princeton, New Jersey 08543. a large aspect ratio, circular flux surface magnetohydrody-
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namic model equilibriuth which is characterized by mag- 15[ : ' ' '

netic shears, and the normalized pressure gradient, I
We consider a plasma consisting of electrons and one ion

species of chargg; . Thus, the relevant physical parameters

(besidess and «) are the normalized electron and ion tem- 2 10_» |
perature gradientsR/LTe and R/LTi, the normalized density )

—_
gradient,R/L,,, the electron to ion temperature ratio,/T; , >

the ion to electron mass ratioy; /m,, the total plasma beta, 5L .
B=8mp/B?, the safety factor,q, and the normalized 1
electron—ion collision frequencyyR/v. Here, normal-
ized gradients are defined IR/L+=—(R/T)(dT/dr) where

R is the major radius. The quantity, is the thermal electron
velocity, vfezTe/me. Whenever we vary one of these pa-
rameters, it is assumed that we hold the rest of them fixed.
This means, e.g., that we will vaiig/L, at constanR/Ly_~ FIG. 1. Dependence of the threshold valW/l(r )cri, on 7=Zex(Te/T),
and not at constanpe=L,/Ly . For ETG modes at perpen- for the nominal core parameters.

dicular spatial scales smaller than the ion gyroradius, the

gyrokinetic Poisson’s equation yields an adiabatic ion re{R/L; ) depends strongly om and can be characterized
sponse which leads tdi./n,=—7(e®/T.,) where 7 N
=Z;(T./T;). Note that in the presence of additional impurity .~~~ X ) N
ion species one has:(Te/ne)Esnszngs where the sum- "9 _s=0.4 instead of the nominal value s.f: 0.8 leads tq a
mation is over all ion species. This expression reduces to Similar result, R/Ly)ei=1.92+2.00r. Since many dis-
=Zi(To/T)) if the temperatures of all ion species are com-charges used for studyinf, profile stiffness involve domi-
parable(which is usually the cageThereforez; (or Zoq) and ~ hant electron heating which lead t&>1 in the core plasma,
T./T; enter our standard one-species, adiabatic ion runs on[SPiS result is crucial to a correct interpretation of experimen-
as the combinatiom, andR/L+. is irrelevant. Below, we will ~ tal data. It basically tells us that we need to know Thend

find that linear nonadiabatic ion effects on ETG modes aré-efi Profiles in addition to thef, profile in order to make

indeed negligible. Our nominal core parameters are given b§tatements_ about the rple of ETG modes in a parti_cular dis-
q=1.4,3=0.8, RIL,=2.2, =1, B=a=v,=0; our nomi- Charge. It is clear that if there are large error barJ;irand

Ze, then it is impossible to calculatdR(Lr )it With preci-

very well by a linear function,R/LTe)crit= 2.25+2.33r. Us-

nal edge parameters are the same ex&¥pt,=10, =1, !
and g=2. Unless otherwise noted, we use either of thes&!ON.
parameter sets below.

The method used to derive critical gradients for anyB. Magnetic shear variation
given set of parameters is as follows. We generally choose
k=0 (i.e., the ballooning parametép=0) and a set ok,’'s
(poloidal wave numbejsn the region of the fastest growing
linear ETG modesfor nominal parametersk(pe) "**~0.3].

A second important quantity is the magnetic shear pa-
rameter,5=(r/q)(dg/dr). It is known that magnetic shear
has a stabilizing effect on many microinstabilities, including
. . ITG and ETG mode$! Therefore increasing magnetic shear
Then we varyR/Lr, and find the Ilnegr growth rates aS & s expected to lead to a larger value 81 )crie. This trend
function ofR/LTe for each value ok, . Linear extrapolation is clearly observed in Fig. 2, whegehas been varied be-

and subsequent minimization over &|J's yields the final  yeen 0.2 and 3. Note that for small valuesSofthe mode
result, R/LTe)Cm. This procedure was followed for more

than 100 points in parameter spatisted in Appendix A,

mostly varying individual parameters around the base case 12[
values. The numerical parametéparticularly the time step, i
the box size and the number of grid points in the parallel 100
direction were checked regularly to ensure numerical con- E
vergence. The influence of modes with a finite value for the . =z 8;
ballooning parameteé, has been documented in Appendix = ol
B. It is found to be fairly weak for parameters close to the 5 i
base case. ~ 4L
A. 7 variation 2:
In the electrostatic and adiabatic limit, the linear dynam- i
ics of ETG modes bear strong resemblance to those of ion oL : : < ! :
temperature gradierdTG) modes, with the roles of elec- 0.0 05 1.0 15 20 25 30

trons and ions reversed. Therefore one expects increasing ¥

to have a stabilizing effect on ETG modes sifi¢g€T; has a  FIG. 2. Dependence of the linear threshoRII(r )., on magnetic shear,
destabilizing effect on ITG modés. As is shown in Fig. 1, &, for the nominal core parameters.
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FIG. 3. Electrostatic potentiafp, as a function of the poloidal anglé, for

the nominal core parameters excépt0.2. FIG. 5. Dependence of the linear threshoR¥ (1 )¢, on the normalized

density gradientR/L,, for the nominal core parameters.

structure becomes very extended along the magnetic field . o
lines as can be seen in Fig. 3. As is shown in Ref. 3, thé’endlng primarily on the combinaticiq (Refs. 10 and 111

linear threshold is not relevant for negative shear since th@though we find that toroidal eﬁectdls]cus§eg n Sh?c-_”'B
streamer onset condition and the linear threshﬁid_(re)crit can give a stronger dependencecpat low § than this indi-

do not coincide; hence we do not consider weak or negative
magnetic shear here. o
D. R/ L, variation

C. g variation Many analytic formulas for R/ LTe)crit in the literature

Very closely related t& is the safety factorinverse focus on R/L, dependence and get expressions of the

8,12-16 o ’ ’ ’
rotational transformg. In a simple sheared slab model, the form (R/I;Tte)cr't max.A B (R/Ly)] \.Nhe.re 25 A
two quantities enter only in the combinatigtq=R/L,, =5 and 2/3= 7, =B"<1. Our linear gyrokinetic results are
whereL is the magnetic shear length. Some of this sladepicted in Fig. 5. They can be well described by this general
physics is expected and observed to carry over to the toroiddprmula if one sets4’=4.5 and 7. =0.8. Note that the
system. Since above we have obtained a fairly striuig- nominal value,R/L,=2.2, lies well within the flat density
pendence, we expect a similar finding fdR/(t ). as a profile region of Fig. 5 in which the variation of the critical
function of g. The result is plotted in Fig. 4. Ni)te that for gradignt is fairly small. Therefore all the parameter.d(.apen-
q—, i.e., in the local limit, the critical gradient approaches dencies of R/Lt )i found above correspond to variations
a finite value. The eigenmodes are then characterized by & -A’. In order to examine the sensitivity ofc™ with re-
very pronounced ballooning structure which justifies the lo-SPect to the other parameters, we choose an “edge” reference
cal approximation. Fog=2, (R/Ly )¢ is hardly affected by point which is (Eharacter|zed by our standard parameters ex-
changes irg:; for q=2, it increases strongly with decreasing ¢€PtR/Ln=10,5=1, andq=2. The results for the variations

g. This behavior is roughly consistent WithR(L1 ). de- of 7, §, andq are d_isplayed in Figs. 6, 7, anridt 8 respectively.
€ Note that for a wide range of parameterg," indeed falls

10- T T T
i 1.5 ' '
8
% 6L 1.0 7
~ r S,
E 4r S ]
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oL ] I ]
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0 1 2 3 4 0.0 ‘ : : '
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FIG. 4. Dependence of the linear threshoRI (1 ), on the safety factor,  FIG. 6. Dependence of the linear threshold™, on 7=Z.4(T./T)), for the
g, for the nominal core parameters. nominal edge parameters.
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FIG. 7. Dependence of the linear threshoid™, on magnetic sheas, for

FIG. 9. Dependence of the linear threshoRi’l(Te)Cm, on the normalized

the nominal edge parameters. )
(total) plasma pressures, for the nominal core parameters.

into the range 2/3 7{™<1 as suggested by the analytical
expressions referred to above. In particular, in the high
limit, 73" 2/3.

~1). To explore the influence of nonadiabatic ion effects, we
performed two-species simulations and varied the ion to
electron mass ratio between 100 and 10 000 for tRﬁlhTi

=0 and R/LTi=5 (see, respectively, the solid and dashed

lines in Fig. 1). For realistic mass ratiosn; /m.=2000) we

In the low g limit, there are two linear finitgg effects pserve no ion mass dependence, and the impaRtlof on
which can affect the critical gradient for ETG modes, namely :

magnetic field line fluctuationgfinite B effects on the dy- (R/LTe)C”t is negligible.

namicg and Shafranov shiftfinite 8 effects on the equilib-

rium). The influence of these two effects is shown in Figs. 9G. Collisionality effects

and 10. Whereas magpnetic field line fluctuations are slightly  The influence of collisions on the linear threshold is
destabilizing, finitew=—q°R dg/dr has more of an impact shown in Fig. 12. Here, the normalized electron—ion colli-
on (R/Lt)cit- However, for typical core plasmas wih  gjon frequency is given by

<1, Shafranov shift corrections to the critical gradient gen- _ _c s
erally can be ignored. Moreover, taking finiteeffects into veiRlVe=(6.9X10"*)ARmNeroTe kev: @)
account would introduce rather complicated interdependenyhere\ is the Coulomb parameter. The major radRisthe
cies with other geometric parametélike 5) which are hard  electron densityn,, and the electron temperatufe, are

E. Finite B effects

to capture in a simple algebraic expression. given in units of m, 1&m™23, and keV, respectively. For
typical tokamak core parametepsy- 15, R~ 1, nNg9=10,
F. Nonadiabatic ion effects Texev=1, we haver,R/v=0.01, i.e., there is practically

All the above simulations used the adiabatic ion approxi-"° collisional correction to the linear thresholR/Lr ) cir-
mation which corresponds to the limit, /m,—c (for 7  This result is, of course, not surprising, given the extremely

1.0[ ' ' ' 7 £
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0.0 | - ) l L 0 E ) ) . E
0 & 4 6 8 10 0.0 05 1.0 15 2.0
9 o
FIG. 8. Dependence of the linear threshojd™, on the safety factoy, for FIG. 10. Dependence of the linear threshaRIl(t )., on the normalized
the nominal edge parameters. (total) plasma pressure gradient, for the nominal core parameters.
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FIG. 11. Dependence of the linear threshdRil(; )., on the ion to elec- FIG. 13. Linear thresholdﬂ(l}l}zTe);‘m, according to Eq(4) as a function of
o . . . L

tron mass ratiom, /m,, for the nominal core parametef®{L; =0 (solid the linear thresholdsR/Ly )¢, obtained from linear gyrokinetic simula-

line) andR/Ly =5 (dashed ling tions.

fast electron dynamics. We also checked the impact ofhe ratio between the electron transit frequency and the elec-

electron—ion collisions on ETG modes for typical edge pa-'on drift frequency. In the low and higélq limits, previous

rameters which was found to be small despite the somewhzi’tnalygiCaI results by Romanéllias well as by Hahm and
larger values obR/ve. Tang read, respectively,

(RIL7)eie=A(1+7), A=4/3 2
IIl. CRITICAL GRADIENT FORMULA q

an

A. Circular flux surfaces and large aspect ratio
) ) (Le/L1)ei=B(1+7), B=3/2w/2)Y?~1.88, ©)]
Before condensing the above results into a compact for- €

mula, we consider them in relation to previous analyticalwhere the appropriate change from/T, (in the original
results. Like the ITG mode, the ETG mode exists both in aTG formulag to 7=Z4T./T; has been made. Romanelli fo-
toroidal and in a slab-like version. The toroidal ETG mode iscussed on the electron drift resonance and used the “constant
destabilized by the electrofWB and curvaturgdrift reso-  energy resonance” (CER) approximation'? vf+20f
nance and is subject to a critical valueRfL ; , whereas the —>4/3(vf+vﬁ), whereas Hahm neglected it altogether and
slab-like ETG mode is driven by the elec;ron transit resofocussed on the electron transit resonance instead. Other ana-
nance and is subject to a critidal/L;_whereL is the shear lytical approaches'* obtained slightly larger values for

length. (Both statements are only valid in the flat density (A~1.45 instead of4=4/3) and ?1'3 not include ther de-
profile limit; otherwise there exists a criticaje="L,/Lr..) pendence. In th§ B approximation,”v) +2v;—2v] , one

— 9 fiid < PR L _17_ ;
The transition region between two regimes is thus charactelgetSA_ 2.’ ﬂl.“d smulauoné yield A 1'7. 2.5 Our Ilnear.
ized byR/L.~1 or 8/q~1 and the toroidal and slab limits gyrokinetic simulations agree very well with the Romanelli—

correspond t&/q<1 ands/g>1, respectively. Note that for ;EE d:aerzunalrnam]Ztg:gTvil;tnlg(;g .i’nvsvt6e ggdo“éz 124 Il;orgr?qu;
kigR/~1 andk, pc~1, 8/g~Kyi/wpe IS an estimate of P .

database of more than 100 linear gyrokinetic simulation re-
sults for R/ LTe)Crit (see Appendix A a least-squares fit for
5F * T g the linear threshold of toroidal ETG modes is

(RILt)orie=max{(1+ 7)(A+ B3/q) CRIL,},

A~1.33, B~191, C=~08, (4)

f;f ] which in the flat density profile limit is a linear combination
< of the Romanelli and Hahm—-Tang formulas. This formula
& fits database points with an error bar of 3 20% (see Fig.

g 3 13). It has been derived for€97=<5, 0.2<8<3, 0.5<q, 0

1E 3 =%0=2, «=<0.1, and arbitraryR/L,,, and is naturally ex-

2 3 pected to work best near the nominal values,1, §=0.8,
g=1.4, anda=0. Note that R/LTe)C,it does not depend on
B, a, mi/mg, R/Lt, Or ve;.

However, one caution is that Fig. 13 primarily represents
FIG. 12. Dependence of the linear threshdRi(r ), on the normalized variations of one parameter at a time around two base cases
electron—ion collision frequency,R/v,., for the nominal core parameters. (representing the core or edgé\ few multiple parameter

0F ‘ ) ]
0.001 0.010 0.100 1.000
Vei R/V(e
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FIG. 14. Linear thresholdsR/L+ )., according to the ETG version of the  FIG. 15. Dependence of the linear threshaRil(r )¢, On the normalized

IFS—PPPL critical gradient formuléRef. 17 as a function of the linear  minor radius,e=r/R,, for the nominal core parameters.

thresholds R/LTe)gﬁ, obtained from linear gyrokinetic simulations. Stars

symbolize data points outside the range of validity of the IFS—PPPL for-

mula. The dashed line represents the firiter/R, correction(see text and were carried out in a more realistic local equilibrium model,

Appendb Q. with a range of 0.& e<0.3. (See Sec. Ill B and Appendix C
for more discussion of this issyd-or the present cases, this
difference results in an average 16% reduction in the pre-

scans have been done, but not extensively, and there aggcted threshold, shown by the dashed line in Fig. 14. One

some corners of parameter space where the gyrokinetic critshould compare the fit of the data indicated by open squares

cal gradient may deviate more strongly from the simple for-o this dashed line with the fit in Fig. 13. The new formula

mulas given here. In particular, one might expect there to béits a wider region of parameter space with 50% less scatter.
some stabilization at lowy even at low magnetic shegsince

lowering q corresponds to reducing the connection length
between the bad and good curvature regipmgiich is not
adequately represented by this formula which dependg on ~ Since the above results were based o8-ax model
only through the combinatio/q. For example, a6=0.2,  equilibrium which assumes circular flux surfaces and a very
q=0.9, R/L,=2.2, andr=1, the gyrokinetic code finds large aspect ratio, the applicability of Eg) to experiment is
(R/LTe)mt:4_4, about 25% above the value of 3.5 given byfairly limited. Most present-day and future tokamaks have
Eq. (4). This difference is amplified by finite aspect ratio: at Shaped equilibria and an aspect ratio of 3 or less. Therefore
e=r/Ry=1/6,5=0.2,q=0.9, R/L,=2.2, andr=1, the gy- & performed additional Il_near gyrokinetic S|mulat|on_s_ em-
rokinetic code givesR/L+ ) o, about 50% above the value ploylng a local repr_esentatlon of shaped tokamak eqwﬁ?)n_a
of 2.6 predicted by Eq(g) below. This low shear, lowg n or(_j_er 0 generahz_e Ed4). Her_e, the ﬂgx surface shape is
regime may be important in the core region of some toka—Spec'fled by elongations, and triangularity,5, via
maks, but it would require more work to fully parameterize R(6)/Ry=1+ecoq 0+ 5sind), Z(0)/Ry=kesind,
this complicated interaction between tipes and aspect ratio 6)

dependencies. _ where R, is the major radius of the flux surface anrd
Despite that, Eq(4) turns out to be better, simpler, and — /R We verified that fore—0 thes—a model results are

more general than an ETG version of the original Institute,oovered. With increasing we observe a substantial de-
for Fusion Stl_J(_jies—Prin_ceton Plasn;a Physics_ _Laboratorz,frea@e of R/L )ei as can be seen in Fig. 15. For param-
(IFS-PPPY critical gradient for_mulf%. we mod!flgd the eters different than our nominal core parameterg., choos-
IFS_—.PPPL ITG formula. by considering tlg4=1 limit, re- ing 8=0.4 or8=1.2 instead of=0.8), we get the same
defining 7, and exchanging the roles &Ly, andR/Ly. (It ,nqer within a few percent. Therefore we introduce a finite
is not easy to modify the later version of the IFS—PPPL_ -orrection factor for 8 e<0.3

model!® because that model attempted to take fuller account '

of trapped electron and impurity ion effects, which have no (R/LTe)crit: max(1+7)(1.33+1.918/q)

counterpart in the ETG systemThe solid line in Fig. 14
represents a direct comparison of the modified formula with X(1-1.5),0.8R/Lq}, 6)

our database. Since the range of validity of the IFS—PPPWwhich shows that finite aspect ratio effects can be quite
formula is restricted to 05 7<4, 0.5<5<2, 0.7<q=<8, 0  important. They can be understood qualitatively in the
<R/L,<6, some of our datapoints lie outside this regionfollowing way. For toroidal ETG modes with a pronounced
and are symbolized by stars instead of squares. Even thimllooning mode structure, what primarily matters is the
restricted comparison is inappropriate, however, since théocal value of the major radius at the outboard
runs in our database were carried out in the large aspect ratmidplane,Rj,.. SinceR,,.=R(6=0)=(1+¢€)R,, we there-
limit, while the IFS—PPPL formulas are based on runs thafore have R/LTe)critE(RO/LTe)crit’\N‘(l_6)(RIOC/LTe)crit

B. Noncircular flux surfaces and finite aspect ratio
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157 A ] (RILr)orie=max{(1+ 7)(1.33+ 1.918/q)(1 - 1.5¢)

1

X[1+0.3¢(dx/de)],0.8R/L}. @)

This expression is an improvement over the ETG version of
the IFS—PPPL critical gradient formula and reduces to pre-
vious analytical results by Romanélland by Hahm and
Tangd® in the appropriate limits. It is expected to be appli-
cable to standard tokamak core plasmas, proveded.2 and
a=<0.1. Note, however, that finite aspect ratio effects and
strong plasma shaping may lead to larger deviations of the
0.0l ‘ , , , ] gyrokinetic results from Eq.7) than those shown in Fig. 13
1.0 1.2 1.4 1.8 1.8 2.0 for the large aspect ratio, circular flux surface limit.
9 It is important to keep in mind that one does not expect
, ) advanced tokamak discharg@hie to very weak or negative
FIG. 16. Depe_ndence of the linear threshdRIl(r )crit, on_the eIonga_tlon, magnetic shearand tokamak edge plasméddue to steep
k, for the nominal core parameters except1/6. The solid(dashed line . . -
represents a variation of bothanddx/de= (x— 1)/ (only «). profile gradients to reflect the linear threshold of ETG
modes® In these cases, the streamer onset condition and the
linear instability threshold do not coincide and the system
~(1- €)(RILt)crite=0, in rough agreement with EdS). may deviate substantially from marginality. Therefore we

Such a finite aspect ratio correction was also included in thQaV,e nﬁt attempted to extend H) into the negative mag-

IFS—PPPL model&!8 Its importance was confirmed by N€lC shear region. o L

Reddet a2 The ETG threshold is highly sensitive to=Z4T,/T; .
Finally, we sete=1/6 and vary elongations, and trian- Therefore, to investigate electron heat transport by ETG

gularity, 8. The results are shown in Figs. 16 and 17, respec[m)des’ itis crucia}l to know not qnly thE, profile, _b_Ut also

tively. Whereass (and its radial variationhas a negligible € Ti "’,‘”dzeﬁf profiles. The ,Oﬁger important qE‘f‘”t'“@"az

effect on the linear threshold, the impactsofand its radial  actérizing the magnetic field geometrpre §/q, € an

variation) is moderate and can be cast into the foffn dk/de. The remaining p_Iasma parameters have less impact

+0.3¢(dk/de)]. Note that thex effect is mainly due to its on the ETG critical grgdlent. , )

radial variationdx/de which we took to be equal tox( Turbulence associated with trapped electron modes is

—1)/e (assuming a linear dependencexon €). Thedirect likely also to be important in experiments, both for electron

impact of k is rather weak. We also did some scans varyingthermal and particle transport, as _h_as been stfowe have

the Shafranov shift gradiertR,/dr over the modest range not addressed the threshold conditions for these modes here.

In the large aspect ratio and low beta limit, Ed@) for

ETG modes can also be applied to ITG modes with an ap-

propriate redefinition of. For T,~T; andZ.4~1 (which is

the standard scenario for a tokamak reactone finds

IV. CONCLUSIONS (RILT)crit~ (RILt ) crit; i-€., ITG and ETG critical gradients

Based on Comprehensive linear toroidal gyrokinetica|m03t coincide. In addition, it is often hard in this case to
simulations, we have derived the following formula for the Separate the electron and ion channels in the power balance
linear threshold of toroidal ETG modes: analysis. This suggests that experiments with dominant elec-

tron heating(like the ones described in Ref. Pare particu-
larly valuable in further testing the theoretical idea Tof

05 ) 2

(R/]—’l‘e)crit/(R/Ll‘e)crit,x

of 0 to — 0.3, but found only a relatively weak 10% variation
in (R/LTE)Cm, and so we have neglected it in our formulas.

1.2[ i T ' ' ] profile stiffness caused by ETG modes and TEMs. The criti-
[ cal gradient formula for ETG modes derived here may be a
groe ] useful tool in this context.
E 08F .
> o 6:— _ APPENDIX A: SIMULATION PARAMETERS
\ N |- 4
; i ] Most of the simulation parameters that were used for this
5010 ] study are listed here, indexed by the figure in which they first
g ook R appear. For each set of parameters, we used 3—7 valkgs of
r ] to find the growth rate spectrum, and evaluated this spectrum
0.0L s ‘ . i ] for 3-5 values oR/LTe. For Figs. 1-2, 4-5, and 9-12, the
0.00 0.10 0.20 0.30 0.40 0.50 nominal core parameters were used, with the exception of the

¢ variations listed below. For Figs. 6—8, the nominal edge pa-

FIG. 17. Dependence of the linear threshdR!L(Te)cm, on the triangular- r_ameters were U_S_ed' with the excep_tlon of the_ Va“fatlons
ity, 5, for the nominal core parameters except 1/6. The solid(dashed I|stgd belpw. Additional runs were carrl_ed Qut to investigate
line represents a variation of bothandds/de= &/ (only &). ancillary issues. There are two curves in Fig. 10, for the two
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TABLE I. Simulation parameter variations about the nominal core param- 10[ T T

eters. -

Fig. Parameter Values 8r ]

1 T 0,05,1,152, 25,3,4,5 .t

2 3 0.2,0.4,06,0.7,08,1,1.2,1.4,16, 1.8, 2,25, 3 5 6 . o]

4 q 0.5, 0.55, 0.6, 0.65, 0.7, 0.8, 1, 1.2, 1.4, 1.6, 1.8, 2.2, . modified regime |
26,34 & 4L .

5 R/L, 0,05,1.1,16,22,27,33,38,44,5,55,6,66,7.7, B :
8.8, 10 i ]

6 T 0,1,2,25,3,3.25, 35,375, 4,45, 5 2F 5

7 P 05,1,15,2 25,3 [ ]

8 g 1,15,2,3,4,6,8,10 ol . ‘ ‘ .

9 B 0, 0.04, 0.08, 0.12, 0.16, 0.2 0 1 5 3 4

10 « 0,0.2,0.4,06,0809,1,1.1,1.2,13,14,15,1.6

11(& m;/m, 100, 130, 200, 300, 100, 1000 4

11(b) m;/mg 100, 130, 200, 300, 100, 1000 .

12 w.Rlve 0.001, 0.0042, 0.01, 0.014, 0.028, 0.042, 0.071, 0.14, FIG. 19. Dependehce of the linear threshoRIl(r )i, On the sa_fety_ fac-
028 1 tor, g, for the nominal core parameters. Shown are the gyrokinetic results

' for modes with6,=0 (solid line) and #,#0 (squares as well as the fit

formula, Eq.(7) (dashed ling

different values oiR/LTi; these are indicated in Table | by

11(a) and 11b). Approximately 3000 lineaS2 runs were Increasing bott andq at once(from $=0.8, q=1.4 to

carried out in all. §=1.5, g=2.4), there is a synergetic effect in that the im-

portance offy#0 modes is enhanced. Fer=0, (R/Lt )cri

drops from 6.0(at k,=0.35 andf,=0) to 3.6 (at k,=0.35

and 6y=1.2), whereas the fit formula predicts an intermedi-

ate value of 5.1. Fortunately, this discrepancy is reduced at
As stated in Sec. Il, the derivation of Eq) is based on finite e. For example, fole=1/6, (R/L+ )i drops from 4.4

the assumption that the fastest growing linear ETG mode fo(at k,=0.15 andf,=0) to 3.5(atk,=0.3 andf,=0.6), with

any givenk, is characterized by,=0 (k,=0). Although the fit formula predicting 3.8.

this is true under most circumstances, there are notable ex- One can come up with a simple picture of why the first

ceptions. We checked the results underlying E§. when  modes to go unstable may hawg+0. In the fluid theory

6o+ 0 modes are allowed and found that for both large magedescribed in Chap. 1 of Ref. 23, marginal stability occurs at

netic shear, 128=<2.5, or large safety factog=3, one N .

may indeed obtain lower values foR{Lr ) (see Figs. 18 (RILt o~ (@ 1/ wg) = 2([COSO+S( = o)sin 0],

and 19. However, despite these changes, the fit formula isvherer=1 and R/L,,k, pc)—0; (---) denotes an averag-

still a good approximation for the critical gradient. The re-ing process over the mode stucturedispace. Let us assume

sults corresponding to the scanssitiFig. 1), R/L, (Fig. 5, that we are in a parameter regime that allows for strong

B (Fig. 9, and « (Fig. 10 as well as the edge parameter ballooning. For ETG modes localized at the outer midplane

results(Figs. 6—8 are not affected by,#0 modes. (6~ 6o=0) one thus getsR/L+ )~ 2, but for ETG modes

localized above or below the midplané~ 6,+0), the lin-

ear threshold can be lowered. In reality, the ETG modes will
always have some finite extent alomgand average over
different values of the right-hand side of the above equation.
But for large values of the safety factar,(i.e., in the local
limit) and at intermediate magnetic shearg 8<q, they can
localize more easilysee the discussion in Sec. Il) AThis
may lead to a reduction OR/LTe)crit as is observed in Figs.

18 and 19.

APPENDIX B: MODES WITH FINITE BALLOONING
PARAMETER

12T T T T T T

(R/I’I‘e) crit

— modified regime
of 3
r APPENDIX C: COMPARISON WITH IFS—-PPPL MODEL
O L 1 1 1 1 1
0.0 05 1.0 15 20 25 30 The original IFS—PPPL model did not include any points

E evaluated att=0. This complicates the comparison of the
resen with the modified IFS—PPPL formula. Th

FIG. 18. Dependence of the linear threshdRil(; ), on magnetic shear, present d.atal.)ase' th the modified IFS " ormuia N

. . e o dashed line in Fig. 13 represents the prediction from the

§, for the nominal core parameters. Shown are the gyrokinetic results for o

modes with#,=0 (solid line) and 6,# 0 (squaresas well as the fit formula, modified IFS—PPPL model, extrapolated back te0 as fol-

Eq. (7) (dashed ling lows.
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